1
|
Taheri M, Tehrani HA, Dehghani S, Alibolandi M, Arefian E, Ramezani M. Nanotechnology and bioengineering approaches to improve the potency of mesenchymal stem cell as an off-the-shelf versatile tumor delivery vehicle. Med Res Rev 2024; 44:1596-1661. [PMID: 38299924 DOI: 10.1002/med.22023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 11/28/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Targeting actionable mutations in oncogene-driven cancers and the evolution of immuno-oncology are the two prominent revolutions that have influenced cancer treatment paradigms and caused the emergence of precision oncology. However, intertumoral and intratumoral heterogeneity are the main challenges in both fields of precision cancer treatment. In other words, finding a universal marker or pathway in patients suffering from a particular type of cancer is challenging. Therefore, targeting a single hallmark or pathway with a single targeted therapeutic will not be efficient for fighting against tumor heterogeneity. Mesenchymal stem cells (MSCs) possess favorable characteristics for cellular therapy, including their hypoimmune nature, inherent tumor-tropism property, straightforward isolation, and multilineage differentiation potential. MSCs can be loaded with various chemotherapeutics and oncolytic viruses. The combination of these intrinsic features with the possibility of genetic manipulation makes them a versatile tumor delivery vehicle that can be used for in vivo selective tumor delivery of various chemotherapeutic and biological therapeutics. MSCs can be used as biofactory for the local production of chemical or biological anticancer agents at the tumor site. MSC-mediated immunotherapy could facilitate the sustained release of immunotherapeutic agents specifically at the tumor site, and allow for the achievement of therapeutic concentrations without the need for repetitive systemic administration of high therapeutic doses. Despite the enthusiasm evoked by preclinical studies that used MSC in various cancer therapy approaches, the translation of MSCs into clinical applications has faced serious challenges. This manuscript, with a critical viewpoint, reviewed the preclinical and clinical studies that have evaluated MSCs as a selective tumor delivery tool in various cancer therapy approaches, including gene therapy, immunotherapy, and chemotherapy. Then, the novel nanotechnology and bioengineering approaches that can improve the potency of MSC for tumor targeting and overcoming challenges related to their low localization at the tumor sites are discussed.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Dehghani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Marquez-Curtis LA, Elliott JAW. Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects: Update from 2015 review. Cryobiology 2024; 115:104856. [PMID: 38340887 DOI: 10.1016/j.cryobiol.2024.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Mesenchymal stromal cells (MSCs) have become one of the most investigated and applied cells for cellular therapy and regenerative medicine. In this update of our review published in 2015, we show that studies continue to abound regarding the characterization of MSCs to distinguish them from other similar cell types, the discovery of new tissue sources of MSCs, and the confirmation of their properties and functions that render them suitable as a therapeutic. Because cryopreservation is widely recognized as the only technology that would enable the on-demand availability of MSCs, here we show that although the traditional method of cryopreserving cells by slow cooling in the presence of 10% dimethyl sulfoxide (Me2SO) continues to be used by many, several novel MSC cryopreservation approaches have emerged. As in our previous review, we conclude from these recent reports that viable and functional MSCs from diverse tissues can be recovered after cryopreservation using a variety of cryoprotectants, freezing protocols, storage temperatures, and periods of storage. We also show that for logistical reasons there are now more studies devoted to the cryopreservation of tissues from which MSCs are derived. A new topic included in this review covers the application in COVID-19 of MSCs arising from their immunomodulatory and antiviral properties. Due to the inherent heterogeneity in MSC populations from different sources there is still no standardized procedure for their isolation, identification, functional characterization, cryopreservation, and route of administration, and not likely to be a "one-size-fits-all" approach in their applications in cell-based therapy and regenerative medicine.
Collapse
Affiliation(s)
- Leah A Marquez-Curtis
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9
| | - Janet A W Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9.
| |
Collapse
|
3
|
Zhang J, Wang Z, Zhang D, Chen Q, Xu J, Tang L, Luo J, Mai Q, Lu X, Tan L, Gan N, Jiang Q. Development of a precision tumor bone metastasis model by a magnetic micro-living-motor system. Colloids Surf B Biointerfaces 2024; 238:113877. [PMID: 38615390 DOI: 10.1016/j.colsurfb.2024.113877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
An ideal bone metastasis animal model is critical and fundamental for mechanistic research and following development of new drug and treatment. Caudal artery (CA) injection allows bone metastasis in the hindlimb, while in-depth targeted and quantitative studies of bone metastasis require a new model to overcome its limitations. Here, we developed a targeted, quantitative, and highly consistent method for the modeling of bone metastasis with cell-based magnetic micro-living-motor (MLM) system created by effectively combining Fe3O4-PDA-Au with biosafety. The MLM system can achieve efficient migration, target site colonization and control tumorigenesis in bone precisely with the application of a magnetic field. In vivo, day 3 post cell injection, tumor bone metastasis signals were observed locally in the injected femur among 82.76% mice of the MLM group as compared to the 56.82% in the CA group, and the signal intensity was 45.1 and 95.9 times stronger than that in the left and right lower limbs of the CA group, respectively. Post-injection day 28, metastasis in vital organs was reduced by approximately 90% in the MLM group compared to the CA group. Our innovative use of the MLM system in the field of tumor modeling opens a new avenue for exploring the mechanisms of tumor bone metastasis, recurrence and drug resistance.
Collapse
Affiliation(s)
- Jialu Zhang
- Department of Haematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhengyuan Wang
- Department of Haematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dingyi Zhang
- Department of Haematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiyan Chen
- Department of Haematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiawei Xu
- School of the first Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Luxia Tang
- School of the first Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jinyan Luo
- School of the first Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qiusui Mai
- Department of Transfusion Medicine, School of Laboratory and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xia Lu
- School of the first Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Leyi Tan
- School of the first Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ning Gan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Qianli Jiang
- Department of Haematology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Lv S, Wang G, Dai L, Wang T, Wang F. Cellular and Molecular Connections Between Bone Fracture Healing and Exosomes. Physiol Res 2023; 72:565-574. [PMID: 38015756 PMCID: PMC10751053 DOI: 10.33549/physiolres.935143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/25/2023] [Indexed: 01/05/2024] Open
Abstract
Fracture healing is a multifaceted process that requires various phases and intercellular interactions. In recent years, investigations have been conducted to assess the feasibility of utilizing exosomes, small extracellular vesicles (EVs), to enhance and accelerate the healing process. Exosomes serve as a cargo transport platform, facilitating intercellular communication, promoting the presentation of antigens to dendritic cells, and stimulating angiogenesis. Exosomes have a special structure that gives them a special function, especially in the healing process of bone injuries. This article provides an overview of cellular and molecular processes associated with bone fracture healing, as well as a survey of existing exosome research in this context. We also discuss the potential use of exosomes in fracture healing, as well as the obstacles that must be overcome to make this a viable clinical practice.
Collapse
Affiliation(s)
- S Lv
- Department of Orthopedics, Sinopharm China Railway Engineering Corporation Central Hospital, Hefei, China.
| | | | | | | | | |
Collapse
|
5
|
Karmakar R, Dey S, Alam A, Khandelwal M, Pati F, Rengan AK. Attributes of Nanomaterials and Nanotopographies for Improved Bone Tissue Engineering and Regeneration. ACS APPLIED BIO MATERIALS 2023; 6:4020-4041. [PMID: 37691480 DOI: 10.1021/acsabm.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Bone tissue engineering (BTE) is a multidisciplinary area that can solve the limitation of conventional grafting methods by developing viable and biocompatible bone replacements. The three essential components of BTE, i.e., Scaffold material and Cells and Growth factors altogether, facilitate support and guide for bone formation, differentiation of the bone tissues, and enhancement in the cellular activities and bone regeneration. However, there is a scarcity of the appropriate materials that can match the mechanical property as well as functional similarity to native tissue, considering the bone as hard tissue. In such scenarios, nanotechnology can be leveraged upon to achieve the desired aspects of BTE, and that is the key point of this review article. This review article examines the significant areas of nanotechnology research that have an impact on regeneration of bone: (a) scaffold with nanomaterials helps to enhance physicochemical interactions, biocompatibility, mechanical stability, and attachment; (b) nanoparticle-based approaches for delivering bioactive chemicals, growth factors, and genetic material. The article begins with the introduction of components and healing mechanisms of bone and the factors associated with them. The focus of this article is on the various nanotopographies that are now being used in scaffold formation, by describing how they are made, and how these nanotopographies affect the immune system and potential underlying mechanisms. The advantages of 4D bioprinting in BTE by using nanoink have also been mentioned. Additionally, we have investigated the importance of an in silico approach for finding the interaction between drugs and their related receptors, which can help to formulate suitable systems for delivery. This review emphasizes the role of nanoscale approach and how it helps to increase the efficacy of parameters of scaffold as well as drug delivery system for tissue engineering and bone regeneration.
Collapse
Affiliation(s)
- Rounik Karmakar
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Sreenath Dey
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Aszad Alam
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Mudrika Khandelwal
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| |
Collapse
|
6
|
Zheng J, Jiang X, Li Y, Gao J. Inorganic nanoparticle-integrated mesenchymal stem cells: A potential biological agent for multifaceted applications. MedComm (Beijing) 2023; 4:e313. [PMID: 37533768 PMCID: PMC10390757 DOI: 10.1002/mco2.313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 08/04/2023] Open
Abstract
Mesenchymal stem cell (MSC)-based therapies are flourishing. MSCs could be used as potential therapeutic agents for regenerative medicine due to their own repair function. Meanwhile, the natural predisposition toward inflammation or injury sites makes them promising carriers for targeted drug delivery. Inorganic nanoparticles (INPs) are greatly favored for their unique properties and potential applications in biomedical fields. Current research has integrated INPs with MSCs to enhance their regenerative or antitumor functions. This model also allows the in vivo fate tracking of MSCs in multiple imaging modalities, as many INPs are also excellent contrast agents. Thus, INP-integrated MSCs would be a multifunctional biologic agent with great potential. In this review, the current roles performed by the integration of INPs with MSCs, including (i) enhancing their repair and regeneration capacity via the improvement of migration, survival, paracrine, or differentiation properties, (ii) empowering tumor-killing ability through agent loaded or hyperthermia, and (iii) conferring traceability are summarized. An introduction of INP-integrated MSCs for simultaneous treatment and tracking is also included. The promising applications of INP-integrated MSCs in future treatments are emphasized and the challenges to their clinical translation are discussed.
Collapse
Affiliation(s)
- Juan‐Juan Zheng
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Xin‐Chi Jiang
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Yao‐Sheng Li
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Jian‐Qing Gao
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Hangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
7
|
Chen Y, Hou S. Recent progress in the effect of magnetic iron oxide nanoparticles on cells and extracellular vesicles. Cell Death Discov 2023; 9:195. [PMID: 37380637 DOI: 10.1038/s41420-023-01490-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023] Open
Abstract
At present, iron oxide nanoparticles (IONPs) are widely used in the biomedical field. They have unique advantages in targeted drug delivery, imaging and disease treatment. However, there are many things to pay attention to. In this paper, we reviewed the fate of IONPs in different cells and the influence on the production, separation, delivery and treatment of extracellular vesicles. It aims to provide cutting-edge knowledge related to iron oxide nanoparticles. Only by ensuring the safety and effectiveness of IONPs can their application in biomedical research and clinic be further improved.
Collapse
Affiliation(s)
- Yuling Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, 300072, Tianjin, China.
- Key Laboratory for Disaster Medicine Technology, 300072, Tianjin, China.
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, 300072, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, 300072, Tianjin, China
| |
Collapse
|
8
|
Gundersen RA, Chu T, Abolfathi K, Dogan SG, Blair PE, Nago N, Hamblin M, Brooke GN, Zwacka RM, Hoshiar AK, Mohr A. Generation of magnetic biohybrid microrobots based on MSC.sTRAIL for targeted stem cell delivery and treatment of cancer. Cancer Nanotechnol 2023; 14:54. [PMID: 37869575 PMCID: PMC7615227 DOI: 10.1186/s12645-023-00203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/25/2023] [Indexed: 10/24/2023] Open
Abstract
Background Combining the power of magnetic guidance and the biological activities of stem cells transformed into biohybrid microrobots holds great promise for the treatment of several diseases including cancer. Results We found that human MSCs can be readily loaded with magnetic particles and that the resulting biohybrid microrobots could be guided by a rotating magnetic field. Rotating magnetic fields have the potential to be applied in the human setting and steer therapeutic stem cells to the desired sites of action in the body. We could demonstrate that the required loading of magnetic particles into stem cells is compatible with their biological activities. We examined this issue with a particular focus on the expression and functionality of therapeutic genes inside of human MSC-based biohybrid microrobots. The loading with magnetic particles did not cause a loss of viability or apoptosis in the human MSCs nor did it impact on the therapeutic gene expression from the cells. Furthermore, the therapeutic effect of the gene products was not affected, and the cells also did not lose their migration potential. Conclusion These results demonstrate that the fabrication of guidable MSC-based biohybrid microrobots is compatible with their biological and therapeutic functions. Thus, MSC-based biohybrid microrobots represent a novel way of delivering gene therapies to tumours as well as in the context of other diseases.
Collapse
Affiliation(s)
- Rebekah Anamarie Gundersen
- School of Life Sciences, Protein Structure and Mechanism of Disease Group, Cancer and Stem Cell Biology Laboratory, University of Essex, Colchester CO4 3SQ, UK
| | - Tianyuan Chu
- School of Life Sciences, Protein Structure and Mechanism of Disease Group, Cancer and Stem Cell Biology Laboratory, University of Essex, Colchester CO4 3SQ, UK
| | - Kiana Abolfathi
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK
| | - Serap Gokcen Dogan
- School of Life Sciences, Protein Structure and Mechanism of Disease Group, Cancer and Stem Cell Biology Laboratory, University of Essex, Colchester CO4 3SQ, UK
| | - Phoebe Elizabeth Blair
- School of Life Sciences, Protein Structure and Mechanism of Disease Group, Cancer and Stem Cell Biology Laboratory, University of Essex, Colchester CO4 3SQ, UK
| | - Nyasha Nago
- Haematology Unit, East Suffolk and North Essex NHS Foundation Trust, Colchester CO4 5JL, UK
| | - Michael Hamblin
- Haematology Unit, East Suffolk and North Essex NHS Foundation Trust, Colchester CO4 5JL, UK
| | - Greg Nicholas Brooke
- School of Life Sciences, Protein Structure and Mechanism of Disease Group, Molecular Oncology Laboratory, University of Essex, Colchester CO4 3SQ, UK
| | - Ralf Michael Zwacka
- School of Life Sciences, Protein Structure and Mechanism of Disease Group, Cancer and Stem Cell Biology Laboratory, University of Essex, Colchester CO4 3SQ, UK
| | - Ali Kafash Hoshiar
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK
| | - Andrea Mohr
- School of Life Sciences, Protein Structure and Mechanism of Disease Group, Cancer and Stem Cell Biology Laboratory, University of Essex, Colchester CO4 3SQ, UK
| |
Collapse
|
9
|
Kang X, Zhang XB, Gao XD, Hao DJ, Li T, Xu ZW. Bioprinting for bone tissue engineering. Front Bioeng Biotechnol 2022; 10:1036375. [PMID: 36507261 PMCID: PMC9732272 DOI: 10.3389/fbioe.2022.1036375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
The shape transformation characteristics of four-dimensional (4D)-printed bone structures can meet the individual bone regeneration needs, while their structure can be programmed to cross-link or reassemble by stimulating responsive materials. At the same time, it can be used to design vascularized bone structures that help establish a bionic microenvironment, thus influencing cellular behavior and enhancing stem cell differentiation in the postprinting phase. These developments significantly improve conventional three-dimensional (3D)-printed bone structures with enhanced functional adaptability, providing theoretical support to fabricate bone structures to adapt to defective areas dynamically. The printing inks used are stimulus-responsive materials that enable spatiotemporal distribution, maintenance of bioactivity and cellular release for bone, vascular and neural tissue regeneration. This paper discusses the limitations of current bone defect therapies, 4D printing materials used to stimulate bone tissue engineering (e.g., hydrogels), the printing process, the printing classification and their value for clinical applications. We focus on summarizing the technical challenges faced to provide novel therapeutic implications for bone defect repair.
Collapse
Affiliation(s)
- Xin Kang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong University, Xian, Shaanxi, China
| | - Xiao-Bo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong University, Xian, Shaanxi, China
| | - Xi-Dan Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ding-Jun Hao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong University, Xian, Shaanxi, China
| | - Tao Li
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong University, Xian, Shaanxi, China
| | - Zheng-Wei Xu
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong University, Xian, Shaanxi, China,*Correspondence: Zheng-Wei Xu,
| |
Collapse
|
10
|
Untethered: using remote magnetic fields for regenerative medicine. Trends Biotechnol 2022; 41:615-631. [PMID: 36220708 DOI: 10.1016/j.tibtech.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
Magnetic fields are increasingly being used for the remote, noncontact manipulation of cells and biomaterials for a wide range of regenerative medical (RM) applications. They have been deployed for their direct effects on biological systems or in conjunction with magnetic materials or magnetically tagged cells for a targeted therapeutic effect. In this work, we highlight the recent trends on the broad use of magnetic fields for the homing of therapeutic cells and particles at targeted tissue sites, biomimetic tissue fabrication, and control of cell fate and proliferation. We also survey the design and control principles of magnetic manipulation systems, including their capabilities and limitations, which can guide future research into developing more effective magnetic field-based regenerative strategies.
Collapse
|
11
|
Abu-El-Rub E, Khasawneh RR, Almahasneh F. Prodigious therapeutic effects of combining mesenchymal stem cells with magnetic nanoparticles. World J Stem Cells 2022; 14:513-526. [PMID: 36157526 PMCID: PMC9350622 DOI: 10.4252/wjsc.v14.i7.513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/18/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have gained wide-ranging reputation in the medical research community due to their promising regenerative abilities. MSCs can be isolated from various resources mostly bone marrow, Adipose tissues and Umbilical cord. Huge advances have been achieved in comprehending the possible mechanisms underlying the therapeutic functions of MSCs. Despite the proven role of MSCs in repairing and healing of many disease modalities, many hurdles hinder the transferring of these cells in the clinical settings. Among the most reported problems encountering MSCs therapy in vivo are loss of tracking signal post-transplantation, insufficient migration, homing and engraftment post-infusion, and undesirable differentiation at the site of injury. Magnetic nano particles (MNPs) have been used widely for various biomedical applications. MNPs have a metallic core stabilized by an outer coating material and their ma gnetic properties can be modulated by an external magnetic field. These magnetic properties of MNPs were found to enhance the quality of diagnostic imaging procedures and can be used to create a carrying system for targeted delivery of therapeutic substances mainly drug, genes and stem cells. Several studies highlighted the advantageous outcomes of combining MSCs with MNPs in potentiating their tracking, monitoring, homing, engraftment and differentiation. In this review, we will discuss the role of MNPs in promoting the therapeutic profile of MSCs which may improve the success rate of MSCs transplantation and solve many challenges that delay their clinical applicability.
Collapse
Affiliation(s)
- Ejlal Abu-El-Rub
- Department of Physiology and Pathophysiology, Yarmouk University, Irbid 21163, Jordan
| | - Ramada R Khasawneh
- Department of Anatomy and Histology, Yarmouk University, Irbid 21163, Jordan.
| | - Fatimah Almahasneh
- Department of Physiology and Pathophysiology, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
12
|
Huang X, Lan Y, Shen J, Chen Z, Xie Z. Extracellular Vesicles in Bone Homeostasis: Emerging Mediators of Osteoimmune Interactions and Promising Therapeutic Targets. Int J Biol Sci 2022; 18:4088-4100. [PMID: 35844790 PMCID: PMC9274499 DOI: 10.7150/ijbs.69816] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
An imbalance in bone homeostasis results in bone loss and poor healing in bone diseases and trauma. Osteoimmune interactions, as a key contributor to bone homeostasis, depend on the crosstalk between mesenchymal stem cell-osteoblast (MSC-OB) and monocyte-macrophage (MC-Mφ) lineages. Currently, extracellular vesicles (EVs) are considered to be involved in cell-to-cell communication and represent a novel avenue to enhance our understanding of bone homeostasis and to develop novel diagnostic and therapeutic options. In this comprehensive review, we aim to present recent advances in the study of the effect of MC-Mφ-derived EVs on osteogenesis and the regulatory effects of MSC-OB-derived EVs on the differentiation, recruitment and efferocytosis of Mφ. Furthermore, we discuss the role of EVs as crucial mediators of the communication between these cell lineages involved in the development of common bone diseases, with a focus on osteoporosis, osteoarthritis, bone fracture, and periodontal disease. Together, this review focuses on the apparent discrepancies in current research findings and future directions for translating fundamental insights into clinically relevant EV-based therapies for improving bone health.
Collapse
Affiliation(s)
- Xiaoyuan Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Yanhua Lan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Jiahui Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
13
|
Optimization of Multimodal Nanoparticles Internalization Process in Mesenchymal Stem Cells for Cell Therapy Studies. Pharmaceutics 2022; 14:pharmaceutics14061249. [PMID: 35745821 PMCID: PMC9227698 DOI: 10.3390/pharmaceutics14061249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Considering there are several difficulties and limitations in labeling stem cells using multifunctional nanoparticles (MFNP), the purpose of this study was to determine the optimal conditions for labeling human bone marrow mesenchymal stem cells (hBM-MSC), aiming to monitor these cells in vivo. Thus, this study provides information on hBM-MSC direct labeling using multimodal nanoparticles in terms of concentration, magnetic field, and period of incubation while maintaining these cells’ viability and the homing ability for in vivo experiments. The cell labeling process was assessed using 10, 30, and 50 µg Fe/mL of MFNP, with periods of incubation ranging from 4 to 24 h, with or without a magnetic field, using optical microscopy, near-infrared fluorescence (NIRF), and inductively coupled plasma mass spectrometry (ICP-MS). After the determination of optimal labeling conditions, these cells were applied in vivo 24 h after stroke induction, intending to evaluate cell homing and improve NIRF signal detection. In the presence of a magnetic field and utilizing the maximal concentration of MFNP during cell labeling, the iron load assessed by NIRF and ICP-MS was four times higher than what was achieved before. In addition, considering cell viability higher than 98%, the recommended incubation time was 9 h, which corresponded to a 25.4 pg Fe/cell iron load (86% of the iron load internalized in 24 h). The optimization of cellular labeling for application in the in vivo study promoted an increase in the NIRF signal by 215% at 1 h and 201% at 7 h due to the use of a magnetized field during the cellular labeling process. In the case of BLI, the signal does not depend on cell labeling showing no significant differences between unlabeled or labeled cells (with or without a magnetic field). Therefore, the in vitro cellular optimized labeling process using magnetic fields resulted in a shorter period of incubation with efficient iron load internalization using higher MFNP concentration (50 μgFe/mL), leading to significant improvement in cell detection by NIRF technique without compromising cellular viability in the stroke model.
Collapse
|
14
|
Mesenchymal stem cells: A living carrier for active tumor-targeted delivery. Adv Drug Deliv Rev 2022; 185:114300. [PMID: 35447165 DOI: 10.1016/j.addr.2022.114300] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/22/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022]
Abstract
The strategy of using mesenchymal stem cells (MSCs) as a living carrier for active delivery of therapeutic agents targeting tumor sites has been attempted in a wide range of studies to validate the feasibility and efficacy for tumor treatment. This approach reveals powerful tumor targeting and tumor penetration. In addition, MSCs have been confirmed to actively participate in immunomodulation of the tumor microenvironment. Thus, MSCs are not inert delivery vehicles but have a strong impact on the fate of tumor cells. In this review, these active properties of MSCs are addressed to highlight the advantages and challenges of using MSCs for tumor-targeted delivery. In addition, some of the latest examples of using MSCs to carry a variety of anti-tumor agents for tumor-targeted therapy are summarized. Recent technologies to improve the performance and safety of this delivery strategy will be introduced. The advances, applications, and challenges summarized in this review will provide a general understanding of this promising strategy for actively delivering drugs to tumor tissues.
Collapse
|
15
|
Silicon-Gold Nanoparticles Affect Wharton's Jelly Phenotype and Secretome during Tri-Lineage Differentiation. Int J Mol Sci 2022; 23:ijms23042134. [PMID: 35216249 PMCID: PMC8874983 DOI: 10.3390/ijms23042134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple studies have demonstrated that various nanoparticles (NPs) stimulate osteogenic differentiation of mesenchymal stem cells (MSCs) and inhibit adipogenic ones. The mechanisms of these effects are not determined. The aim of this paper was to estimate Wharton’s Jelly MSCs phenotype and humoral factor production during tri-lineage differentiation per se and in the presence of silicon–gold NPs. Silicon (SiNPs), gold (AuNPs), and 10% Au-doped Si nanoparticles (SiAuNPs) were synthesized by laser ablation, characterized, and studied in MSC cultures before and during differentiation. Humoral factor production (n = 41) was analyzed by Luminex technology. NPs were nontoxic, did not induce ROS production, and stimulated G-CSF, GM-CSF, VEGF, CXCL1 (GRO) production in four day MSC cultures. During MSC differentiation, all NPs stimulated CD13 and CD90 expression in osteogenic cultures. MSC differentiation resulted in a decrease in multiple humoral factor production to day 14 of incubation. NPs did not significantly affect the production in chondrogenic cultures and stimulated it in both osteogenic and adipogenic ones. The major difference in the protein production between osteogenic and adipogenic MSC cultures in the presence of NPs was VEGF level, which was unaffected in osteogenic cells and 4–9 times increased in adipogenic ones. The effects of NPs decreased in a row AuNPs > SiAuNPs > SiNPs. Taken collectively, high expression of CD13 and CD90 by MSCs and critical level of VEGF production can, at least, partially explain the stimulatory effect of NPs on MSC osteogenic differentiation.
Collapse
|
16
|
Abstract
Mesenchymal stem cells (MSCs) exhibit regenerative and reparative properties. However, most MSC-related studies remain to be translated for regular clinical usage, partly due to challenges in pre-transplantation cell labelling and post-transplantation cell tracking. Amidst this, there are growing concerns over the toxicity of commonly used gadolinium-based contrast agents that mediate in-vivo cell detection via MRI. This urges to search for equally effective but less toxic alternatives that would facilitate and enhance MSC detection post-administration and provide therapeutic benefits in-vivo. MSCs labelled with iron oxide nanoparticles (IONPs) have shown promising results in-vitro and in-vivo. Thus, it would be useful to revisit these studies before inventing new labelling approaches. Aiming to inform regenerative medicine and augment clinical applications of IONP-labelled MSCs, this review collates and critically evaluates the utility of IONPs in enhancing MSC detection and therapeutics. It explains the rationale, principle, and advantages of labelling MSCs with IONPs, and describes IONP-induced intracellular alterations and consequent cellular manifestations. By exemplifying clinical pathologies, it examines contextual in-vitro, animal, and clinical studies that used IONP-labelled bone marrow-, umbilical cord-, adipose tissue- and dental pulp-derived MSCs. It compiles and discusses studies involving MSC-labelling of IONPs in combinations with carbohydrates (Venofer, ferumoxytol, dextran, glucosamine), non-carbohydrate polymers [poly(L-lysine), poly(lactide-co-glycolide), poly(L-lactide), polydopamine], elements (ruthenium, selenium, gold, zinc), compounds/stains (silica, polyethylene glycol, fluorophore, rhodamine B, DAPI, Prussian blue), DNA, Fibroblast growth Factor-2 and the drug doxorubicin. Furthermore, IONP-labelling of MSC exosomes is reviewed. Also, limitations of IONP-labelling are addressed and methods of tackling those challenges are suggested.
Collapse
|
17
|
Jeon S, Park SH, Kim E, Kim J, Kim SW, Choi H. A Magnetically Powered Stem Cell-Based Microrobot for Minimally Invasive Stem Cell Delivery via the Intranasal Pathway in a Mouse Brain. Adv Healthc Mater 2021; 10:e2100801. [PMID: 34160909 DOI: 10.1002/adhm.202100801] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/03/2021] [Indexed: 12/12/2022]
Abstract
Targeted stem cell delivery with microrobots has emerged as a potential alternative therapeutic strategy in regenerative medicine, and intranasal administration is an effective approach for minimally invasive delivery of therapeutic agents into the brain. In this study, a magnetically powered stem cell-based microrobot ("Cellbot") is used for minimally invasive targeted stem cell delivery to the brain through the intranasal passage. The Cellbot is developed by internalizing superparamagnetic iron oxide nanoparticles (SPIONs) into human nasal turbinate stem cells. The SPIONs have no influence on hNTSC characteristics, including morphology, cell viability, and neuronal differentiation. The Cellbots are capable of proliferation and differentiation into neurons, neural precursor cells, and neurogliocytes. The Cellbots in the microfluidic channel can be reliably manipulated by an external magnetic field for orientation and position control. Using an ex vivo model based on brain organoids, it is determined that the Cellbots can be transplanted into brain tissue. Using a murine model, it is demonstrated that the Cellbots can be intranasally administered and magnetically guided to the target tissue in vivo. This approach has the potential to effectively treat central nervous system disorders in a minimally invasive manner.
Collapse
Affiliation(s)
- Sungwoong Jeon
- Department of Robotics Engineering DGIST‐ETH Microrobotics Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Sun Hwa Park
- Department of Otolaryngology‐Head and Neck Surgery Seoul St. Mary's Hospital The Catholic University Seoul 06591 Republic of Korea
| | - Eunhee Kim
- Department of Robotics Engineering DGIST‐ETH Microrobotics Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Jin‐young Kim
- Department of Robotics Engineering DGIST‐ETH Microrobotics Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology‐Head and Neck Surgery Seoul St. Mary's Hospital The Catholic University Seoul 06591 Republic of Korea
| | - Hongsoo Choi
- Department of Robotics Engineering DGIST‐ETH Microrobotics Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- Robotics Research Center DGIST Daegu 42988 Republic of Korea
| |
Collapse
|
18
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
19
|
Hassanzadeh A, Shamlou S, Yousefi N, Nikoo M, Verdi J. Genetically-Modified Stem Cell in Regenerative Medicine and Cancer Therapy; A New Era. Curr Gene Ther 2021; 22:23-39. [PMID: 34238158 DOI: 10.2174/1566523221666210707125342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 11/22/2022]
Abstract
Recently, genetic engineering by various strategies to stimulate gene expression in a specific and controllable mode is a speedily growing therapeutic approach. Genetic modification of human stem or progenitor cells, such as embryonic stem cells (ESCs), neural progenitor cells (NPCs), mesenchymal stem/stromal cells (MSCs), and hematopoietic stem cells (HSCs) for direct delivery of specific therapeutic molecules or genes has been evidenced as an opportune plan in the context of regenerative medicine due to their supported viability, proliferative features, and metabolic qualities. On the other hand, a large number of studies have investigated the efficacy of modified stem cells in cancer therapy using cells from various sources, disparate transfection means for gene delivery, different transfected yields, and wide variability of tumor models. Accordingly, cell-based gene therapy holds substantial aptitude for the treatment of human malignancy as it could relieve signs or even cure cancer succeeding expression of therapeutic or suicide transgene products; however, there exist inconsistent results in this regard. Herein, we deliver a brief overview of stem cell potential to use in cancer therapy and regenerative medicine and importantly discuss stem cells based gene delivery competencies to stimulate tissue repair and replacement in concomitant with their potential to use as an anti-cancer therapeutic strategy, focusing on the last two decades in vivo studies.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Shamlou
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Marzieh Nikoo
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Ahn YJ, Yun WS, Choi JS, Kim WC, Lee SH, Park DJ, Park JE, Key J, Seo YJ. Biodistribution of poly clustered superparamagnetic iron oxide nanoparticle labeled mesenchymal stem cells in aminoglycoside induced ototoxic mouse model. Biomed Eng Lett 2021; 11:39-53. [PMID: 33747602 DOI: 10.1007/s13534-020-00181-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/02/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, application of stem cell therapy in regenerative medicine has become an active field of study. Mesenchymal stem cells (MSCs) are known to have a strong ability for homing. MSCs labeled with superparamagnetic iron oxide nanoparticles (SPIONs) exhibit enhanced homing due to magnetic attraction. We have designed a SPION that has a cluster core of iron oxide-based nanoparticles coated with PLGA-Cy5.5. We optimized the nanoparticles for internalization to enable the transport of PCS nanoparticles through endocytosis into MSCs. The migration of magnetized MSCs with SPION by static magnets was seen in vitro. The auditory hair cells do not regenerate once damaged, ototoxic mouse model was generated by administration of kanamycin and furosemide. SPION labeled MSC's were administered through different injection routes in the ototoxic animal model. As result, the intratympanic administration group with magnet had the highest number of cells in the brain followed by the liver, cochlea, and kidney as compared to those in the control groups. The synthesized PCS (poly clustered superparamagnetic iron oxide) nanoparticles, together with MSCs, by magnetic attraction, could synergistically enhance stem cell delivery. The poly clustered superparamagnetic iron oxide nanoparticle labeled in the mesenchymal stem cells have increased the efficacy of homing of the MSC's to the target area by synergetic effect of magnetic attraction and chemotaxis (SDF-1/CXCR4 axis). This technique allows delivery of the stem cells to the areas with limited vasculatures. The nanoparticle in the biomedicine allows drug delivery, thus, the combination of nanomedicince together with the regenerative medicine will provide highly effective therapy.
Collapse
Affiliation(s)
- Ye Ji Ahn
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, 26426 South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426 South Korea
| | - Wan Su Yun
- Department of Biomedical Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon- do 26493 South Korea
| | - Jin Sil Choi
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, 26426 South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426 South Korea
| | - Woo Cheol Kim
- Department of Biomedical Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon- do 26493 South Korea
| | - Su Hoon Lee
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, 26426 South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426 South Korea
| | - Dong Jun Park
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, 26426 South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426 South Korea
| | - Jeong Eun Park
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, 26426 South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426 South Korea
| | - Jaehong Key
- Department of Biomedical Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon- do 26493 South Korea
| | - Young Joon Seo
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, 26426 South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426 South Korea
| |
Collapse
|
21
|
Su Y, Zhang T, Huang T, Gao J. Current advances and challenges of mesenchymal stem cells-based drug delivery system and their improvements. Int J Pharm 2021; 600:120477. [PMID: 33737099 DOI: 10.1016/j.ijpharm.2021.120477] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) have recently emerged as a promising living carrier for targeted drug delivery. A wealth of literature has shown evidence for great advances in MSCs-based drug delivery system (MSCs-DDS) in the treatment of various diseases. Nevertheless, as this field of study rapidly advances, several challenges associated with this delivery strategy have arisen, mainly due to the inherent limitations of MSCs. To this end, several novel technologies are being developed in parallel to improve the efficiency or safety of this system. In this review, we introduce recent advances and summarize the present challenges of MSCs-DDS. We also highlight some potential technologies to improve MSCs-DDS, including nanotechnology, genome engineering technology, and biomimetic technology. Finally, prospects for application of artificially improved MSCs-DDS are addressed. The technologies summarized in this review provide a general guideline for the improvement of MSCs-DDS.
Collapse
Affiliation(s)
- Yuanqin Su
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
García-Bernal D, García-Arranz M, Yáñez RM, Hervás-Salcedo R, Cortés A, Fernández-García M, Hernando-Rodríguez M, Quintana-Bustamante Ó, Bueren JA, García-Olmo D, Moraleda JM, Segovia JC, Zapata AG. The Current Status of Mesenchymal Stromal Cells: Controversies, Unresolved Issues and Some Promising Solutions to Improve Their Therapeutic Efficacy. Front Cell Dev Biol 2021; 9:650664. [PMID: 33796536 PMCID: PMC8007911 DOI: 10.3389/fcell.2021.650664] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) currently constitute the most frequently used cell type in advanced therapies with different purposes, most of which are related with inflammatory processes. Although the therapeutic efficacy of these cells has been clearly demonstrated in different disease animal models and in numerous human phase I/II clinical trials, only very few phase III trials using MSCs have demonstrated the expected potential therapeutic benefit. On the other hand, diverse controversial issues on the biology and clinical applications of MSCs, including their specific phenotype, the requirement of an inflammatory environment to induce immunosuppression, the relevance of the cell dose and their administration schedule, the cell delivery route (intravascular/systemic vs. local cell delivery), and the selected cell product (i.e., use of autologous vs. allogeneic MSCs, freshly cultured vs. frozen and thawed MSCs, MSCs vs. MSC-derived extracellular vesicles, etc.) persist. In the current review article, we have addressed these issues with special emphasis in the new approaches to improve the properties and functional capabilities of MSCs after distinct cell bioengineering strategies.
Collapse
Affiliation(s)
- David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Medicine Department, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain.,Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariano García-Arranz
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain
| | - Rosa M Yáñez
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Rosario Hervás-Salcedo
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Alfonso Cortés
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - María Fernández-García
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Miriam Hernando-Rodríguez
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Óscar Quintana-Bustamante
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Juan A Bueren
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Damián García-Olmo
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain
| | - Jose M Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Medicine Department, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain.,Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain
| | - José C Segovia
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Agustín G Zapata
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Complutense University, Madrid, Spain
| |
Collapse
|
23
|
Guigou C, Lalande A, Millot N, Belharet K, Bozorg Grayeli A. Use of Super Paramagnetic Iron Oxide Nanoparticles as Drug Carriers in Brain and Ear: State of the Art and Challenges. Brain Sci 2021; 11:358. [PMID: 33799690 PMCID: PMC7998448 DOI: 10.3390/brainsci11030358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Drug delivery and distribution in the central nervous system (CNS) and the inner ear represent a challenge for the medical and scientific world, especially because of the blood-brain and the blood-perilymph barriers. Solutions are being studied to circumvent or to facilitate drug diffusion across these structures. Using superparamagnetic iron oxide nanoparticles (SPIONs), which can be coated to change their properties and ensure biocompatibility, represents a promising tool as a drug carrier. They can act as nanocarriers and can be driven with precision by magnetic forces. The aim of this study was to systematically review the use of SPIONs in the CNS and the inner ear. A systematic PubMed search between 1999 and 2019 yielded 97 studies. In this review, we describe the applications of the SPIONS, their design, their administration, their pharmacokinetic, their toxicity and the methods used for targeted delivery of drugs into the ear and the CNS.
Collapse
Affiliation(s)
- Caroline Guigou
- Department of Otolaryngology-Head and Neck Surgery, Dijon University Hospital, 21000 Dijon, France;
- ImVia Laboratory, EA 7535, Université Bourgogne Franche-Comté, 21079 Dijon, France;
| | - Alain Lalande
- ImVia Laboratory, EA 7535, Université Bourgogne Franche-Comté, 21079 Dijon, France;
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS, Université Bourgogne Franche-Comté, BP 47870, 21078 Dijon, France;
| | - Karim Belharet
- Laboratoire PRISME, JUNIA Campus Centre, 36000 Châteauroux, France;
| | - Alexis Bozorg Grayeli
- Department of Otolaryngology-Head and Neck Surgery, Dijon University Hospital, 21000 Dijon, France;
- ImVia Laboratory, EA 7535, Université Bourgogne Franche-Comté, 21079 Dijon, France;
| |
Collapse
|
24
|
Park DJ, Yun WS, Kim WC, Park JE, Lee SH, Ha S, Choi JS, Key J, Seo YJ. Improvement of stem cell-derived exosome release efficiency by surface-modified nanoparticles. J Nanobiotechnology 2020; 18:178. [PMID: 33287848 PMCID: PMC7720507 DOI: 10.1186/s12951-020-00739-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/28/2020] [Indexed: 02/08/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) are pluripotent stromal cells that release extracellular vesicles (EVs). EVs contain various growth factors and antioxidants that can positively affect the surrounding cells. Nanoscale MSC-derived EVs, such as exosomes, have been developed as bio-stable nano-type materials. However, some issues, such as low yield and difficulty in quantification, limit their use. We hypothesized that enhancing exosome production using nanoparticles would stimulate the release of intracellular molecules. Results The aim of this study was to elucidate the molecular mechanisms of exosome generation by comparing the internalization of surface-modified, positively charged nanoparticles and exosome generation from MSCs. We determined that Rab7, a late endosome and auto-phagosome marker, was increased upon exosome expression and was associated with autophagosome formation. Conclusions It was concluded that the nanoparticles we developed were transported to the lysosome by clathrin-mediated endocytosis. additionally, entered nanoparticles stimulated that autophagy related factors to release exosome from the MSC. MSC-derived exosomes using nanoparticles may increase exosome yield and enable the discovery of nanoparticle-induced genetic factors.![]()
Collapse
Affiliation(s)
- Dong Jun Park
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, South Korea.,Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Wan Su Yun
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Woo Cheol Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Jeong-Eun Park
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, South Korea.,Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Su Hoon Lee
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, South Korea.,Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Sunmok Ha
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Republic of Korea
| | - Jin Sil Choi
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, South Korea.,Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Jaehong Key
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Young Joon Seo
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, South Korea. .,Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea.
| |
Collapse
|
25
|
Howard F, Muthana M. Designer nanocarriers for navigating the systemic delivery of oncolytic viruses. Nanomedicine (Lond) 2020; 15:93-110. [PMID: 31868115 DOI: 10.2217/nnm-2019-0323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nanotechnology is paving the way for new carrier systems designed to overcome the greatest challenges of oncolytic virotherapy; systemic administration and subsequent implications of immune responses and specific cell binding and entry. Systemic administration of oncolytic agents is vital for disseminated neoplasms, however transition of nanoparticles (NP) to virotherapy has yielded modest results. Their success relies on how they navigate the merry-go-round of often-contradictory phases of NP delivery: circulatory longevity, tissue permeation and cellular interaction, with many studies postulating design features optimal for each phase. This review discusses the optimal design of NPs for the transport of oncolytic viruses within these phases, to determine whether improved virotherapeutic efficacy lies in the pharmacokinetic/pharmacodynamics characteristics of the NP-oncolytic viruses complexes rather than manipulation of the virus and targeting ligands.
Collapse
|
26
|
Li X, Wei Z, Wu L, Lv H, Zhang Y, Li J, Yao H, Zhang H, Yang B, Xu X, Jiang J. Efficacy of Fe 3O 4@polydopamine nanoparticle-labeled human umbilical cord Wharton's jelly-derived mesenchymal stem cells in the treatment of streptozotocin-induced diabetes in rats. Biomater Sci 2020; 8:5362-5375. [PMID: 32869785 DOI: 10.1039/d0bm01076f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM) is characterized by the irreversible destruction of insulin-secreting pancreatic β-islet cells and requires life-long exogenous insulin therapy. Umbilical cord Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) have been shown to improve islet function in animal models of diabetes. However, inadequate MSC homing to injured sites has limited their efficacy. Since efficient cell therapy heavily relies on appropriate homing to target tissues, increasing the specificity to the target organ and the extent of homing of the injected WJ-MSCs is paramount to successful clinical outcomes. Therefore, in this study, we synthesized Fe3O4@polydopamine nanoparticle (NP)-labeled MSCs and evaluated their therapeutic efficacy in a clinically relevant rat model of streptozotocin-induced diabetes using an external magnetic field. We found that NPs were successfully incorporated into WJ-MSCs and did not negatively affect stem cell properties. Magnetic targeting of WJ-MSCs contributed to long-term cell retention in pancreatic tissue and improved the islet function of diabetic rats, compared to injection of WJ-MSC alone. In addition, anti-inflammatory effects and the anti-apoptotic capacity of WJ-MSCs appeared to play a major role in the functional and structural recovery of the pancreas. Thus, therapy relying on the magnetic targeting of WJ-MSCs may serve as an effective approach for DM treatment.
Collapse
Affiliation(s)
- Xiuying Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Magnetic resonance imaging of umbilical cord stem cells labeled with superparamagnetic iron oxide nanoparticles: effects of labelling and transplantation parameters. Sci Rep 2020; 10:13684. [PMID: 32792506 PMCID: PMC7426806 DOI: 10.1038/s41598-020-70291-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
Cell tracking with magnetic resonance imaging (MRI) is important for evaluating the biodistribution of transplanted cells. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) have emerged as a promising therapeutic tool in regenerative medicine. We examined the UC-MSCs labeled with superparamagnetic (SPIO) and ultrasmall superparamagnetic iron oxide (USPIO) in terms of cell functioning and imaging efficiency in vitro and in vivo. The UC-MSCs were co-incubated with SPIO or USPIO at a concentration of 50 or 100 µg/mL of label. Viability and proliferation were assessed by Trypan blue dye exclusion and MTT assay, respectively. Differentiation (chondrogenesis, osteogenesis, and adipogenesis) was induced to examine the impact of labelling on stemness. For in vitro experiments, we used 7-T MRI to assess the T2 values of phantoms containing various concentrations of cell suspensions. For in vivo experiments, nine neonatal rats were divided into the control, SPIO, and USPIO groups. The UC-MSCs were injected directly into the rat brains. MRI images were obtained immediately and at 7 and 14 days post injection. The UC-MSCs were successfully labeled with SPIO and USPIO after 24 h of incubation. Cell viability was not changed by labelling. Nevertheless, labelling with 100 µg/mL USPIO led to a significant decrease in proliferation. The capacity for differentiation into cartilage was influenced by 100 µg/mL of SPIO. MRI showed that labeled cells exhibited clear hypointense signals, unlike unlabeled control cells. In the USPIO-labeled cells, a significant (P < 0.05) decrease in T2 values (= improved contrast) was observed when compared with the controls and between phantoms containing the fewest and the most cells (0.5 × 106 versus 2.0 × 106 cells/mL). In vivo, the labeled cells were discernible on T2-weighted images at days 0, 7, and 14. The presence of SPIO and USPIO particles at day 14 was confirmed by Prussian blue staining. Microscopy also suggested that the regions occupied by the particles were not as large as the corresponding hypointense areas observed on MRI. Both labels were readily taken up by the UC-MSCs and identified well on MRI. While SPIO and USPIO provide improved results in MRI studies, care must be taken while labelling cells with high concentrations of these agents.
Collapse
|
28
|
Lee SH, Park DJ, Yun WS, Park JE, Choi JS, Key J, Seo YJ. Endocytic trafficking of polymeric clustered superparamagnetic iron oxide nanoparticles in mesenchymal stem cells. J Control Release 2020; 326:408-418. [PMID: 32711024 DOI: 10.1016/j.jconrel.2020.07.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/13/2020] [Accepted: 07/18/2020] [Indexed: 12/15/2022]
Abstract
The technology of directing nanoparticles to specific locations in the body continues to be an area of great interest in a myriad of research fields. In the present study, we have developed nanoparticles and a method that allows the nanoparticles to move to specific sites by simultaneously utilizing the homing ability and magnetism of stem cells. Polymeric clustered SPIO (PCS) nanoparticles are composed of a superparamagnetic iron oxide nanoparticle (SPION) cluster core coated with poly lactic-co-glycolic acid (PLGA) and labeled with the fluorescent dye Cy5.5 for tracking. PCS is designed to be internalized by stem cells via endocytosis and then moved to the desired subcellular location through magnetism. Here, we investigated the interactions between SPIONs and mesenchymal stem cells (MSCs), including their absorption mechanism and subcellular localization. Exposure to the nanoparticles at 40 μg/mL for over 96 h did not affect cell survival or differentiation. We used a variety of endocytosis inhibitors and identified the potential cellular internalization pathway of SPIONs to be clathrin-mediated endocytosis. Antibodies to organelles were used to accumulate lysosomes through early and late endosomes. PCS at 40 μg/mL was internalized and stored without significant deleterious effects on stem cells, indicating that MSCs can act as an effective nanoparticle carrier. These findings also demonstrate the successful localization of the novel particles using magnetic attraction.
Collapse
Affiliation(s)
- Su Hoon Lee
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426, South Korea; Research institute of Hearing Enhancement, Yonsei University Wonju of College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426, South Korea
| | - Dong Jun Park
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426, South Korea; Research institute of Hearing Enhancement, Yonsei University Wonju of College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426, South Korea
| | - Wan Su Yun
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Jeong-Eun Park
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426, South Korea; Research institute of Hearing Enhancement, Yonsei University Wonju of College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426, South Korea
| | - Jin Sil Choi
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426, South Korea; Research institute of Hearing Enhancement, Yonsei University Wonju of College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426, South Korea
| | - Jaehong Key
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Young Joon Seo
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426, South Korea; Research institute of Hearing Enhancement, Yonsei University Wonju of College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426, South Korea.
| |
Collapse
|
29
|
Fahmy HM, Abd El-Daim TM, Mohamed HAAENE, Mahmoud EAAEQ, Abdallah EAS, Mahmoud Hassan FEZ, Maihop DI, Amin AEAE, Mustafa ABE, Hassan FMA, Mohamed DME, Shams-Eldin EMM. Multifunctional nanoparticles in stem cell therapy for cellular treating of kidney and liver diseases. Tissue Cell 2020; 65:101371. [PMID: 32746989 DOI: 10.1016/j.tice.2020.101371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022]
Abstract
The review gives an overview of the mechanisms of internalization and distribution of nanoparticles in stem cells this is achieved via providing analysis of the methods used in exploring the migration routes of stem cells, and their reciprocity. In addition, exploring microenvironment target in the body, and tracking the fate of exogenously transplanted stem cells by using innovative and non-invasive techniques will also be discussed. Such techniques like magnetic resonance imaging (MRI), multimodality tracking, optical imaging, and nuclear medicine imaging, which were designed to follow up stem cell migration. This review will explain the various distinctive strategies to enhance homing of labeled stem cells with nanoparticles into damaged hepatic and renal tissues, this purpose was obtained by inducing a specific gene into stem cells, various chemokines, and applying an external magnetic field. Also, this work illustrates how to improve nanoparticles uptake by using transfection agents or covalently binding an exogenous protein (i.e., Human immunodeficiency virus-Tat protein) or conjugating a receptor-specific monoclonal antibody or make modifications to iron coat. It contains stem cell labeling methods such as extracellular labeling and internalization approaches. Ultimately, our review indicates trails of researchers in nanoparticles utilization in stem cell therapy in both kidney and liver diseases.
Collapse
|
30
|
Yun WS, Aryal S, Ahn YJ, Seo YJ, Key J. Engineered iron oxide nanoparticles to improve regenerative effects of mesenchymal stem cells. Biomed Eng Lett 2020; 10:259-273. [PMID: 32477611 DOI: 10.1007/s13534-020-00153-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
Abstract Mesenchymal stem cells (MSCs) based therapies are a major field of regenerative medicine. However, the success of MSC therapy relies on the efficiency of its delivery and retention, differentiation, and secreting paracrine factors at the target sites. Recent studies show that superparamagnetic iron oxide nanoparticles (SPIONs) modulate the regenerative effects of MSCs. After interacting with the cell membrane of MSCs, SPIONs can enter the cells via the endocytic pathway. The physicochemical properties of nanoparticles, including size, surface charge (zeta-potential), and surface ligand, influence their interactions with MSC, such as cellular uptake, cytotoxicity, homing factors, and regenerative related factors (VEGF, TGF-β1). Therefore, in-depth knowledge of the physicochemical properties of SPIONs might be a promising lead in regenerative and anti-inflammation research using SPIONs mediated MSCs. In this review, recent research on SPIONs with MSCs and the various designs of SPIONs are examined and summarized. Graphic abstract A graphical abstract describes important parameters in the design of superparamagnetic iron oxide nanoparticles, affecting mesenchymal stem cells. These physicochemical properties are closely related to the mesenchymal stem cells to achieve improved cellular responses such as homing factors and cell uptake.
Collapse
Affiliation(s)
- Wan Su Yun
- 1Department of Biomedical Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do South Korea
| | - Susmita Aryal
- 1Department of Biomedical Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do South Korea
| | - Ye Ji Ahn
- 2Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea.,3Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Young Joon Seo
- 2Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea.,3Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Jaehong Key
- 1Department of Biomedical Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do South Korea
| |
Collapse
|
31
|
Moayeri A, Darvishi M, Amraei M. Homing of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) Labeled Adipose-Derived Stem Cells by Magnetic Attraction in a Rat Model of Parkinson's Disease. Int J Nanomedicine 2020; 15:1297-1308. [PMID: 32161459 PMCID: PMC7049746 DOI: 10.2147/ijn.s238266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Stem cell therapies for neurodegenerative diseases such as Parkinson’s disease (PD) are intended to replace lost dopaminergic neurons. The basis of this treatment is to guide the migration of transplanted cells into the target tissue or injury site. The aim of this study is an evaluation of the homing of superparamagnetic iron oxide nanoparticles (SPIONs) labeled adipose-derived stem cells (ADSC) by an external magnetic field in a rat model of PD. Methods ADSCs were obtained from perinephric regions of male adult rats and cultured in a DMEM medium. ADSC markers were assessed by immunostaining with CD90, CD105, CD49d, and CD45. The SPION was coated using poly-L-lysine hydrobromide and transfection was determined in rat ADSC using the GFP reporter gene. For this in vivo study, rats with PD were divided into five groups: a positive control group, a control group with PD (lesion with 6-HD injection), and three treatment groups: the PD/ADSC group (PD transplant with ADSCs transfected by BrdU), PD/ADSC/SPION group (PD transplant with ADSCs labeled with SPION and transfected by GFP), and the PD/ADSC/SPION/EM group (PD transplant with ADSCs labeled with SPION and transfected by GFP induced with external magnet). Results ADSCs were immunoreactive to fat markers CD90 (90.73±1.7), CD105 (87.4±2.9) and CD49d (79.6±2.6), with negative immunostaining at the hematopoietic stem cell marker (CD45: 1.4±0.4). The efficiency of cells with SPION/PLL was about 96% of ADSC. The highest number of GFP-positive cells was in the ADSC/SPION/EM group (54.5±1.3), which was significantly different from that in ADSC/SPION group (30.83±3 and P<0.01). Conclusion Transfection of ADSC by SPION/PLL is an appropriate protocol for cell therapy. External magnets can be used for the delivery and homing of transplanted stem cells in the target tissue.
Collapse
Affiliation(s)
- Ardeshir Moayeri
- Department of Anatomy, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Marzieh Darvishi
- Department of Anatomy, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mansour Amraei
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
32
|
Lee J, Chang WS, Shin J, Seo Y, Kong C, Song BW, Na YC, Kim BS, Chang JW. Non-invasively enhanced intracranial transplantation of mesenchymal stem cells using focused ultrasound mediated by overexpression of cell-adhesion molecules. Stem Cell Res 2020; 43:101726. [PMID: 32028085 DOI: 10.1016/j.scr.2020.101726] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 01/16/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Although there have been reports of promising results regarding the transplantation of mesenchymal stem cells (MSCs) for neurodegenerative diseases through the use of neuronal differentiation or control of the microenvironment, traditional surgical transplantation methods like parenchymal or intravenous injection have limitations such as secondary injuries in the brain, infection, and low survival rate of stem cells in the target site. Focused ultrasound (FUS) treatment is an emerging modality for the treatment of brain diseases, including neurodegenerative disorders. The various biological effects of FUS treatment have been investigated; therefore, the goal is now to improve the delivery efficiency and function of MSCs by capitalizing on the advantages of FUS. In this study, we demonstrated that FUS increases MSC transplantation into brain tissue by >2-fold, and that this finding might be related to the activation of intercellular adhesion molecule-1 in endothelial and subendothelial cells and vascular adhesion molecule-1 in endothelial cells.
Collapse
Affiliation(s)
- Jihyeon Lee
- Brain Korea 21 PLUS Project for Medical Science & Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Won Seok Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Jaewoo Shin
- Brain Korea 21 PLUS Project for Medical Science & Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Younghee Seo
- Brain Korea 21 PLUS Project for Medical Science & Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chanho Kong
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Byeong-Wook Song
- Biomedical Research Institute, International St. Mary's Hospital, Incheon Metropolitan City 22711, Republic of Korea; Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung 25601, Republic of Korea
| | - Young Cheol Na
- Department of Neurosurgery, Catholic Kwandong University College of Medicine, International St. Mary's Hospital, Incheon Metropolitan City 22711, Republic of Korea
| | - Bong Soo Kim
- Biomedical Research Institute, International St. Mary's Hospital, Incheon Metropolitan City 22711, Republic of Korea; Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung 25601, Republic of Korea
| | - Jin Woo Chang
- Brain Korea 21 PLUS Project for Medical Science & Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
33
|
Wan Z, Zhang P, Liu Y, Lv L, Zhou Y. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Acta Biomater 2020; 101:26-42. [PMID: 31672585 DOI: 10.1016/j.actbio.2019.10.038] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Four-dimensional (4D) bioprinting, in which the concept of time is integrated with three-dimensional (3D) bioprinting as the fourth dimension, has currently emerged as the next-generation solution of tissue engineering as it presents the possibility of constructing complex, functional structures. 4D bioprinting can be used to fabricate dynamic 3D-patterned biological architectures that will change their shapes under various stimuli by employing stimuli-responsive materials. The functional transformation and maturation of printed cell-laden constructs over time are also regarded as 4D bioprinting, providing unprecedented potential for bone tissue engineering. The shape memory properties of printed structures cater to the need for personalized bone defect repair and the functional maturation procedures promote the osteogenic differentiation of stem cells. In this review, we introduce the application of different stimuli-responsive biomaterials in tissue engineering and a series of 4D bioprinting strategies based on functional transformation of printed structures. Furthermore, we discuss the application of 4D bioprinting in bone tissue engineering, as well as the current challenges and future perspectives. STATEMENTS OF SIGNIFICANCE: In this review, we have demonstrated the 4D bioprinting technologies, which integrate the concept of time within the traditional 3D bioprinting technology as the fourth dimension and facilitate the fabrications of complex, functional biological architectures. These 4D bioprinting structures could go through shape or functional transformation over time via using different stimuli-responsive biomaterials and a series of 4D bioprinting strategies. Moreover, by summarizing potential applications of 4D bioprinting in the field of bone tissue engineering, these emerging technologies could fulfill unaddressed medical requirements. The further discussions about future challenges and perspectives will give us more inspirations about widespread applications of this emerging technology for tissue engineering in biomedical field.
Collapse
Affiliation(s)
- Zhuqing Wan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| |
Collapse
|
34
|
Li X, Wei Z, Li B, Li J, Lv H, Wu L, Zhang H, Yang B, Zhu M, Jiang J. In vivo migration of Fe 3O 4@polydopamine nanoparticle-labeled mesenchymal stem cells to burn injury sites and their therapeutic effects in a rat model. Biomater Sci 2019; 7:2861-2872. [PMID: 31070196 DOI: 10.1039/c9bm00242a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cell (MSC)-based therapy has emerged as a promising therapeutic strategy for tissue regeneration and repair. However, efficient targeted delivery to specific tissues remains an open challenge. Here, we non-invasively monitored the migration of MSCs labeled with Fe3O4@polydopamine nanoparticles (Fe3O4@PDA NPs) toward laser burn injury sites in a living rat model and evaluated the effects of the labeled MSCs at the injury site. The Fe3O4@PDA NPs could be effectively incorporated into the MSCs without any negative effects on stem cell properties. Furthermore, they enhanced the migration ability of the MSCs by up-regulating the expression level of C-X-C chemokine receptor type 4 (CXCR4). They also increased the secretion of some cytokines and the expression of healing-related genes in comparison with unlabeled MSCs. Labeled MSCs were intravenously administered into injured rats, and live imaging was performed to monitor MSC migration. Fluorescent signals of the labeled MSCs appeared at burn injury lesions 1 day after injection and then gradually increased up to 7 days. After 7 days, the group injected with the labeled MSCs showed less inflammation compared with those injected with the unlabeled MSCs. Additionally, the labeled MSC group showed increased cytokines and reduced pro-inflammatory factors compared with the unlabeled MSC group. The Fe3O4@PDA NPs enhanced stromal cell-derived factor-1/CXCR4-mediated MSC migration in vivo. Thus, we demonstrated the safety, feasibility, and potential efficacy of using the Fe3O4@PDA NPs for optimizing MSC-based therapeutic strategies for burn wound healing.
Collapse
Affiliation(s)
- Xiuying Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
In Vitro Targeting and Imaging of Neurogenic Differentiation in Mouse Bone-Marrow Derived Mesenchymal Stem Cells with Superparamagnetic Iron Oxide Nanoparticles. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9163259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spinal cord injuries (SCI) are well thought to be a crucial issue that roots various side effects for a patient during their entire lifetime. Although therapeutical methods to resolve the SCI are limited, stem cell therapy is determined to be a resolving factor since it possesses the ability to induce the neurogenic differentiation and the paracrine effect. However, stem cells are difficult to inject directly into the lesion, so they must be carefully guided through the spinal canal. Therefore, superparamagnetic iron oxide nanoparticles (SPIONs) are introduced as an instigator that makes the cells respond to the applied magnetic field. This study intends to report the synthesis strategy to develop SPIONs that could be used to treat the injury site by an applied magnetic field. SPION-internalized D1 Mesenchymal stem cells (MSCs) are observed consistently using a confocal fluorescence microscope to analyze the toxicity, maintenance, and monitoring points of intracellular SPIONs. The prepared SPIONs are much anticipated to increase the migration efficiency using magnetism, which was not cytotoxic. Hence, the prepared SPIONs can adeptly target the damaged neural tissue to promote tissue regeneration and treat nervous system disorders. This primary study stands as a focal point to solve SCI by stem cell migration effectively.
Collapse
|
36
|
Ahn YJ, Kong TH, Choi JS, Yun WS, Key J, Seo YJ. Strategies to enhance efficacy of SPION-labeled stem cell homing by magnetic attraction: a systemic review with meta-analysis. Int J Nanomedicine 2019; 14:4849-4866. [PMID: 31308662 PMCID: PMC6613362 DOI: 10.2147/ijn.s204910] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022] Open
Abstract
Stem cells possess a promising potential in the clinical field. The application and effective delivery of stem cells to the desired target organ or site of injury plays an important role. This review describes strategies on understanding the effective delivery of stem cells labeled with superparamagnetic iron oxide nanoparticles (SPION) using an external magnet to enhance stem cell migration in vivo and in vitro. Fourteen total publications among 174 articles were selected. Stem cell type, SPION characteristics, labeling time, and magnetic force in vivo are considered important factors affecting the effective delivery of stem cells to the homing site. Most papers reported that the efficiency was increased when magnet is applied compared to those without. Ten studies analyzed the homing competency of SPION-labeled MSCs in vitro by observing the migration of the cell toward the external magnet. In cell-based experiments, the mechanism of magnetic attraction, the kind of nanoparticles, and various stem cells were studied well. Meta-analysis has shown the mean size of nanoparticles and degree of recovery or regeneration of damaged target organs upon in vivo studies. This strategy may provide a guideline for designing studies involving stem cell homing and further expand stem cell.
Collapse
Affiliation(s)
- Ye Ji Ahn
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Tae Hoon Kong
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Jin Sil Choi
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Wan Su Yun
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Jaehong Key
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Young Joon Seo
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| |
Collapse
|
37
|
Li L, Chu L, Ren C, Wang J, Sun S, Li T, Yin Y. Enhanced Migration of Bone Marrow-Derived Mesenchymal Stem Cells with Tetramethylpyrazine and Its Synergistic Effect on Angiogenesis and Neurogenesis After Cerebral Ischemia in Rats. Stem Cells Dev 2019; 28:871-881. [PMID: 31038013 DOI: 10.1089/scd.2018.0254] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) hold great promise for treating ischemic stroke owing to their capacity to secrete various trophic factors with potent angiogenic and neurogenic potentials. However, the relatively poor migratory capacity of BMSCs toward infarcted regions limits effective therapies for the treatment of stroke. The combination of BMSCs and pharmacological agent can promote the migration of BMSCs toward infarcted regions and improve the therapeutic effects after stroke. In this study, we aimed to investigate whether BMSCs combined with tetramethylpyrazine (TMP) enhanced BMSC migration into the ischemic brain, which had better therapeutic effect in the treatment of stroke. In a rat stroke model, we found that combination treatment significantly upregulated ischemic brain stromal-derived factor-1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) expressions, and promoted BMSCs homing toward the ischemic regions than BMSC monotherapy. Moreover, BMSCs combined with TMP synergistically increased the expression of vascular endothelial growth factor and brain-derived neurotrophic factor, promoted angiogenesis and neurogenesis, and improved functional outcome after stroke. These results suggest that combination treatment could not only enhance the migration of BMSCs into the ischemic brain but also act in a synergistic way to potentiate endogenous repair processes and functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Lin Li
- Department of Physiology, Zhejiang Chinese Medical University, Zhejiang, China
| | - Lisheng Chu
- Department of Physiology, Zhejiang Chinese Medical University, Zhejiang, China
| | - Cuicui Ren
- Department of Physiology, Zhejiang Chinese Medical University, Zhejiang, China
| | - Jun Wang
- Department of Physiology, Zhejiang Chinese Medical University, Zhejiang, China
| | - Siqi Sun
- Department of Physiology, Zhejiang Chinese Medical University, Zhejiang, China
| | - Tianyi Li
- Department of Physiology, Zhejiang Chinese Medical University, Zhejiang, China
| | - Yuanjun Yin
- Department of Physiology, Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
38
|
Barati S, Kashani IR, Tahmasebi F, Mehrabi S, Joghataei MT. Effect of mesenchymal stem cells on glial cells population in cuprizone induced demyelination model. Neuropeptides 2019; 75:75-84. [PMID: 31030907 DOI: 10.1016/j.npep.2019.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022]
Abstract
Mesenchymal stem cells (MSCs) have a notable potential to modulate immune responses and protect the central nervous system (CNS), mostly by secreting factors that affect inflammation. MSCs have the ability to improve several autoimmune diseases in animal models including multiple sclerosis (MS). MS is a disease of the CNS among adult humans and it is characterized by demyelination, neuroinflammation and gliosis. In this study, we first induced chronic demyelination by cuprizone, followed by intraventricular injection of MSC. Our results showed that MSC significantly decreased microgliosis and astrocytosis by secreting cytokines that have neuroprotective activity including TGF-β and CX3CL1. Also, downregulation of IL-1β and TNF-α as inflammatory chemokines was seen along with decreased astrocytes and microglia activation. Finally, these results showed that trophic factors secreted by MSC can increase oligodendrocyte population and remyelination rate by reducing pro-inflammatory factors. These findings demonstrate that MSC could decrease inflammation, gliosis and demyelination with neuroprotective and immunomodulating properties in chronic cuprizone demyelination model. Therefore MSC transplantation can be considered as a suitable approach for enhancing myelination and reducing inflammation in diseases such as MS.
Collapse
Affiliation(s)
- Shirin Barati
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tahmasebi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Ullah M, Liu DD, Thakor AS. Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. iScience 2019; 15:421-438. [PMID: 31121468 PMCID: PMC6529790 DOI: 10.1016/j.isci.2019.05.004] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/30/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been widely investigated for their therapeutic potential in regenerative medicine, owing to their ability to home damaged tissue and serve as a reservoir of growth factors and regenerative molecules. As such, clinical applications of MSCs are reliant on these cells successfully migrating to the desired tissue following their administration. Unfortunately, MSC homing is inefficient, with only a small percentage of cells reaching the target tissue following systemic administration. This attrition represents a major bottleneck in realizing the full therapeutic potential of MSC-based therapies. Accordingly, a variety of strategies have been employed in the hope of improving this process. Here, we review the molecular mechanisms underlying MSC homing, based on a multistep model involving (1) initial tethering by selectins, (2) activation by cytokines, (3) arrest by integrins, (4) diapedesis or transmigration using matrix remodelers, and (5) extravascular migration toward chemokine gradients. We then review the various strategies that have been investigated for improving MSC homing, including genetic modification, cell surface engineering, in vitro priming of MSCs, and in particular, ultrasound techniques, which have recently gained significant interest. Contextualizing these strategies within the multistep homing model emphasizes that our ability to optimize this process hinges on our understanding of its molecular mechanisms. Moving forward, it is only with a combined effort of basic biology and translational work that the potential of MSC-based therapies can be realized.
Collapse
Affiliation(s)
- Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA
| | - Daniel D Liu
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA.
| |
Collapse
|
40
|
Marycz K, Kornicka K, Röcken M. Static Magnetic Field (SMF) as a Regulator of Stem Cell Fate - New Perspectives in Regenerative Medicine Arising from an Underestimated Tool. Stem Cell Rev Rep 2019; 14:785-792. [PMID: 30225821 PMCID: PMC6223715 DOI: 10.1007/s12015-018-9847-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue engineering and stem cell-based therapies are one of the most rapidly developing fields in medical sciences. Therefore, much attention has been paid to the development of new drug-delivery systems characterized by low cytotoxicity, high efficiency and controlled release. One of the possible strategies to achieve these goals is the application of magnetic field and/or magnetic nanoparticles, which have been shown to exert a wide range of effects on cellular metabolism. Static magnetic field (SMF) has been commonly used in medicine as a tool to increase wound healing, bone regeneration and as a component of magnetic resonance technique. However, recent data shed light on deeper mechanism of SMF action on physiological properties of different cell populations, including stem cells. In the present review, we focused on SMF effects on stem cell biology and its possible application as a tool for controlled drug delivery. We also highlighted the perspectives, in which SMF can be used in future therapies in tissue engineering due to its easy application and a wide range of possible effects on cells and organisms.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, Wrocław, Poland. .,Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany.
| | - K Kornicka
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, Wrocław, Poland
| | - M Röcken
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany
| |
Collapse
|
41
|
Li X, Wei Z, Lv H, Wu L, Cui Y, Yao H, Li J, Zhang H, Yang B, Jiang J. Iron oxide nanoparticles promote the migration of mesenchymal stem cells to injury sites. Int J Nanomedicine 2019; 14:573-589. [PMID: 30666115 PMCID: PMC6336032 DOI: 10.2147/ijn.s184920] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Developing new methods to deliver cells to the injured tissue is a critical factor in translating cell therapeutics research into clinical use; therefore, there is a need for improved cell homing capabilities. Materials and methods In this study, we demonstrated the effects of labeling rat bone marrow-derived mesenchymal stem cells (MSCs) with fabricated polydopamine (PDA)-capped Fe3O4 (Fe3O4@PDA) superparticles employing preassembled Fe3O4 nanoparticles as the cores. Results We found that the Fe3O4@PDA composite superparticles exhibited no adverse effects on MSC characteristics. Moreover, iron oxide nanoparticles increased the number of MSCs in the S-phase, their proliferation index and migration ability, and their secretion of vascular endothelial growth factor relative to unlabeled MSCs. Interestingly, nanoparticles not only promoted the expression of C-X-C chemokine receptor 4 but also increased the expression of the migration-related proteins c-Met and C-C motif chemokine receptor 1, which has not been reported previously. Furthermore, the MSC-loaded nanoparticles exhibited improved homing and anti-inflammatory abilities in the absence of external magnetic fields in vivo. Conclusion These results indicated that iron oxide nanoparticles rendered MSCs more favorable for use in injury treatment with no negative effects on MSC properties, suggesting their potential clinical efficacy.
Collapse
Affiliation(s)
- Xiuying Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| | - Zhenhong Wei
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| | - Huiying Lv
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| | - Liya Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| | - Yingnan Cui
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| | - Hua Yao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| | - Jing Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, People's Republic of China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, People's Republic of China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| |
Collapse
|
42
|
Choi B, Lee SH. Nano/Micro-Assisted Regenerative Medicine. Int J Mol Sci 2018; 19:ijms19082187. [PMID: 30049973 PMCID: PMC6121569 DOI: 10.3390/ijms19082187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Bogyu Choi
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea.
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea.
| |
Collapse
|