1
|
Marcovici I, Chioibas R, Zupko I, Pinzaru I, Moaca A, Ledeti A, Barbu-Tudoran L, Geamantan A, Predescu I, Dehelean CA. Preclinical pharmaco-toxicological screening of biomimetic melanin-like nanoparticles as a potential therapeutic strategy for cutaneous melanoma. Front Pharmacol 2025; 16:1487854. [PMID: 39981176 PMCID: PMC11839674 DOI: 10.3389/fphar.2025.1487854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Despite its rarity, cutaneous melanoma (CM) represents the deadliest skin cancer with a high mortality rate, an incidence on the rise, and limited therapeutic options at present. Melanin is a polymeric pigment naturally produced within melanocytes and CM cells that gained a noteworthy attention due to its pharmacological properties, and potential for the design of nanoplatforms with biomedical applications. Up to date, the utilization of melanin-like nanoparticles (MEL-NPs) in cancer treatment has been well-documented, although their efficacy in CM therapy remains scarcely investigated. The current study presents the preclinical evaluation of MEL-NPs as a potential nanomedicine for CM management. Methods MEL-NPs were produced through the oxidative polymerization of dopamine and characterized via electron microscopy and UV-VIS spectroscopy. The antioxidant activity was determined by using the DPPH method. The cytotoxic, anti-migratory, anti-clonogenic, pro-oxidant and pro-apoptotic properties of MEL-NPs were investigated in vitro by applying the MTT viability test, bright-field and immunofluorescence microscopy, DCFDA/H2DCFDA test, scratch assay, colony formation assay, and RT-qPCR. The irritant and anti-angiogenic effects were assessed in ovo on the vascularized chorioallantoic membrane (CAM). Results The as-made MEL-NPs presented a spherical morphology, an average size of 85.61 nm, a broad UV-VIS absorption spectrum, and a strong antioxidant activity. After a 24 h treatment, MEL-NPs exerted a selective cytotoxicity in SH-4 and B164A5 CM cells compared to HEMa, HaCaT, and JB6 Cl 41-5a healthy skin cells, except for the concentration of 100 µg/mL, at which their viability declined under 70%. Additionally, MEL-NPs accumulated within the intracellular space of CM cells, forming a perinuclear coating, inhibited their motility and clonogenic potential, increased intracellular oxidative stress, targeted the epithelial-to-mesenchymal transition, and induced apoptosis by altering cell morphology, nuclear aspect, F-actin and tubulin distribution, and by modulating the expression of pro- and anti-apoptotic markers. In ovo, MEL-NPs lacked irritant and vascular toxic effects, while exerting an angio-suppressive activity. Conclusion MEL-NPs demonstrated promising anti-melanoma properties, showing a selective cytotoxicity, a strong anti-invasive effect and a pro-apoptotic activity in CM cells, while inhibiting CAM angiogenesis, these novel findings contributing to future research on the potential application of this nanoplatform in CM therapy.
Collapse
Affiliation(s)
- Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Timisoara, Romania
| | - Raul Chioibas
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Timisoara, Romania
- CBS Medcom Hospital, Timisoara, Romania
| | - Istvan Zupko
- Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Iulia Pinzaru
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Timisoara, Romania
| | - Alina Moaca
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Timisoara, Romania
| | - Adriana Ledeti
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Timisoara, Romania
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Lucian Barbu-Tudoran
- Electron Microscopy Laboratory “Prof. C. Craciun”, Faculty of Biology and Geology, “Babes-Bolyai” University, Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory, National Institute for R and D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Andreea Geamantan
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Timisoara, Romania
| | - Iasmina Predescu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Timisoara, Romania
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Timisoara, Romania
| |
Collapse
|
2
|
Ashayeri N, Khani P, Miri-Aliabad G, Jafari M, Pajouhi A. Malignant melanoma with bone metastases in a child: a case report and review of literature. Ann Med Surg (Lond) 2025; 87:318-322. [PMID: 40109597 PMCID: PMC11918636 DOI: 10.1097/ms9.0000000000002767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/04/2024] [Indexed: 03/22/2025] Open
Abstract
Introduction and importance Melanoma is the fifth most common cancer diagnosed in the US in 2022. While its incidence increased from 1980 to 2017, it rarely happens in children. Its diagnosis and treatment are challenging in pediatric patients due to its rarity and different presentations compared to adults. Case presentation An 11.5-year-old boy with a complaint of back pain was admitted to the hospital. Initial examinations were normal; however, due to continued pain and symptoms (e.g., inability to walk, knee pain and ankle ecchymosis, weight loss, vomiting, nausea, and dyspnea), further examinations were performed. Biopsy, nuclear scan, computed tomography (CT) scan, and immunohistochemistry (IHC) confirmed the malignant melanoma diagnosis with bone and lung metastasis. Single-agent treatment with nivolumab was initiated after the diagnosis confirmation with no specific complication. The patient's parents decided to continue the treatment in their city of residence to reduce costs. However, the treatment was not continued, and unfortunately, the patient has passed away. Clinical discussion Melanoma is rare in children, making its diagnosis challenging. There are no specific guidelines for treating melanoma in pediatric patients, especially in children under 12, with ongoing debate on the most suitable treatment and follow-up options for these patients. It is important to fully examine resected legions for malignancy. Conclusion The study highlights the difficulties in diagnosing and treating malignant melanoma in children, considering its rarity and unusual signs and symptoms compared to adults. Specific guidelines are needed for diagnosing and treating malignant melanoma in pediatric patients.
Collapse
Affiliation(s)
- Neda Ashayeri
- Department of Pediatric Hematology and Oncology, Hazrat-e Ali Asghar Children's Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parya Khani
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ghasem Miri-Aliabad
- Department of Pediatric Hematology and Oncology, Hazrat-e Ali Asghar Children's Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jafari
- Department of Pediatric Hematology and Oncology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Pajouhi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
3
|
Marr JH, Al‐Shammari A. Regression of metastatic malignant melanoma with dupilumab: A case report. SKIN HEALTH AND DISEASE 2024; 4:e362. [PMID: 38846700 PMCID: PMC11150746 DOI: 10.1002/ski2.362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/01/2024] [Indexed: 06/09/2024]
Abstract
Excoriated pruritus can be an intolerable symptom in patients with cancer where Type 2 inflammation and its associated cytokines IL-4 and IL-13 play major roles in the pruritus. Dupilumab, an antibody blocking IL-4 and IL-13, is approved for treating moderate to severe atopic dermatitis (AD) where itching is a significant symptom. We present a case report of intractable malignancy-associated AD and pruritus with eosinophilia in a patient with stage IV malignant melanoma who was treated with dupilumab. Biweekly treatment with dupilumab led to an immediate improvement in itching and resolution of the AD, which subsided after a few doses and without significant adverse effects. Routine radiologic monitoring of the malignant melanoma showed concomitant resolution of secondary nodules in the lung, liver, and pleura. It was concluded that dupilumab may be a safe and effective treatment for intractable malignancy-associated AD with pruritus and may have potential for moderating metastatic malignant melanoma.
Collapse
Affiliation(s)
| | - Abbas Al‐Shammari
- Department of DermatologyLocum Consultant DermatologistWest Suffolk HospitalSuffolkUK
| |
Collapse
|
4
|
Buja A, Rugge M, Trevisiol C, Zanovello A, Brazzale AR, Zorzi M, Vecchiato A, Del Fiore P, Tropea S, Rastrelli M, Rossi CR, Mocellin S. Cutaneous melanoma in older patients. BMC Geriatr 2024; 24:232. [PMID: 38448833 PMCID: PMC10916215 DOI: 10.1186/s12877-024-04806-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND In industrialized countries, the aging population is steadily rising. The incidence of cutaneous malignant melanoma (CMM) is highest in old people. This study focuses on the clinicopathological profile of CMM and indicators of diagnostic-therapeutic performance in older patients. METHODS This retrospective population-based cohort study included 1,368 incident CMM, as recorded in 2017 by the Regional Veneto Cancer Registry (Northeast Italy). Older subjects were defined as ≥ 80, old as 65-79, and adults as < 65 years of age. The strength of association between pairs of variables was tested by Cramer's-V. Using age groups as the dependent variable, ordered logistic regression was fitted using the clinicopathological CMM profiles as covariates. In each of the three age-groups, the indicators of clinical performance were computed using the Clopper-Pearson exact method. RESULTS Compared to patients aged younger than 80 years (1,187), CMM in older patients (181; 13.2%) featured different CMM topography, a higher prevalence of ulcers (43.3% versus 12.7%; p < 0.001), a higher Breslow index (p < 0.001), a lower prevalence of tumor-infiltrating lymphocytes (64.4% versus 76.5%, p < 0.01), and a more advanced pTNM stage at clinical presentation (p < 0.001). Elderly patients with a positive sentinel-lymph node less frequently underwent sentinel- lymph node biopsy and lymphadenectomy (60.0% versus 94.2%, and 44.4% versus 85.5%, respectively; p < 0.001). CONCLUSIONS In older CMM patients, the clinicopathological presentation of CMM shows a distinctive profile. The present results provide critical information to optimize secondary prevention strategies and refine diagnostic-therapeutic procedures tailored to older patients.
Collapse
Affiliation(s)
- Alessandra Buja
- Hygiene and Public Health Unit, Laboratory of Health Care Services and Health Promotion Evaluation, Department of Cardiologic, Vascular and Thoracic Sciences, and Public Health, University of Padua, Via Loredan, 18, 35131, Padua, Italy.
| | - Massimo Rugge
- Pathology and Cytopathology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
- Veneto Tumour Registry (RTV), Azienda Zero, Padua, Italy
| | - Chiara Trevisiol
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Anna Zanovello
- Hygiene and Public Health Unit, Laboratory of Health Care Services and Health Promotion Evaluation, Department of Cardiologic, Vascular and Thoracic Sciences, and Public Health, University of Padua, Via Loredan, 18, 35131, Padua, Italy
| | | | - Manuel Zorzi
- Veneto Tumour Registry (RTV), Azienda Zero, Padua, Italy
| | - Antonella Vecchiato
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Paolo Del Fiore
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Saveria Tropea
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marco Rastrelli
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology - DISCOG, University of Padua, Padua, Italy
| | - Carlo Riccardo Rossi
- Department of Surgery, Oncology and Gastroenterology - DISCOG, University of Padua, Padua, Italy
| | - Simone Mocellin
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology - DISCOG, University of Padua, Padua, Italy
| |
Collapse
|
5
|
Low SSP, El-Shakankery K, Brown E, Christie A, McCormack S, Stares M. Case report: A rare case of immunotherapy induced isolated left CN VI palsy in a patient with unresectable melanoma. Front Oncol 2024; 14:1330271. [PMID: 38410107 PMCID: PMC10896602 DOI: 10.3389/fonc.2024.1330271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction Immune checkpoint inhibitors are the mainstay of treatment in patients with unresectable or metastatic melanoma. Combination immunotherapy with ipilimumab and nivolumab has shown to improve survival outcomes as compared to single agent immunotherapy in these patients. Neurological immune-related adverse effects (irAEs) are uncommon and cranial nerve palsies are seen even more infrequently. Case presentation A 66-year-old woman with a background of metastatic, unresectable melanoma with supraclavicular and axillary lymph nodal involvement presented with a headache, photophobia and diplopia 3 weeks after her first cycle of ipilimumab and nivolumab. She was subsequently diagnosed with a left-sided cranial nerve VI palsy and treated with high dose oral steroids and steroid eye drops, with complete resolution of symptoms. She also experienced Grade 3 dermatitis requiring topical steroids, Grade 2 hypothyroidism and vitiligo. She continues to have an excellent clinical and radiological response, despite further immunotherapy being suspended. Conclusion This is the first reported UK case of immunotherapy-induced isolated cranial nerve VI palsy. Multiple irAEs are more common with combination immunotherapy and its occurrence is associated with more favourable outcomes in melanoma. Immunotherapy continues to revolutionise oncological care, but clinicians must be cognizant of unpredictable irAEs, which may require prompt assessment and intervention.
Collapse
Affiliation(s)
- Samantha Su Ping Low
- Edinburgh Cancer Centre, Western General Hospital, NHS Lothian, Edinburgh, United Kingdom
| | - Karim El-Shakankery
- Edinburgh Cancer Centre, Western General Hospital, NHS Lothian, Edinburgh, United Kingdom
| | - Ewan Brown
- Edinburgh Cancer Centre, Western General Hospital, NHS Lothian, Edinburgh, United Kingdom
| | - Alan Christie
- Edinburgh Cancer Centre, Western General Hospital, NHS Lothian, Edinburgh, United Kingdom
| | | | - Mark Stares
- Edinburgh Cancer Centre, Western General Hospital, NHS Lothian, Edinburgh, United Kingdom
- Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Wang X, Yang X, Zhang Y, Guo A, Luo S, Xiao M, Xue L, Zhang G, Wang H. Fatty Acid Metabolism-Related lncRNAs are Potential Biomarkers for Predicting Prognoses and Immune Responses in Patients with Skin Cutaneous Melanoma. Clin Cosmet Investig Dermatol 2023; 16:3595-3614. [PMID: 38116144 PMCID: PMC10729836 DOI: 10.2147/ccid.s417805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
Introduction Skin cutaneous melanoma is becoming more dangerous since it has a poor prognosis and is resistant to treatment. Previous research has shown that lncRNAs and fatty acid metabolism are essential for numerous biological activities. There are no studies on the relationship between fatty acid metabolism-Related lncRNAs and skin cutaneous melanoma. Methods and Results In order to better understand the prognosis and survival of SKCM patients, we investigated the significance of lncRNAs related to fatty acid metabolism. In this work, we looked at the fatty acid metabolism genes and lncRNAs expression patterns. On the basis of lncRNAs associated with fatty acid metabolism, a nomogram and a prognosis prediction model were created. Based on the profile of lncRNAs associated with fatty acid metabolism, functional and pharmacological sensitivity investigations were also carried out. We also looked at the connection between immunotherapy and the immune response. The findings demonstrated that a risk score model based on 11 essential lncRNAs for fatty acid metabolism may discriminate between the clinical condition of SKCM and more accurately predict prognosis and survival. We conducted quantitative reverse transcription polymerase-chain reaction (RT-PCR) to verify the model. Conclusion These important lncRNAs further showed a strong association with the tumor immune system, and these important lncRNAs also showed a connection between SKCM and chemotherapeutic treatment sensitivity. Our research strives to provide fresh viewpoints and innovative approaches to the treatment and administration of SKCM.
Collapse
Affiliation(s)
- Xing Wang
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Department of Dermatovenereology, Baotou Central Hospital, Baotou City, Inner Mongolia, People’s Republic of China
| | - Xiaojing Yang
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Department of Dermatovenereology, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, People’s Republic of China
| | - Yiming Zhang
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Afei Guo
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Suju Luo
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Meng Xiao
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Lu Xue
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Guohui Zhang
- Department of Dermatovenereology, Baotou Central Hospital, Baotou City, Inner Mongolia, People’s Republic of China
| | - Huiping Wang
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
7
|
Yang H, Zhou J, Li D, Zhou S, Dai X, Du X, Mao H, Wang B. The inhibitory role of microRNA-141-3p in human cutaneous melanoma growth and metastasis through the fibroblast growth factor 13-mediated mitogen-activated protein kinase axis. Melanoma Res 2023; 33:492-505. [PMID: 36988403 DOI: 10.1097/cmr.0000000000000873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Human cutaneous melanoma (CM) is a highly invasive malignancy arising from melanocytes, and accompanied by ever-increasing incidence and mortality rates worldwide. Interestingly, microRNAs (miRNAs) possess the ability to regulate CM cell biological functions, resulting in the aggressive progression of CM. Nevertheless, a comprehensive understanding of the underlying mechanism remains elusive. Accordingly, the current study sought to elicit the functional role of miR-141-3p in human CM cells in association with fibroblast growth factor 13 (FGF13) and the MAPK pathway. First, miR-141-3p expression patterns were detected in human CM tissues and cell lines, in addition to the validation of the targeting relationship between miR-141-3p and FGF13. Subsequently, loss- and gain-of-function studies of miR-141-3p were performed to elucidate the functional role of miR-141-3p in the malignant features of CM cells. Intriguingly, our findings revealed that FGF13 was highly expressed, whereas miR-141-3p was poorly expressed in the CM tissues and cells. Further analysis highlighted FGF13 as a target gene of miR-141-3p. Meanwhile, overexpression of miR-141-3p inhibited the proliferative, invasive, and migratory abilities of CM cells, while enhancing their apoptosis accompanied by downregulation of FGF13 and the MAPK pathway-related genes. Collectively, our findings highlighted the inhibitory effects of miR-141-3p on CM cell malignant properties via disruption of the FGF13-dependent MAPK pathway, suggesting a potential target for treating human CM.
Collapse
Affiliation(s)
- Haojan Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Jiateng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Dongdong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Shengbo Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xinyi Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xinchao Du
- Shanghai Jiao Tong University School of Medicine
| | - Hailei Mao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University
| | - Bin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, P. R. China
| |
Collapse
|
8
|
Kuras M. Exploring the Complex and Multifaceted Interplay between Melanoma Cells and the Tumor Microenvironment. Int J Mol Sci 2023; 24:14403. [PMID: 37762707 PMCID: PMC10531837 DOI: 10.3390/ijms241814403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Malignant melanoma is a very aggressive skin cancer, characterized by a heterogeneous nature and high metastatic potential. The incidence of melanoma is continuously increasing worldwide, and it is one of the most common cancers in young adults. In the past twenty years, our understanding of melanoma biology has increased profoundly, and disease management for patients with disseminated disease has improved due to the emergence of immunotherapy and targeted therapy. However, a significant fraction of patients relapse or do not respond adequately to treatment. This can partly be explained by the complex signaling between the tumor and its microenvironment, giving rise to melanoma phenotypes with different patterns of disease progression. This review focuses on the key aspects and complex relationship between pathogenesis, genetic abnormalities, tumor microenvironment, cellular plasticity, and metabolic reprogramming in melanoma. By acquiring a deeper understanding of the multifaceted features of melanomagenesis, we can reach a point of more individualized and patient-centered disease management and reduced costs of ineffective treatments.
Collapse
Affiliation(s)
- Magdalena Kuras
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden;
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden
| |
Collapse
|
9
|
Yang L, Cao ZJ, Zhang Y, Zhou JK, Tian J. Disulfidptosis-related classification patterns and tumor microenvironment characterization in skin cutaneous melanoma. Melanoma Manag 2023; 10:MMT65. [PMID: 38230203 PMCID: PMC10789442 DOI: 10.2217/mmt-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024] Open
Abstract
Aim To identify distinct disulfidptosis-molecular subtypes and develop a novel prognostic signature. Methods/materials We integrated into this study multiple SKCM transcriptomic datasets from the Cancer Genome Atlas database and Gene Expression Omnibus dataset. The consensus clustering algorithm was applied to categorize SKCM patients into different DRG subtypes. Results Three distinct DRG subtypes were identified, which were correlated to different clinical outcomes and signaling pathways. Then, a disulfidptosis-relaed signature and nomogram were constructed, which could accurately predict the individual OS of patients with SKCM. The high-risk group was less sensitive to immunotherapy than the low-risk group. Conclusion The signature can assist healthcare professionals in making more accurate and individualized treatment choices for patients with SKCM.
Collapse
Affiliation(s)
- Li Yang
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Zi-jian Cao
- Department of Dermatology, The 63600 Hospital of PLA, Lanzhou, 732750, China
| | - Yuan Zhang
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Jin-ke Zhou
- Department of Dermatology, The 63600 Hospital of PLA, Lanzhou, 732750, China
| | - Jun Tian
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| |
Collapse
|
10
|
Diaz MJ, Fadil A, Tran JT, Batchu S, Root KT, Tran AX, Lucke-Wold B. Primary and Metastatic Cutaneous Melanomas Discriminately Enrich Several Ligand-Receptor Interactions. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010180. [PMID: 36676129 PMCID: PMC9865490 DOI: 10.3390/life13010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Cutaneous melanoma remains a leading cancer with sobering post-metastasis mortality rates. To date, the ligand-receptor interactome of melanomas remains weakly studied despite applicability to anti-cancer drug discovery. Here we leverage established crosstalk methodologies to characterize important ligand-receptor pairs in primary and metastatic cutaneous melanoma. METHODS Bulk transcriptomic data, representing 470 cutaneous melanoma samples, was retrieved from the Broad Genome Data Analysis Center Firehose portal. Tumor and stroma compartments were computationally derived as a function of tumor purity estimates. Identification of preferential ligand-receptor interactions was achieved by relative crosstalk scoring of 1380 previously established pairs. RESULTS Metastatic cutaneous melanoma uniquely enriched PTH2-PTH1R for tumor-to-stroma signaling. The Human R-spondin ligand family was involved in 4 of the 15 top-scoring stroma-to-tumor interactions. Receptor ACVR2B was involved in 3 of the 15 top-scoring tumor-to-tumor interactions. CONCLUSIONS Numerous gene-level differences in ligand-receptor crosstalk between primary and metastatic cutaneous melanomas. Further investigation of notable pairings is warranted.
Collapse
Affiliation(s)
- Michael J. Diaz
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| | - Angela Fadil
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jasmine T. Tran
- School of Medicine, University of Indiana, Indianapolis, IN 46202, USA
| | - Sai Batchu
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Kevin T. Root
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Andrew X. Tran
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
11
|
Shi H, Xiong J, Gan L, Zhang Y, Zhang C, Kong Y, Miao Q, Tian C, Li R, Liu J, Zhang E, Bu W, Wang Y, Cheng X, Sun J, Chen H. N6-methyladenosine reader YTHDF3 regulates melanoma metastasis via its 'executor'LOXL3. Clin Transl Med 2022; 12:e1075. [PMID: 36324258 PMCID: PMC9630608 DOI: 10.1002/ctm2.1075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND A number of studies have demonstrated that N6-methyladenosine (m6A) plays a vital role in the pathological process of various tumours. Recently, it was found that m6A writers or erasers affect the tumourigenesis of melanoma. However, the relationship between m6A readers such as YTH domain family (YTHDF) proteins and melanoma was still elusive. METHODS RT-qPCR, Western blot and immunohistochemistry were conducted to measure the expression level of YTH N6-methyladenosine RNA binding protein 3 (YTHDF3) and lysyl oxidase-like 3 (LOXL3) in melanoma tissues and cells. The effects of YTHDF3 and LOXL3 on melanoma were verified in vitro and in vivo. Multi-omics analysis including RNA-seq, MeRIP-seq, RIP-seq and mass spectrometry analyses was performed to identify the target. The interaction between YTHDF3 and LOXL3 was verified by RT-PCR, Western blot, MeRIP-qPCR, RIP-qPCR and CRISPR-Cas13b-based epitranscriptome engineering. RESULTS In this study, we found that m6A reader YTHDF3 could affect the metastasis of melanoma both in vitro and in vivo. The downstream targets of YTHDF3, such as LOXL3, phosphodiesterase 3A (PDE3A) and chromodomain helicase DNA-binding protein 7 (CHD7) were identified by means of RNA-seq, MeRIP-seq, RIP-seq and mass spectrometry analyses. Besides, RT-qPCR, Western blot, RIP-qPCR and MeRIP-qPCR were performed for subsequent validation. Among various targets of YTHDF3, LOXL3 was found to be the optimal target of YTHDF3. With the application of CRISPR-Cas13b-based epitranscriptome engineering, we further confirmed that the transcript of LOXL3 was captured and regulated by YTHDF3 via m6A binding sites. YTHDF3 augmented the protein expression of LOXL3 without affecting its mRNA level via the enrichment of eukaryotic translation initiation factor 3 subunit A (eIF3A) on the transcript of LOXL3. LOXL3 downregulation inhibited the metastatic ability of melanoma cells, and overexpression of LOXL3 ameliorated the inhibition of melanoma metastasis caused by YTHDF3 downregulation. CONCLUSIONS The YTHDF3-LOXL3 axis could serve as a promising target to be interfered with to inhibit the metastasis of melanoma.
Collapse
Affiliation(s)
- Hao‐ze Shi
- Department of Pathology, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Jing‐shu Xiong
- Laboratory of Mycobacteriology, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Lu Gan
- Department of Sexually Transmitted Disease, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Ying Zhang
- Department of Pathology, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Cong‐cong Zhang
- Department of Pathology, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Ying‐qi Kong
- Department of Pathology, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Qiu‐ju Miao
- Department of Pathology, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Cui‐cui Tian
- Department of Pathology, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Rong Li
- Department of Physiotherapy, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Jin‐quan Liu
- National Center for STD ControlChina CDCNanjingChina
| | - Er‐jia Zhang
- Department of DermatologyChina Aerospace Science & Industry Corporation 731 HospitalBeijingChina
| | - Wen‐bo Bu
- Department of Surgery, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Yan Wang
- Department of Surgery, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Xian‐feng Cheng
- Department of Clinical Laboratory, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Jian‐fang Sun
- Department of Pathology, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Hao Chen
- Department of Pathology, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| |
Collapse
|
12
|
Lopes J, Rodrigues CMP, Gaspar MM, Reis CP. Melanoma Management: From Epidemiology to Treatment and Latest Advances. Cancers (Basel) 2022; 14:4652. [PMID: 36230575 PMCID: PMC9562203 DOI: 10.3390/cancers14194652] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is the deadliest skin cancer, whose morbidity and mortality indicators show an increasing trend worldwide. In addition to its great heterogeneity, melanoma has a high metastatic potential, resulting in very limited response to therapies currently available, which were restricted to surgery, radiotherapy and chemotherapy for many years. Advances in knowledge about the pathophysiological mechanisms of the disease have allowed the development of new therapeutic classes, such as immune checkpoint and small molecule kinase inhibitors. However, despite the incontestable progress in the quality of life and survival rates of the patients, effectiveness is still far from desired. Some adverse side effects and resistance mechanisms are the main barriers. Thus, the search for better options has resulted in many clinical trials that are now investigating new drugs and/or combinations. The low water solubility of drugs, low stability and rapid metabolism limit the clinical potential and therapeutic use of some compounds. Thus, the research of nanotechnology-based strategies is being explored as the basis for the broad application of different types of nanosystems in the treatment of melanoma. Future development focus on challenges understanding the mechanisms that make these nanosystems more effective.
Collapse
Affiliation(s)
- Joana Lopes
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, IBEB, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
13
|
How to Treat Melanoma? The Current Status of Innovative Nanotechnological Strategies and the Role of Minimally Invasive Approaches like PTT and PDT. Pharmaceutics 2022; 14:pharmaceutics14091817. [PMID: 36145569 PMCID: PMC9504126 DOI: 10.3390/pharmaceutics14091817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the most aggressive type of skin cancer, the incidence and mortality of which are increasing worldwide. Its extensive degree of heterogeneity has limited its response to existing therapies. For many years the therapeutic strategies were limited to surgery, radiotherapy, and chemotherapy. Fortunately, advances in knowledge have allowed the development of new therapeutic strategies. Despite the undoubted progress, alternative therapies are still under research. In this context, nanotechnology is also positioned as a strong and promising tool to develop nanosystems that act as drug carriers and/or light absorbents to potentially improve photothermal and photodynamic therapies outcomes. This review describes the latest advances in nanotechnology field in the treatment of melanoma from 2011 to 2022. The challenges in the translation of nanotechnology-based therapies to clinical applications are also discussed. To sum up, great progress has been made in the field of nanotechnology-based therapies, and our understanding in this field has greatly improved. Although few therapies based on nanoparticulate systems have advanced to clinical trials, it is expected that a large number will come into clinical use in the near future. With its high sensitivity, specificity, and multiplexed measurement capacity, it provides great opportunities to improve melanoma treatment, which will ultimately lead to enhanced patient survival rates.
Collapse
|
14
|
Mohammed NBB, Antonopoulos A, Dell A, Haslam SM, Dimitroff CJ. The pleiotropic role of galectin-3 in melanoma progression: Unraveling the enigma. Adv Cancer Res 2022; 157:157-193. [PMID: 36725108 PMCID: PMC9895887 DOI: 10.1016/bs.acr.2022.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Melanoma is a highly aggressive skin cancer with poor outcomes associated with distant metastasis. Intrinsic properties of melanoma cells alongside the crosstalk between melanoma cells and surrounding microenvironment determine the tumor behavior. Galectin-3 (Gal-3), a ß-galactoside-binding lectin, has emerged as a major effector in cancer progression, including melanoma behavior. Data from melanoma models and patient studies reveal that Gal-3 expression is dysregulated, both intracellularly and extracellularly, throughout the stages of melanoma progression. This review summarizes the most recent data and hypotheses on Gal-3 and its tumor-modulating functions, highlighting its role in driving melanoma growth, invasion, and metastatic colonization. It also provides insight into potential Gal-3-targeted strategies for melanoma diagnosis and treatment.
Collapse
Affiliation(s)
- Norhan B B Mohammed
- Department of Translational Medicine, Translational Glycobiology Institute at FIU (TGIF), Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States; Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | | | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Charles J Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at FIU (TGIF), Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States.
| |
Collapse
|
15
|
Papaiz DD, Rius FE, Ayub ALP, Origassa CS, Gujar H, Pessoa DDO, Reis EM, Nsengimana J, Newton‐Bishop J, Mason CE, Weisenberger DJ, Liang G, Jasiulionis MG. Genes regulated by DNA methylation are involved in distinct phenotypes during melanoma progression and are prognostic factors for patients. Mol Oncol 2022; 16:1913-1930. [PMID: 35075772 PMCID: PMC9067153 DOI: 10.1002/1878-0261.13185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/03/2022] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
In addition to mutations, epigenetic alterations are important contributors to malignant transformation and tumor progression. The aim of this work was to identify epigenetic events in which promoter or gene body DNA methylation induces gene expression changes that drive melanocyte malignant transformation and metastasis. We previously developed a linear mouse model of melanoma progression consisting of spontaneously immortalized melanocytes, premalignant melanocytes, a nonmetastatic tumorigenic, and a metastatic cell line. Here, through the integrative analysis of methylome and transcriptome data, we identified the relationship between promoter and/or gene body DNA methylation alterations and gene expression in early, intermediate, and late stages of melanoma progression. We identified adenylate cyclase type 3 (Adcy3) and inositol polyphosphate 4-phosphatase type II (Inpp4b), which affect tumor growth and metastatic potential, respectively. Importantly, the gene expression and DNA methylation profiles found in this murine model of melanoma progression were correlated with available clinical data from large population-based primary melanoma cohorts, revealing potential prognostic markers.
Collapse
Affiliation(s)
- Debora D’Angelo Papaiz
- Pharmacology DepartmentEscola Paulista de MedicinaUniversidade Federal de São PauloBrazil
| | | | - Ana Luísa Pedroso Ayub
- Pharmacology DepartmentEscola Paulista de MedicinaUniversidade Federal de São PauloBrazil
| | - Clarice S. Origassa
- Pharmacology DepartmentEscola Paulista de MedicinaUniversidade Federal de São PauloBrazil
| | - Hemant Gujar
- Department of UrologyUniversity of Southern CaliforniaLos AngelesCAUSA
| | | | | | - Jérémie Nsengimana
- Biostatistics Research GroupFaculty of Medical SciencesPopulation Health Sciences InstituteNewcastle UniversityUK
- University of Leeds School of MedicineUK
| | | | | | - Daniel J. Weisenberger
- Department of Biochemistry and Molecular MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Gangning Liang
- Department of UrologyUniversity of Southern CaliforniaLos AngelesCAUSA
| | | |
Collapse
|
16
|
Hsu CH, Lee KJ, Chiu YH, Huang KC, Wang GS, Chen LP, Liao KW, Lin CS. The Lysosome in Malignant Melanoma: Biology, Function and Therapeutic Applications. Cells 2022; 11:1492. [PMID: 35563798 PMCID: PMC9103375 DOI: 10.3390/cells11091492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Lysosomes are membrane-bound vesicles that play roles in the degradation and recycling of cellular waste and homeostasis maintenance within cells. False alterations of lysosomal functions can lead to broad detrimental effects and cause various diseases, including cancers. Cancer cells that are rapidly proliferative and invasive are highly dependent on effective lysosomal function. Malignant melanoma is the most lethal form of skin cancer, with high metastasis characteristics, drug resistance, and aggressiveness. It is critical to understand the role of lysosomes in melanoma pathogenesis in order to improve the outcomes of melanoma patients. In this mini-review, we compile our current knowledge of lysosomes' role in tumorigenesis, progression, therapy resistance, and the current treatment strategies related to lysosomes in melanoma.
Collapse
Affiliation(s)
- Chia-Hsin Hsu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Keng-Jung Lee
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Yi-Han Chiu
- Department of Microbiology, Soochow University, Taipei 10617, Taiwan;
| | - Kuo-Ching Huang
- Holistic Education Center, Mackay Medical College, New Taipei City 25245, Taiwan;
| | - Guo-Shou Wang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (G.-S.W.); (K.-W.L.)
| | - Lei-Po Chen
- Ph.D. Degree Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan;
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (G.-S.W.); (K.-W.L.)
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
17
|
Khan NH, Mir M, Qian L, Baloch M, Ali Khan MF, Rehman AU, Ngowi EE, Wu DD, Ji XY. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. J Adv Res 2022; 36:223-247. [PMID: 35127174 PMCID: PMC8799916 DOI: 10.1016/j.jare.2021.06.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background Skin cancer has been the leading type of cancer worldwide. Melanoma and non-melanoma skin cancers are now the most common types of skin cancer that have been reached to epidemic proportion. Based on the rapid prevalence of skin cancers, and lack of efficient drug delivery systems, it is essential to surge the possible ways to prevent or cure the disease. Aim of review Although surgical modalities and therapies have been made great progress in recent years, however, there is still an urgent need to alleviate its increased burden. Hence, understanding the precise pathophysiological signaling mechanisms and all other factors of such skin insults will be beneficial for the development of more efficient therapies. Key scientific concepts of review In this review, we explained new understandings about onset and development of skin cancer and described its management via polymeric micro/nano carriers-based therapies, highlighting the current key bottlenecks and future prospective in this field. In therapeutic drug/gene delivery approaches, polymeric carriers-based system is the most promising strategy. This review discusses that how polymers have successfully been exploited for development of micro/nanosized systems for efficient delivery of anticancer genes and drugs overcoming all the barriers and limitations associated with available conventional therapies. In addition to drug/gene delivery, intelligent polymeric nanocarriers platforms have also been established for combination anticancer therapies including photodynamic and photothermal, and for theranostic applications. This portfolio of latest approaches could promote the blooming growth of research and their clinical availability.
Collapse
Key Words
- 5-ALA, 5-aminolevulinic acid
- 5-FU, 5-fluorouracil
- AIDS, Acquired immune deficiency syndrome
- BCC, Basal cell carcinoma
- BCCs, Basal cell carcinomas
- Basal cell carcinoma
- CREB, response element-binding protein
- DDS, Drug delivery system
- DIM-D, Di indolyl methane derivative
- Drug delivery
- GNR-PEG-MN, PEGylated gold nanorod microneedle
- Gd, Gadolinium
- Gene delivery
- HH, Hedgehog
- HPMC, Hydroxypropyl methylcellulose
- IPM, Isopropyl myristate
- MCIR, Melanocortin-1 receptor
- MNPs, Magnetic nanoparticle
- MNs, Microneedles
- MRI, Magnetic Resonance Imaging
- MSC, Melanoma skin cancer
- Microneedles
- Mn, Manganese
- NMSC, Non melanoma skin cancer
- NPs, Nano Particles
- OTR, Organ transplant recipients
- PAMAM, Poly-amidoamines
- PAN, Polyacrylonitrile
- PATCH1, Patch
- PCL, Poly (ε-caprolactone)
- PDT, Photodynamic therapy
- PEG, Polyethylene glycol
- PLA, Poly lactic acid
- PLA-HPG, Poly (d-l-lactic acid)-hyperbranched polyglycerol
- PLGA, Poly (lactide-co-glycolide) copolymers
- PLL, Poly (L-lysine)
- Polymeric nanocarriers
- QDs, Quantum dots
- SC, Skin cancer
- SCC, Squamous cell Carcinoma
- SMO, Smoothen
- SPIO, Superparamagnetic iron oxide
- Squamous cell carcinoma
- UV, Ultra Violet
- cAMP, Cyclic adenosine monophosphate
- dPG, Dendritic polyglycerol
- hTERT, Human telomerase reverse transcriptase
Collapse
Affiliation(s)
- Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences. Henan University, Kaifeng, Henan 475004, China
| | - Maria Mir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Lei Qian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mahnoor Baloch
- School of Natural Sciences, National University of Science and Technology, Islamabad 44000, Pakistan
| | - Muhammad Farhan Ali Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asim-ur- Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Sciences, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
18
|
Shi Y, Li Z, Zhou Z, Liao S, Wu Z, Li J, Yin J, Wang M, Weng M. Identification and validation of an epithelial mesenchymal transition-related gene pairs signature for prediction of overall survival in patients with skin cutaneous melanoma. PeerJ 2022; 10:e12646. [PMID: 35116193 PMCID: PMC8785661 DOI: 10.7717/peerj.12646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND We aimed to construct a novel epithelial-mesenchymal transition (EMT)-related gene pairs (ERGPs) signature to predict overall survival (OS) in skin cutaneous melanoma (CM) patients. METHODS Expression data of the relevant genes, corresponding clinicopathological parameters, and follow-up data were obtained from The Cancer Genome Atlas database. Univariate Cox regression analysis was utilized to identify ERGPs significantly associated with OS, and LASSO analysis was used to identify the genes used for the construction of the ERGPs signature. The optimal cutoff value determined by the receiver operating characteristic curve was used to classify patients into high-risk and low-risk groups. Survival curves were generated using the Kaplan-Meier method, and differences between the two groups were estimated using the log-rank test. The independent external datasets GSE65904 and GSE19234 were used to verify the performance of the ERGPs signature using the area under the curve (AUC) values. In addition, we also integrated clinicopathological parameters and risk scores to develop a nomogram that can individually predict the prognosis of patients with CM. RESULTS A total of 104 ERGPs related to OS were obtained, of which 21 ERGPs were selected for the construction of the signature. All CM patients were stratified into high-and low-risk groups based on an optimal risk score cutoff value of 0.281. According to the Kaplan-Meier analysis, the mortality rate in the low-risk group was lower than that in the high-risk group in the TCGA cohort (P < 0.001), GSE65904 cohort (P = 0.006), and GSE19234 cohort (P = 0.002). Multivariate Cox regression analysis indicated that our ERGP signature was an independent risk factor for OS in CM patients in the three cohorts (for TCGA: HR, 2.560; 95% CI [1.907-3.436]; P < 0.001; for GSE65904: HR = 2.235, 95% CI [1.492-3.347], P < 0.001; for GSE19234: HR = 2.458, 95% CI [1.065-5.669], P = 0.035). The AUC value for predicting the 5-year survival rate of patients with CM of our developed model was higher than that of two previously established prognostic signatures. Both the calibration curve and the C-index (0.752, 95% CI [0.678-0.826]) indicated that the developed nomogram was highly accurate. Most importantly, the decision curve analysis results showed that the nomogram had a higher net benefit than that of the American Joint Committee on Cancer stage system. CONCLUSION Our study established an ERGPs signature that could be potentially used in a clinical setting as a genetic biomarker for risk stratification of CM patients. In addition, the ERGPs signature could also predict which CM patients will benefit from PD-1 and PD-L1 inhibitors.
Collapse
Affiliation(s)
- Yucang Shi
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhanpeng Li
- Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Zhihong Zhou
- Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Simu Liao
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhiyuan Wu
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jie Li
- Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Jiasheng Yin
- Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Meng Wang
- Department of Plastic Surgery, Longhua District People’s Hospital, Shenzhen, China
| | - Meilan Weng
- Graduate School of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
19
|
Screening of Autophagy-Related Prognostic Genes in Metastatic Skin Melanoma. DISEASE MARKERS 2022; 2022:8556593. [PMID: 35069935 PMCID: PMC8776460 DOI: 10.1155/2022/8556593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022]
Abstract
Cutaneous melanoma refers to a common skin tumor that is dangerous to health with a great risk of metastasis. Previous researches reported that autophagy is associated with the progression of cutaneous melanoma. Nevertheless, the role played by genes with a relation to autophagy (ARG) in the prediction of the course of metastatic cutaneous melanoma is still largely unknown. We observed that thirteen ARGs showed relations to overall survival (OS) in the Cox regression investigation based on a single variate. We developed 2-gene signature, which stratified metastatic cutaneous melanoma cases to groups at great and small risks. Cases suffering from metastatic cutaneous melanoma in the group at great risks had power OS compared with cases at small risks. The risk score, T phase, N phase, and age were proved to be individual factors in terms of the prediction of OS. Besides, the risk scores identified by the two ARGs were significantly correlated with metastatic cutaneous melanoma. Receiver operating characteristic (ROC) curve analysis demonstrated accurate predicting performance exhibited by the 2-gene signature. We also found that the immunization and stromal scores achieved by the group based on large risks were higher compared with those achieved by the group based on small risks. The metastatic cutaneous melanoma cases achieving the score based on small risks acquired greater expression of immune checkpoint molecules as compared with the high-risk group. In conclusion, the 2-ARG gene signature indicated a novel prognostic indicator for prognosis prediction of metastatic cutaneous melanoma, which served as an important tool for guiding the clinical treatment of cutaneous melanoma.
Collapse
|
20
|
Huang R, Li M, Zeng Z, Zhang J, Song D, Hu P, Yan P, Xian S, Zhu X, Chang Z, Zhang J, Guo J, Yin H, Meng T, Huang Z. The Identification of Prognostic and Metastatic Alternative Splicing in Skin Cutaneous Melanoma. Cancer Control 2022; 29:10732748211051554. [PMID: 34986671 PMCID: PMC8743934 DOI: 10.1177/10732748211051554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Skin cutaneous melanoma (SKCM) is a type of highly invasive cancer originated from melanocytes. It is reported that aberrant alternative splicing (AS) plays an important role in the neoplasia and metastasis of many types of cancer. Therefore, we investigated whether ASEs of pre-RNA have such an influence on the prognosis of SKCM and the related mechanism of ASEs in SKCM. The RNA-seq data and ASEs data for SKCM patients were obtained from the TCGA and TCGASpliceSeq database. The univariate Cox regression revealed 1265 overall survival-related splicing events (OS-SEs). Screened by Lasso regression, 4 OS-SEs were identified and used to construct an effective prediction model (AUC: .904), whose risk score was proved to be an independent prognostic factor. Furthermore, Kruskal-Wallis test and Mann-Whitney-Wilcoxon test showed that an aberrant splicing type of aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2) regulated by CDC-like kinase 1 (CLK1) was associated with the metastasis and stage of SKCM. Besides, the overlapped signal pathway for AIMP2 was galactose metabolism identified by the co-expression analysis. External database validation also confirmed that AIMP2, CLK1, and the galactose metabolism were associated with the metastasis and stage of SKCM patients. ChIP-seq and ATAC-seq methods further confirmed the transcription regulation of CLK1, AIMP2, and other key genes, whose cellular expression was detected by Single Cell Sequencing. In conclusion, we proposed that CLK1-regulated AIMP2-78704-ES might play a critical role in the tumorigenesis and metastasis of SKCM via galactose metabolism. Besides, we established an effective model with MTMR14-63114-ES, URI1-48867-ES, BATF2-16724-AP, and MED22-88025-AP to predict the metastasis and prognosis of SKCM patients.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Zhengzhou University School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Mingxiao Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Zhiwei Zeng
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Jie Zhang
- Zhengzhou University School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Dianwen Song
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Hu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Penghui Yan
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuyuan Xian
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaolong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University School of Medicine, Zhengzhou University, Zhengzhou, China
| | | | - Jiayao Zhang
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Juanru Guo
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huabin Yin
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tong Meng
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Mathematical Sciences, Tongji University, Shanghai, China
| | - Zongqiang Huang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Matias M, Pinho JO, Penetra MJ, Campos G, Reis CP, Gaspar MM. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021; 10:3088. [PMID: 34831311 PMCID: PMC8621991 DOI: 10.3390/cells10113088] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria João Penetra
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Gonçalo Campos
- CICS–UBI–Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| |
Collapse
|
22
|
PSMC2 knockdown suppressed tumor progression of skin cutaneous melanoma. Cell Death Discov 2021; 7:323. [PMID: 34716318 PMCID: PMC8556233 DOI: 10.1038/s41420-021-00727-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Skin cutaneous melanoma (SKCM) is the most lethal tumor among three of the major malignant cancers of the skin. The mechanism underlying the malignant biological behaviors of SKCM is not fully clear. Our study intended to verify the molecular mechanism of proteasome 26 S subunit ATPase 2 (PSMC2) in malignant biological behaviors of SKCM. The Cancer Genome Atlas (TCGA) database was used to analyze the expression of PSMC2 in SKCM and its impact on prognosis. PSMC2 expression in 105 paired SKCM tissues was investigated by immunohistochemistry (IHC), its functional roles were verified using a series of cell experiments, and the underlying pathway was detected by protein-chip technology and gene set enrichment analysis. We found that PSMC2 was significantly upregulated in SKCN patients from TCGA datasets and verified in clinical SKCM tissues. Moreover, high PSMC2 was shown to closely correlate with the pathological stages and lymphatic metastasis of SKCM patients. Functionally, knockdown of PSMC2 suppressed the progression of SKCM through inhibiting cell proliferation, migration, and DNA damage in vitro as well as cell growth in vivo, whereas inducing apoptosis, cycle arrest in G2 phase. Similarly, pharmaceutical inhibition of proteasome with MG132 mimicked the PSMC2 knockdown induced defects in cell cycle arrest, apoptosis and proliferation, while overexpression of PSMC2 has the opposite effects. Mechanistically, the silence of PSMC2 remarkably elevated the pro-apoptotic proteins DR6, IGFBP-4, p21, and p53, while inhibited the anti-apoptosis protein TRAILR-3 and the proteins related to the Wnt signaling pathway. The present study revealed that PSMC2 participated in a positive regulation to promote the progression of SKCM through regulating the Wnt signaling pathway. Our findings may offer a new mechanism underlying the development and progression of SKCM, and a deeper understanding of PSMC2 may contribute to SKCM treatment.
Collapse
|
23
|
Ghosh S, Juin SK, Bhattacharyya Majumdar S, Majumdar S. Crucial role of glucosylceramide synthase in the regulation of stem cell-like cancer cells in B16F10 murine melanoma. Mol Carcinog 2021; 60:840-858. [PMID: 34516706 DOI: 10.1002/mc.23347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/15/2021] [Accepted: 08/25/2021] [Indexed: 11/06/2022]
Abstract
Cancer stem cells render a complex cascade of events that facilitates highly invasive melanoma malignancy. Interplay between immunocytes and cancer stem cells within tumor microenvironment with the participation of sphingolipid signaling mediators skews the immune evasion strategies toward metastatic neoplasm. In this context, we aimed to explore the functional aspect of glucosylceramide synthase (GCS), a key enzyme of sphingolipid biosynthesis in the maintenance of melanoma stem cell-like cancer cells (CSCs). Our findings demonstrated that tumor hypoxia was responsible for elevated GCS expression in melanoma, which was correlated with substantially increased melanoma CSCs. Moreover, hypoxia-induced TGF-β from TAMs and Tregs promoted GCS induction in B16F10 murine melanoma CSCs via PKCα signaling and facilitated the expansion of melanoma CSCs. Interestingly, GCS ablation hindered the immunosuppressiveness of TAMs and Tregs. Therefore, our study for the first time demonstrated a novel paracrine pathway of melanoma CSC maintenance and tumorigenicity, exploiting the bidirectional signaling with immunocytes. Furthermore, our study showed that the combinatorial immunotherapy involving immunomodulators like Mw and DTA-1 repressed CSC pool affecting GCS functions in advanced-stage B16F10 murine melanoma tumor. Moreover, GCS inhibition sensitized conventional chemotherapeutic drug-resistant melanoma CSCs to the genotoxic drugs paving the way toward selective melanoma treatment. Better therapeutic efficacy with inhibition of GCS and CSC depletion suggests a crucial role of GCS in melanoma treatment, therefore, implying its application concerning clinical challenges of chemotherapy resistance leading to prolonged survival.
Collapse
Affiliation(s)
- Sweta Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | | | | |
Collapse
|
24
|
Abstract
Despite the ability of immune-based interventions to dramatically increase the survival of patients with melanoma, a significant subset fail to benefit from this treatment, underscoring the need for accurate means to identify the patient population likely to respond to immunotherapy. Understanding how melanoma evades natural or manipulated immune responses could provide the information needed to identify such resistant individuals. Efforts to address this challenge are hampered by the vast immune diversity characterizing tumor microenvironments that remain largely understudied. It is thus important to more clearly elucidate the complex interactions that take place between the tumor microenvironment and host immune system.
Collapse
|
25
|
Palmieri G, Puzanov I, Massi D, Ascierto PA. Editorial: Advancements in Molecular Diagnosis and Treatment of Melanoma. Front Oncol 2021; 11:728113. [PMID: 34307183 PMCID: PMC8299098 DOI: 10.3389/fonc.2021.728113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Giuseppe Palmieri
- University of Sassari & Unit of Cancer Genetics, National Research Council (CNR), Sassari, Italy
| | - Igor Puzanov
- Roswell Park Comprehensive Cancer Center, University of Buffalo, Buffalo, NY, United States
| | - Daniela Massi
- Section of Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
26
|
Mou K, Zhang J, Mu X, Wang L, Liu W, Ge R. Zwint facilitates melanoma progression by promoting c-Myc expression. Exp Ther Med 2021; 22:818. [PMID: 34131441 PMCID: PMC8193213 DOI: 10.3892/etm.2021.10250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
ZW10 interactor (Zwint) is upregulated in various types of tumors and exerts a carcinogenic effect. However, little is known about the expression profile, function and molecular mechanisms of action of Zwint in melanoma. Therefore, the aim of the present study was to investigate the expression levels of Zwint in melanoma cell lines and tissues. It was revealed that Zwint was highly expressed in melanoma samples. Functional experiments indicated that Zwint knockdown suppressed the proliferation and migration of A375 melanoma cells. Further mechanistic studies demonstrated that Zwint knockdown decreased the protein expression levels of c-Myc, MMP-2, Slug, mTOR, phosphorylated (p)-mTOR, p-p38 and fibronectin, while it increased the protein expression levels of E-cadherin and MMP-9. Among these genes, c-Myc, MMP-2 and Slug were overexpressed to investigate their effects on cell proliferation following Zwint knockdown. The results demonstrated that overexpression of c-Myc, but not MMP-2 or Slug, rescued the effects of Zwint knockdown on melanoma cell proliferation and migration. Taken together, the results of the present study suggested that Zwint may act as an oncogene in melanoma by regulating c-Myc expression.
Collapse
Affiliation(s)
- Kuanhou Mou
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jian Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Mu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lijuan Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenli Liu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Rui Ge
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
27
|
Pisano M, Dettori MA, Fabbri D, Delogu G, Palmieri G, Rozzo C. Anticancer Activity of Two Novel Hydroxylated Biphenyl Compounds toward Malignant Melanoma Cells. Int J Mol Sci 2021; 22:5636. [PMID: 34073232 PMCID: PMC8198844 DOI: 10.3390/ijms22115636] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Melanoma, the deadliest form of skin cancer, is still one of the most difficult cancers to treat despite recent advances in targeted and immune therapies. About 50% of advanced melanoma do not benefit of such therapies, and novel treatments are requested. Curcumin and its analogs have shown good anticancer properties and are being considered for use in combination with or sequence to recent therapies to improve patient outcomes. Our group previously published the synthesis and anticancer activity characterization of a novel curcumin-related compound against melanoma and neuroblastoma cells (D6). Here, two hydroxylated biphenyl compounds-namely, compounds 11 and 12-were selected among a small collection of previously screened C2-symmetric hydroxylated biphenyls structurally related to D6 and curcumin, showing the best antitumor potentiality against melanoma cells (IC50 values of 1.7 ± 0.5 μM for 11 and 2.0 ± 0.7 μM for 12) and no toxicity of normal fibroblasts up to 32 µM. Their antiproliferative activity was deeply characterized on five melanoma cell lines by performing dose-response and clonal growth inhibition assays, which revealed long-lasting and irreversible effects for both compounds. Apoptosis induction was ascertained by the annexin V and TUNEL assays, whereas Western blotting showed caspase activation and PARP cleavage. A cell cycle analysis, following cell treatments with either compound 11 or 12, highlighted an arrest in the G2/M transition. Taking all this evidence together, 11 and 12 were shown to be good candidates as lead compounds to develop new anticancer drugs against malignant melanoma.
Collapse
Affiliation(s)
- Marina Pisano
- Institute for Genetic and Biomedical Research (IRGB), National Research Council of Italy (CNR), Traversa la Crucca 3, 07100 Sassari, Italy; (M.P.); (G.P.)
| | - Maria Antonietta Dettori
- Institute of Biomolecular Chemistry (ICB), National Research Council of Italy (CNR), Traversa la Crucca 3, 07100 Sassari, Italy; (M.A.D.); (D.F.); (G.D.)
| | - Davide Fabbri
- Institute of Biomolecular Chemistry (ICB), National Research Council of Italy (CNR), Traversa la Crucca 3, 07100 Sassari, Italy; (M.A.D.); (D.F.); (G.D.)
| | - Giovanna Delogu
- Institute of Biomolecular Chemistry (ICB), National Research Council of Italy (CNR), Traversa la Crucca 3, 07100 Sassari, Italy; (M.A.D.); (D.F.); (G.D.)
| | - Giuseppe Palmieri
- Institute for Genetic and Biomedical Research (IRGB), National Research Council of Italy (CNR), Traversa la Crucca 3, 07100 Sassari, Italy; (M.P.); (G.P.)
| | - Carla Rozzo
- Institute for Genetic and Biomedical Research (IRGB), National Research Council of Italy (CNR), Traversa la Crucca 3, 07100 Sassari, Italy; (M.P.); (G.P.)
| |
Collapse
|
28
|
Coricovac D, Dehelean CA, Pinzaru I, Mioc A, Aburel OM, Macasoi I, Draghici GA, Petean C, Soica C, Boruga M, Vlaicu B, Muntean MD. Assessment of Betulinic Acid Cytotoxicity and Mitochondrial Metabolism Impairment in a Human Melanoma Cell Line. Int J Mol Sci 2021; 22:ijms22094870. [PMID: 34064489 PMCID: PMC8125295 DOI: 10.3390/ijms22094870] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022] Open
Abstract
Melanoma represents one of the most aggressive and drug resistant skin cancers with poor prognosis in its advanced stages. Despite the increasing number of targeted therapies, novel approaches are needed to counteract both therapeutic resistance and the side effects of classic therapy. Betulinic acid (BA) is a bioactive phytocompound that has been reported to induce apoptosis in several types of cancers including melanomas; however, its effects on mitochondrial bioenergetics are less investigated. The present study performed in A375 human melanoma cells was aimed to characterize the effects of BA on mitochondrial bioenergetics and cellular behavior. BA demonstrated a dose-dependent inhibitory effect in both mitochondrial respiration and glycolysis in A375 melanoma cells and at sub-toxic concentrations (10 μM) induced mitochondrial dysfunction by eliciting a decrease in the mitochondrial membrane potential and changes in mitochondria morphology and localization. In addition, BA triggered a dose-dependent cytotoxic effect characterized by apoptotic features: morphological alterations (nuclear fragmentation, apoptotic bodies) and the upregulation of pro-apoptotic markers mRNA expression (Bax, Bad and Bak). BA represents a viable therapeutic option via a complex modulatory effect on mitochondrial metabolism that might be useful in advanced melanoma or as reliable strategy to counteract resistance to standard therapy.
Collapse
Affiliation(s)
- Dorina Coricovac
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Iulia Pinzaru
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
- Correspondence: (I.P.); (A.M.); Tel.: +40-256-494-604
| | - Alexandra Mioc
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
- Correspondence: (I.P.); (A.M.); Tel.: +40-256-494-604
| | - Oana-Maria Aburel
- Faculty of Medicine “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (O.-M.A.); (M.B.); (B.V.); (M.D.M.)
- Center for Translational Research and Systems Medicine, Faculty of Medicine,” Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. no. 2, RO-300041 Timișoara, Romania
| | - Ioana Macasoi
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - George Andrei Draghici
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Crina Petean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
| | - Codruta Soica
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Madalina Boruga
- Faculty of Medicine “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (O.-M.A.); (M.B.); (B.V.); (M.D.M.)
| | - Brigitha Vlaicu
- Faculty of Medicine “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (O.-M.A.); (M.B.); (B.V.); (M.D.M.)
| | - Mirela Danina Muntean
- Faculty of Medicine “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (O.-M.A.); (M.B.); (B.V.); (M.D.M.)
- Center for Translational Research and Systems Medicine, Faculty of Medicine,” Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. no. 2, RO-300041 Timișoara, Romania
| |
Collapse
|
29
|
A four-gene signature predicts survival and anti-CTLA4 immunotherapeutic responses based on immune classification of melanoma. Commun Biol 2021; 4:383. [PMID: 33753855 PMCID: PMC7985195 DOI: 10.1038/s42003-021-01911-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
Cutaneous melanoma is the most malignant skin cancer. Biomarkers for stratifying patients at initial diagnosis and informing clinical decisions are highly sought after. Here we classified melanoma patients into three immune subtypes by single-sample gene-set enrichment analysis. We further identified a four-gene tumor immune-relevant (TIR) signature that was significantly associated with the overall survival of melanoma patients in The Cancer Genome Atlas cohort and in an independent validation cohort. Moreover, when applied to melanoma patients treated with the CTLA4 antibody, ipilimumab, the TIR signature could predict the response to ipilimumab and the survival. Notably, the predictive power of the TIR signature was higher than that of other biomarkers. The genes in this signature, SEL1L3, HAPLN3, BST2, and IFITM1, may be functionally involved in melanoma progression and immune response. These findings suggest that this four-gene signature has potential use in prognosis, risk assessment, and prediction of anti-CTLA4 response in melanoma patients. Ying Mei et al. identify a four-gene tumor immune-relevant signature that predicts the overall survival of melanoma patients and their response to the CTLA4 antibody ipilimumab. This study suggests a potential utility of this four-gene signature in prognosis, risk assessment, and prediction of anti-CTLA4 response in melanoma patients.
Collapse
|
30
|
Sun L. COPS8 in cutaneous melanoma: an oncogene that accelerates the malignant development of tumor cells and predicts poor prognosis. Biosci Biotechnol Biochem 2021; 85:242-250. [PMID: 33604618 DOI: 10.1093/bbb/zbaa017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022]
Abstract
This study aimed to investigate the roles of COP9 signalosome subunit 8 (COPS8) and its underlying mechanism in cutaneous melanoma. Bioinformatics tools were utilized to analyze the expression of COPS8 in cutaneous melanoma, while Kaplan-Meier analysis was employed to assess the correlation between COPS8 and patients' overall survival. The proliferation, migration, and invasion of cells were estimated by CCK8, colony formation, and Transwell assays. Western blot was used to check the expression of epithelial-mesenchymal transition (EMT)-related proteins. Results showed that COPS8 was up-regulated and predicted a poor clinical outcome for cutaneous melanoma patients. Knockdown of COPS8 inhibited cutaneous melanoma cell proliferation, migration and invasion, whereas overexpression of COPS8 resulted in the opposite outcomes. The up-regulation of E-cadherin and down-regulation of N-cadherin, vimentin, and snail were caused by silencing COPS8 while their expression showed contrary trends in cells with overexpressed COPS8. Collectively, COPS8 is up-regulated and promotes cutaneous melanoma progression via regulating EMT.
Collapse
Affiliation(s)
- Liangliang Sun
- Department of Dermatology, Daqing Oilfield General Hospital, No. 9 ZhongKang street, Daqing City, Heilongjiang Province, P. R. China
| |
Collapse
|
31
|
Schäfer MEA, Klicks J, Hafner M, Rudolf R. Preparation, Drug Treatment, and Immunohistological Analysis of Tri-Culture Spheroid 3D Melanoma-Like Models. Methods Mol Biol 2021; 2265:173-183. [PMID: 33704714 DOI: 10.1007/978-1-0716-1205-7_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most currently available three-dimensional melanoma models have either focused on simplicity or were optimized for physiological relevance. Accordingly, these paradigms have been either composed of malignant cells only or they were sophisticated human skin equivalents featuring multiple cell types and skin-like organization. Here, an intermediate spheroid-based assay system is presented, which uses tri-cultures of human CCD-1137Sk fibroblasts, HaCaT keratinocytes, and SK-MEL-28 melanoma cells. Being made of cell lines, these spheroids can be reliably reproduced without any special equipment using standard culture procedures, and they feature different aspects of skin and early stage melanoma. Therefore, this kind of model can be useful for lead-compound testing or addressing fundamental principles of early melanoma formation.
Collapse
Affiliation(s)
| | - Julia Klicks
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany.
| |
Collapse
|
32
|
Yu J, Xie M, Ge S, Chai P, Zhou Y, Ruan J. Hierarchical Clustering of Cutaneous Melanoma Based on Immunogenomic Profiling. Front Oncol 2020; 10:580029. [PMID: 33330057 PMCID: PMC7735560 DOI: 10.3389/fonc.2020.580029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
Cutaneous melanoma is an aggressive malignancy with high heterogeneity. Several studies have been performed to identify cutaneous melanoma subtypes based on genomic profiling. However, few classifications based on assessments of immune-associated genes have limited clinical implications for cutaneous melanoma. Using 470 cutaneous melanoma samples from The Cancer Genome Atlas (TCGA), we calculated the enrichment levels of 29 immune-associated gene sets in each sample and hierarchically clustered them into Immunity High (Immunity_H, n=323, 68.7%), Immunity Medium (Immunity_M, n=135, 28.7%), and Immunity Low (Immunity_L, n=12, 2.6%) based on the ssGSEA score. The ESTIMATE algorithm was used to calculate stromal scores (range: -1,800.51-1,901.99), immune scores (range: -1,476.28-3,780.33), estimate scores (range: -2,618.28-5,098.14) and tumor purity (range: 0.216-0.976) and they were significantly correlated with immune subtypes (Kruskal-Wallis test, P < 0.001). The Immunity_H group tended to have higher expression levels of HLA and immune checkpoint genes (Kruskal-Wallis test, P < 0.05). The Immunity_H group had the highest level of naïve B cells, resting dendritic cells, M1 macrophages, resting NK cells, plasma cells, CD4 memory activated T cells, CD8 T cells, follicular helper T cells and regulatory T cells, and the Immunity_L group had better overall survival. The GO terms identified in the Immunity_H group were mainly immune related. In conclusion, immune signature-associated cutaneous melanoma subtypes play a role in cutaneous melanoma prognosis stratification. The construction of immune signature-associated cutaneous melanoma subtypes predicted possible patient outcomes and provided possible immunotherapy candidates.
Collapse
Affiliation(s)
| | | | | | - Peiwei Chai
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yixiong Zhou
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jing Ruan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Harman RM, Das SP, Bartlett AP, Rauner G, Donahue LR, Van de Walle GR. Beyond tradition and convention: benefits of non-traditional model organisms in cancer research. Cancer Metastasis Rev 2020; 40:47-69. [PMID: 33111160 DOI: 10.1007/s10555-020-09930-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Traditional laboratory model organisms are indispensable for cancer research and have provided insight into numerous mechanisms that contribute to cancer development and progression in humans. However, these models do have some limitations, most notably related to successful drug translation, because traditional model organisms are often short-lived, small-bodied, genetically homogeneous, often immunocompromised, are not exposed to natural environments shared with humans, and usually do not develop cancer spontaneously. We propose that assimilating information from a variety of long-lived, large, genetically diverse, and immunocompetent species that live in natural environments and do develop cancer spontaneously (or do not develop cancer at all) will lead to a more comprehensive understanding of human cancers. These non-traditional model organisms can also serve as sentinels for environmental risk factors that contribute to human cancers. Ultimately, expanding the range of animal models that can be used to study cancer will lead to improved insights into cancer development, progression and metastasis, tumor microenvironment, as well as improved therapies and diagnostics, and will consequently reduce the negative impacts of the wide variety of cancers afflicting humans overall.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Sanjna P Das
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Arianna P Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gat Rauner
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Leanne R Donahue
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
34
|
Hu B, Wei Q, Li X, Ju M, Wang L, Zhou C, Chen L, Li Z, Wei M, He M, Zhao L. Development of an IFNγ response-related signature for predicting the survival of cutaneous melanoma. Cancer Med 2020; 9:8186-8201. [PMID: 32902917 PMCID: PMC7643661 DOI: 10.1002/cam4.3438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/21/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022] Open
Abstract
Background The tumor microenvironment (TME) plays a critical role in tumorigenesis, development, and therapeutic efficacy. Major advances have been achieved in the treatment of various cancers through immunotherapy. Nevertheless, only a minority of patients have positive responses to immunotherapy, which is partly due to conditions of the immunosuppressive microenvironment. Therefore, it is essential to identify prognostic biomarkers that reflect heterogeneous landscapes of the TME. Methods and materials Based upon the ESTIMATE algorithm, we evaluated the infiltrating levels of immune and stromal components derived from patients afflicted by various types of cancer from The Cancer Genome Atlas database (TCGA). According to respective patient immune and stromal scores, we categorized cases into high‐ and low‐scoring subgroups for each cancer type to explore associations between TME and patient prognosis. Gene Set Enrichment Analyses (GSEA) were conducted and genes enriched in IFNγ response signaling pathway were selected to facilitate establishment of a risk model for predicting overall survival (OS). Furthermore, we investigated the associations between the prognostic signature and tumor immune infiltration landscape by using CIBERSORT algorithm and TIMER database. Results Among the cancers assessed, the immune scores for skin cutaneous melanoma (SKCM) were the most significantly correlated with patients' survival time (P < .0001). We identified and validated a five‐IFNγ response‐related gene signature (UBE2L6, PARP14, IFIH1, IRF2, and GBP4), which was closely correlated with the prognosis for SKCM afflicted patients. Multivariate Cox regression analysis indicated that this risk model was an independent prognostic factor for SKCM. Tumor‐infiltrating lymphocytes and specific immune checkpoint molecules had notably differential levels of expression in high‐ compared to low‐risk samples. Conclusion In this study, we established a novel five‐IFNγ response‐related gene signature that provided a better and increasingly comprehensive understanding of tumor immune landscape, and which demonstrated good performance in predicting outcomes for patients afflicted by SKCM.
Collapse
Affiliation(s)
- Baohui Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Xueping Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Lin Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Chenyi Zhou
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Lianze Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Zinan Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
35
|
Michielin O, van Akkooi A, Lorigan P, Ascierto PA, Dummer R, Robert C, Arance A, Blank CU, Chiarion Sileni V, Donia M, Faries MB, Gaudy-Marqueste C, Gogas H, Grob JJ, Guckenberger M, Haanen J, Hayes AJ, Hoeller C, Lebbé C, Lugowska I, Mandalà M, Márquez-Rodas I, Nathan P, Neyns B, Olofsson Bagge R, Puig S, Rutkowski P, Schilling B, Sondak VK, Tawbi H, Testori A, Keilholz U. ESMO consensus conference recommendations on the management of locoregional melanoma: under the auspices of the ESMO Guidelines Committee. Ann Oncol 2020; 31:1449-1461. [PMID: 32763452 DOI: 10.1016/j.annonc.2020.07.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
The European Society for Medical Oncology (ESMO) held a consensus conference on melanoma on 5-7 September 2019 in Amsterdam, The Netherlands. The conference included a multidisciplinary panel of 32 leading experts in the management of melanoma. The aim of the conference was to develop recommendations on topics that are not covered in detail in the current ESMO Clinical Practice Guideline and where available evidence is either limited or conflicting. The main topics identified for discussion were: (i) the management of locoregional disease; (ii) targeted versus immunotherapies in the adjuvant setting; (iii) targeted versus immunotherapies for the first-line treatment of metastatic melanoma; (iv) when to stop immunotherapy or targeted therapy in the metastatic setting; and (v) systemic versus local treatment of brain metastases. The expert panel was divided into five working groups in order to each address questions relating to one of the five topics outlined above. Relevant scientific literature was reviewed in advance. Recommendations were developed by the working groups and then presented to the entire panel for further discussion and amendment before voting. This manuscript presents the results relating to the management of locoregional melanoma, including findings from the expert panel discussions, consensus recommendations and a summary of evidence supporting each recommendation. All participants approved the final manuscript.
Collapse
Affiliation(s)
- O Michielin
- Department of Oncology, University Hospital Lausanne, Lausanne, Switzerland.
| | - A van Akkooi
- Department of Surgical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - P Lorigan
- Division of Cancer Sciences, University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - P A Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - R Dummer
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - C Robert
- Department of Medicine, Gustave Roussy, Villejuif, France; Paris-Saclay University, Le Kremlin-Bicêtre, Paris, France
| | - A Arance
- Department of Medical Oncology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - C U Blank
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - V Chiarion Sileni
- Department of Experimental and Clinical Oncology, Istituto Oncologico Veneto, IOV-IRCCS, Padova, Italy
| | - M Donia
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark; University of Copenhagen, Copenhagen, Denmark
| | - M B Faries
- Department of Surgery, The Angeles Clinic, Cedars Sinai Medical Center, Los Angeles, USA
| | - C Gaudy-Marqueste
- Department of Dermatology and Skin Cancer, Aix Marseille University, Hôpital Timone, Marseille, France
| | - H Gogas
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - J J Grob
- Department of Dermatology and Skin Cancer, Aix Marseille University, Hôpital Timone, Marseille, France
| | - M Guckenberger
- Department of Radio-Oncology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - J Haanen
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - A J Hayes
- Department of Academic Surgery, Royal Marsden NHS Foundation Trust, London, UK
| | - C Hoeller
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - C Lebbé
- AP-HP Dermatology, Université de Paris, Paris, France; INSERM U976, Hôpital Saint Louis, Paris, France
| | - I Lugowska
- Early Phase Clinical Trials Unit, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - M Mandalà
- Department of Oncology and Haematology, Papa Giovanni XXIII Cancer Center Hospital, Bergamo, Italy
| | - I Márquez-Rodas
- Department of Medical Oncology, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - P Nathan
- Department of Medical Oncology, Mount Vernon Cancer Centre, Northwood, UK
| | - B Neyns
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - R Olofsson Bagge
- Sahlgrenska Cancer Center, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - S Puig
- Dermatology Service, Hospital Clínic de Barcelona and University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August i Pi Sunyer, Barcelona, Spain; CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - P Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - B Schilling
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - V K Sondak
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa
| | - H Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - A Testori
- Department of Dermatology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - U Keilholz
- Charité Comprehensive Cancer Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
36
|
Castro KADF, Costa LD, Guieu S, Biazzotto JC, da Neves MGPMS, Faustino MAF, da Silva RS, Tomé AC. Photodynamic treatment of melanoma cells using aza-dipyrromethenes as photosensitizers. Photochem Photobiol Sci 2020; 19:885-891. [PMID: 32662457 DOI: 10.1039/d0pp00114g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, we report for the first time the use of four aza-dipyrromethenes (ADPMs) as photosensitizers for cancer PDT. The synthesis and characterization of the ADPMs and their photodynamic action against B16F10 melanoma cells were assessed. ADPM 2 is the best singlet oxygen generator and the most phototoxic (at 2.5 μM) towards B16F10 cells.
Collapse
Affiliation(s)
- Kelly A D F Castro
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil.
| | - Letícia D Costa
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Portugal
| | - Samuel Guieu
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Portugal.,CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Portugal
| | - Juliana C Biazzotto
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | | | | | - Roberto S da Silva
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Augusto C Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Portugal
| |
Collapse
|
37
|
Ji C, Li Y, Yang K, Gao Y, Sha Y, Xiao D, Liang X, Cheng Z. Identification of four genes associated with cutaneous metastatic melanoma. Open Med (Wars) 2020; 15:531-539. [PMID: 33336008 PMCID: PMC7712158 DOI: 10.1515/med-2020-0190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/14/2020] [Accepted: 05/13/2020] [Indexed: 01/11/2023] Open
Abstract
Background Cutaneous melanoma is an aggressive cancer with increasing incidence and mortality rates worldwide. Metastasis is one of the primary elements that influence the prognosis of patients with cutaneous melanoma. This study aims to clarify the potential mechanism underlying the low survival rate of metastatic melanoma and to search for novel target genes to improve the survival rate of patients with metastatic tumors. Methods Gene expression dataset and clinical data were downloaded from The Cancer Genome Atlas portal. Differentially expressed genes (DEGs) were identified, and their functions were studied through gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Survival and multivariate Cox regression analyses were used to screen out candidate genes that could affect the prognosis of patients with metastatic melanoma. Results After a series of comprehensive statistical analysis, 464 DEGs were identified between primary tumor tissues and metastatic tissues. Survival and multivariate Cox regression analyses revealed four vital genes, namely, POU2AF1, ITGAL, CXCR2P1, and MZB1, that affect the prognosis of patients with metastatic melanoma. Conclusion This study provides a new direction for studying the pathogenesis of metastatic melanoma. The genes related to cutaneous metastatic melanoma that affect the overall survival time of patients were identified.
Collapse
Affiliation(s)
- Chen Ji
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| | - Yuming Li
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| | - Kai Yang
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| | - Yanwei Gao
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| | - Yan Sha
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| | - Dong Xiao
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| | - Xiaohong Liang
- Department of Pulmonary and Critical Care Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| | - Zhongqin Cheng
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| |
Collapse
|
38
|
Signetti L, Elizarov N, Simsir M, Paquet A, Douguet D, Labbal F, Debayle D, Di Giorgio A, Biou V, Girard C, Duca M, Bretillon L, Bertolotto C, Verrier B, Azoulay S, Mus-Veteau I. Inhibition of Patched Drug Efflux Increases Vemurafenib Effectiveness against Resistant Braf V600E Melanoma. Cancers (Basel) 2020; 12:cancers12061500. [PMID: 32526884 PMCID: PMC7352342 DOI: 10.3390/cancers12061500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/25/2022] Open
Abstract
Melanoma patients harboring the BRAFV600E mutation are treated with vemurafenib. Almost all of them ultimately acquire resistance, leading to disease progression. Here, we find that a small molecule from a marine sponge, panicein A hydroquinone (PAH), overcomes resistance of BRAFV600E melanoma cells to vemurafenib, leading to tumor elimination in corresponding human xenograft models in mice. We report the synthesis of PAH and demonstrate that this compound inhibits the drug efflux activity of the Hedgehog receptor, Patched. Our SAR study allowed identifying a key pharmacophore responsible for this activity. We showed that Patched is strongly expressed in metastatic samples from a cohort of melanoma patients and is correlated with decreased overall survival. Patched is a multidrug transporter that uses the proton motive force to efflux drugs. This makes its function specific to cancer cells, thereby avoiding toxicity issues that are commonly observed with inhibitors of ABC multidrug transporters. Our data provide strong evidence that PAH is a highly promising lead for the treatment of vemurafenib resistant BRAFV600E melanoma.
Collapse
Affiliation(s)
- Laurie Signetti
- Université Côte d’Azur, CNRS, IPMC, 660 Route des Lucioles, 06560 Valobonne, France; (L.S.); (M.S.); (A.P.); (D.D.); (F.L.); (D.D.)
| | - Nelli Elizarov
- Université Côte d’Azur, CNRS, ICN, 28 Avenue Valrose, 06108 Nice, CEDEX 2, France; (N.E.); (A.D.G.); (M.D.)
| | - Méliné Simsir
- Université Côte d’Azur, CNRS, IPMC, 660 Route des Lucioles, 06560 Valobonne, France; (L.S.); (M.S.); (A.P.); (D.D.); (F.L.); (D.D.)
| | - Agnès Paquet
- Université Côte d’Azur, CNRS, IPMC, 660 Route des Lucioles, 06560 Valobonne, France; (L.S.); (M.S.); (A.P.); (D.D.); (F.L.); (D.D.)
| | - Dominique Douguet
- Université Côte d’Azur, CNRS, IPMC, 660 Route des Lucioles, 06560 Valobonne, France; (L.S.); (M.S.); (A.P.); (D.D.); (F.L.); (D.D.)
| | - Fabien Labbal
- Université Côte d’Azur, CNRS, IPMC, 660 Route des Lucioles, 06560 Valobonne, France; (L.S.); (M.S.); (A.P.); (D.D.); (F.L.); (D.D.)
| | - Delphine Debayle
- Université Côte d’Azur, CNRS, IPMC, 660 Route des Lucioles, 06560 Valobonne, France; (L.S.); (M.S.); (A.P.); (D.D.); (F.L.); (D.D.)
| | - Audrey Di Giorgio
- Université Côte d’Azur, CNRS, ICN, 28 Avenue Valrose, 06108 Nice, CEDEX 2, France; (N.E.); (A.D.G.); (M.D.)
| | - Valérie Biou
- CNRS, IBPC, Sorbonne Paris Cité, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Institut de Biologie Physico-Chimique, University Paris Diderot, 13 rue Pierre et Marie Curie, 75005 Paris, France;
| | - Christophe Girard
- Université Côte d’Azur, INSERM, CNRS, C3M, Bâtiment Universitaire ARCHIMED 151 Route Saint Antoine de Ginestière BP 2 3194, 06204 Nice, CEDEX 3, France; (C.G.); (C.B.)
| | - Maria Duca
- Université Côte d’Azur, CNRS, ICN, 28 Avenue Valrose, 06108 Nice, CEDEX 2, France; (N.E.); (A.D.G.); (M.D.)
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l’Alimentation, Université Bourgogne Franche-Comté CNRS, INRA, SSGA, AgroSup Dijon, F-21000 Dijon, France;
| | - Corine Bertolotto
- Université Côte d’Azur, INSERM, CNRS, C3M, Bâtiment Universitaire ARCHIMED 151 Route Saint Antoine de Ginestière BP 2 3194, 06204 Nice, CEDEX 3, France; (C.G.); (C.B.)
| | - Bernard Verrier
- Adjuvatis SAS, IBCP, 7 Passage du Vercors—69007 Lyon, France;
| | - Stéphane Azoulay
- Université Côte d’Azur, CNRS, ICN, 28 Avenue Valrose, 06108 Nice, CEDEX 2, France; (N.E.); (A.D.G.); (M.D.)
- Correspondence: (S.A.); (I.M.-V.)
| | - Isabelle Mus-Veteau
- Université Côte d’Azur, CNRS, IPMC, 660 Route des Lucioles, 06560 Valobonne, France; (L.S.); (M.S.); (A.P.); (D.D.); (F.L.); (D.D.)
- Correspondence: (S.A.); (I.M.-V.)
| |
Collapse
|
39
|
Piotrowska A, Wierzbicka J, Kwiatkowska K, Chodyński M, Kutner A, Żmijewski MA. Antiproliferative activity of side-chain truncated vitamin D analogs (PRI-1203 and PRI-1204) against human malignant melanoma cell lines. Eur J Pharmacol 2020; 881:173170. [PMID: 32445704 DOI: 10.1016/j.ejphar.2020.173170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/29/2022]
Abstract
Vitamin D compounds are versatile molecules widely considered as promising agents in cancer prevention and treatment, including melanoma. Previously we investigated series of double point modified vitamin D2 analogs as well as non-calcemic 20S-hydroxyvitamin D3 and 21-hydroxypregnacalciferol as to their anti-melanoma activity. Surprisingly, short side-chain vitamin D analogs were found to be biologically active compounds. Thus, here we tested novel derivatives of pregnacalciferol with an additional hydroxyl at the end of the truncated side chain, PRI-1203 and PRI-1204, as to their potency against human melanoma A375 and RPMI7951 cell lines. Tested compounds are geometric isomers, with 19-methylene positioned in PRI-1203 like in a calcitriol molecule, but reversed in the PRI-1204 analog to the (5E,7E) geometry (5,6-trans). We noticed a decrease in cells viability exerted by PRI-1203. The antiproliferative effect of PRI-1204 was very low, emphasizing the importance of the natural 19-methylene geometry in the PRI-1203. PRI-1203 was also effective in inhibition of A375 melanoma cells migration. PRI-1203, but not PRI-1204, increased the percentage of A375 and RPMI7951 melanoma cells in the G0/G1 phase of cell cycle, possibly in a p21 and p27 independent manner. Both, analogs have very low effect on the level of CYP24A1 mRNA, in comparison to active form of vitamin D - 1.25(OH)2D3. In addition, both tested compounds failed to elicit VDR translocation to the nucleus. Thus, it could be postulated that side chain shortening strongly affects binding of analogs to VDR and activation of genomic responses, however do not impair their antiproliferative activities.
Collapse
Affiliation(s)
- Anna Piotrowska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 1a Debinki, Gdańsk, 80-211, Poland.
| | - Justyna Wierzbicka
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 1a Debinki, Gdańsk, 80-211, Poland.
| | - Kamila Kwiatkowska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 1a Debinki, Gdańsk, 80-211, Poland
| | - Michał Chodyński
- Department of Chemistry, Pharmaceutical Research Institute, 8 Rydygiera, Warsaw, 01-793, Poland.
| | - Andrzej Kutner
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Stefana Banacha, Warsaw, 02-097, Poland.
| | - Michał A Żmijewski
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 1a Debinki, Gdańsk, 80-211, Poland.
| |
Collapse
|
40
|
Barboza T, Gomes T, da Costa Medeiros P, Ramos IP, Francischetti I, Monteiro RQ, Gutfilen B, de Souza SAL. Development of 131I-ixolaris as a theranostic agent: metastatic melanoma preclinical studies. Clin Exp Metastasis 2020; 37:489-497. [PMID: 32394234 DOI: 10.1007/s10585-020-10036-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Tissue factor (TF), a blood coagulation protein, plays an important role in tumor growth, invasion, and metastasis. Ixolaris, a tick-derived non-immunogenic molecule that binds to TF, has demonstrated in vivo inhibitory effect on murine models of melanoma, including primary growth and metastasis. This work aimed to: I) develop an efficient and stable labeling technique of ixolaris with Iodine-131(131I); II) compare the biodistribution of 131I and 131I-ixolaris in tumor-free and melanoma-bearing mice; III) evaluate whether 131I-ixolaris could serve as an antimetastatic agent. Ixolaris radioiodination was performed using iodogen, followed by liquid paper chromatography. Labeling stability and anticoagulant activity were measured. Imaging studies were performed after intravenous administration of free 131I or 131I-ixolaris in a murine melanoma model employing the B16-F10 cell line. Animals were divided in three experimental groups: the first experimental group, D0, received a single-dose of 9.25 MBq of 131I-ixolaris at the same day the animals were inoculated with melanoma cells. In the second group, D15, a single-dose of 9.25 MBq of 131I-ixolaris or free 131I was applied into mice on the fifteenth day after the tumor induction. The third group, D1-D15, received two therapeutic doses of 9.25 MBq of 131I-ixolaris or 131I. In vitro studies demonstrated that 131I-ixolaris is stable for up to 24 h and retains its inhibitory activity on blood coagulation. Biodistribution analysis and metastasis assays showed that all treatment regimens with 131I-ixolaris were effective, being the double-treatment (D1/D15) the most effective one. Remarkably, treatment with free 131I showed no anti-metastatic effect. 131I-ixolaris is a promising theranostic agent for metastatic melanoma.
Collapse
Affiliation(s)
- Thiago Barboza
- Departamento de Radiologia, Faculdade de Medicina, Laboratório de Marcação de Células E Moléculas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Tainá Gomes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Priscylla da Costa Medeiros
- Departamento de Radiologia, Faculdade de Medicina, Laboratório de Marcação de Células E Moléculas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Isalira Peroba Ramos
- Centro Nacional de Bioimagem E Biologia Estrutural, Bloco M, Unidade 2, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ivo Francischetti
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, USA
| | - Robson Q Monteiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Bianca Gutfilen
- Departamento de Radiologia, Faculdade de Medicina, Laboratório de Marcação de Células E Moléculas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Sergio Augusto Lopes de Souza
- Departamento de Radiologia, Faculdade de Medicina, Laboratório de Marcação de Células E Moléculas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil. .,Centro Nacional de Bioimagem E Biologia Estrutural, Bloco M, Unidade 2, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil.
| |
Collapse
|
41
|
Wang Y, Liu M, Chen S, Wu Q. Plantamajoside represses the growth and metastasis of malignant melanoma. Exp Ther Med 2020; 19:2296-2302. [PMID: 32104297 PMCID: PMC7027332 DOI: 10.3892/etm.2020.8442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/13/2019] [Indexed: 12/15/2022] Open
Abstract
Plantamajoside (PMS) has been shown to have anticancer effects and is the main compound of Plantago asiatica. The aim of the present study was to investigate the effects of PMS on malignant melanoma and its molecular mechanisms. The malignant melanoma cell line A2058 was treated with different concentrations of PMS (0, 20, 80 and 160 µg/ml) for 24, 48 or 72 h, followed by cell viability detection using the Cell Counting Kit-8 assay. The present results suggested that PMS inhibited cell viability in a dose-dependent manner. In addition, flow cytometry was used to analyze cell apoptosis, and Transwell assays were used to investigate cell migration and invasion. The present results suggested that PMS induced A2058 cell apoptosis, and inhibited cell invasion and migration in a dose-dependent manner. In order to study the molecular mechanism by which PMS inhibited malignant melanoma growth and metastasis, reverse transcription-quantitative PCR and western blotting were used to determine the expression levels of apoptotic-related genes and PI3K/AKT signaling pathway-related proteins. The present results indicated that PMS inhibited the protein and mRNA expression of Bcl-2, and promoted the expression of Bax and caspase-3 in a dose-dependent manner. The protein expression level of phosphorylated-AKT was dose-dependently reduced by PMS treatment. Collectively, the present results suggested that PMS inhibited the invasion, migration and viability of malignant melanoma cells. In addition, PMS induced apoptosis by regulating the expression levels of apoptotic-related genes and the activation of the PI3K/AKT signaling pathway, thereby exerting anti-malignant melanoma effects.
Collapse
Affiliation(s)
- Yan Wang
- College of Medical Technology, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224000, P.R. China
| | - Mingzhu Liu
- Department of Dermatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210014, P.R. China
| | - Shenglan Chen
- College of Medical Technology, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224000, P.R. China
| | - Qin Wu
- College of Medical Technology, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224000, P.R. China
| |
Collapse
|
42
|
Guo P, Cai C, Wu X, Fan X, Huang W, Zhou J, Wu Q, Huang Y, Zhao W, Zhang F, Wang Q, Zhang Y, Fang J. An Insight Into the Molecular Mechanism of Berberine Towards Multiple Cancer Types Through Systems Pharmacology. Front Pharmacol 2019; 10:857. [PMID: 31447670 PMCID: PMC6691338 DOI: 10.3389/fphar.2019.00857] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
Over the past several decades, natural products with poly-pharmacological profiles have demonstrated promise as novel therapeutics for various complex diseases, including cancer. Berberine (PubChem CID: 2353), a soliloquies quaternary alkaloid, has been validated to exert powerful effects in many cancers. However, the underlying molecular mechanism is not yet fully elucidated. In this study, we summarized the molecular effects of berberine against multiple cancers based on current available literatures. Furthermore, a systems pharmacology infrastructure was developed to discover new cancer indications of berberine and explore their molecular mechanisms. Specifically, we incorporated 289 high-quality protein targets of berberine by integrating experimental drug-target interactions (DTIs) extracted from literatures and computationally predicted DTIs inferred by network-based inference approach. Statistical network models were developed for identification of new cancer indications of berberine through integration of DTIs and curated cancer significantly mutated genes (SMGs). High accuracy was yielded for our statistical models. We further discussed three typical cancer indications (hepatocarcinoma, lung adenocarcinoma, and bladder carcinoma) of berberine with new mechanisms of actions (MOAs) based on our systems pharmacology framework. In summary, this study systematically provides a powerful strategy to identify potential anti-cancer effects of berberine with novel mechanisms from a systems pharmacology perspective.
Collapse
Affiliation(s)
- Pengfei Guo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Experimental Animal, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuipu Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoqin Wu
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Xiude Fan
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Wei Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingwei Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qihui Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengxue Zhang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongbin Zhang
- Laboratory of Experimental Animal, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
43
|
Paul B, Gaonkar RH, Mukhopadhyay R, Ganguly S, Debnath MC, Mukherjee B. Garcinol-loaded novel cationic nanoliposomes: in vitro and in vivo study against B16F10 melanoma tumor model. Nanomedicine (Lond) 2019; 14:2045-2065. [PMID: 31368402 DOI: 10.2217/nnm-2019-0022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: Garcinol (GAR)-loaded cationic nanoliposomes were developed to achieve potential antitumor efficacy on B16F10 melanoma cells in vitro and in vivo. Materials & methods: Two different phospholipids namely, distearoyl phosphatidylcholine (DSPC) and dipalmitoyl phosphatidylcholine (DPPC) were used in formulation to elucidate the difference in cellular uptake, cytotoxicity, in vivo tumor uptake (by scintigraphic imaging after technetium-99m radiolabeling) and therapeutic efficacy. Results: Different in vitro protocols, for example, MTT assay, apoptosis study, gene expression analysis, chromatin condensation and cytoskeleton breakdown analysis in B16F10 cell lines as well as scintigraphic analysis and tumor inhibition studies (B16F10 tumor xenograft model) revealed superiority of GAR-DPPC than GAR-DSPC and free GAR in melanoma prevention. Conclusion: Cationic nanoliposomal formulations could be a future medication for skin cancer treatment.
Collapse
Affiliation(s)
- Brahamacharry Paul
- Infectious Diseases & Immunology Division, CSIR- Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Raghuvir H Gaonkar
- Infectious Diseases & Immunology Division, CSIR- Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Ria Mukhopadhyay
- Infectious Diseases & Immunology Division, CSIR- Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Shantanu Ganguly
- Regional Radiation Medicine Center, Thakurpukur Cancer Center & Welfare Home Campus, Kolkata 700063, India
| | - Mita Chatterjee Debnath
- Infectious Diseases & Immunology Division, CSIR- Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
44
|
Huang L, Chen J, Zhao Y, Gu L, Shao X, Li J, Xu Y, Liu Z, Xu Q. Key candidate genes of STAT1 and CXCL10 in melanoma identified by integrated bioinformatical analysis. IUBMB Life 2019; 71:1634-1644. [PMID: 31216116 DOI: 10.1002/iub.2103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/03/2019] [Indexed: 01/01/2023]
Abstract
The underlying mechanisms and gene signatures of melanoma are unknown. In this study, three expression profile data sets (GSE65568, GSE100050, GSE114445) were integrated to identify candidate genes explaining the pathways and functions of melanoma. Expression data sets including 24 melanoma tumours and 13 normal skin samples were merged and analysed in detail. The three GSE profiles shared 431 differentially expressed genes (DEGs), including 227 upregulated genes, 200 downregulated genes and 4 differentially regulated genes. Moreover, the functions and signalling pathways of the shared DEGs with significant p-values were identified. The two most significant modules were filtered from the DEGs protein-protein interaction (PPI) network, which consisted of 284 nodes. We also plotted the prognostic value of hub genes from an online database. In summary, using integrated bioinformatic analysis, we have identified candidate DEGs and pathways in melanoma that could improve our understanding of the causes and underlying molecular events of melanoma, and these candidate genes and pathways could be therapeutic targets for melanoma.
Collapse
Affiliation(s)
- Lili Huang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
| | - Jianhua Chen
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
| | - Yu Zhao
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
| | - Linaer Gu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
| | - Xiaoyan Shao
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
| | - Jiyu Li
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhuqing Liu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
| |
Collapse
|
45
|
Guo W, Zhu L, Zhu R, Chen Q, Wang Q, Chen JQ. A four-DNA methylation biomarker is a superior predictor of survival of patients with cutaneous melanoma. eLife 2019; 8:e44310. [PMID: 31169496 PMCID: PMC6553943 DOI: 10.7554/elife.44310] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/29/2019] [Indexed: 01/01/2023] Open
Abstract
Cutaneous melanoma (CM) is a life-threatening form of skin cancer. Prognostic biomarkers can reliably stratify patients at initial melanoma diagnosis according to risk, and may inform clinical decisions. Here, we performed a retrospective, cohort-based study analyzing genome-wide DNA methylation of 461 patients with CM from the TCGA database. Cox regression analyses were conducted to establish a four-DNA methylation signature that was significantly associated with the overall survival (OS) of patients with CM, and that was validated in an independent cohort. Corresponding Kaplan-Meier analysis displayed a distinct separation in OS. The ROC analysis confirmed that the predictive signature performed well. Notably, this signature exhibited much higher predictive accuracy in comparison with known biomarkers. This signature was significantly correlated with immune checkpoint blockade (ICB) immunotherapy-related signatures, and may have potential as a guide for measures of responsiveness to ICB immunotherapy.
Collapse
Affiliation(s)
- Wenna Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Liucun Zhu
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Rui Zhu
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Qihan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Qiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| |
Collapse
|
46
|
Valko-Rokytovská M, Hubková B, Birková A, Mašlanková J, Stupák M, Zábavníková M, Čižmárová B, Mareková M. Specific Urinary Metabolites in Malignant Melanoma. ACTA ACUST UNITED AC 2019; 55:medicina55050145. [PMID: 31100919 PMCID: PMC6571597 DOI: 10.3390/medicina55050145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/21/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023]
Abstract
Background and objectives: Melanin, which has a confirmed role in melanoma cell behaviour, is formed in the process of melanogenesis and is synthesized from tryptophan, L-tyrosine and their metabolites. All these metabolites are easily detectable by chromatography in urine. Materials and Methods: Urine samples of 133 individuals (82 malignant melanoma patients and 51 healthy controls) were analysed by reversed-phase high-performance liquid chromatography (RP-HPLC). The diagnosis of malignant melanoma was confirmed histologically. Results: Chromatograms of melanoma patients showed increased levels of 5,6-dihydroxyindole-2-carboxylic acid, vanilmandelic acid, homovanilic acid, tryptophan, 5-hydroxyindole-3-acetic acid, and indoxyl sulphate compared to healthy controls. Concentration of indoxyl sulphate, homovanilic acid and tryptophan were significantly increased even in the low clinical stage 0 of the disease (indoxyl sulphate, homovanilic acid and tryptophan in patients with clinical stage 0 vs. controls expressed as medium/ interquartile range in µmol/mmol creatinine: 28.37/15.30 vs. 5.00/6.91; 47.97/33.08 vs. 7.33/21.25; and 16.38/15.98 vs. 3.46/6.22, respectively). Conclusions: HPLC detection of metabolites of L-tyrosine and tryptophan in the urine of melanoma patients may play a significant role in diagnostics as well as a therapeutic strategy of melanoma cancer.
Collapse
Affiliation(s)
- Marcela Valko-Rokytovská
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia.
| | - Beáta Hubková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Tr. SNP 1, 040 11 Košice, Slovakia.
| | - Anna Birková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Tr. SNP 1, 040 11 Košice, Slovakia.
| | - Jana Mašlanková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Tr. SNP 1, 040 11 Košice, Slovakia.
| | - Marek Stupák
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Tr. SNP 1, 040 11 Košice, Slovakia.
| | | | - Beáta Čižmárová
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Tr. SNP 1, 040 11 Košice, Slovakia.
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Tr. SNP 1, 040 11 Košice, Slovakia.
| |
Collapse
|
47
|
zhao J, Zhang Z, Xue Y, Wang G, Cheng Y, Pan Y, Zhao S, Hou Y. Anti-tumor macrophages activated by ferumoxytol combined or surface-functionalized with the TLR3 agonist poly (I : C) promote melanoma regression. Theranostics 2018; 8:6307-6321. [PMID: 30613299 PMCID: PMC6299704 DOI: 10.7150/thno.29746] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/03/2018] [Indexed: 12/16/2022] Open
Abstract
Macrophages orchestrate inflammation and control the promotion or inhibition of tumors and metastasis. Ferumoxytol (FMT), a clinically approved iron oxide nanoparticle, possesses anti-tumor therapeutic potential by inducing pro-inflammatory macrophage polarization. Toll-like receptor 3 (TLR3) activation also potently enhances the anti-tumor response of immune cells. Herein, the anti-tumor potential of macrophages harnessed by FMT combined with the TLR3 agonist, poly (I:C) (PIC), and FP-NPs (nanoparticles composed of amino-modified FMT (FMT-NH2) surface functionalized with PIC) was explored. Methods: Proliferation of B16F10 cells co-cultured with macrophages was measured using immunofluorescence or flow cytometry (FCM). Phagocytosis was analyzed using FCM and fluorescence imaging. FP-NPs were prepared through electrostatic interactions and their properties were characterized using dynamic light scattering, transmission electron microscopy, and gel retardation assay. Anti-tumor and anti-metastasis effects were evaluated in B16F10 tumor-bearing mice, and tumor-infiltrating immunocytes were detected by immunofluorescence staining and FCM. Results: FMT, PIC, or the combination of both hardly impaired B16F10 cell viability. However, FMT combined with PIC synergistically inhibited their proliferation by shifting macrophages to a tumoricidal phenotype with upregulated TNF-α and iNOS, increased NO secretion and augmented phagocytosis induced by NOX2-derived ROS in vitro. Combined treatment with FMT/PIC and FMT-NH2/PIC respectively resulted in primary melanoma regression and alleviated pulmonary metastasis with elevated pro-inflammatory macrophage infiltration and upregulation of pro-inflammatory genes in vivo. In comparison, FP-NPs with properties of internalization by macrophages and accumulation in the lung produced a more pronounced anti-metastatic effect accompanied with decreased myeloid-derived suppressor cells, and tumor-associated macrophages shifted to M1 phenotype. In vitro mechanistic studies revealed that FP-NPs nanoparticles barely affected B16F10 cell viability, but specifically retarded their growth by steering macrophages to M1 phenotype through NF-κB signaling. Conclusion: FMT synergized with the TLR3 agonist PIC either in combination or as a nano-composition to induce macrophage activation for primary and metastatic melanoma regression, and the nano-composition of FP-NPs exhibited a more superior anti-metastatic efficacy.
Collapse
Affiliation(s)
- Jiaojiao zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Zhengkui Zhang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory for Nanotechnology, Nanjing University , Nanjing, 210093, PR China
| | - Yaxian Xue
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Guoqun Wang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing 211166, PR China
| | - Yuan Cheng
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, PR China
| |
Collapse
|
48
|
Ethinylestradiol and Levonorgestrel as Active Agents in Normal Skin, and Pathological Conditions Induced by UVB Exposure: In Vitro and In Ovo Assessments. Int J Mol Sci 2018; 19:ijms19113600. [PMID: 30441863 PMCID: PMC6275072 DOI: 10.3390/ijms19113600] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/08/2018] [Accepted: 11/10/2018] [Indexed: 11/22/2022] Open
Abstract
The link between melanoma development and the use of oral combined contraceptives is not fully elucidated, and the data concerning this issue are scarce and controversial. In the present study, we show that the components of oral contraceptives, ethinylestradiol (EE), levonorgestrel (LNG), and their combination (EE + LNG) ± UVB (ultraviolet B radiation) induced differential effects on healthy (human keratinocytes, fibroblasts, and primary epidermal melanocytes, and murine epidermis cells) and melanoma cells (human—A375 and murine—B164A5), as follows: (i) at low doses (1 µM), the hormones were devoid of significant toxicity on healthy cells, but in melanoma cells, they triggered cell death via apoptosis; (ii) higher doses (10 µM) were associated with cytotoxicity in all cells, the most affected being the melanoma cells; (iii) UVB irradiation proved to be toxic for all types of cells; (iv) UVB irradiation + hormonal stimulation led to a synergistic cytotoxicity in the case of human melanoma cells—A375 and improved viability rates of healthy and B164A5 cells. A weak irritant potential exerted by EE and EE + LNG (10 µM) was assessed by the means of a chick chorioallantoic membrane assay. Further studies are required to elucidate the hormones’ cell type-dependent antimelanoma effect and the role played by melanin in this context.
Collapse
|
49
|
Giglio P, Gagliardi M, Bernardini R, Mattei M, Cotella D, Santoro C, Piacentini M, Corazzari M. Ecto-Calreticulin is essential for an efficient immunogenic cell death stimulation in mouse melanoma. Genes Immun 2018; 20:509-513. [PMID: 30282994 DOI: 10.1038/s41435-018-0047-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
Abstract
Skin melanoma remains one of the most aggressive and difficult to treat human malignancy, with an increasing incidence every year. Although surgical resection represents the best therapeutic approach, this is only feasible in cases of early diagnosis. Furthermore, the established malignancy is resistant to all therapeutic strategies employed so far, resulting in an unacceptable patient survival rate. Although the immune-mediated therapeutic approaches, based on anti-PD1 or anti-CTLA4, are very promising and under clinical trial experimentation, they could conceal not yet fully emerged pitfalls such as the development of autoimmune diseases. Therefore, alternative therapeutic approaches are still under investigation, such as the immunogenic cell death (ICD) process. Here we show that the lack of calreticulin translocation onto mouse melanoma cell membrane prevents the stimulation of an effective ICD response in vivo.
Collapse
Affiliation(s)
- Paola Giglio
- Department of Epidemiology, National Institute for Infectious Diseases 'L. Spallanzani', Rome, Italy
| | - Mara Gagliardi
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy.,Department of Health Science (DISS), University of 'Piemonte Orientale', Novara, Italy
| | - Roberta Bernardini
- Department of Biology, Centro Servizi Interdipartimentale-STA, University of Rome 'Tor Vergata', Rome, Italy
| | - Maurizio Mattei
- Department of Biology, Centro Servizi Interdipartimentale-STA, University of Rome 'Tor Vergata', Rome, Italy
| | - Diego Cotella
- Department of Health Science (DISS), University of 'Piemonte Orientale', Novara, Italy
| | - Claudio Santoro
- Department of Health Science (DISS), University of 'Piemonte Orientale', Novara, Italy
| | - Mauro Piacentini
- Department of Epidemiology, National Institute for Infectious Diseases 'L. Spallanzani', Rome, Italy.,Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Marco Corazzari
- Department of Health Science (DISS), University of 'Piemonte Orientale', Novara, Italy.
| |
Collapse
|
50
|
miR‑590‑5p inhibits tumor growth in malignant melanoma by suppressing YAP1 expression. Oncol Rep 2018; 40:2056-2066. [PMID: 30106445 PMCID: PMC6111548 DOI: 10.3892/or.2018.6633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023] Open
Abstract
The microRNAs (miRNAs/miRs) involved in the carcinogenesis and progression of malignant melanoma (MM) remain unclear. In the present study, miR-590-5p was identified to be upregulated in MM cells compared with human melanocytes using a reverse transcription-quantitative polymerase chain reaction to screen established oncogenic and tumor suppressor miRNAs. miR-590-5p was demonstrated to inhibit the cell proliferation and tumor growth of MM cells in vitro and in vivo by performing Cell Counting Kit-8 and tumour xenograft assays, respectively. In addition, flowcytometry assays indicated that miR-590-5p induced cell apoptosis and cell cycle arrest at the G1 stage in MM cells. Finally, luciferase assays and western blot analysis results confirmed that the transcriptional regulator Yes-associated protein 1 (YAP1) is upregulated and inversely associated with miR-590-5p expression in MM cells, and is the direct target and functional mediator of miR-590-5p in MM. Altogether these results reveal the functional and mechanistic link between miR-590-5p and YAP1 in the progression of MM. Therefore, miR-590-5p is a potential therapeutic target in MM.
Collapse
|