1
|
Chokki Veettil P, Nikarthil Sidhick J, Kavungal Abdulkhader S, Ms SP, Kumari Chidambaran C. Triclosan, an antimicrobial drug, induced reproductive impairment in the freshwater fish, Anabas testudineus (Bloch, 1792). Toxicol Ind Health 2024; 40:254-271. [PMID: 38518096 DOI: 10.1177/07482337241242510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Triclosan (TCS), an antimicrobial drug, is known to occupy different compartments in aquatic ecosystems. The present study focused to evaluate the reproductive toxicity of triclosan, at environmentally relevant (0.009 and 9 μg L-1) and sublethal (176.7 μg L-1) concentrations for 90 days in the pre-spawning phase of the fish, Anabas testudineus. The reproductive biomarkers, namely, gonadal steroidogenic enzymes, expression of aromatic genes, levels of serum gonadotropins, sex hormones, and histology of gonads were analyzed. The weight of the animal, brain weights along with gonadosomatic index decreased while mucus deposition increased significantly at all concentrations of triclosan as the primary defensive mechanism to prevent the entry of toxicants. Triclosan disrupted gonadal steroidogenesis as evidenced by a reduction in the activities of gonadal steroidogenic enzymes. The expressions of cyp19a1a and cyp19a1b genes were up-regulated in the brain of both sexes and testis, while down-regulated in the ovary indicating estrogenic effects of the compound. The endocrine-disrupting effects of triclosan were confirmed. The current results suggest that chronic exposure to triclosan altered reproductive endpoints thereby impairing normal reproductive functions in fish.
Collapse
Affiliation(s)
| | | | | | - Siva Prasad Ms
- Department of Forensic Science, University of Calicut, Kerala Police Academy, Thrissur, India
| | - Chitra Kumari Chidambaran
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram, India
| |
Collapse
|
2
|
Wang F, Liu F. Mechanism-based understanding of the potential cellular targets of triclosan in zebrafish larvae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104255. [PMID: 37657728 DOI: 10.1016/j.etap.2023.104255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Triclosan (TCS) has become widely distributed due to its widespread use. In this study, we investigated the mechanisms of TCS's potential effects on cellular targets in zebrafish (Danio rerio) larvae using transcriptome sequencing. The expressions of 772, 368, and 1039 genes were significantly altered in zebrafish after embryos were exposed to 2, 10, and 50 μg/L TCS for consecutive 50 d, respectively, and 33 differentially expressed genes (DEGs) were found. DEGs were significantly enriched in the biological processes, including inflammatory response and purine ribonucleoside bisphosphate biosynthetic process by Go analysis, and in processes such as egg coat formation, binding of sperm to zona pellucida, positive regulation of acrosome reaction, and immune response by Gene set enrichment analysis (GSEA). Both KEGG pathway analysis and GSEA showed that NOD-like receptor signaling pathway and Steroid biosynthesis were significantly affected. Results showed that TCS potentially affected reproduction, immune, and metabolism of zebrafish larvae.
Collapse
Affiliation(s)
- Fan Wang
- School of Biological Science, Luoyang Normal University, Luoyang 471022, China.
| | - Fei Liu
- School of Biological Science, Luoyang Normal University, Luoyang 471022, China
| |
Collapse
|
3
|
Qiao Y, He J, Han P, Qu J, Wang X, Wang J. Long-term exposure to environmental relevant triclosan induces reproductive toxicity on adult zebrafish and its potential mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154026. [PMID: 35219675 DOI: 10.1016/j.scitotenv.2022.154026] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Triclosan (TCS) is widely used in personal care products and has become a contaminant ubiquitously found in the aquatic environment. It is reported exposure to triclosan can cause serious toxic effects on aquatic animals. However, the molecular mechanisms about long-term exposure to TCS-induced reproductive toxicity are not well elucidated. In the present study, adult zebrafish were exposed to TCS (2, 20 and 200 μg/L) for 150 days, and then the reproductive capacity assessment, steroid hormone and VTG quantitative measurement, histopathology observation and RNA sequencing analysis were performed to investigate the effects of TCS on its reproduction. The results indicated that long-term exposure to TCS causes the regulation disorder of the endocrine system, resulting in a reduction of the number of normal germ cells, and ultimately a decrease in the hatching rate and survival rate of offspring. This study revealed the toxic effects and contributed to our deep understanding about the potential disease of TCS exposure in the aquatic environment.
Collapse
Affiliation(s)
- Yingjie Qiao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Jiayi He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Ping Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China.
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China.
| |
Collapse
|
4
|
Maher EE, Kipp ZA, Leyrer-Jackson JM, Khatri S, Bondy E, Martinez GJ, Beckmann JS, Hinds TD, Bimonte-Nelson HA, Gipson CD. Ovarian Hormones Regulate Nicotine Consumption and Accumbens Glutamatergic Plasticity in Female Rats. eNeuro 2022; 9:ENEURO.0286-21.2022. [PMID: 35697512 PMCID: PMC9239849 DOI: 10.1523/eneuro.0286-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
Women report greater cigarette cravings during the menstrual cycle phase with higher circulating levels of 17β-estradiol (E2), which is metabolized to estrone (E1). Both E2 and E1 bind to estrogen receptors (ERs), which have been highly studied in the breast, uterus, and ovary. Recent studies have found that ERs are also located on GABAergic medium spiny neurons (MSNs) within the nucleus accumbens core (NAcore). Glutamatergic plasticity in NAcore MSNs is altered following nicotine use; however, it is unknown whether estrogens impact this neurobiological consequence. To test the effect of estrogen on nicotine use, we ovariectomized (OVX) female rats that then underwent nicotine self-administration acquisition and compared them to ovary-intact (sham) rats. The OVX animals then received either sesame oil (vehicle), E2, or E1+E2 supplementation for 4 or 20 d before nicotine sessions. While both ovary-intact and OVX females readily discriminated levers, OVX females consumed less nicotine than sham females. Further, neither E2 nor E1+E2 increased nicotine consumption back to sham levels following OVX, regardless of the duration of the treatment. OVX also rendered NAcore MSNs in a potentiated state following nicotine self-administration, which was reversed by 4 d of systemic E2 treatment. Finally, we found that E2 and E1+E2 increased ERα mRNA in the NAcore, but nicotine suppressed this regardless of hormone treatment. Together, these results show that estrogens regulate nicotine neurobiology, but additional factors may be required to restore nicotine consumption to ovary-intact levels.
Collapse
Affiliation(s)
- Erin E Maher
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536
| | | | - Shailesh Khatri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536
| | - Emma Bondy
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536
| | - Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536
| | - Joshua S Beckmann
- Department of Psychology, University of Kentucky, Lexington, KY, 40506
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, 40536
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ, 85287
- Arizona Alzheimer's Consortium, Phoenix, AZ 85014
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536
| |
Collapse
|
5
|
Liu F, Zhang Y, Wang F. Environmental relevant concentrations of triclosan affected developmental toxicity, oxidative stress, and apoptosis in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY 2022; 37:848-857. [PMID: 34981884 DOI: 10.1002/tox.23448] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Triclosan (TCS), as a broad-spectrum antibacterial agent, is widely used in various pharmaceutical and personal care products. However, the details of ecological environmental health risks of TCS are not clear. In this study, zebrafish embryos/larval were exposed to environmentally relevant concentrations of TCS to evaluate the developmental toxicity. Four-hour post-fertilization (hpf) zebrafish embryos were exposed to 0, 2, 10, 50, and 250 μg/L TCS until 96 h. The heart beats at 72 hpf were significantly increased in 2 μg/L TCS group, while significantly decreased in 250 μg/L TCS treated group compared with control. The results of acridine orange staining, terminal deoxynucleotide transferase-mediated UTPnick end labeling assay, and detection of mitochondrial membrane potential showed that 50 and 250 μg/L TCS resulted in apoptosis. Meanwhile, reactive oxygen species (ROS) and DNA damage were induced, but SOD activity was significantly decreased in 250 μg/L TCS treated group. In addition, SOD(Mn) and GPx gene mRNA expressions were significantly down-regulated in 50 and 250 μg/L TCS treated groups, while Casp3, Casp9, Puma, Casp8, Apaf1, and Bid genes in 250 μg/L TCS and Mdm2 gene in 50 μg/L treated groups were significantly up-regulated. P53 protein was significantly up-regulated in 250 μg/L TCS treated group. The overall results showed that TCS can cause oxidative stress and result in apoptosis via the involvement of ROS-p53-caspase-dependent apoptotic pathway in zebrafish embryos. The present findings suggest the potential mechanisms of TCS-induced developmental toxicity appears to be the generation of ROS and the consequent triggering of apoptosis genes.
Collapse
Affiliation(s)
- Fei Liu
- School of Biological Science, Luoyang Normal University, Luoyang, China
| | - Ying Zhang
- School of Biological Science, Luoyang Normal University, Luoyang, China
| | - Fan Wang
- School of Biological Science, Luoyang Normal University, Luoyang, China
| |
Collapse
|
6
|
Simon E, Duffek A, Stahl C, Frey M, Scheurer M, Tuerk J, Gehrmann L, Könemann S, Swart K, Behnisch P, Olbrich D, Brion F, Aït-Aïssa S, Pasanen-Kase R, Werner I, Vermeirssen ELM. Biological effect and chemical monitoring of Watch List substances in European surface waters: Steroidal estrogens and diclofenac - Effect-based methods for monitoring frameworks. ENVIRONMENT INTERNATIONAL 2022; 159:107033. [PMID: 34979407 DOI: 10.1016/j.envint.2021.107033] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Three steroidal estrogens, 17α-ethinylestradiol (EE2), 17β-estradiol (E2), estrone (E1), and the non-steroidal anti-inflammatory drug (NSAID), diclofenac have been included in the first Watch List of the Water Framework Directive (WFD, EU Directive 2000/60/EC, EU Implementing Decision 2015/495). This triggered the need for more EU-wide surface water monitoring data on these micropollutants, before they can be considered for inclusion in the list of priority substances regularly monitored in aquatic ecosystems. The revision of the priority substance list of the WFD offers the opportunity to incorporate more holistic bioanalytical approaches, such as effect-based monitoring, alongside single substance chemical monitoring. Effect-based methods (EBMs) are able to measure total biological activities (e.g., estrogenic activity or cyxlooxygenase [COX]-inhibition) of specific group of substances (such as estrogens and NSAIDs) in the aquatic environment at low concentrations (pg/L). This makes them potential tools for a cost-effective and ecotoxicologically comprehensive water quality assessment. In parallel, the use of such methods could build a bridge from chemical status assessments towards ecological status assessments by adressing mixture effects for relevant modes of action. Our study aimed to assess the suitability of implementing EBMs in the WFD, by conducting a large-scale sampling and analysis campaign of more than 70 surface waters across Europe. This resulted in the generation of high-quality chemical and effect-based monitoring data for the selected Watch List substances. Overall, water samples contained low estrogenicity (0.01-1.3 ng E2-Equivalent/L) and a range of COX-inhibition activity similar to previously reported levels (12-1600 ng Diclofenac-Equivalent/L). Comparison between effect-based and conventional analytical chemical methods showed that the chemical analytical approach for steroidal estrogens resulted in more (76%) non-quantifiable data, i.e., concentrations were below detection limits, compared to the EBMs (28%). These results demonstrate the excellent and sensitive screening capability of EBMs.
Collapse
Affiliation(s)
- Eszter Simon
- Swiss Centre for Applied Ecotoxicology, Dübendorf, Switzerland.
| | - Anja Duffek
- German Environment Agency (UBA), Berlin, Germany
| | - Cordula Stahl
- Steinbeis-Innovationszentrum Zellkulturtechnik, c/o University of Applied Sciences Mannheim, Germany
| | - Manfred Frey
- Steinbeis-Innovationszentrum Zellkulturtechnik, c/o University of Applied Sciences Mannheim, Germany
| | - Marco Scheurer
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruhe, Germany
| | - Jochen Tuerk
- Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Duisburg, Germany
| | - Linda Gehrmann
- Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Duisburg, Germany
| | - Sarah Könemann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Kees Swart
- BioDetection Systems B.V., Amsterdam, the Netherlands
| | - Peter Behnisch
- National Institute of Industrial Environment and Risks (INERIS), UMR-I 02 SEBIO, Verneuil-en-Halatte, France
| | - Daniel Olbrich
- Swiss Centre for Applied Ecotoxicology, Dübendorf, Switzerland
| | - Franҫois Brion
- State Secretariat for Economic Affairs (SECO), Labour Directorate Section Chemicals and Work, Bern, Switzerland
| | - Selim Aït-Aïssa
- State Secretariat for Economic Affairs (SECO), Labour Directorate Section Chemicals and Work, Bern, Switzerland
| | - Robert Pasanen-Kase
- State Secretariat for Economic Affairs (SECO), Labour Directorate Section Chemicals and Work, Bern, Switzerland
| | - Inge Werner
- Swiss Centre for Applied Ecotoxicology, Dübendorf, Switzerland
| | | |
Collapse
|
7
|
Kumar S, Paul T, Shukla SP, Kumar K, Karmakar S, Bera KK, Bhushan Kumar C. Biomarkers-based assessment of triclosan toxicity in aquatic environment: A mechanistic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117569. [PMID: 34438492 DOI: 10.1016/j.envpol.2021.117569] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/21/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS), an emergent pollutant, is raising a global concern due to its toxic effects on organisms and aquatic ecosystems. The non-availability of proven treatment technologies for TCS remediation is the central issue stressing thorough research on understanding the underlying mechanisms of toxicity and assessing vital biomarkers in the aquatic organism for practical monitoring purposes. Given the unprecedented circumstances during COVID 19 pandemic, a several-fold higher discharge of TCS in the aquatic ecosystems cannot be considered a remote possibility. Therefore, identifying potential biomarkers for assessing chronic effects of TCS are prerequisites for addressing the issues related to its ecological impact and its monitoring in the future. It is the first holistic review on highlighting the biomarkers of TCS toxicity based on a comprehensive review of available literature about the biomarkers related to cytotoxicity, genotoxicity, hematological, alterations of gene expression, and metabolic profiling. This review establishes that biomarkers at the subcellular level such as oxidative stress, lipid peroxidation, neurotoxicity, and metabolic enzymes can be used to evaluate the cytotoxic effect of TCS in future investigations. Micronuclei frequency and % DNA damage proved to be reliable biomarkers for genotoxic effects of TCS in fishes and other aquatic organisms. Alteration of gene expression and metabolic profiling in different organs provides a better insight into mechanisms underlying the biocide's toxicity. In the concluding part of the review, the present status of knowledge about mechanisms of antimicrobial resistance of TCS and its relevance in understanding the toxicity is also discussed referring to the relevant reports on microorganisms.
Collapse
Affiliation(s)
- Saurav Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India.
| | - Tapas Paul
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - S P Shukla
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Kundan Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Sutanu Karmakar
- West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Kuntal Krishna Bera
- West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Chandra Bhushan Kumar
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, 226002, Uttar Pradesh, India
| |
Collapse
|
8
|
Gómez L, Niegowska M, Navarro A, Amendola L, Arukwe A, Ait-Aissa S, Balzamo S, Barreca S, Belkin S, Bittner M, Blaha L, Buchinger S, Busetto M, Carere M, Colzani L, Dellavedova P, Denslow N, Escher BI, Hogstrand C, Khan EA, König M, Kroll KJ, Lacchetti I, Maillot-Marechal E, Moscovici L, Potalivo M, Sanseverino I, Santos R, Schifferli A, Schlichting R, Sforzini S, Simon E, Shpigel E, Sturzenbaum S, Vermeirssen E, Viarengo A, Werner I, Lettieri T. Estrogenicity of chemical mixtures revealed by a panel of bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147284. [PMID: 33957588 PMCID: PMC8210648 DOI: 10.1016/j.scitotenv.2021.147284] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 05/06/2023]
Abstract
Estrogenic compounds are widely released to surface waters and may cause adverse effects to sensitive aquatic species. Three hormones, estrone, 17β-estradiol and 17α-ethinylestradiol, are of particular concern as they are bioactive at very low concentrations. Current analytical methods are not all sensitive enough for monitoring these substances in water and do not cover mixture effects. Bioassays could complement chemical analysis since they detect the overall effect of complex mixtures. Here, four chemical mixtures and two hormone mixtures were prepared and tested as reference materials together with two environmental water samples by eight laboratories employing nine in vitro and in vivo bioassays covering different steps involved in the estrogenic response. The reference materials included priority substances under the European Water Framework Directive, hormones and other emerging pollutants. Each substance in the mixture was present at its proposed safety limit concentration (EQS) in the European legislation. The in vitro bioassays detected the estrogenic effect of chemical mixtures even when 17β-estradiol was not present but differences in responsiveness were observed. LiBERA was the most responsive, followed by LYES. The additive effect of the hormones was captured by ERα-CALUX, MELN, LYES and LiBERA. Particularly, all in vitro bioassays detected the estrogenic effects in environmental water samples (EEQ values in the range of 0.75-304 × EQS), although the concentrations of hormones were below the limit of quantification in analytical measurements. The present study confirms the applicability of reference materials for estrogenic effects' detection through bioassays and indicates possible methodological drawbacks of some of them that may lead to false negative/positive outcomes. The observed difference in responsiveness among bioassays - based on mixture composition - is probably due to biological differences between them, suggesting that panels of bioassays with different characteristics should be applied according to specific environmental pollution conditions.
Collapse
Affiliation(s)
- Livia Gómez
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Magdalena Niegowska
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Anna Navarro
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Luca Amendola
- ARPA Lazio, Regional Agency for Environmental Protection, Via G. Saredo 52, 00173 Rome, Italy
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Selim Ait-Aissa
- French National Institute for Industrial Environment and Risks (INERIS), UMR-I 02 SEBIO, 60550 Verneuil-en-Halatte, France
| | - Stefania Balzamo
- ISPRA - Environmental Metrology Unit, Via di Castel Romano 100, 00128 Rome, Italy
| | - Salvatore Barreca
- ARPA Lombardia, Regional Agency for Environmental Protection, Via Rosellini 17, 20124 Milan, Italy
| | - Shimshon Belkin
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michal Bittner
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic
| | | | - Maddalena Busetto
- ARPA Lombardia, Regional Agency for Environmental Protection, Via Rosellini 17, 20124 Milan, Italy
| | - Mario Carere
- ISS-National Health Institute, Viale Regina Elena 299, 00161 Rome, Italy
| | - Luisa Colzani
- ARPA Lombardia, Regional Agency for Environmental Protection, Via Rosellini 17, 20124 Milan, Italy
| | - Pierluisa Dellavedova
- ARPA Lombardia, Regional Agency for Environmental Protection, Via Rosellini 17, 20124 Milan, Italy
| | - Nancy Denslow
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Beate I Escher
- Department Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Christer Hogstrand
- Metal Metabolism Group, Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford St, London SE1 9NH, UK
| | - Essa Ahsan Khan
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Maria König
- Department Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Kevin J Kroll
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Ines Lacchetti
- ISS-National Health Institute, Viale Regina Elena 299, 00161 Rome, Italy
| | - Emmanuelle Maillot-Marechal
- French National Institute for Industrial Environment and Risks (INERIS), UMR-I 02 SEBIO, 60550 Verneuil-en-Halatte, France
| | - Liat Moscovici
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Monica Potalivo
- ISPRA - Environmental Metrology Unit, Via di Castel Romano 100, 00128 Rome, Italy
| | - Isabella Sanseverino
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Ricardo Santos
- Laboratório de Análises, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Andrea Schifferli
- Swiss Centre for Applied Ecotoxicology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Rita Schlichting
- Department Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Susanna Sforzini
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (CNR-IAS), Via de Marini 6, Genova 16149, Italy
| | - Eszter Simon
- Swiss Centre for Applied Ecotoxicology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Etai Shpigel
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Stephen Sturzenbaum
- School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, UK
| | - Etienne Vermeirssen
- Swiss Centre for Applied Ecotoxicology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Aldo Viarengo
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (CNR-IAS), Via de Marini 6, Genova 16149, Italy
| | - Inge Werner
- Swiss Centre for Applied Ecotoxicology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Teresa Lettieri
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| |
Collapse
|
9
|
Alla LNR, Monshi M, Siddiqua Z, Shields J, Alame K, Wahls A, Akemann C, Meyer D, Crofts EJ, Saad F, El-Nachef J, Antoon M, Nakhle R, Hijazi N, Hamid M, Gurdziel K, McElmurry SP, Kashian DR, Baker TR, Pitts DK. Detection of endocrine disrupting chemicals in Danio rerio and Daphnia pulex: Step-one, behavioral screen. CHEMOSPHERE 2021; 271:129442. [PMID: 33476875 DOI: 10.1016/j.chemosphere.2020.129442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 05/27/2023]
Abstract
Anthropogenic surface and ground water contamination by chemicals is a global problem, and there is an urgent need to develop tools to identify and elucidate biological effects. Contaminants of emerging concern (CECs) are not typically monitored or regulated and those with known or suspected endocrine disrupting potential have been termed endocrine disrupting chemicals (EDCs). Many CECs are known to be neurotoxic (e.g., insecticides) and many are incompletely characterized. Behavioral responses can identify chemicals with neuroactive properties, which can be relevant to EDC mechanisms (e.g., neuroendocrine disturbances). Two freshwater species, Daphnia pulex and Danio rerio, were evaluated for swimming behavior alterations resulting from 24-hr exposure to 9 CECs: triclosan, triclocarban, chlorpyrifos, dieldrin, 4-nonylphenol, bisphenol-A, atrazine, metformin, and estrone. This is the first step in the development of a bioassay for detecting estrogenic and/or anti-androgenic activity with the goal to evaluate complex mixtures of uncharacterized contaminants in water samples. The second step, described in a subsequent report, examines transcriptome alterations following chemical exposure. Significant differences in the swimming behavior response and sensitivity were found across chemicals within a species and across species for a given chemical in this unique optical bioassay system. In the concentration ranges studied, significant behavioral alterations were detected for 6 of 9 CECs for D. pulex and 4 of 9 CECs for D. rerio. These results underscore the utility of this bioassay to identify behavioral effects of sublethal concentrations of CECs before exploration of transcriptomic alterations for EDC detection.
Collapse
Affiliation(s)
- Lakshmi Neha Reddy Alla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Manahil Monshi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Zoha Siddiqua
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Jeremiah Shields
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Karim Alame
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Andrea Wahls
- Department of Civil and Environmental Engineering, College of Engineering, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Camille Akemann
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Danielle Meyer
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Emily J Crofts
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Fadie Saad
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Judy El-Nachef
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Merna Antoon
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Raquel Nakhle
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Nemer Hijazi
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Maha Hamid
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | | | - Shawn P McElmurry
- Department of Civil and Environmental Engineering, College of Engineering, Wayne State University, Detroit, MI, USA
| | - Donna R Kashian
- Department of Biological Sciences, College of Liberal Arts, Wayne State University, Detroit, MI, USA
| | - Tracie R Baker
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - David K Pitts
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
10
|
Kenda M, Karas Kuželički N, Iida M, Kojima H, Sollner Dolenc M. Triclocarban, Triclosan, Bromochlorophene, Chlorophene, and Climbazole Effects on Nuclear Receptors: An in Silico and in Vitro Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:107005. [PMID: 33064576 PMCID: PMC7567334 DOI: 10.1289/ehp6596] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Endocrine-disrupting chemicals can interfere with hormonal homeostasis and have adverse effects for both humans and the environment. Their identification is increasingly difficult due to lack of adequate toxicological tests. This difficulty is particularly problematic for cosmetic ingredients, because in vivo testing is now banned completely in the European Union. OBJECTIVES The aim was to identify candidate preservatives as endocrine disruptors by in silico methods and to confirm endocrine receptors' activities through nuclear receptors in vitro. METHODS We screened preservatives listed in Annex V in the European Union Regulation on cosmetic products to predict their binding to nuclear receptors using the Endocrine Disruptome and VirtualToxLab™ version 5.8 in silico tools. Five candidate preservatives were further evaluated for androgen receptor (AR), estrogen receptor (ER α ), glucocorticoid receptor (GR), and thyroid receptor (TR) agonist and antagonist activities in cell-based luciferase reporter assays in vitro in AR-EcoScreen, hER α -HeLa- 9903 , MDA-kb2, and GH3.TRE-Luc cell lines. Additionally, assays to test for false positives were used (nonspecific luciferase gene induction and luciferase inhibition). RESULTS Triclocarban had agonist activity on AR and ER α at 1 μ M and antagonist activity on GR at 5 μ M and TR at 1 μ M . Triclosan showed antagonist effects on AR, ER α , GR at 10 μ M and TR at 5 μ M , and bromochlorophene at 1 μ M (AR and TR) and at 10 μ M (ER α and GR). AR antagonist activity of chlorophene was observed [inhibitory concentration at 50% (IC50) IC 50 = 2.4 μ M ], as for its substantial ER α agonist at > 5 μ M and TR antagonist activity at 10 μ M . Climbazole showed AR antagonist (IC 50 = 13.6 μ M ), ER α agonist at > 10 μ M , and TR antagonist activity at 10 μ M . DISCUSSION These data support the concerns of regulatory authorities about the endocrine-disrupting potential of preservatives. These data also define the need to further determine their effects on the endocrine system and the need to reassess the risks they pose to human health and the environment. https://doi.org/10.1289/EHP6596.
Collapse
Affiliation(s)
- Maša Kenda
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | | | | | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | |
Collapse
|
11
|
Triclosan: An Update on Biochemical and Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1607304. [PMID: 31191794 PMCID: PMC6525925 DOI: 10.1155/2019/1607304] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/28/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022]
Abstract
Triclosan (TCS) is a synthetic, chlorinated phenolic antimicrobial agent commonly used in commercial and healthcare products. Items made with TCS include soaps, deodorants, shampoos, cosmetics, textiles, plastics, surgical sutures, and prosthetics. A wealth of information obtained from in vitro and in vivo studies has demonstrated the therapeutic effects of TCS, particularly against inflammatory skin conditions. Nevertheless, extensive investigations on the molecular aspects of TCS action have identified numerous adversaries associated with the disinfectant including oxidative injury and influence of physiological lifespan and longevity. This review presents a summary of the biochemical alterations pertaining to TCS exposure, with special emphasis on the diverse molecular pathways responsive to TCS that have been elucidated during the present decade.
Collapse
|
12
|
Falisse E, Ducos B, Stockwell PA, Morison IM, Chatterjee A, Silvestre F. DNA methylation and gene expression alterations in zebrafish early-life stages exposed to the antibacterial agent triclosan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1867-1877. [PMID: 30408875 DOI: 10.1016/j.envpol.2018.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/07/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
There is increasing evidence that toxicant exposure can alter DNA methylation profile, one of the main epigenetic mechanisms, particularly during embryogenesis when DNA methylation patterns are being established. In order to investigate the effects of the antibacterial agent Triclosan on DNA methylation and its correlation with gene expression, zebrafish embryos were exposed during 7 days post-fertilization (starting at maximum 8-cells stage) to 50 and 100 μg/l, two conditions for which increased sensitivity and acclimation have been respectively reported. Although global DNA methylation was not significantly affected, a total of 171 differentially methylated fragments were identified by Reduced Representation Bisulfite Sequencing. The majority of these fragments were found between the two exposed groups, reflecting dose-dependant specific responses. Gene ontology analysis revealed that pathways involved in TGF-β signaling were enriched in larvae exposed to 50 μg/l, while de novo pyrimidine biosynthesis functions were overrepresented in fish exposed to 100 μg/l. In addition, gene expression analysis revealed a positive correlation between mRNA levels and DNA methylation patterns in introns, together with significant alterations of the transcription of genes involved in nervous system development, transcriptional factors and histone methyltransferases. Overall this work provides evidence that Triclosan alters DNA methylation in zebrafish exposed during embryogenesis as well as related genes expression and proposes concentration specific modes of action. Further studies will investigate the possible long-term consequences of these alterations, i.e. latent defects associated with developmental exposure and transgenerational effects, and the possible implications in terms of fitness and adaptation to environmental pollutants.
Collapse
Affiliation(s)
- Elodie Falisse
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment - University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Bertrand Ducos
- High Throughput qPCR Facility of ENS, IBENS, 46 rue d'Ulm, 75005, PARIS, France
| | - Peter A Stockwell
- Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
| | - Ian M Morison
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin, 9054, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin, 9054, New Zealand
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment - University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| |
Collapse
|
13
|
Molecular Pathways of Estrogen Receptor Action. Int J Mol Sci 2018; 19:ijms19092591. [PMID: 30200344 PMCID: PMC6164862 DOI: 10.3390/ijms19092591] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/25/2022] Open
|