1
|
Wang Z, Lai Y, Zhang N, Yang H, Huang Y, Yang Y, Zhang X, Ye J, Xiao M. Fucoidan treats chemotherapy-induced alopecia and helps cyclophosphamide treat tumors. Int J Biol Macromol 2024; 287:138321. [PMID: 39638216 DOI: 10.1016/j.ijbiomac.2024.138321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/30/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Chemotherapy-induced alopecia (CIA) represents one of the most common side effects of cancer treatment. Currently, scalp cooling systems are utilized to treat CIA, but their safety and effectiveness remain limited. The objective of this study was to investigate the effect of fucoidan on CIA and to elucidate the possible mechanism of fucoidan in treating CIA. The results showed that when the dosage of fucoidan was 100 mg/kg·d, it could effectively alleviate CIA induced by cyclophosphamide and promote hair recovery. Altering the dosage affected the therapeutic effect. A lower dosage (50 mg/kg·d) could not effectively prevent the hair from falling off, and the regrown hair was sparse, while an increased dosage led to slow hair growth, although the hair regrown was thick and black. It was also found that with the increase in dosage, key CIA proteins P53 and Fas were down-regulated. However, the cyclin was decreased when the dose was too high. In addition, fucoidan proved beneficial to cyclophosphamide treatment, which further inhibited tumor growth, aggravated tumor necrosis, and reduced the side effects of cyclophosphamide, especially at high doses. These results demonstrate that fucoidan has a therapeutic effect on CIA and does not compromise the effect of chemotherapy.
Collapse
Affiliation(s)
- Zhiyan Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Yanbin Lai
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Na Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China.
| | - Hongjie Yang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Yayan Huang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Yucheng Yang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Xueqin Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Jing Ye
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Meitian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| |
Collapse
|
2
|
Ju Y, Du M, Wang Z, Mu X, Miao Y, Guo Z, Wang D, Wang S, Ding J, Jin G, Zhang W, Qiao H, Su Y, Liu X, Yuchi Z, Tan X, Wang Y. Kukoamine A alleviates nephrolithiasis by inhibiting endogenous oxalate synthesis via the IL-6/JAK/STAT3/DAO signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156145. [PMID: 39461201 DOI: 10.1016/j.phymed.2024.156145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND The recurrent nature and socioeconomic burden of nephrolithiasis demand effective treatments. Delineating the crosstalk between inflammatory processes and the endogenous oxalate metabolism pathway, which underpins nephrolithiasis pathogenesis, is essential for advancing treatment strategies. PURPOSE We aim to screen therapeutic Chinese herbal remedies and their bioactive constituents for kidney stone treatment using a fruit fly model, followed by efficacy and mechanism validation in a rodent nephrolithiasis model as well as in vitro human cell culture model. STUDY DESIGN AND METHODS We developed a fruit fly model to screen for efficient traditional Chinese medicine herbs and their active compounds for kidney stone treatment. Candidate active compounds from efficient herbs were separated and identified by solid-phase chromatography coupled with LC-MS analysis. Fruit fly genetic tools were employed to manipulate the expression of related genes to explore the therapeutic mechanisms of the Lycii Cortex and kukoamine A (KuA). To confirm the therapeutic effects and mechanisms of KuA for mammalian nephrolithiasis, mouse model of glyoxylate-induced kidney stone and human renal tubular cells were used. The therapeutic role of kukoamine A in nephrolithiasis was evaluated by assessing tubular injury, crystal deposition, and adhesion. The level of expression and phosphorylation in cells and mice was assessed using RT-qPCR and western blot. RESULTS Our findings indicate that Lycii Cortex potently inhibits calcium oxalate stone formation via activation of the JNK/Upd3/JAK/STAT signaling cascade, resulting in diminished endogenous oxalate synthesis by downregulating D-amino acid oxidase (DAO) gene expression, predominantly in fruit fly Malpighian tube stellate cells. KuA was identified as the principal bioactive constituent mediating these effects. Both mouse models and human cell assays confirmed KuA's efficacy in preventing calcium oxalate nephrolithiasis in mammals, through hepatic JAK/STAT3 pathway activation and upregulation of IL-6, culminating in reduced urinary crystal deposition. CONCLUSION Our research underscores the potential of kukoamine A as a lead compound in treating nephrolithiasis and reveals the interplay between the IL-6/JAK/STAT3 inflammatory pathway and endogenous oxalate metabolism in nephrolithiasis pathogenesis. Additionally, it highlights the utility of the fruit fly model as a powerful tool for deciphering the therapeutic mechanisms of traditional Chinese herbs.
Collapse
Affiliation(s)
- Yingjie Ju
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Mengwei Du
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhongyi Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
| | - Zhimou Guo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dekun Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shiyao Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Junjie Ding
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gaowa Jin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wen Zhang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Huanhuan Qiao
- Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yanfang Su
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xiuyun Liu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Zhiguang Yuchi
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Xiaoyue Tan
- School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Hegde V, Bhat RM, Budagumpi S, Adimule V, Keri RS. Quinoline hybrid derivatives as effective structural motifs in the treatment of tuberculosis: Emphasis on structure-activity relationships. Tuberculosis (Edinb) 2024; 149:102573. [PMID: 39504873 DOI: 10.1016/j.tube.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Mycobacterium tuberculosis (MTB/Mtb) is the causative agent of tuberculosis (TB), a highly infectious serious airborne illness. TB usually affects the lungs, in 25 % of patients (children or immune impaired adults), mycobacteria can enter the blood stream and infect other bodily areas such the meninges, pleura, lymphatic system, genitourinary system, bones, and joints. Currently, the most challenging aspect of treating this illness is the ineffectiveness of the most potent first-line anti-TB medications, isoniazid, rifampin, pyrazinamide, and ethambutol, which can result in multidrug-resistant TB (MDR-TB), extensively drug-resistant TB (XDR-TB), and in rare instances, completely drug-resistant TB (TDR-TB). As a result, finding new pharmaceutical compounds to treat these diseases is a significant challenge for the scientific community. A number of bio-active molecules have been investigated in this quest, including quinoline, which is considered a promising candidate for the development of TB drugs. It is known that quinoline are low in toxicity and have a wide range of pharmacological properties. Researchers have investigated quinoline scaffolds as anti-TB drugs based on their biological spectrum. The objective of this review is to examine the recent development of quinoline and its structural characteristics crucial to its antitubercular (anti-TB) activity. A molecular analog of the TB treatment can be designed and identified with this information. As a result, future generation quinoline-based anti-TB agents with greater potency and safety can also be explored.
Collapse
Affiliation(s)
- Venkatraman Hegde
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India; Aurigene Pharmaceutical Services, KIADB Industrial area, Electronics City Phase-2, Hosur Road, Bangalore, Karnataka, 560100, India
| | - Raveendra Madhukar Bhat
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India; Aurigene Pharmaceutical Services, KIADB Industrial area, Electronics City Phase-2, Hosur Road, Bangalore, Karnataka, 560100, India
| | - Srinivasa Budagumpi
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Vinayak Adimule
- Angadi Institute of Technology and Management (AITM), Savagaon Road, Belagavi, 590009, Karnataka, India
| | - Rangappa S Keri
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India.
| |
Collapse
|
4
|
Jung S, Kim K, Wang S, Han M, Lee D. NaCTR: Natural product-derived compound-based drug discovery pipeline from traditional oriental medicine by search space reduction. Comput Struct Biotechnol J 2024; 23:3869-3877. [PMID: 39554615 PMCID: PMC11564001 DOI: 10.1016/j.csbj.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
The drug discovery pipelines require enormous time and cost, albeit their infamously high risk of failures. Reducing such risk has therefore been the utmost goal in the process. Recently, natural products (NPs) in traditional oriental medicine (TOM) have come into the spotlight for their efficacy and safety supported throughout the history. Not only that, with the ever-increasing repository of various biological datasets, many data-driven in silico approaches have also been extensively studied for better efficient search and testing. However, TOM-based datasets lack information on recently prevalent diseases, while experimental datasets are prone to provide target spaces that are too large. Adequate combination of both approaches can therefore fill in each other's blanks. In this study, we introduce NaCTR, an in silico discovery pipeline that achieves such integration to suggest NPs-derived drug candidates for a given disease. First, phenotypes and disease genes for the disease are identified in literature and public databases. Secondly, a pool of potentially therapeutic NPs are identified based on both TOM-based phenotype records and compound-gene interaction datasets. Lastly, the compounds contained in the NPs are further screened for toxicity and pharmacokinetic properties. We use the Parkinson's disease as the case study to test the NaCTR pipeline. Through the pipeline, we propose glutathione and four other compounds as novel drug candidates. We further highlight the finding with literature support. As the first to effectively combine data from ancient and recent repositories, the NaCTR pipeline can be a novel pipeline that can be applied successfully to any other diseases.
Collapse
Affiliation(s)
| | | | - Seunghyun Wang
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Manyoung Han
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Doheon Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Edo GI. Coordination of bioactive phytochemicals from Aloe vera extracts to metal ions; investigation of the metal complexes and bioactive compound formed. Biometals 2024; 37:1379-1391. [PMID: 38789822 DOI: 10.1007/s10534-024-00611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
The bioactive compounds contained within many plants account for their pharmacological values. Aloe vera has a wide range of organic and inorganic components, including carbohydrate polymers, glucomannans, and a variety of other natural and synthetic materials. The study aims to take a look into the characteristics of some metal complexes produced from Aloe vera extracts. The extracts from Aloe vera were derived by means of acetone, distilled water and ethanol. The solubility of the metal complexes with the ligand at varying temperatures was established. FT-IR was used to carry out the infra-red examination of the ligand. The results revealed that alcoholic extract of Aloe vera leaf was not soluble in Cu, Fe, or Zn but only soluble in Fe, the extract by distilled water was soluble in Cu, Fe and Zn. However, the Aloe vera in acetone as well as in the Zn (II) and Cu (II) composites displayed a bending that was found at 1430.97 cm-1, 1500.01 cm-1 and 1615.90 cm-1.every functional groups are assigned to be coordinating sites as a result of increase or decrease in the wave number, and absorption band. Findings from the investigation reveal that the complexion of the metal salts with diverse donor sites in the extract is indicated by an increase in the absorption peak of the functional groups in the metal composites of the extracts.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Faculty of Science, Department of Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria.
| |
Collapse
|
6
|
Gartika M, Tumilaar SG, Dharsono HDA, Nurdin D, Kurnia D. Exploring the Inhibitory Potential of M. pendans Compounds Against N-Acetylglucosamine (Mur) Receptor: In Silico Insights Into Antibacterial Activity and Drug-Likeness. ScientificWorldJournal 2024; 2024:3569811. [PMID: 39654692 PMCID: PMC11628175 DOI: 10.1155/tswj/3569811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/27/2024] [Accepted: 10/25/2024] [Indexed: 12/12/2024] Open
Abstract
Oral diseases are often caused by bacterial infections, making the inhibition of receptors like N-acetylglucosamine critical in preventing bacterial formation. The plant Myrmecodia pendans (M. pendans) is known for its diverse bioactivities and may serve as a promising source for developing new antibacterial agents. This study employs in silico methods to predict the inhibitory mechanisms, pharmacokinetics, and drug-likeness of compounds isolated from M. pendans. Three compounds were evaluated for their inhibitory effects on the MurA and MurB receptors using the AutoDock4 molecular docking software, with visualizations performed using the BIOVIA Discovery Studio Visualizer. The binding affinities obtained for compounds 1, 2, and 3 to the MurA receptor were -9.42, -9.57, and -6.84 kcal/mol, respectively, while their binding affinities to the MurB receptor were -11.25, -10.55, and -8.69 kcal/mol. These affinities were found to be stronger than those of fosfomycin (benchmark compound) but weaker than the native ligands of the respective receptors. Key amino acid residues involved in the binding to MurA were identified as Cys115 and Asp305, while Ser82 and Asn83 were noted for MurB. In the ADMET prediction and drug-likeness analysis, some compounds met the necessary criteria, whereas others did not. Although all the three compounds demonstrated strong predicted inhibitory activity against MurA and MurB receptors, the analysis suggests that Compound 2 may hold the most promise as a potential antibacterial agent, warranting further investigation.
Collapse
Affiliation(s)
- Meirina Gartika
- Department of Pediatric Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Sefren Geiner Tumilaar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Denny Nurdin
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
7
|
Mirmazloum I, Slavov AK, Marchev AS. The Untapped Potential of Hairy Root Cultures and Their Multiple Applications. Int J Mol Sci 2024; 25:12682. [PMID: 39684394 DOI: 10.3390/ijms252312682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Plants are rich sources of specialized metabolites, such as alkaloids, terpenes, phenolic acids, flavonoids, coumarins, and volatile oils, which provide various health benefits including anticancer, anti-inflammatory, antiaging, skin-altering, and anti-diabetic properties. However, challenges such as low and inconsistent yields, environment and geographic factors, and species-specific production of some specialized metabolites limit the supply of raw plant material for the food, cosmetic, or pharmaceutical industries. Therefore, biotechnological approaches using plant in vitro systems offer an appealing alternative for the production of biologically active metabolites. Among these, hairy root cultures induced by Rhizobium rhizogenes have firmed up their position as "green cell factories" due to their genotypic and biosynthetic stability. Hairy roots are valuable platforms for producing high-value phytomolecules at a low cost, are amenable to pathway engineering, and can be scaled up in bioreactors, making them attractive for commercialization. This review explores the potential of hairy roots for specialized metabolites biosynthesis focusing on biotechnology tools to enhance their production. Aspects of morphological peculiarities of hairy roots, the diversity of bioreactors design, and process intensification technologies for maximizing biosynthetic capacity, as well as examples of patented plant-derived (green-labeled) products produced through hairy root cultivation at lab and industrial scales, are addressed and discussed.
Collapse
Affiliation(s)
- Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Ménesi Str. 44, 1118 Budapest, Hungary
| | - Aleksandar K Slavov
- Department of Ecological Engineering, University of Food Technologies Plovdiv, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria
| | - Andrey S Marchev
- Laboratory of Eukaryotic Cell Biology, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| |
Collapse
|
8
|
Luyen BTT, Quang TA, Duy LX, Tai BH, Phong NV, Nghi DH, Khoi NM, Van Chinh N, Cuong NC, Thuy TT, Huong TT, Vinh LB, Hong Anh N, Tuan Hiep N. In vitro and in silico anti-inflammatory effect of minor constituents from the roots of Polygala arillata Buch.-Ham. ex D. Don. Nat Prod Res 2024:1-10. [PMID: 39588637 DOI: 10.1080/14786419.2024.2429121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024]
Abstract
Vietnamese traditional medicine has utilised the roots of Polygala arillata Buch.-Ham. ex D. Don to treat acute arthritis, rheumatism, pain, and as a tonic ingredient. In this study, phytochemical analysis of the roots of P. arillata resulted in the isolation of one novel compound, named polygarinolide A (1), along with six known compounds (2-7). High-resolution electrospray ionisation mass spectrometry (HR-ESI-MS) and one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy were among the spectroscopic techniques used to identify their structures. Additionally, the absolute configuration of compound 1 was determined through ECD calculation. The NO inhibitory activity of purified substances was evaluated. Interestingly, compound 2 exhibited inhibitory activity on NO production in LPS-stimulated RAW264.7 cells (IC50 = 25.37 μM). Moreover, interactions and binding mechanisms of the most active chemical with cyclooxygenase-2 inhibitor (COX-2) and nitric oxide synthase (iNOS) proteins were investigated by molecular docking simulations. Our findings add to our understanding of the secondary metabolites generated by P. arillata and provide a sound scientific basis for future research into the plant's potential anti-inflammatory properties.
Collapse
Affiliation(s)
- Bui Thi Thuy Luyen
- Department of Pharmaceutical Chemistry Technology and Extraction, Faculty of Pharmaceutical Chemistry and Technology, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Tran Anh Quang
- National Institute of Medicinal Materials, Hanoi, Vietnam
| | - Le Xuan Duy
- National Institute of Medicinal Materials, Hanoi, Vietnam
| | - Bui Huu Tai
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nguyen Viet Phong
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Do Huu Nghi
- Institute of Natural Products Chemistry, VAST, Hanoi, Vietnam
| | | | - Nguyen Van Chinh
- Faculty of Medicine and Pharmacy, Yersin University of Da Lat, Lam Dong, Vietnam
| | - Nguyen Cao Cuong
- Faculty of Medicine and Pharmacy, Yersin University of Da Lat, Lam Dong, Vietnam
| | | | - Tran Thu Huong
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Le Ba Vinh
- Department of Chemistry, Bergen University, Bergen, Norway
| | - Nguyen Hong Anh
- Institute of Science and Technology for Energy and Environment, VAST, Hanoi, Vietnam
| | | |
Collapse
|
9
|
Deevi SK, Anilkumar B, Pinto PG, Ramani P, Vishnuprasad CN, Shanmugaraju S, Pandurangan N. Facile synthesis of corticiolic acid-a bioactive pharmacophore from natural sources. RSC Adv 2024; 14:37539-37545. [PMID: 39582939 PMCID: PMC11583867 DOI: 10.1039/d4ra06585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Fungal strains have inspired us to find the untapped sources of secondary metabolites. Corticiolic acid (CA, 2,4-dihydroxy-6-pentadecylbenzoic acid; from fungus, Hapalopilus mutans) is one of the core active scaffolds in natural compounds such as Aquastatin-A, B, & C. CA can also be isolated from the plant Lysimachia japonica. CA is a selective inhibitor of PTB1B, a crucial biomarker for anti-diabetic activity. Herein, we report the total synthesis of corticiolic acid achieved via the 9-BBN-based reductive Suzuki-Miyaura coupling of aryl bromide and pentadecane, a key reaction in this strategy. Further, this approach has been explored for the protection-free synthesis of corticiolic acid. The improved synthesis is short, requires mild reaction conditions, and avoids the use of hydrogenation and pyrophoric reagents. Further, the reaction is scalable and does not require protection-deprotection steps. Preliminary studies on cancer cells indicated that corticiolic acid and cordol significantly inhibited the proliferation of HepG2, N2A, and CaCo-2 cancer cells.
Collapse
Affiliation(s)
- Sunil Kumar Deevi
- Dhanvanthri Lab, Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham Coimbatore-641112 Tamil Nadu India
| | - Bhadra Anilkumar
- Dhanvanthri Lab, Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham Coimbatore-641112 Tamil Nadu India
| | - Priyanka Gladys Pinto
- Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology Bangalore-560064 India,
| | - Prasanna Ramani
- Dhanvanthri Lab, Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham Coimbatore-641112 Tamil Nadu India
- Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham Coimbatore-641112 India
| | - Chethala N Vishnuprasad
- Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology Bangalore-560064 India,
| | | | - Nanjan Pandurangan
- Dhanvanthri Lab, Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham Coimbatore-641112 Tamil Nadu India
- Functional Materials Lab, Amrita School of Engineering, Amrita Vishwa Vidyapeetham Coimbatore-641112 Tamil Nadu India
| |
Collapse
|
10
|
Lim J, Li J, Zhou M, Xiao X, Xu Z. Machine Learning Research Trends in Traditional Chinese Medicine: A Bibliometric Review. Int J Gen Med 2024; 17:5397-5414. [PMID: 39588057 PMCID: PMC11586268 DOI: 10.2147/ijgm.s495663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
Background Integrating Traditional Chinese Medicine (TCM) knowledge with modern technology, especially machine learning (ML), has shown immense potential in enhancing TCM diagnostics and treatment. This study aims to systematically review and analyze the trends and developments in ML applications in TCM through a bibliometric analysis. Methods Data for this study were sourced from the Web of Science Core Collection. Data were analyzed and visualized using Microsoft Office Excel, Bibliometrix, and VOSviewer. Results 474 documents were identified. The analysis revealed a significant increase in research output from 2000 to 2023, with China leading in both the number of publications and research impact. Key research institutions include the Shanghai University of Traditional Chinese Medicine and the China Academy of Chinese Medical Sciences. Major research hotspots identified include ML applications in TCM diagnosis, network pharmacology, and tongue diagnosis. Additionally, chemometrics with ML are highlighted for their roles in quality control and authentication of TCM products. Conclusion This study provides a comprehensive overview of ML applications' development trends and research landscape in TCM. The integration of ML has led to significant advancements in TCM diagnostics, personalized medicine, and quality control, paving the way for the modernization and internationalization of TCM practices. Future research should focus on improving model interpretability, fostering international collaborations, and standardized reporting protocols.
Collapse
Affiliation(s)
- Jiekee Lim
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jieyun Li
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Mi Zhou
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xinang Xiao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Zhaoxia Xu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Health Identification and Assessment, Shanghai, People’s Republic of China
| |
Collapse
|
11
|
Stutz C, Fontão APGA, Silva GWDSE, Seito LN, Perdomo RT, Sampaio ALF. Betulinic Acid Acts in Synergism with Imatinib Mesylate, Triggering Apoptosis in MDR Leukemia Cells. PLANTA MEDICA 2024. [PMID: 39395407 DOI: 10.1055/a-2440-4847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease, characterized by the presence of the oncogene BCR-ABL. Imatinib mesylate (IMA) is the first-line treatment for CML, and some treatment resistance has been reported. Natural products are rich sources of bioactive compounds with biological effects, opening a possibility to alter cell susceptibility to drugs such as imatinib. Herein, we evaluated the interference of betulinic acid and ursolic acid in glycoprotein P (P-gp) activity and the possible synergistic effect when associated with IMA by the Chou-Talalay method. Ursolic acid presented an IC50 of 14.0 µM and 19.6 µM for K562 and Lucena 1, respectively, whilst betulinic acid presented an IC50 of 8.6 µM and 12.5 µM for these cell lines. Evaluation of the combination of terpenoids and imatinib mesylate revealed that ursolic acid or betulinic acid acts in synergism with IMA, as indicated by the combination indexes (CI<1). Analysis of annexin V labeling demonstrated that a combination of IMA with betulinic acid enhances the inhibition on cell proliferation via the apoptosis pathway, with caspases 3/7 activation after 24 hours of treatment and inhibition of the STAT5/survivin pathway, decreasing cell viability. The combination of natural products and IMA on a multidrug-resistant leukemia cell line is a promising strategy for CML treatment.
Collapse
Affiliation(s)
- Claudia Stutz
- Fundação Oswaldo Cruz, Eusébio, CE, Brasil
- Fundação Oswaldo Cruz, Campo Grande, MS, Brasil
| | | | | | - Leonardo Noboru Seito
- Laboratório de Farmacologia Aplicada, Instituto de Tecnologia em Fármacos; Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Renata Trentin Perdomo
- Laboratório de Biologia Molecular e Culturas Celulares, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição; UFMS, Campo Grande, MS, Brasil
| | - André Luiz Franco Sampaio
- Laboratório de Farmacologia Molecular, Instituto de Tecnologia em Fármacos; Fiocruz, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
12
|
Calzoni E, Bertoldi A, Cesaretti A, Alabed HBR, Cerrotti G, Pellegrino RM, Buratta S, Urbanelli L, Emiliani C. Aloe Extracellular Vesicles as Carriers of Photoinducible Metabolites Exhibiting Cellular Phototoxicity. Cells 2024; 13:1845. [PMID: 39594594 PMCID: PMC11592872 DOI: 10.3390/cells13221845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
The growing interest in plant-origin active molecules with medicinal properties has led to a revaluation of plants in the pharmaceutical field. Plant-derived extracellular vesicles (PDEVs) have emerged as promising candidates for next-generation drug delivery systems due to their ability to concentrate and deliver a plethora of bioactive molecules. These bilayer membranous vesicles, whose diameter ranges from 30 to 1000 nm, are released by different cell types and play a crucial role in cross-kingdom communication between plants and humans. Notably, PDEVs have demonstrated efficacy in treating various diseases, including cancer, alcoholic liver disease, and inflammatory bowel disease. However, further research on plant vesicles is necessary to fully understand their traits and purposes. This study investigates the phototoxic effects of extracellular vesicles (EVs) from Aloe arborescens, Aloe barbadensis, and Aloe chinensis on the human melanoma cell line SK-MEL-5, focusing on their anthraquinone content, recognized as natural photosensitizers. The phototoxic impact of Aloe EVs is associated with ROS production, leading to significant oxidative stress in melanoma cells, as validated by a metabolome analysis. These findings suggest that EVs from Aloe arborescens, Aloe barbadensis, and Aloe chinensis hold promise as potential photosensitizers, thus highlighting their potential for future application in photodynamic cancer therapy and providing valuable insights into the possible utilization of PDEVs for therapeutic purposes.
Collapse
Affiliation(s)
- Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (E.C.); (A.B.); (H.B.R.A.); (G.C.); (R.M.P.); (S.B.); (L.U.); (C.E.)
| | - Agnese Bertoldi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (E.C.); (A.B.); (H.B.R.A.); (G.C.); (R.M.P.); (S.B.); (L.U.); (C.E.)
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (E.C.); (A.B.); (H.B.R.A.); (G.C.); (R.M.P.); (S.B.); (L.U.); (C.E.)
- Centro di Eccellenza Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Husam B. R. Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (E.C.); (A.B.); (H.B.R.A.); (G.C.); (R.M.P.); (S.B.); (L.U.); (C.E.)
| | - Giada Cerrotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (E.C.); (A.B.); (H.B.R.A.); (G.C.); (R.M.P.); (S.B.); (L.U.); (C.E.)
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (E.C.); (A.B.); (H.B.R.A.); (G.C.); (R.M.P.); (S.B.); (L.U.); (C.E.)
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (E.C.); (A.B.); (H.B.R.A.); (G.C.); (R.M.P.); (S.B.); (L.U.); (C.E.)
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (E.C.); (A.B.); (H.B.R.A.); (G.C.); (R.M.P.); (S.B.); (L.U.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (E.C.); (A.B.); (H.B.R.A.); (G.C.); (R.M.P.); (S.B.); (L.U.); (C.E.)
- Centro di Eccellenza Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| |
Collapse
|
13
|
Ghosh S, Basu S, Anbarasu A, Ramaiah S. A Comprehensive Review of Antimicrobial Agents Against Clinically Important Bacterial Pathogens: Prospects for Phytochemicals. Phytother Res 2024. [PMID: 39496516 DOI: 10.1002/ptr.8365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 11/06/2024]
Abstract
Antimicrobial resistance (AMR) hinders the effective treatment of a range of bacterial infections, posing a serious threat to public health globally, as it challenges the currently available antimicrobial drugs. Among the various modes of antimicrobial action, antimicrobial agents that act on membranes have the most promising efficacy. However, there are no consolidated reports on the shortcomings of these drugs, existing challenges, or the potential applications of phytochemicals that act on membranes. Therefore, in this review, we have addressed the challenges and focused on various phytochemicals as antimicrobial agents acting on the membranes of clinically important bacterial pathogens. Antibacterial phytochemicals comprise diverse group of agents found in a wide range of plants. These compounds have been found to disrupt cell membranes, inhibit enzymes, interfere with protein synthesis, generate reactive oxygen species, modulate quorum sensing, and inhibit bacterial adhesion, making them promising candidates for the development of novel antibacterial therapies. Recently, polyphenolic compounds have been reported to have proven efficacy against nosocomial multidrug-resistant pathogens. However, more high-quality studies, improved standards, and the adoption of rules and regulations are required to firmly confirm the clinical efficacy of phytochemicals derived from plants. Identifying potential challenges, thrust areas of research, and considering viable approaches is essential for the successful clinical translation of these compounds.
Collapse
Affiliation(s)
- Soumyadip Ghosh
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Bio Sciences, SBST, VIT, Vellore, India
| | - Soumya Basu
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biotechnology, National Institute of Science and Technology (NIST), Berhampur, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Biotechnology, SBST, VIT, Vellore, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Bio Sciences, SBST, VIT, Vellore, India
| |
Collapse
|
14
|
Liang LL, Zhao XJ, Lu Y, Zhu SH, Tang Q, Zuo MT, Liu ZY. An efficient method for the preparative isolation and purification of alkaloids from Gelsemium by using high speed counter-current chromatography and preparative HPLC. Prep Biochem Biotechnol 2024; 54:1205-1215. [PMID: 38592940 DOI: 10.1080/10826068.2024.2336990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
We established an efficient method using high-speed countercurrent chromatography (HSCCC) combined with preparative high-performance liquid chromatography (prep-HPLC) for isolating and purifying Gelsemium elegans (G. elegans) alkaloids. First, the two-phase solvent system composed of 1% triethylamine aqueous solution/n-hexane/ethyl acetate/ethanol (volume ratio 4:2:3:2) was employed to separate the crude extract (350 mg) using HSCCC. Subsequently, the mixture that resulted from HSCCC was further separated by Prep-HPLC, resulting in seven pure compounds including: 14-hydroxygelsenicine (1, 12.1 mg), sempervirine (2, 20.8 mg), 19-(R)-hydroxydihydrogelelsevirine (3, 10.1 mg), koumine (4, 50.5 mg), gelsemine (5, 32.2 mg), gelselvirine (6, 50.5 mg), and 11-hydroxyhumanmantenine (7, 12.5 mg). The purity of these seven compounds were 97.4, 98.9, 98.5, 99, 99.5, 96.8, and 85.5%, as determined by HPLC. The chemical structures of the seven compounds were analyzed and confirmed by electrospray ionization mass spectrometry (ESI-MS), 1H-nuclear magnetic resonance (1H NMR), and 13 C-nuclear magnetic resonance (13 C NMR) spectra. The results indicate that the HSCCC-prep-HPLC method can effectively separate the major alkaloids from the purified G. elegans, holding promising prospects for potential applications in the separation and identification of other traditional Chinese medicines.
Collapse
Affiliation(s)
- Ling-Ling Liang
- College of Veterinary Medicine, Hunan Agricultural University, Furong District, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Furong District, Changsha, Hunan, China
| | - Xue-Jiao Zhao
- College of Veterinary Medicine, Hunan Agricultural University, Furong District, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Furong District, Changsha, Hunan, China
| | - Ying Lu
- College of Horticulture architecture, Hunan Agricultural University, Furong District, Changsha, Hunan, China
| | - Shi-Hao Zhu
- College of Horticulture architecture, Hunan Agricultural University, Furong District, Changsha, Hunan, China
| | - Qi Tang
- College of Horticulture architecture, Hunan Agricultural University, Furong District, Changsha, Hunan, China
| | - Meng-Ting Zuo
- College of Veterinary Medicine, Hunan Agricultural University, Furong District, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Furong District, Changsha, Hunan, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Furong District, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Furong District, Changsha, Hunan, China
| |
Collapse
|
15
|
Rakib AI, Chowdhury R, Bhuia MS, Hasan MSA, Sheikh S, Ansari SA, Ansari IA, Islam MT. Qualitative Phytochemical Analysis and Assessments of Analgesic and Antidiarrheal Activity of the Methanolic Leaf Extract of Cheilanthes tenuifolia: In Vivo Study. Immun Inflamm Dis 2024; 12:e70055. [PMID: 39508723 PMCID: PMC11542299 DOI: 10.1002/iid3.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Cheilanthes tenuifolia (Burm.f.), commonly known as the Sword Fern or Narrow-leaved Cloak Fern, is a little evergreen fern that belongs to the Pteridaceae family and is abundant in various bioactive compounds exerting promising medicinal properties. The current study is designed to evaluate in vivo analgesic and antidiarrheal activity of the methanol leaf extract of C. tenuifolia (MCT). METHODS For this purpose, Swiss albino mice were used to investigate the analgesic and antidiarrheal properties using acetic acid-induced writhing and castor oil-induced diarrhea methods, respectively. The mice were administered orally with different doses of MCT (125, 250, and 500 mg/kg). The vehicle performed as a negative control (NC), while diclofenac sodium (DCN) (25 mg/kg), loperamide (LOP) (3 mg/kg), bismuth subsalicylate (BSS) (10 mg/kg), and nifedipine (NDP) (2.5 mg/kg) were supplied as positive controls (PC) (p.o.). In both models, combination treatment of MCT (higher dose) and PC was also administered to different groups of animals for assessing potential antagonistic or synergistic activity. RESULTS Findings of the in vivo study demonstrated that MCT dose-dependently significantly (p < 0.05) exhibited analgesic and antidiarrheal properties by reduction in the number of writhing and reductions in the total fecal output in contrast to the NC group. Moreover, in combination treatment, MCT significantly (p < 0.05) synergized the activity of PC in both models, exerting potential analgesic and antidiarrheal activity. CONCLUSION In conclusion, MCT has analgesic and antidiarrheal activity; it might be beneficial for the management of pain and diarrhea.
Collapse
Affiliation(s)
- Asraful Islam Rakib
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjDhakaBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd.GopalganjDhakaBangladesh
| | - Raihan Chowdhury
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjDhakaBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd.GopalganjDhakaBangladesh
| | - Md. Shimul Bhuia
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjDhakaBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd.GopalganjDhakaBangladesh
| | - Md. Sakib Al Hasan
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjDhakaBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd.GopalganjDhakaBangladesh
| | - Salehin Sheikh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjDhakaBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd.GopalganjDhakaBangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | | | - Muhammad Torequl Islam
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjDhakaBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd.GopalganjDhakaBangladesh
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| |
Collapse
|
16
|
Miya MB, Ashutosh, Maulishree, Chandra Gupta P, Pathak V, Mishra R, Chaturvedi P, Kalani A. Therapeutic effects of OXY- Exo Aloe in diabetic wound injury. Biochem Biophys Res Commun 2024; 731:150398. [PMID: 39032360 DOI: 10.1016/j.bbrc.2024.150398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Delayed wound healing are common complications for diabetic patients. In light of chronic hypoxia's delay in wound healing, it is hypothesized that providing a better oxygen environment at the wound site will promote diabetic wound healing. OXY-ExoAloe is an innovative and effective therapy prepared from exosome-like vesicles of aloe vera gel, ginger juice and neem fruit sap. A combination of three herbal, oxygen-delivering and medicinally valued plants was standardized to determine if the combination had the desired effect. Interestingly, when we used OXY-ExoAloe at a particular ratio on a diabetic wound, the herbal therapy speeded up wound healing by reducing swelling, and the severity of the wound. Further, our data suggests that OXY-ExoAloe promoted wound healing by increasing wound oxygenation, reducing inflammation, cytokine production, and matrix remodeling. It is also safe and effective, with no reported side effects.
Collapse
Affiliation(s)
- Mumtaj Bano Miya
- Disease Biology Lab and Molecular Oncology Lab, Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Ashutosh
- Disease Biology Lab and Molecular Oncology Lab, Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Maulishree
- Disease Biology Lab and Molecular Oncology Lab, Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Prakash Chandra Gupta
- Toxicology Lab, School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Vandana Pathak
- Disease Biology Lab and Molecular Oncology Lab, Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Rajeev Mishra
- Disease Biology Lab and Molecular Oncology Lab, Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Pankaj Chaturvedi
- Department of Physiology, University of Louisville, Louisville, 40202, KY, USA
| | - Anuradha Kalani
- Disease Biology Lab and Molecular Oncology Lab, Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India; Department of Physiology, University of Louisville, Louisville, 40202, KY, USA.
| |
Collapse
|
17
|
Sanjai C, Gaonkar SL, Hakkimane SS. Harnessing Nature's Toolbox: Naturally Derived Bioactive Compounds in Nanotechnology Enhanced Formulations. ACS OMEGA 2024; 9:43302-43318. [PMID: 39494011 PMCID: PMC11525499 DOI: 10.1021/acsomega.4c07756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
The vast diversity of plants in nature offers a rich reservoir of bioactive compounds that have historically played an integral role in pharmacotherapy and continue to serve as a primary source of novel therapeutic agents. Medicinal plants contain a multitude of secondary metabolites with pharmacological potential, making them indispensable in drug discovery and development. These bioactive constituents, inherent in herbal remedies, exhibit a wide range of medicinal properties due to their complex chemical compositions and structural diversity. Despite their therapeutic potential, the clinical application of crude plant extracts is often hindered by limitations, such as poor bioavailability, low biostability, and variable efficacy. These issues can diminish the therapeutic impact of plant-derived compounds. Nanotechnology presents an innovative approach to addressing these challenges through the development of nanoformulations that enhance the efficacy of bioactive compounds. This review examines both historical and recent studies on the synthesis and characterization of bioactive compounds, focusing on their effectiveness in treating various diseases. Additionally, it addresses the risks associated with the direct use of crude plant extracts in medicine, explores extraction and isolation techniques, and reviews research from the past five years on the development of bioactive compounds, their nanoformulations, and their applications in disease treatment. The review also presents recent clinical trials conducted over the last five years on crude extracts and their nanoformulated counterparts, providing insights into the clinical translation of these natural therapeutics.
Collapse
Affiliation(s)
- Chetana Sanjai
- Department
of Biotechnology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Santosh L. Gaonkar
- Department
of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sushruta S. Hakkimane
- Department
of Biotechnology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
18
|
Tan A, Scortecci KC, Cabral De Medeiros NM, Kukula-Koch W, Butler TJ, Smith SM, Boylan F. Plukenetia volubilis leaves as source of anti- Helicobacter pylori agents. Front Pharmacol 2024; 15:1461447. [PMID: 39508036 PMCID: PMC11537943 DOI: 10.3389/fphar.2024.1461447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Helicobacter pylori infection is a major issue worldwide, with widespread prevalence, combined with its link to gastritis, peptic ulcers, gastric cancer, and mucosa-associated lymphoid tissue (MALT) lymphoma. Meanwhile, effectiveness of current treatment protocols is limited by increasing antibiotic resistance and patient compliance issues due to long regimens and side effects. Plukenetia volubilis, or sacha inchi, is a valuable source of bioactive molecules. However, studies on its antimicrobial activity, especially against H. pylori, are lacking. Methods In this study, the anti-H. pylori activity of P. volubilis leaves water extract was explored using in vitro and in silico approaches. High-Performance Liquid Chromatography coupled to Electrospray Ionisation and Quadrupole Time-of-Flight Mass Spectrometry (HPLC-ESI- QTOF-MS-MS) analysis of the water extract from the leaves was used to characterise the chemical composition of the plant and allowed identification of some flavonoids, such as astragalin, and some phenolic compounds. Then, high-speed counter current chromatography (HSCCC) was used to fractionate the ethyl acetate partition obtained from the water extract from the leaves. Results and Discussion The presence of flavonoids derived from kaempferol was confirmed and astragalin was isolated for the first time in P. volubilis. The P. volubilis water infusion, ethyl acetate extract and the isolated astragalin exhibited anti-bacterial activity against H. pylori J99 and two clinical isolates (e.g., minimum inhibitory concentrations of 0.53, 0.51 and 0.49 μg/mL, respectively, for clarithromycin-resistant clinical isolate SSR366). Then, using molecular docking for potential protein targets for H. pylori, it was verified that astragalin could interact with these proteins by in silico analysis. Conclusion These findings highlight that P. volubilis and astragalin produce a bacteriostatic activity against H. pylori and may have potential to be used in treatment against H. pylori, after further research.
Collapse
Affiliation(s)
- Aditya Tan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Katia Castanho Scortecci
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, UFRN, Natal, Brazil
| | - Nathalia Maira Cabral De Medeiros
- Laboratório de Biotecnologia Vegetal (LBV), Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraiba (UEPB) Campina Grande, Paraiba, Brazil
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy With Medicinal Plants Garden, Medical University of Lublin, Lublin, Poland
| | - Thomas J. Butler
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Trinity Centre, Tallaght University Hospital, Dublin, Ireland
| | - Sinéad Marian Smith
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Trinity Centre, Tallaght University Hospital, Dublin, Ireland
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
- Trinity Natural Products Research Centre, NatPro Centre, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Rasool AT, Li E, Nazir A. Recent advances in natural products and derivatives with antiviral activity against respiratory syncytial virus (RSV). JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-24. [PMID: 39425923 DOI: 10.1080/10286020.2024.2417211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Respiratory syncytial virus (RSV) is a widespread viral infection that causes millions of high-risk illnesses annually. Medicinal herbs such as ginseng root, echinacea purpurea, and radix astragali have a positive effect on antiviral activity by preventing viral adhesion, syncytial development, inhibiting viral internalization, relieving respiratory inflammation, strengthening the immune system, and stimulating the release of interferons. The potential benefits of natural products in terms of lower costs, better patient outcomes, and fewer adverse effects are discussed. This review examines the current evidence on the prevention and control of RSV with natural ingredients and the challenges and opportunities in clinical practice.
Collapse
Affiliation(s)
- Ameena Tur Rasool
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu210093, China
| | - Erguang Li
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu210093, China
| | - Ahsan Nazir
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
| |
Collapse
|
20
|
Derso YD, Kassaye M, Fassil A, Derebe B, Nigatu A, Ayene F, Tamer M, Van Damme P. Composition, medicinal values, and threats of plants used in indigenous medicine in Jawi District, Ethiopia: implications for conservation and sustainable use. Sci Rep 2024; 14:23638. [PMID: 39384598 PMCID: PMC11464621 DOI: 10.1038/s41598-024-71411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/27/2024] [Indexed: 10/11/2024] Open
Abstract
Indigenous knowledge of medicinal plants is vital to local communities and cultural heritage, particularly in Ethiopia. This study aims to document native medicinal plants in the Jawi district, including associated traditional knowledge. The study involved conducting semi-structured interviews, focus group discussions, and guided field walks with a purposefully selected 54 traditional healers. The study identified 87 medicinal plant species from 50 families used treat over 50 ailments, with a preference for wild herbs. Fabaceae, Malvaceae, and Solanaceae were the most prominent families, each with five species; Zehneria scabra, was the most often mentioned species, followed by Lepidium sativum, Myrica salicifolia, Carissa spinarum, and Momordica foetida. 43% of identified species were herbs, with 44% of remedies made from roots. Pounding was the most common preparation method, and oral application was the most frequent use, followed by dermal application. 60% plants treated human ailments, 16% treated livestock, and 24% were used for both. Preference rankings indicated specific plants favored for certain ailments. The study highlights key plant families and species crucial for local healthcare but notes threats like habitat destruction and knowledge loss. Urgent conservation actions are needed to preserve medicinal plants and inform future research and strategies.
Collapse
Affiliation(s)
- Yonas Derebe Derso
- Department of Forestry and Climate Science, Injibara University, Gondar, Ethiopia.
| | - Melkamu Kassaye
- Department of Forestry and Climate Science, Injibara University, Gondar, Ethiopia
| | - Amare Fassil
- Department of Biology, Injibara University, Injibara, Ethiopia
| | - Binega Derebe
- Department of Natural Resource Management, Injibara University, Gondar, Ethiopia
| | - Amsalu Nigatu
- Department of Forestry and Climate Science, Injibara University, Gondar, Ethiopia
| | - Fentahun Ayene
- Department of Forestry and Climate Science, Injibara University, Gondar, Ethiopia
| | - Mulugeta Tamer
- Department of Forestry and Climate Science, Injibara University, Gondar, Ethiopia
| | - Patrick Van Damme
- Czech University of Life Sciences, Faculty of Tropical AgriSciences, Prague, Czech Republic
| |
Collapse
|
21
|
Jaiswal S, Kumar S, Sarkar B, Sinha RK. Therapeutic potential of Nelumbo nucifera Linn. in systemic lupus erythematosus: Network pharmacology and molecular modeling insights. Lupus 2024; 33:1155-1167. [PMID: 39135520 DOI: 10.1177/09612033241273074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
BACKGROUND Systemic lupus erythematosus is a chronic autoimmune inflammatory disease characterized by multiple symptoms. The phenolic acids and other flavonoids in Nelumbo nucifera have anti-oxidants, anti-inflammatory, and immunomodulatory activities that are essential for managing SLE through natural sources. This study employs network pharmacology to unveil the multi-target and multi-pathway mechanisms of Nelumbo nucifera as a complementary therapy. The findings are validated through molecular modeling, which includes molecular docking followed by a molecular dynamics study. METHODS Active compounds and targets of SLE were obtained from IMPPAT, KNApAcKFamily and SwissTargetPrediction databases. SLE-related targets were retrieved from GeneCards and OMIM databases. A protein-protein interaction (PPI) network was built to screen out the core targets using Cytoscape software. ShinyGO was used for GO and KEGG pathway enrichment analyses. Interactions between potential targets and active compounds were assessed by molecular docking and molecular dynamics simulation study. RESULTS In total, 12 active compounds and 1190 targets of N. nucifera's were identified. A network analysis of the PPI network revealed 10 core targets. GO and KEGG pathway enrichment analyses indicated that the effects of N. nucifera are mediated mainly by AGE-RAGE and other associated signalling pathways. Molecular docking indicated favourable binding affinities, particularly leucocianidol exhibiting less than -4.5 kcal/mol for all 10 targets. Subsequent molecular dynamics simulations of the leucocianidol-ESR1 complex aimed to elucidate the optimal binding complex's stability and flexibility. CONCLUSIONS Our study unveiled the potential therapeutic mechanism of N. nucifera in managing SLE. These findings provide insights for subsequent experimental validation and open up new avenues for further research in this field.
Collapse
Affiliation(s)
- Sugandha Jaiswal
- Department of Bioengineering and Biotechnology, Birla Institute of Technology(BIT), Mesra, Ranch, Jharkhand, India
| | - Satish Kumar
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Biswatrish Sarkar
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Rakesh Kumar Sinha
- Department of Bioengineering and Biotechnology, Birla Institute of Technology(BIT), Mesra, Ranch, Jharkhand, India
| |
Collapse
|
22
|
Saadh MJ, Mustafa MA, Kumar S, Gupta P, Pramanik A, Rizaev JA, Shareef HK, Alubiady MHS, Al-Abdeen SHZ, Shakier HG, Alaraj M, Alzubaidi LH. Advancing therapeutic efficacy: nanovesicular delivery systems for medicinal plant-based therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7229-7254. [PMID: 38700796 DOI: 10.1007/s00210-024-03104-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/12/2024] [Indexed: 10/04/2024]
Abstract
The utilization of medicinal plant extracts in therapeutics has been hindered by various challenges, including poor bioavailability and stability issues. Nanovesicular delivery systems have emerged as promising tools to overcome these limitations by enhancing the solubility, bioavailability, and targeted delivery of bioactive compounds from medicinal plants. This review explores the applications of nanovesicular delivery systems in antibacterial and anticancer therapeutics using medicinal plant extracts. We provide an overview of the bioactive compounds present in medicinal plants and their therapeutic properties, emphasizing the challenges associated with their utilization. Various types of nanovesicular delivery systems, including liposomes, niosomes, ethosomes, and solid lipid nanoparticles, among others, are discussed in detail, along with their potential applications in combating bacterial infections and cancer. The review highlights specific examples of antibacterial and anticancer activities demonstrated by these delivery systems against a range of pathogens and cancer types. Furthermore, we address the challenges and limitations associated with the scale-up, stability, toxicity, and regulatory considerations of nanovesicular delivery systems. Finally, future perspectives are outlined, focusing on emerging technologies, integration with personalized medicine, and potential collaborations to drive forward research in this field. Overall, this review underscores the potential of nanovesicular delivery systems for enhancing the therapeutic efficacy of medicinal plant extracts in antibacterial and anticancer applications, while identifying avenues for further research and development.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - Sanjay Kumar
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Pooja Gupta
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18, Amir Temur Street, Rector, Samarkand, Uzbekistan
| | - Hasanain Khaleel Shareef
- Department of Medical Biotechnology, College of Science, Al-Mustaqbal University, Hilla, Iraq
- Biology Department, College of Science for Women, University of Babylon, Hilla, Iraq
| | | | | | | | - Mohd Alaraj
- Faculty of Pharmacy, Jerash Private University, Jerash, Jordan
| | - Laith H Alzubaidi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
23
|
Saadati F, Modarresi Chahardehi A, Jamshidi N, Jamshidi N, Ghasemi D. Coumarin: A natural solution for alleviating inflammatory disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100202. [PMID: 39398983 PMCID: PMC11470182 DOI: 10.1016/j.crphar.2024.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Coumarin, a naturally occurring compound found in various plants, has a rich history of use in traditional medicine. Recent research has highlighted its anti-inflammatory properties, positioning it as a promising candidate for treating inflammatory disorders such as rheumatoid arthritis, asthma, and inflammatory bowel disease. This narrative review aims to comprehensively summarize the current knowledge regarding coumarin's pharmacological effects in alleviating inflammatory conditions by analyzing preclinical and clinical studies. The review focuses on elucidating the mechanisms through which coumarin exerts its anti-inflammatory effects, including its antioxidant activity, inhibiting pro-inflammatory cytokine production, and modulation of immune cell functions. Additionally, the paper addresses potential limitations of using coumarin, such as concerns about toxicity at high doses or with prolonged use. Before widespread clinical application, further investigation is needed to fully understand coumarin's potential benefits and risks.
Collapse
Affiliation(s)
- Farnoosh Saadati
- Department of Cellular and Molecular Biology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | | | - Negar Jamshidi
- Kimia Andisheh Teb Medical and Molecular Research Laboratory Co., Tehran, Iran
| | - Nazanin Jamshidi
- Kimia Andisheh Teb Medical and Molecular Research Laboratory Co., Tehran, Iran
| | - Darioush Ghasemi
- Kimia Andisheh Teb Medical and Molecular Research Laboratory Co., Tehran, Iran
| |
Collapse
|
24
|
Song Z, Chen G, Chen CYC. AI empowering traditional Chinese medicine? Chem Sci 2024; 15:d4sc04107k. [PMID: 39355231 PMCID: PMC11440359 DOI: 10.1039/d4sc04107k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/22/2024] [Indexed: 10/03/2024] Open
Abstract
For centuries, Traditional Chinese Medicine (TCM) has been a prominent treatment method in China, incorporating acupuncture, herbal remedies, massage, and dietary therapy to promote holistic health and healing. TCM has played a major role in drug discovery, with over 60% of small-molecule drugs approved by the FDA from 1981 to 2019 being derived from natural products. However, TCM modernization faces challenges such as data standardization and the complexity of TCM formulations. The establishment of comprehensive TCM databases has significantly improved the efficiency and accuracy of TCM research, enabling easier access to information on TCM ingredients and encouraging interdisciplinary collaborations. These databases have revolutionized TCM research, facilitating advancements in TCM modernization and patient care. In addition, advancements in AI algorithms and database data quality have accelerated progress in AI for TCM. The application of AI in TCM encompasses a wide range of areas, including herbal screening and new drug discovery, diagnostic and treatment principles, pharmacological mechanisms, network pharmacology, and the incorporation of innovative AI technologies. AI also has the potential to enable personalized medicine by identifying patterns and correlations in patient data, leading to more accurate diagnoses and tailored treatments. The potential benefits of AI for TCM are vast and diverse, promising continued progress and innovation in the field.
Collapse
Affiliation(s)
- Zhilin Song
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
| | - Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University Shenzhen Guangdong 518107 China
| | - Calvin Yu-Chian Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- Department of Medical Research, China Medical University Hospital Taichung 40447 Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University Taichung 41354 Taiwan
- Guangdong L-Med Biotechnology Co., Ltd Meizhou Guangdong 514699 China
| |
Collapse
|
25
|
Li C, Shi K, Zhao S, Liu J, Zhai Q, Hou X, Xu J, Wang X, Liu J, Wu X, Fan W. Natural-source payloads used in the conjugated drugs architecture for cancer therapy: Recent advances and future directions. Pharmacol Res 2024; 207:107341. [PMID: 39134188 DOI: 10.1016/j.phrs.2024.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Drug conjugates are obtained from tumor-located vectors connected to cytotoxic agents via linkers, which are designed to deliver hyper-toxic payloads directly to targeted cancer cells. These drug conjugates include antibody-drug conjugates (ADCs), peptide-drug conjugates (PDCs), small molecule-drug conjugates (SMDCs), nucleic acid aptamer-drug conjugates (ApDCs), and virus-like drug conjugate (VDCs), which show great therapeutic value in the clinic. Drug conjugates consist of a targeting carrier, a linker, and a payload. Payloads are key therapy components. Cytotoxic molecules and their derivatives derived from natural products are commonly used in the payload portion of conjugates. The ideal payload should have sufficient toxicity, stability, coupling sites, and the ability to be released under specific conditions to kill tumor cells. Microtubule protein inhibitors, DNA damage agents, and RNA inhibitors are common cytotoxic molecules. Among these conjugates, cytotoxic molecules of natural origin are summarized based on their mechanism of action, conformational relationships, and the discovery of new derivatives. This paper also mentions some cytotoxic molecules that have the potential to be payloads. It also summarizes the latest technologies and novel conjugates developed in recent years to overcome the shortcomings of ADCs, PDCs, SMDCs, ApDCs, and VDCs. In addition, this paper summarizes the clinical trials conducted on conjugates of these cytotoxic molecules over the last five years. It provides a reference for designing and developing safer and more efficient conjugates.
Collapse
Affiliation(s)
- Cuiping Li
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Kourong Shi
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Siyuan Zhao
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Juan Liu
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Qiaoli Zhai
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Xiaoli Hou
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Jie Xu
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Xinyu Wang
- Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Jiahui Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China.
| | - Xin Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China; Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Wei Fan
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| |
Collapse
|
26
|
Jha SK, Nelson VK, Suryadevara PR, Panda SP, Pullaiah CP, Nuli MV, Kamal M, Imran M, Ausali S, Abomughaid MM, Srivastava R, Deka R, Pritam P, Gupta N, Shyam H, Singh IK, Pandey BW, Dewanjee S, Jha NK, Jafari SM. Cannabidiol and neurodegeneration: From molecular mechanisms to clinical benefits. Ageing Res Rev 2024; 100:102386. [PMID: 38969143 DOI: 10.1016/j.arr.2024.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Abstract
Neurodegenerative disorders (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis are severe and life-threatening conditions in which significant damage of functional neurons occurs to produce psycho-motor malfunctions. NDs are an important cause of death in the elderly population worldwide. These disorders are commonly associated with the progression of age, oxidative stress, and environmental pollutants, which are the major etiological factors. Abnormal aggregation of specific proteins such as α-synuclein, amyloid-β, huntingtin, and tau, and accumulation of the associated oligomers in neurons are the hallmark pathological features of NDs. Existing therapeutic options for NDs are only symptomatic relief and do not address root-causing factors, such as protein aggregation, oxidative stress, and neuroinflammation. Cannabidiol (CBD) is a non-psychotic natural cannabinoid obtained from Cannabis sativa that possesses multiple pharmacological actions, including antioxidant, anti-inflammatory, and neuroprotective effects in various NDs and other neurological disorders both in vitro and in vivo. CBD has gained attention as a promising drug candidate for the management of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, by inhibiting protein aggregation, free radicals, and neuroinflammation. In parallel, CBD has shown positive results in other neurological disorders, such as epilepsy, depression, schizophrenia, and anxiety, as well as adjuvant treatment with existing standard therapeutic agents. Hence, the present review focuses on exploring the possible molecular mechanisms in controlling various neurological disorders as well as the clinical applications of CBD in NDs including epilepsy, depression and anxiety. In this way, the current review will serve as a standalone reference for the researchers working in this area.
Collapse
Affiliation(s)
- Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Vinod Kumar Nelson
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute Of Medical And Technical Sciences, India
| | | | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Central Council for Research in Siddha, Ministry of AYUSH, Govt. of India, Chennai, Tamil Nadu, India
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Saijyothi Ausali
- College of Pharmacy, MNR Higher Education and Research Academy Campus, MNR Nagar, Sangareddy 502294, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Rashi Srivastava
- Department of Chemical & Biochemical Engineering, Indian Institute of Technology,Patna, 800013 India
| | - Rahul Deka
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Pingal Pritam
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Neha Gupta
- School of Studies in Biotechnology, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Harishankar Shyam
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Indrakant K Singh
- Molecular Biology Research Lab., Department of Zoology, Deshbandhu College & Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi 110019, India
| | | | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal 700 032, India
| | - Niraj Kumar Jha
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain
| |
Collapse
|
27
|
Zehra, Hussain A, AlAjmi MF, Ishrat R, Hassan MI. Enriching Anticancer Drug Pipeline with Potential Inhibitors of Cyclin-Dependent Kinase-8 Identified from Natural Products. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:478-488. [PMID: 39149808 DOI: 10.1089/omi.2024.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Cyclin-dependent kinase 8 (CDK8) is highly expressed in various cancers and common complex human diseases, and an important therapeutic target for drug discovery and development. The CDK8 inhibitors are actively sought after, especially among natural products. We performed a virtual screening using the ZINC library comprising approximately 90,000 natural compounds. We applied Lipinski's rule of five, absorption, distribution, metabolism, excretion, and toxicity properties, and pan-assay interference compounds filter to eliminate promiscuous binders. Subsequently, the filtered compounds underwent molecular docking to predict their binding affinity and interactions with the CDK8 protein. Interaction analysis were carried out to elucidate the interaction mechanism of the screened hits with binding pockets of the CDK8. The ZINC02152165, ZINC04236005, and ZINC02134595 were selected with appreciable specificity and affinity with CDK8. An all-atom molecular dynamic (MD) simulation followed by essential dynamics was performed for 200 ns. Taken together, the results suggest that ZINC02152165, ZINC04236005, and ZINC02134595 can be harnessed as potential leads in therapeutic development. Moreover, the binding of the molecules brings change in protein conformation in a way that blocks the ATP-binding site of the protein, obstructing its kinase activity. These new findings from natural products offer insights into the molecular mechanisms underlying CDK8 inhibition. CDK8 was previously associated with behavioral and neurological diseases such as autism spectrum disorder, and cancers, for example, colorectal, prostate, breast, and acute myeloid leukemia. Hence, we call for further research and experimental validation, and with an eye to inform future clinical drug discovery and development in these therapeutic fields.
Collapse
Affiliation(s)
- Zehra
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
28
|
Ahadi HM, Fardhan FM, Rahayu D, Pratiwi R, Hasanah AN. Molecularly Imprinted Microspheres in Active Compound Separation from Natural Product. Molecules 2024; 29:4043. [PMID: 39274891 PMCID: PMC11396677 DOI: 10.3390/molecules29174043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Molecularly Imprinted Microspheres (MIMs) or Microsphere Molecularly Imprinted Polymers represent an innovative design for the selective extraction of active compounds from natural products, showcasing effectiveness and cost-efficiency. MIMs, crosslinked polymers with specific binding sites for template molecules, overcome irregularities observed in traditional Molecularly Imprinted Polymers (MIPs). Their adaptability to the shape and size of target molecules allows for the capture of compounds from complex mixtures. This review article delves into exploring the potential practical applications of MIMs, particularly in the extraction of active compounds from natural products. Additionally, it provides insights into the broader development of MIM technology for the purification of active compounds. The synthesis of MIMs encompasses various methods, including precipitation polymerization, suspension polymerization, Pickering emulsion polymerization, and Controlled/Living Radical Precipitation Polymerization. These methods enable the formation of MIPs with controlled particle sizes suitable for diverse analytical applications. Control over the template-to-monomer ratio, solvent type, reaction temperature, and polymerization time is crucial to ensure the successful synthesis of MIPs effective in isolating active compounds from natural products. MIMs have been utilized to isolate various active compounds from natural products, such as aristolochic acids from Aristolochia manshuriensis and flavonoids from Rhododendron species, among others. Based on the review, suspension polymerization deposition, which is one of the techniques used in creating MIPs, can be classified under the MIM method. This is due to its ability to produce polymers that are more homogeneous and exhibit better selectivity compared to traditional MIP techniques. Additionally, this method can achieve recovery rates ranging from 94.91% to 113.53% and purities between 86.3% and 122%. The suspension polymerization process is relatively straightforward, allowing for the effective control of viscosity and temperature. Moreover, it is cost-effective as it utilizes water as the solvent.
Collapse
Affiliation(s)
- Husna Muharram Ahadi
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Firghi Muhammad Fardhan
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Driyanti Rahayu
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Rimadani Pratiwi
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Aliya Nur Hasanah
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
- Drug Development Study Center, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| |
Collapse
|
29
|
Sun J, Lai W, Zhao J, Xue J, Zhu T, Xiao M, Man T, Wan Y, Pei H, Li L. Rapid Identification of Drug Mechanisms with Deep Learning-Based Multichannel Surface-Enhanced Raman Spectroscopy. ACS Sens 2024; 9:4227-4235. [PMID: 39138903 DOI: 10.1021/acssensors.4c01205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Rapid identification of drug mechanisms is vital to the development and effective use of chemotherapeutics. Herein, we develop a multichannel surface-enhanced Raman scattering (SERS) sensor array and apply deep learning approaches to realize the rapid identification of the mechanisms of various chemotherapeutic drugs. By implementing a series of self-assembled monolayers (SAMs) with varied molecular characteristics to promote heterogeneous physicochemical interactions at the interfaces, the sensor can generate diversified SERS signatures for directly high-dimensionality fingerprinting drug-induced molecular changes in cells. We further train the convolutional neural network model on the multidimensional SAM-modulated SERS data set and achieve a discriminatory accuracy toward 99%. We expect that such a platform will contribute to expanding the toolbox for drug screening and characterization and facilitate the drug development process.
Collapse
Affiliation(s)
- Jiajia Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, P. R. China
| | - Jiayan Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Jinhong Xue
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tong Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
30
|
Medina D, Omanakuttan B, Nguyen R, Alwarsh E, Walgama C. Electrochemical Probing of Human Liver Subcellular S9 Fractions for Drug Metabolite Synthesis. Metabolites 2024; 14:429. [PMID: 39195525 DOI: 10.3390/metabo14080429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Human liver subcellular fractions, including liver microsomes (HLM), liver cytosol fractions, and S9 fractions, are extensively utilized in in vitro assays to predict liver metabolism. The S9 fractions are supernatants of human liver homogenates that contain both microsomes and cytosol, which include most cytochrome P450 (CYP) enzymes and soluble phase II enzymes such as glucuronosyltransferases and sulfotransferases. This study reports on the direct electrochemistry and biocatalytic features of redox-active enzymes in S9 fractions for the first time. We investigated the electrochemical properties of S9 films by immobilizing them onto a high-purity graphite (HPG) electrode and performing cyclic voltammetry under anaerobic (Ar-saturated) and aerobic (O2-saturated) conditions. The heterogeneous electron transfer rate between the S9 film and the HPG electrode was found to be 14 ± 3 s-1, with a formal potential of -0.451 V vs. Ag/AgCl reference electrode, which confirmed the electrochemical activation of the FAD/FMN cofactor containing CYP450-reductase (CPR) as the electron receiver from the electrode. The S9 films have also demonstrated catalytic oxygen reduction under aerobic conditions, identical to HLM films attached to similar electrodes. Additionally, we investigated CYP activity in the S9 biofilm for phase I metabolism using diclofenac hydroxylation as a probe reaction and identified metabolic products using liquid chromatography-mass spectrometry (LC-MS). Investigating the feasibility of utilizing liver S9 fractions in such electrochemical assays offers significant advantages for pharmacological and toxicological evaluations of new drugs in development while providing valuable insights for the development of efficient biosensor and bioreactor platforms.
Collapse
Affiliation(s)
- Daphne Medina
- Department of Physical & Applied Sciences, University of Houston-Clear Lake, 2700 Bay Area Boulevard, Houston, TX 77058, USA
| | - Bhavana Omanakuttan
- Department of Physical & Applied Sciences, University of Houston-Clear Lake, 2700 Bay Area Boulevard, Houston, TX 77058, USA
| | - Ricky Nguyen
- Department of Physical & Applied Sciences, University of Houston-Clear Lake, 2700 Bay Area Boulevard, Houston, TX 77058, USA
| | - Eman Alwarsh
- Department of Physical & Applied Sciences, University of Houston-Clear Lake, 2700 Bay Area Boulevard, Houston, TX 77058, USA
| | - Charuksha Walgama
- Department of Physical & Applied Sciences, University of Houston-Clear Lake, 2700 Bay Area Boulevard, Houston, TX 77058, USA
| |
Collapse
|
31
|
Hu R, Teng X, Li Y. Unleashing plant synthetic capacity: navigating regulatory mechanisms for enhanced bioproduction and secondary metabolite discovery. Curr Opin Biotechnol 2024; 88:103148. [PMID: 38843577 PMCID: PMC11531776 DOI: 10.1016/j.copbio.2024.103148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/21/2024] [Accepted: 05/12/2024] [Indexed: 08/11/2024]
Abstract
Plant natural products (PNPs) hold significant pharmaceutical importance. The sessile nature of plants has led to the evolution of chemical defense mechanisms over millions of years to combat environmental challenges, making it a crucial and essential defense weapon. Despite their importance, the abundance of these bioactive molecules in plants is typically low, and conventional methods are time-consuming for enhancing production. Moreover, there is a pressing need for novel drug leads, exemplified by the shortage of antibiotics and anticancer drugs. Understanding how plants respond to stress and regulate metabolism to produce these molecules presents an opportunity to explore new avenues for discovering compounds that are typically under the detection limit or not naturally produced. Additionally, this knowledge can contribute to the advancement of plant engineering, enabling the development of new chassis for the biomanufacturing of these valuable molecules. In this perspective, we explore the intricate regulation of PNP biosynthesis in plants, and discuss the biotechnology strategies that have been and can be utilized for the discovery and production enhancement of PNPs in plants.
Collapse
Affiliation(s)
- Rongbin Hu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| | - Xiaoxuan Teng
- Program of Chemical Engineering, Department of Nanongineering, University of California, San Diego, CA 92093, USA
| | - Yanran Li
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
32
|
Hassan AHE, Choi Y, Kim R, Kim HJ, Almatary AM, El-Sayed SM, Lee Y, Lee JK, Park KD, Lee YS. Synthesis and biological evaluation of O 4'-benzyl-hispidol derivatives and analogs as dual monoamine oxidase-B inhibitors and anti-neuroinflammatory agents. Bioorg Med Chem 2024; 110:117826. [PMID: 39004050 DOI: 10.1016/j.bmc.2024.117826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Design, synthesis, and biological evaluation of two series of O4'-benzyl-hispidol derivatives and the analogous corresponding O3'-benzyl derivatives aiming to develop selective monoamine oxidase-B inhibitors endowed with anti-neuroinflammatory activity is reported herein. The first O4'-benzyl-hispidol derivatives series afforded several more potentially active and MAO-B inhibitors than the O3'-benzyl derivatives series. The most potential compound 2e of O4'-benzyl derivatives elicited sub-micromolar MAO-B IC50 of 0.38 µM with a selectivity index >264 whereas most potential compound 3b of O3'-benzyl derivatives showed only 0.95 MAO-B IC50 and a selectivity index >105. Advancement of the most active compounds showing sub-micromolar activities to further cellular evaluations of viability and induced production of pro-neuroinflammatory mediators confirmed compound 2e as a potential lead compound inhibiting the production of the neuroinflammatory mediator nitric oxide significantly by microglial BV2 cells at 3 µM concentration without significant cytotoxicity up to 30 µM. In silico molecular docking study predicted plausible binding modes with MAO enzymes and provided insights at the molecular level. Overall, this report presents compound 2e as a potential lead compound to develop potential multifunctional compounds.
Collapse
Affiliation(s)
- Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Yeonwoo Choi
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Rium Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyeon Jeong Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Aya M Almatary
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura National University, Gamasa 7731168, Egypt
| | - Yeongae Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ki Duk Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
33
|
Zehra, Anjum F, Jawaid T, Ishrat R, Hassan MI. Investigating the inhibitory potential of natural bioactive compounds against cyclin-dependent kinase 13: virtual high throughput screening and MD simulation studies to target CDK signaling. J Recept Signal Transduct Res 2024; 44:140-150. [PMID: 39579004 DOI: 10.1080/10799893.2024.2430495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Cyclin-dependent kinase 13 (CDK13) belongs to the cyclin-dependent kinase (CDK) family that is actively involved in transcription regulation and RNA splicing. CDK13 binds with its partner, cyclin K, to regulate several biological processes. CDK13 and cyclin K complex phosphorylates RNA pol II carboxyl-terminal domain (CTD) at several serine residues, creating transcription elongation. The upregulation of the kinase contributes to tumor growth and cell proliferation, and is highly associated with various cancers, including skin, stomach, and ovarian. Thus, it can be considered an efficient therapeutic target for the development of drugs against cancer. In this work, a virtual high throughput screening (vHTS) of the ZINC library was carried out to elucidate the initial potent compounds. Further, filters were applied to identify the hit compounds among the ∼90,000 compound library. Based on the docking scores and binding affinity, the top 100 hits were elucidated, and they were further narrowed down to 50 compounds based on ADMET and Lipinski's RO5 filter. Finally, 10 compounds were chosen that showed appreciable biological activity. Among them, ZINC02136558 was selected as a potent lead compound that showed strong interaction with the amino acid residues of active and binding sites of CDK13. Furthermore, the all-atom molecular dynamic simulation was performed at 200 ns to explore the dynamic evolution of the system. Finally, the results showed that the ZINC02136558 may be considered as a potential lead molecule to inhibit CDK13 and implicated in therapeutic management of cancer and associated diseases.
Collapse
Affiliation(s)
- Zehra
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
34
|
Tabassum F, Islam SN, Tuz-Zohora F, Hasan CM, Rahman KM, Ahsan M. Isolation of a new iso-quinoline alkaloid and cytotoxicity studies of pure compounds and crude extracts of Ravenia spectabilis engl. Heliyon 2024; 10:e34508. [PMID: 39113993 PMCID: PMC11305309 DOI: 10.1016/j.heliyon.2024.e34508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
A new 2-quinolone alkaloid, iso-oligophyline (1), and two very unusual C34 terpenoids, proposed names ravespanol (2) and ravespanone (3), along with two known compounds, β-sitosterol (4), and methyl linoleate (5), were isolated from the leaf extract of Ravenia spectabilis engl. Methyl linoleate constitutes the first report of isolation from this species. We have already reported the isolation of atanine (6), oligophyline (7), ravenoline (8), and arborinine (9) from the plant. Based on nuclear magnetic resonance (NMR) spectroscopy and mass spectrometric analysis, the structure of the isolated chemicals was determined. The crude fractions and four compounds (6,7,8 and 9) were evaluated for a cytotoxicity study on a panel of six human stomach cancer cell lines (SCL, SCL-6, SCL-37'6, SCL-9, K-3, N21) by MTT assay. Among the plant extracts and isolated compounds, petroleum ether fraction and compound 7 exhibited the highest cytotoxic activity against SCL and SCL-6 cells, where the IC50 values were 17.9 and 16.56 μM, respectively.
Collapse
Affiliation(s)
- Fatema Tabassum
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
- Department of Pharmacy, Stamford University Bangladesh, 51 Siddheswari Rd, Dhaka, 1217, Bangladesh
| | - Sheikh Nazrul Islam
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Fatema Tuz-Zohora
- University of Asia Pacific, Department of Pharmacy, 74/A, Green Road, Dhaka, 1205, Bangladesh
| | | | - Khondaker Miraz Rahman
- School of Cancer and Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Monira Ahsan
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
35
|
Hieu NV, Vinh LB, Phong NV, Cong PV, Dat NT, Dan NV, Duc NV, Tao HM, Tam LT, Anh LT, Cuong NC, Tai BH, Yang SY, Tuan Anh HL. Two New Steroidal Saponins with Potential Anti-Inflammatory Effects from the Aerial Parts of Gnetum formosum Markgr. PLANTS (BASEL, SWITZERLAND) 2024; 13:2100. [PMID: 39124219 PMCID: PMC11314289 DOI: 10.3390/plants13152100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Gnetum formosum Markgr., a member of the Gnetaceae family, is distributed in Vietnam. This plant remains a botanical enigma with an unexplored diversity of chemical constituents and pharmacological effects. In this study, two new steroidal saponins, namely gnetumosides A (1) and B (2), were isolated from the aerial parts of G. formosum. Their chemical structures were elucidated using spectroscopic techniques, including high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and NMR, along with chemical hydrolysis and comparison with the reported literature. The potential anti-inflammatory effects of the isolated compounds were evaluated by measuring lipopolysaccharide-stimulated nitric oxide (NO) production in murine macrophage cells. Notably, compound 1 exhibited the most potent inhibitory activity (IC50 = 14.10 ± 0.75 µM), comparable to dexamethasone. Additionally, the mechanisms underlying the observed anti-inflammatory effects were investigated through molecular docking and molecular dynamics simulations on inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins. This study is the first to investigate the chemical constituents and pharmacological effects of G. formosum.
Collapse
Affiliation(s)
- Ngo Van Hieu
- Center for High Technology Research and Development, Vietnam Academy of Science and Technology (VAST), Hanoi 10072, Vietnam; (N.V.H.); (P.V.C.); (N.T.D.); (N.V.D.); (N.V.D.); (H.M.T.); (L.T.T.)
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi 10072, Vietnam
| | - Le Ba Vinh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi 10072, Vietnam; (L.B.V.); (N.V.P.); (B.H.T.)
| | - Nguyen Viet Phong
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi 10072, Vietnam; (L.B.V.); (N.V.P.); (B.H.T.)
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Pham Van Cong
- Center for High Technology Research and Development, Vietnam Academy of Science and Technology (VAST), Hanoi 10072, Vietnam; (N.V.H.); (P.V.C.); (N.T.D.); (N.V.D.); (N.V.D.); (H.M.T.); (L.T.T.)
| | - Nguyen Tien Dat
- Center for High Technology Research and Development, Vietnam Academy of Science and Technology (VAST), Hanoi 10072, Vietnam; (N.V.H.); (P.V.C.); (N.T.D.); (N.V.D.); (N.V.D.); (H.M.T.); (L.T.T.)
| | - Nguyen Van Dan
- Center for High Technology Research and Development, Vietnam Academy of Science and Technology (VAST), Hanoi 10072, Vietnam; (N.V.H.); (P.V.C.); (N.T.D.); (N.V.D.); (N.V.D.); (H.M.T.); (L.T.T.)
| | - Ngo Viet Duc
- Center for High Technology Research and Development, Vietnam Academy of Science and Technology (VAST), Hanoi 10072, Vietnam; (N.V.H.); (P.V.C.); (N.T.D.); (N.V.D.); (N.V.D.); (H.M.T.); (L.T.T.)
| | - Hoang Minh Tao
- Center for High Technology Research and Development, Vietnam Academy of Science and Technology (VAST), Hanoi 10072, Vietnam; (N.V.H.); (P.V.C.); (N.T.D.); (N.V.D.); (N.V.D.); (H.M.T.); (L.T.T.)
| | - Le Thi Tam
- Center for High Technology Research and Development, Vietnam Academy of Science and Technology (VAST), Hanoi 10072, Vietnam; (N.V.H.); (P.V.C.); (N.T.D.); (N.V.D.); (N.V.D.); (H.M.T.); (L.T.T.)
| | - Le Tuan Anh
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), Hanoi 10072, Vietnam;
| | - Nguyen Cao Cuong
- Faculty of Medicine and Pharmacy, Yersin University, Da Lat 66100, Vietnam;
| | - Bui Huu Tai
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi 10072, Vietnam; (L.B.V.); (N.V.P.); (B.H.T.)
| | - Seo Young Yang
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hoang Le Tuan Anh
- Center for High Technology Research and Development, Vietnam Academy of Science and Technology (VAST), Hanoi 10072, Vietnam; (N.V.H.); (P.V.C.); (N.T.D.); (N.V.D.); (N.V.D.); (H.M.T.); (L.T.T.)
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi 10072, Vietnam
| |
Collapse
|
36
|
Sabale P, Sayyad N, Ali A, Sabale V, Kaleem M, Asar TO, Ali A, Mujtaba MA, Anwer MK. Design, synthesis, molecular docking and in vitro anticancer activities of 1-(4-(benzamido)phenyl)-3-arylurea derivatives. RSC Adv 2024; 14:23785-23795. [PMID: 39077323 PMCID: PMC11284930 DOI: 10.1039/d4ra02882a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
In both premenopausal and postmenopausal women, oestrogens play a critical role in the development of breast cancer. Aromatase is an enzyme that catalyses the final step in the biosynthesis of estrogen and has emerged as a promising target for therapeutic intervention. This study aimed to design and evaluate novel 1-(4-(benzamido)phenyl)-3-arylurea derivatives as potential aromatase inhibitors. Through molecular docking, promising leads were identified and synthesized. Spectroscopic techniques confirmed their structural integrity. Cytotoxicity against various cancer cell lines was assessed using MTT assay. Docking investigations against the aromatase enzyme (3s7s) elucidated binding interactions and energies. Compound 6g, exhibiting a binding energy of -8.6 kcal mol-1 and interacting with ALA306 and THR310 residues, showed the most promising activity. It demonstrated GI50 values ranging from 14.46 μM, 13.97 μM, 11.35 μM, 11.58 μM, and 15.77 μM against A-498, NCI-H23, MDAMB-231, MCF-7, and A-549 respectively. Lastly, the physicochemical, and ADMET properties of the compound were predicted. These findings highlight the potential of 1-(4-(benzamido)phenyl)-3-arylureas as a new class of antitumor agents targeting aromatase. Their versatility and superior activity compared to standard chemotherapeutic agents, like doxorubicin, warrant further investigation for the development of broader-spectrum anticancer drugs.
Collapse
Affiliation(s)
- Prafulla Sabale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Mahatma Jyotiba Fuley Shaikshanik Parisar Nagpur-440033 India +919158537050
| | - Nusrat Sayyad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Mahatma Jyotiba Fuley Shaikshanik Parisar Nagpur-440033 India +919158537050
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Vidya Sabale
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University Nagpur Maharashtra 440037 India
| | - Mohammed Kaleem
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University Nagpur Maharashtra 440037 India
| | - Turky Omar Asar
- Department of Biology, College of Science and Arts at Alkamil, University of Jeddah Saudi Arabia
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Md Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University Arar Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University P.O. Box 173 Al-Kharj 11942 Saudi Arabia
| |
Collapse
|
37
|
Zhang C, Singla RK, Tang M, Shen B. Natural products act as game-changer potentially in treatment and management of sepsis-mediated inflammation: A clinical perspective. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155710. [PMID: 38759311 DOI: 10.1016/j.phymed.2024.155710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Sepsis, a life-threatening condition resulting from uncontrolled host responses to infection, poses a global health challenge with limited therapeutic options. Due to high heterogeneity, sepsis lacks specific therapeutic drugs. Additionally, there remains a significant gap in the clinical management of sepsis regarding personalized and precise medicine. PURPOSE This review critically examines the scientific landscape surrounding natural products in sepsis and sepsis-mediated inflammation, highlighting their clinical potential. METHODS Following the PRISMA guidelines, we retrieved articles from PubMed to explore potential natural products with therapeutic effects in sepsis-mediated inflammation. RESULTS 434 relevant in vitro and in vivo studies were identified and screened. Ultimately, 55 studies were obtained as the supporting resources for the present review. We divided the 55 natural products into three categories: those influencing the synthesis of inflammatory factors, those affecting surface receptors and modulatory factors, and those influencing signaling pathways and the inflammatory cascade. CONCLUSION Natural products' potential as game-changers in sepsis-mediated inflammation management lies in their ability to modulate hallmarks in sepsis, including inflammation, immunity, and coagulopathy, which provides new therapeutic avenues that are readily accessible and capable of undergoing rapid clinical validation and deployment, offering a gift from nature to humanity. Innovative techniques like bioinformatics, metabolomics, and systems biology offer promising solutions to overcome these obstacles and facilitate the development of natural product-based therapeutics, holding promise for personalized and precise sepsis management and improving patient outcomes. However, standardization, bioavailability, and safety challenges arise during experimental validation and clinical trials of natural products.
Collapse
Affiliation(s)
- Chi Zhang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Min Tang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China; West China School of Nursing, Sichuan University, Chengdu, PR China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China.
| |
Collapse
|
38
|
Giugliano R, Ferraro V, Chianese A, Della Marca R, Zannella C, Galdiero F, Fasciana TMA, Giammanco A, Salerno A, Cannillo J, Rotondo NP, Lentini G, Cavalluzzi MM, De Filippis A, Galdiero M. Antiviral Properties of Moringa oleifera Leaf Extracts against Respiratory Viruses. Viruses 2024; 16:1199. [PMID: 39205173 PMCID: PMC11359668 DOI: 10.3390/v16081199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Moringa oleifera (M. oleifera) is a plant widely used for its beneficial properties both in medical and non-medical fields. Because they produce bioactive metabolites, plants are a major resource for drug discovery. In this study, two different cultivars of leaves of M. oleifera (Salento and Barletta) were obtained by maceration or microwave-assisted extraction (MAE). We demonstrated that extracts obtained by MAE exhibited a lower cytotoxic profile compared to those obtained by maceration at concentrations ranged from 25 to 400 µg/mL, on both Vero CCL-81 and Vero/SLAM cells. We examined their antiviral properties against two viruses, i.e., the human coronavirus 229E (HCoV-229E) and measles virus (MeV), which are both responsible for respiratory infections. The extracts were able to inhibit the infection of both viruses and strongly prevented their attack and entry into the cells in a range of concentrations from 50 to 12 µg/mL. Particularly active was the variety of Salento that registered a 50% inhibitory concentration (IC50) at 21 µg/mL for HCoV-229E and at 6 µg/mL for MeV. We identified the presence of several compounds through high performance liquid chromatography (HPLC); in particular, chlorogenic and neochlorogenic acids, quercetin 3-O-β-d-glucopyranoside (QGP), and glucomoringin (GM) were mainly observed. In the end, M. oleifera can be considered a promising candidate for combating viral infections with a very strong action in the early stages of viral life cycle, probably by destructuring the viral particles blocking the virus-cell fusion.
Collapse
Affiliation(s)
- Rosa Giugliano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Valeria Ferraro
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Roberta Della Marca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Francesca Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Teresa M. A. Fasciana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (T.M.A.F.); (A.G.)
| | - Anna Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (T.M.A.F.); (A.G.)
| | - Antonio Salerno
- Forza Vitale, Via Castel del Monte, 194/C, 70033 Corato, Italy; (A.S.); (J.C.)
| | - Joseph Cannillo
- Forza Vitale, Via Castel del Monte, 194/C, 70033 Corato, Italy; (A.S.); (J.C.)
| | - Natalie Paola Rotondo
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Giovanni Lentini
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| |
Collapse
|
39
|
Hanessian S. My 50-Plus Years of Academic Research Collaborations with Industry. A Retrospective. J Org Chem 2024; 89:9147-9186. [PMID: 38865159 DOI: 10.1021/acs.joc.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
A retrospective is presented highlighting the synthesis of selected "first-in-kind" natural products, their synthetic analogues, structure elucidations, and rationally designed bioactive synthetic compounds that were accomplished because of collaborations with past and present pharmaceutical and agrochemical companies. Medicinal chemistry projects involving structure-based design exploiting cocrystal structures of small molecules with biologically relevant enzymes, receptors, and bacterial ribosomes with synthetic small molecules leading to marketed products, clinical candidates, and novel drug prototypes were realized in collaboration. Personal reflections, historical insights, behind the scenes stories from various long-term projects are shared in this retrospective article.
Collapse
Affiliation(s)
- Stephen Hanessian
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7
- Department of Pharmaceutical Sciences, University of California, Irvine, California 91266, United States
| |
Collapse
|
40
|
Dang J, Tong Y, Wang Q, Li G, Abd El-Aty AM. Innovative orthogonal two-dimensional reversed-phase liquid chromatography × supercritical fluid chromatography with a phenyl/tetrazole stationary phase for the preparative isolation of diarylheptanoids. J Chromatogr A 2024; 1726:464950. [PMID: 38704964 DOI: 10.1016/j.chroma.2024.464950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
In this investigation, we successfully isolated and purified natural diarylheptanoids using an orthogonal offline two-dimensional RPLC × SFC approach, employing only the phenyl/tetrazole stationary phase. First, a styrene-divinylbenzene matrix medium pretreatment liquid chromatography system effectively processed chlorophyll-containing plant extract solution with a recovery rate of 33.8 %, obviating the need for concentration steps. Subsequently, an offline two-dimensional RPLC × SFC employing only the phenyl/tetrazole stationary phase achieved a remarkable 96.38 % orthogonality and was established and utilized in the preparative separation and purification of natural products. Finally, the constructed single stationary phase highly orthogonal RPLC × SFC system was successfully applied in the preparative separation and purification of natural diarylheptanoids from the Saxifraga tangutica target fraction and yielded four diarylheptanoids with purities exceeding 95 %.
Collapse
Affiliation(s)
- Jun Dang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.
| | - Yingying Tong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Qilan Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Gang Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
| |
Collapse
|
41
|
Gyuzeleva D, Batsalova T, Dzhambazov B, Teneva I, Mladenova T, Mladenov R, Stoyanov P, Todorov K, Moten D, Apostolova D, Bivolarska A. Assessment of the biological activity of Marrubium friwaldskyanum Boiss. ( Lamiaceae). Heliyon 2024; 10:e32599. [PMID: 38961917 PMCID: PMC11219964 DOI: 10.1016/j.heliyon.2024.e32599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Present scientific evidences about the biological activity and potential medical application of extracts derived from Marrubium friwaldskyanum Boiss. are limited. Therefore, our study was undertaken to define several main characteristics in this regard - in vitro cytotoxicity and antitumor properties, antibacterial activity and immunomodulatory potential. Extracts were obtained from different aerial parts of Marrubium friwaldskyanum - stems, leaves and flowers. The in vitro cytotoxicity and antitumor activity of the samples were evaluated by tetrazolium salt reduction tests and Neutral red uptake assays using four human cell lines (a normal fibroblastic and three adenocarcinoma cell lines/A549, HeLa, HT-29/) and by experiments with HT-29 tumor spheroids. Antibacterial activity toward Gram-negative (Escherichia coli) and Gram-positive (Bacillus cereus) species was assessed based on estimation of minimal inhibitory and minimal bactericidal concentrations as well as longitudinal studies on bacterial viability. Ex vivo assays with normal leukocytes were performed to define potential immunomodulatory activity of the extracts. Our results demonstrated selective antitumor activity of the extracts directed against colon adenocarcinoma HT-29 cells and cervical adenocarcinoma HeLa cell line. Metabolic activity of A549 lung adenocarcinoma cells was affected only by the sample derived from flowers. M. friwaldskyanum leaf and flower extracts showed the highest activity, which included reduction of HT-29 tumor spheroid growth and viability. The studied samples exhibited antibacterial activity against both bacterial species tested. Treatment with M. friwaldskyanum extracts affected specific leukocyte populations (HLA+, CD19+, CD11b+, CD25+ cells). These results demonstrate for the first time complex biological effects of extracts derived from M. friwaldskyanum and their potential to serve as a source of valuable compounds for the pharmaceutical industry.
Collapse
Affiliation(s)
- Donika Gyuzeleva
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 4000, Plovdiv, Bulgaria
| | - Tsvetelina Batsalova
- Department of Developmental Biology, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, Plovdiv, 4000, Bulgaria
| | - Balik Dzhambazov
- Department of Developmental Biology, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, Plovdiv, 4000, Bulgaria
| | - Ivanka Teneva
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 4000, Plovdiv, Bulgaria
| | - Tsvetelina Mladenova
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 4000, Plovdiv, Bulgaria
| | - Rumen Mladenov
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 4000, Plovdiv, Bulgaria
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002, Plovdiv, Bulgaria
| | - Plamen Stoyanov
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 4000, Plovdiv, Bulgaria
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002, Plovdiv, Bulgaria
| | - Krasimir Todorov
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 4000, Plovdiv, Bulgaria
| | - Dzhemal Moten
- Department of Developmental Biology, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, Plovdiv, 4000, Bulgaria
| | - Desislava Apostolova
- Department of Developmental Biology, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, Plovdiv, 4000, Bulgaria
| | - Anelia Bivolarska
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002, Plovdiv, Bulgaria
| |
Collapse
|
42
|
Li X, Yang X, Guo W, Li H, Sun W, Lin X, Ma Z, Li X, Liu Z. Natural products as inhibitors against pancreatic cancer cell proliferation and invasion: possible mechanisms. Am J Cancer Res 2024; 14:2695-2713. [PMID: 39005683 PMCID: PMC11236794 DOI: 10.62347/xlzx8935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/24/2024] [Indexed: 07/16/2024] Open
Abstract
Pancreatic cancer is one of the gastrointestinal tumors with the lowest survival rate and the worst prognosis. At the time of diagnosis, the majority of patients have missed the opportunity for radical surgical resection and opt for chemotherapy as their primary treatment choice. And drug resistance emerges during the application of the most widely used chemotherapeutic regimens such as modified FOLFIRINOX regimen, gemcitabine monotherapy or 5-Fluorouracil combination therapy, which further reduces the therapeutic efficacy. Therefore, it is urgent to explore better treatment strategies for pancreatic cancer. In recent years, more and more studies have found that natural products have significant anti-pancreatic cancer properties. In this paper, we reviewed the possible mechanisms by which natural products inhibit the proliferation and invasion of pancreatic cancer cells, including the possible mechanisms of targeting the inhibition of the growth and proliferation regulatory pathways of pancreatic cancer cells, inducing apoptosis and autophagy of pancreatic cancer cells, inhibiting the EMT process of pancreatic cancer cells, and inhibiting the angiogenesis of pancreatic cancer. Meanwhile, natural products have also hindered the progress of their basic and clinical research due to the complexity of their composition and the limitation of biological extraction technology. Further exploration of the specific molecular mechanisms of natural products to inhibit the proliferation and invasion of pancreatic cancer cells, optimization of purification and preparation techniques, and enrichment of basic and clinical trials to verify their efficacy and safety may be the future direction of natural products in the field of anti-pancreatic cancer research.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Hao Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Weiqing Sun
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Xingda Lin
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Zuoxin Ma
- Medical Laboratory, Liaoning Province Hospital Shenyang 110001, Liaoning, China
| | - Xuan Li
- Department of Orthopedics, Liaoning Province Hospital Shenyang 110001, Liaoning, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University Shenyang 110001, Liaoning, China
| |
Collapse
|
43
|
Gonçalves S, Monteiro M, Gaivão I, Matos RS. Preliminary Insights into the Antigenotoxic Potential of Lemon Essential Oil and Olive Oil in Human Peripheral Blood Mononuclear Cells. PLANTS (BASEL, SWITZERLAND) 2024; 13:1623. [PMID: 38931055 PMCID: PMC11207684 DOI: 10.3390/plants13121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Lemon essential oil, derived from Citrus limon, possesses diverse health-promoting properties, including antioxidant, antimicrobial, and mood-enhancing effects. Despite its traditional use in aromatherapy and complementary medicine, there is a need for comprehensive investigations into its therapeutic potential, particularly in mitigating DNA damage and supporting health in palliative care settings. This study aimed to evaluate the antigenotoxic effects of lemon essential oil in human peripheral blood mononuclear cells and to explore its potential applications in palliative care. Treatment with lemon essential oil significantly reduced DNA damage, with 1% w/v with 3.13% DNA in tail demonstrating greater efficacy. Furthermore, lemon essential oil attenuated streptonigrin-induced DNA damage, suggesting a potential protective effect against oxidative stress, especially at 3% w/v, with 11.81% DNA in tail. Compared to olive oil treatment, the DNA damage was significantly lower with streptonigrin treatment alone, which had 47.06% DNA in tail, while the olive oil treatment resulted in 36.88% DNA in tail. These results can be attributed to the main constituents: limonene in lemon essential oil and oleic acid in olive oil. These results suggest a potential role in mitigating oxidative stress and supporting genomic stability. Further research is warranted to elucidate the mechanisms of action and clinical applications in palliative care.
Collapse
Affiliation(s)
- Sara Gonçalves
- Academic Clinical Center of Trás-os-Montes and Alto Douro—CACTMAD, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (S.G.); (R.S.M.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Centre for Animal Sciences and Veterinary Studies—CECAV, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Mafalda Monteiro
- Department of Genetics and Biotechnology, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Isabel Gaivão
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Centre for Animal Sciences and Veterinary Studies—CECAV, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Rita S. Matos
- Academic Clinical Center of Trás-os-Montes and Alto Douro—CACTMAD, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (S.G.); (R.S.M.)
- Local Health Unit of Trás-os-Montes and Alto Douro, 5050-275 Peso da Régua, Portugal
| |
Collapse
|
44
|
Chen J, Gao Y, Zhang Y, Wang M. Research progress in the treatment of inflammatory bowel disease with natural polysaccharides and related structure-activity relationships. Food Funct 2024; 15:5680-5702. [PMID: 38738935 DOI: 10.1039/d3fo04919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Inflammatory bowel disease (IBD) comprises a group of highly prevalent and chronic inflammatory intestinal tract diseases caused by multiple factors. Despite extensive research into the causes of the disease, IBD's pathogenic mechanisms remain unclear. Moreover, side effects of current IBD therapies restrict their long-term clinical use. In contrast, natural polysaccharides exert beneficial anti-IBD effects and offer advantages over current anti-IBD drugs, including enhanced safety and straightforward isolation from abundant and reliable sources, and thus may serve as components of functional foods and health products for use in IBD prevention and treatment. However, few reviews have explored natural polysaccharides with anti-IBD activities or the relationship between polysaccharide conformation and anti-IBD biological activity. Therefore, this review aims to summarize anti-IBD activities and potential clinical applications of polysaccharides isolated from plant, animal, microorganismal, and algal sources, while also exploring the relationship between polysaccharide conformation and anti-IBD bioactivity for the first time. Furthermore, potential mechanisms underlying polysaccharide anti-IBD effects are summarized, including intestinal microbiota modulation, intestinal inflammation alleviation, and intestinal barrier protection from IBD-induced damage. Ultimately, this review provides a theoretical foundation and valuable insights to guide the development of natural polysaccharide-containing functional foods and nutraceuticals for use as dietary IBD therapies.
Collapse
Affiliation(s)
- Jiaqi Chen
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanan Gao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanqiu Zhang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
45
|
Ahad Hossain M, Sultana S, Alanazi MM, Hadni H, Bhat AR, Hasan I, Kawsar SM. In vitro antimicrobial, anticancer evaluation, and in silico studies of mannopyranoside analogs against bacterial and fungal proteins: Acylation leads to improved antimicrobial activity. Saudi Pharm J 2024; 32:102093. [PMID: 38737807 PMCID: PMC11087236 DOI: 10.1016/j.jsps.2024.102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Carbohydrate analogs are an important, well-established class of clinically useful medicinal agents that exhibit potent antimicrobial activity. Thus, we explored the various therapeutic potential of methyl α-D-mannopyranoside (MαDM) analogs, including their ability to synthesize and assess their antibacterial, antifungal, and anticancer properties; additionally, molecular docking, molecular dynamics simulation, and ADMET analysis were performed. The structure of the synthesized MαDM analogs was ascertained by spectroscopic techniques and physicochemical and elemental analysis. In vitro antimicrobial activity was assessed and revealed significant inhibitory effects, particularly against gram-negative bacteria along with the prediction of activity spectra for substances (PASS). Concurrently, MαDM analogs showed good results against antifungal pathogens and exhibited promising anticancer effects in vitro, demonstrating dose-dependent cytotoxicity against Ehrlich ascites carcinoma (EAC) cancer cells while sparing normal cells from compound 5, with an IC50 of 4511.65 µg/mL according to the MTT colorimetric assay. A structure-activity relationship (SAR) study revealed that hexose combined with the acyl chains of decanoyl (C-10) and benzenesulfonyl (C6H5SO2-) had synergistic effects on the bacteria and fungi that were examined. Molecular docking was performed against the Escherichia coli (6KZV) and Candida albicans (1EAG) proteins to acquire insights into the molecular interactions underlying the observed biological activities. The docking results were further supported by 100 ns molecular dynamics simulations, which provided a dynamic view of the stability and flexibility of complexes involving MαDM and its targets. In addition, ADMET analysis was used to evaluate the toxicological and pharmacokinetic profiles. Owing to their promising drug-like properties, these MαDM analogs exhibit potential as prospective therapeutic candidates for future development.
Collapse
Affiliation(s)
- Md. Ahad Hossain
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Shahin Sultana
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hanine Hadni
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ajmal R. Bhat
- Department of Chemistry, RTM Nagpur University, Nagpur 440033, India
| | - Imtiaj Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Sarkar M.A. Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| |
Collapse
|
46
|
Mohamed Yusof NIS, Mohd Fauzi F. Nature's Toolbox for Alzheimer's Disease: A Review on the Potential of Natural Products as Alzheimer's Disease Drugs. Neurochem Int 2024; 176:105738. [PMID: 38616012 DOI: 10.1016/j.neuint.2024.105738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
Numerous clinical trials involving natural products have been conducted to observe cognitive performances and biomarkers in Alzheimer's Disease (AD) patients. However, to date, no natural-based drugs have been approved by the FDA as treatments for AD. In this review, natural product-based compounds that were tested in clinical trials from 2011 to 2023, registered at www.clinicaltrials.gov were reviewed. Thirteen compounds, encompassing 7 different mechanisms of action were covered. Several observations were deduced, which are: i) several compounds showed cognitive improvement, but these improvements may not extend to AD, ii) compounds that are endogenous to the human body showed better outcomes, and iii) Docosahexaenoic acid (DHA) and cerebrolysin had the most potential as AD drugs among the 13 compounds. Based on the current findings, natural products may be more suitable as a supplement than AD drugs in most cases. However, the studies covered here were conducted in a relatively short amount of time, where compounds acting on AD pathways may take time to show any effect. Given the diverse pathways that these natural products are involved in, they may potentially produce synergistic effects that would be beneficial in treating AD. Additionally, natural products benefit from both physicochemical properties being in more favorable ranges and active transport playing a more significant role than it does for synthetic compounds.
Collapse
Affiliation(s)
| | - Fazlin Mohd Fauzi
- Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42 300 Bandar Puncak Alam, Selangor, Malaysia; Center for Drug Discovery Research, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42 300 Bandar Puncak Alam, Selangor, Malaysia.
| |
Collapse
|
47
|
Zar Kalai F, Oueslati S, Dakhlaoui S, Hammami M, Msaada K, Ksouri R. Chemical profiling of maceration and decoction of Tamarix gallica L. organs and in vitro biological properties. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2517-2528. [PMID: 37702291 DOI: 10.1080/09603123.2023.2256679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Tamarix gallica L. is a halophytic medicinal shrub traditionally used in the treatment of liver disorders. Leaf and flower infusions are widely used for anti-diarrheic and anti-inflammatory preparations. In this work, we have explored the combined effect of method (Maceration and Decoction) and solvent extraction (70% Methanol, 70% Ethanol, 70% Acetone, and Water) on phenolic composition and biological activities (antioxidant and anti-inflammatory) of different T. gallica organ extracts (Leaves, Flowers, Stems, and Fruits). Obtained results showed that Tamarix leaves reveal more potent antioxidant activity. Methanol (70%) was the best maceration solvent for the extraction of leaves and flowers with high total antioxidant and anti-radical capacities. HPLC analysis showed that catechin, isorhamnetin-3-O-glucoside, isoquercetin were the major phenolics in 70% methanolic extract. Furthermore, this extract showed considerable anti-inflammatory activity. This prospect could be of great importance in the valuation of this halophyte as a source of natural antioxidants and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Feten Zar Kalai
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Hammam-Lif, Tunisia
| | - Samia Oueslati
- Laboratory of Extremophile plants, Center of Biotechnology, Hammam-Lif, Tunisia
| | - Sarra Dakhlaoui
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Hammam-Lif, Tunisia
| | - Majdi Hammami
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Hammam-Lif, Tunisia
| | - Kamel Msaada
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Hammam-Lif, Tunisia
| | - Riadh Ksouri
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Hammam-Lif, Tunisia
| |
Collapse
|
48
|
Bhuia MS, Chowdhury R, Ara I, Mamun M, Rouf R, Khan MA, Uddin SJ, Shakil MAK, Habtemariam S, Ferdous J, Calina D, Sharifi-Rad J, Islam MT. Bioactivities of morroniside: A comprehensive review of pharmacological properties and molecular mechanisms. Fitoterapia 2024; 175:105896. [PMID: 38471574 DOI: 10.1016/j.fitote.2024.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Morroniside (MOR) is an iridoid glycoside and the main active principle of the medicinal plant, Cornus officinalis Sieb. This phytochemical is associated with numerous health benefits due to its antioxidant properties. The primary objective of the present study was to assess the pharmacological effects and underlying mechanisms of MOR, utilizing published data obtained from literature databases. Data collection involved accessing various sources, including PubMed/Medline, Scopus, Science Direct, Google Scholar, Web of Science, and SpringerLink. Our findings demonstrate that MOR can be utilized for the treatment of several diseases and disorders, as numerous studies have revealed its significant therapeutic activities. These activities encompass anti-inflammatory, antidiabetic, lipid-lowering capability, anticancer, trichogenic, hepatoprotective, gastroprotective, osteoprotective, renoprotective, and cardioprotective effects. MOR has also shown promising benefits against various neurological ailments, including Alzheimer's disease, Parkinson's disease, spinal cord injury, cerebral ischemia, and neuropathic pain. Considering these therapeutic features, MOR holds promise as a lead compound for the treatment of various ailments and disorders. However, further comprehensive preclinical and clinical trials are required to establish MOR as an effective and reliable therapeutic agent.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Iffat Ara
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Mamun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Muahmmad Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | - Md Abdul Kader Shakil
- Research Center, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
49
|
Kaur H, Taneja N. Identification of Inhibitors for Flagellar Assembly Protein FliN of Uropathogenic Escherichia coli using Virtual Screening and Molecular Dynamics Simulation Study. Indian J Microbiol 2024; 64:683-693. [PMID: 39011002 PMCID: PMC11246409 DOI: 10.1007/s12088-024-01252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 07/17/2024] Open
Abstract
Escherichia coli (E. coli) is a gram-negative bacterial pathogen that poses a significant clinical and epidemiologic challenge. The selection pressure brought by the insufficient use of antibiotics has resulted in the emergence of multi-drug-resistant E. coli in the past ten years. Computational and bioinformatics methods for screening inhibitors have significantly contributed to discovering novel antibacterial agents. One possible target for novel anti-virulence drugs is motility. Motility inhibitors are generally effective at concentrations lower than those required for the antibacterial properties of traditional antibiotics, and they are likely to exert less selective pressure than current medicines. Motility may be essential for bacteria to survive, find nutrients, and escape unfavorable environments and biofilm formation. The FliN is a protein forming the bulk of the C ring of the flagella and is present in multiple copies (more than 100) in bacteria. Its absence in mammals makes it an attractive drug target for drug discovery. Two-thousand seven hundred seventy-eight natural compounds from the ZINC library were screened against FliN (PDB ID: 4YXB) using PyRx AutoDock Vina, and the top compounds were selected for secondary screening after sorting the results based on their binding energy. Based on interactional analysis, binding energy (- 7.78 kcal/mol), and inhibition constant (1.98 µM), ZINC000000619481 was the best inhibitor. This compound binds exactly as per the defined active site residues of the receptor protein. Also, molecular dynamics was performed. The eigenvalue of the selected complex was 1.241657e-05. There were no ADME properties outside of the specified range for the identified hit; it fitted exactly to the binding site of the FliN receptor well and was found to be stable in MD simulation studies. Further in vitro and in vivo studies are needed to confirm its anti-bacterial activity and use as a potential antimicrobial drug against urinary tract infections caused by E. coli.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012 India
| | - Neelam Taneja
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012 India
| |
Collapse
|
50
|
Gao C, Song XD, Chen FH, Wei GL, Guo CY. The protective effect of natural medicines in rheumatoid arthritis via inhibit angiogenesis. Front Pharmacol 2024; 15:1380098. [PMID: 38881875 PMCID: PMC11176484 DOI: 10.3389/fphar.2024.1380098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024] Open
Abstract
Rheumatoid arthritis is a chronic immunological disease leading to the progressive bone and joint destruction. Angiogenesis, accompanied by synovial hyperplasia and inflammation underlies joint destruction. Delaying or even blocking synovial angiogenesis has emerged as an important target of RA treatment. Natural medicines has a long history of treating RA, and numerous reports have suggested that natural medicines have a strong inhibitory activity on synovial angiogenesis, thereby improving the progression of RA. Natural medicines could regulate the following signaling pathways: HIF/VEGF/ANG, PI3K/Akt pathway, MAPKs pathway, NF-κB pathway, PPARγ pathway, JAK2/STAT3 pathway, etc., thereby inhibiting angiogenesis. Tripterygium wilfordii Hook. f. (TwHF), sinomenine, and total glucoside of Paeonia lactiflora Pall. Are currently the most representative of all natural products worthy of development and utilization. In this paper, the main factors affecting angiogenesis were discussed and different types of natural medicines that inhibit angiogenesis were systematically summarized. Their specific anti-angiogenesis mechanisms are also reviewed which aiming to provide new perspective and options for the management of RA by targeting angiogenesis.
Collapse
Affiliation(s)
- Chang Gao
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Xiao-Di Song
- Gannan Medical University, Jiangxi, Ganzhou, China
| | - Fang-Hui Chen
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Gui-Lin Wei
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Chun-Yu Guo
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| |
Collapse
|