1
|
Bahaa MM, Hegazy SK, Maher MM, Bahgat MM, El-Haggar SM. Pentoxifylline in patients with ulcerative colitis treated with mesalamine by modulation of IL-6/STAT3, ZO-1, and S1P pathways: a randomized controlled double-blinded study. Inflammopharmacology 2024; 32:3247-3258. [PMID: 39192162 DOI: 10.1007/s10787-024-01560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that lasts a long time and has a variety of causes. AIM The primary aim of this study was to evaluate pentoxifylline's (PTX) essential function in patients with UC. METHODS Fifty-two mild to moderate UC patients who matched the eligibility requirements participated in this clinical study. One gram of mesalamine (t.i.d.) and a placebo were administered to the mesalamine group (n = 26) for a duration of 24 weeks. Mesalamine 1 g t.i.d. and PTX 400 mg two times daily were administered to the PTX group (n = 26) for 24 weeks. A gastroenterologist investigated patients at the start and 6 months after the medication was given to assess disease activity index (DAI) and numeric pain rating scale (NRS). Also, interleukin-6 (IL-6), sphingosine 1 phosphate (S1P), tumor necrosis factor-alpha (TNF-α), and fecal myeloperoxidase (MPO) were measured before and after therapy. Zonula occuldin-1 (ZO-1) and signal transducer and activator of transcription factor-3 (STAT-3) expression was assessed before and after therapy as well as histological assessment. Short Form 36 Health Survey (SF-36), was assessed for each patient before and after 6 months of treatment. RESULTS The PTX group showed statistically lower levels of serum SIP, TNF-α, IL-6, faecal MPO, gene expression of STAT-3, and a significant increase of ZO-1 in comparison with the mesalamine group. DAI and NRS significantly decreased whereas SF-36 significantly increased in the PTX group. CONCLUSION PTX could alleviate inflammation in patients with UC, so it might be promising adjunctive for patients with UC. TRIAL REGISTRATION IDENTIFIER NCT05558761.
Collapse
Affiliation(s)
- Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt.
| | - Sahar K Hegazy
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Guiesh Street, El-Gharbia Government, Tanta, 31527, Egypt
| | - Maha M Maher
- Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Internal Medicine Department, Faculty of Medicine, Horus University, New Damietta, Egypt
| | - Monir M Bahgat
- Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Internal Medicine Department, Faculty of Medicine, Horus University, New Damietta, Egypt
| | - Sahar M El-Haggar
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Guiesh Street, El-Gharbia Government, Tanta, 31527, Egypt
| |
Collapse
|
2
|
Xiong H, Xue G, Zhang Y, Wu S, Zhao Q, Zhao R, Zhou N, Xie Y. Effect of exogenous galectin-9, a natural TIM-3 ligand, on the severity of TNBS- and DSS-induced colitis in mice. Int Immunopharmacol 2023; 115:109645. [PMID: 36610329 DOI: 10.1016/j.intimp.2022.109645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023]
Abstract
Inflammatory bowel disease (IBD) have a complex pathogenesis that is yet to be completely understood. However, a strong correlation between Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling and IBD has been observed. T-cell immunoglobulin and mucin domain-containing-3 (Tim-3) has been reported to regulate TLR4/NF-κB by interacting with Galectin-9 (Gal-9), and recombinant Gal-9 can activate Tim-3; however, its potential properties in IBD and the underlying mechanism remain unclear. This study aimed to determine how Gal-9 affects experimental colitis in mice. Dextran sodium sulfate (DSS) and 2,4,6-trinitrobenzene sulfonic acid (TNBS) were used to establish colitis in mice, and the severity of the illness was assessed based on body weight, colon length, and histology. Therefore, we explored the effects of Gal-9 treatment on colitis. Furthermore, we analyzed the effect of Gal-9 on the expression of Tim-3 and TLR4/NF-κB pathway in colonic tissues and the serum levels of interferon-gamma (IFN-γ), interleukin (IL)-1β, and IL-6. Tim-3 expression in the colon was notably decreased in mice with TNBS-induced colitis, whereas TLR4/NF-kB expression was significantly increased. Intraperitoneal injection of Gal-9 dramatically decreased the disease activity index and attenuated the level of intestinal mucosal inflammation in TNBS-induced colitis mice (p < 0.05). Intraperitoneal administration of Gal-9 significantly increased Tim-3 expression in the colon and decreased the serum concentrations of IFN-γ, IL-1β, and IL-6. Additionally, Gal-9 treatment significantly downregulated the expression of TLR4 signaling pathway-related proteins. In contrast, Gal-9 did not reduce the severity of DSS-induced colitis. In summary, exogenous Gal-9 increased Tim-3 expression, inhibited the TLR4/NF-κB pathway, and alleviated TNBS-induced colitis in mice but not DSS-induced colitis in mice, revealing its potential therapeutic ramifications for IBD.
Collapse
Affiliation(s)
- Huifang Xiong
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Guohui Xue
- Department of Clinical Laboratory, Jiujiang NO.1 People's Hospital, Jiujiang, Jiangxi 332000, China
| | - Yuting Zhang
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Shuang Wu
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Qiaoyun Zhao
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Rulin Zhao
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Nanjin Zhou
- Jiangxi Provincial Academy of Medical Science, Nanchang, Jiangxi 330006, China
| | - Yong Xie
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
3
|
Salama RM, Ahmed RH, Farid AA, AbdElSattar BA, AbdelBaset RM, Youssef ME, El Wakeel SA. Gastroprotective effect of dapagliflozin in ethanol-induced gastric lesions in rats: Crosstalk between HMGB1/RAGE/PTX3 and TLR4/MyD88/VEGF/PDGF signaling pathways. Int Immunopharmacol 2023; 115:109686. [PMID: 36623411 DOI: 10.1016/j.intimp.2023.109686] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023]
Abstract
Alcohol abuse may lead to the development of gastric mucosal lesions. Dapagliflozin (DAPA), a sodium-glucose cotransporter-2 inhibitor, is clinically used to treat type 2 diabetes mellitus. However, studies showed protective effect of DAPA under various experimental conditions by alleviating oxidative stress and inflammation. The effect of DAPA on experimental gastric ulcer has not been studied yet. Therefore, we attempted to investigate DAPA's protective effect against ethanol (EtOH)-induced gastric lesions. Fifty-six (8-week-old) male Wistar rats were divided into seven groups. DAPA (1, 5, and 10 mg/kg/day; p.o.) was given for seven days, plus a single dose of absolute EtOH (5 ml/kg) on day 8. According to hematoxylin and eosin, and Alcian blue staining of gastric tissue sections, titratable acidity, and macroscopic assessments, DAPA high dose (10 mg/kg) was the most protective, with lesser ulcerations, and higher mucin, relative to the lower two doses and the standard treatment omeprazole (OME). In rats pre-treated with DAPA high dose, colorimetric and ELISA analyses revealed significantly decreased oxidative stress, pro-inflammatory, and apoptosis indices and increased levels of platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF). Western blot analysis revealed reduced pentraxin-3 (PTX3), high-mobility group box 1 (HMGB1), receptor for advanced glycation end products (RAGE), toll-like receptor 4 (TLR4), and myeloid differentiation factor 88 (MyD88) expression. These results were comparable in DAPA (10 mg/kg) and OME pre-treated groups. Overall, DAPA exerted a dose-dependent protective effect against EtOH-induced gastric injury. Gastroprotective effects of DAPA (10 mg/kg) may be associated with influencing HMGB1/RAGE/PTX3 and TLR4/MyD88/VEGF/PDGF pathways.
Collapse
Affiliation(s)
- Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Rodaina H Ahmed
- Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Alaa A Farid
- Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | | | | | - Merna E Youssef
- Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Sara A El Wakeel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| |
Collapse
|
4
|
Lee J, Kim MH, Kim H. Anti-Oxidant and Anti-Inflammatory Effects of Astaxanthin on Gastrointestinal Diseases. Int J Mol Sci 2022; 23:ijms232415471. [PMID: 36555112 PMCID: PMC9779521 DOI: 10.3390/ijms232415471] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
A moderate amount of reactive oxygen species (ROS) is produced under normal conditions, where they play an important role in cell signaling and are involved in many aspects of the immune response to pathogens. On the other hand, the excessive production of ROS destructs macromolecules, cell membranes, and DNA, and activates pro-inflammatory signaling pathways, which may lead to various pathologic conditions. Gastrointestinal (GI) mucosa is constantly exposed to ROS due to the presence of bacteria and other infectious pathogens in food, as well as alcohol consumption, smoking, and the use of non-steroidal anti-inflammatory drugs (NSAID). Prolonged excessive oxidative stress and inflammation are two major risk factors for GI disorders such as ulcers and cancers. Bioactive food compounds with potent anti-oxidant and anti-inflammatory activity have been tested in experimental GI disease models to evaluate their therapeutic potential. Astaxanthin (AST) is a fat-soluble xanthophyll carotenoid that is naturally present in algae, yeast, salmon, shrimp, and krill. It has been shown that AST exhibits protective effects against GI diseases via multiple mechanisms. Residing at the surface and inside of cell membranes, AST directly neutralizes ROS and lipid peroxyl radicals, enhances the activity of anti-oxidant enzymes, and suppresses pro-inflammatory transcription factors and cytokines. In addition, AST has been shown to inhibit cancer cell growth and metastasis via modulating cell proliferation-related pathways, apoptosis, and autophagy. Considering the potential benefits of AST in GI diseases, this review paper aims to summarize recent advances in AST research, focusing on its anti-oxidant and anti-inflammatory effects against gastric and intestinal ulcers and cancers.
Collapse
Affiliation(s)
- Jaeeun Lee
- Department of Food and Nutrition, BK21 FOUR, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Min-Hyun Kim
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Correspondence: (M.-H.K.); (H.K.); Tel.: +1-602-496-4163 (M.-H.K.); +82-2-2123-3125 (H.K.)
| | - Hyeyoung Kim
- Department of Food and Nutrition, BK21 FOUR, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
- Correspondence: (M.-H.K.); (H.K.); Tel.: +1-602-496-4163 (M.-H.K.); +82-2-2123-3125 (H.K.)
| |
Collapse
|
5
|
Murad H, Ahmed O, Alqurashi T, Hussien M. Olmesartan medoxomil self-microemulsifying drug delivery system reverses apoptosis and improves cell adhesion in trinitrobenzene sulfonic acid-induced colitis in rats. Drug Deliv 2022; 29:2017-2028. [PMID: 35766160 PMCID: PMC9246205 DOI: 10.1080/10717544.2022.2086939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Olmesartan medoxomil (OM) is an angiotensin receptor blocker. This study aimed to investigate the effects of OM self-microemulsifying drug delivery system (OMS) in trinitrobenzene sulfonic acid (TNBS)-induced acute colitis in rats. Besides two control groups, five TNBS-colitic-treated groups (n = 8) were given orally sulfasalazine (100 mg/kg/day), low and high doses of OM (3.0 and 10.0 mg/kg/day) (OML and OMH) and of OMS (OMSL and OMSH) for seven days. A colitis activity score was calculated. The colon was examined macroscopically. Colonic levels of myeloperoxidase, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), malondialdehyde, and reduced glutathione were measured. Plasma and colonic olmesartan levels were measured. Colonic sections were subjected to hematoxylin and eosin staining and immunohistochemical staining for E-cadherin, caspase-3, and matrix metalloproteinase-9 (MMP-9). Protein expression of E-cadherin, Bcl-2 associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2), and cleaved caspase-3 by Western blot was done. TNBS-colitic rats showed increased colonic myeloperoxidase, TNF-α, IL-6, and malondialdehyde, decreased colonic glutathione, histopathological, immunohistochemical, and protein expression alterations. OMS, compared with OM, dose-dependently achieved higher colonic free olmesartan concentration, showed better anti-inflammatory, antioxidant, and anti-apoptotic effects, improved intestinal barrier, and decreased mucolytic activity. OMS more effectively up-regulated the reduced Bcl-2, Bcl-2/Bax ratio, and E-cadherin expression, and down-regulated the overexpressed Bax, cleaved caspase-3, and MMP-9. OMSL exerted effects comparable to OMH. Sulfasalazine exerted maximal colonic protective effects and almost completely reversed colonic damage, and OMSH showed nearly similar effects with non-significant differences in-between or compared with the normal control group. In conclusion, OMS could be a potential additive treatment for Crohn's disease colitis.
Collapse
Affiliation(s)
- Hussam Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer Alqurashi
- Department of Pharmacology, Faculty of Medicine, Rabigh campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mostafa Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Comparison of the Degree of Gastric Mucosal Injury between Patients Who Are Receiving Dual Antiplatelet Therapy or Single Antiplatelet Therapy. Diagnostics (Basel) 2022; 12:diagnostics12102364. [PMID: 36292053 PMCID: PMC9600151 DOI: 10.3390/diagnostics12102364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Patients taking low-dose aspirin have a higher incidence of gastroduodenal ulcers and higher risk of upper gastrointestinal bleeding than patients who do not. Thienopyridine antiplatelet agents may similarly cause bleeding gastroduodenal erosions and ulcers. The incidence of gastrointestinal bleeding is reported to be higher when these antithrombotic drugs are used in combination. Until now, most studies have focused on bleeding, and no study has compared the degree of gastric mucosal injury between patients receiving dual antiplatelet therapy (DAPT) and those receiving single antiplatelet therapy (SAPT) in real-world clinical practice. Aim: Our objective was to compare the degree of gastric mucosal injury in patients taking low-dose aspirin in combination with clopidogrel (one of the thienopyridine antiplatelet agents) with that of patients who were taking aspirin or clopidogrel as a single agent. Methods: Patients who were taking aspirin and/or clopidogrel and who underwent scheduled esophagogastroduodenoscopy between April 2015 and March 2020 were enrolled in this study. Endoscopic images were reviewed retrospectively, and the degree of gastric mucosal injury was assessed with the modified Lanza score (m-Lanza score). The m-Lanza score was compared between DAPT patients taking aspirin and clopidogrel and SAPT patients taking either aspirin alone or clopidogrel alone. Results: The m-Lanza scores of the DAPT group, the aspirin group, and the clopidogrel group were 1.67 ± 1.81 (mean ± standard deviation), 0.95 ± 1.61, and 0.72 ± 1.29, respectively. The m-Lanza score of the DAPT group tended to be higher than that of the aspirin group (p = 0.06) and was significantly higher than that of the clopidogrel group (p = 0.03). Conclusion: The degree of gastric mucosal injury in DAPT patients was significantly higher than that in patients using clopidogrel alone and tended to be higher than that in patients using aspirin alone in real-world clinical practice.
Collapse
|
7
|
Kasprzak A, Adamek A. Role of the Ghrelin System in Colitis and Hepatitis as Risk Factors for Inflammatory-Related Cancers. Int J Mol Sci 2022; 23:ijms231911188. [PMID: 36232490 PMCID: PMC9569806 DOI: 10.3390/ijms231911188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
It is not known exactly what leads to the development of colorectal cancer (CRC) and hepatocellular carcinoma (HCC), but there are specific risk factors that increase the probability of their occurrence. The unclear pathogenesis, too-late diagnosis, poor prognosis as a result of high recurrence and metastasis rates, and repeatedly ineffective therapy of both cancers continue to challenge both basic science and practical medicine. The ghrelin system, which is comprised of ghrelin and alternative peptides (e.g., obestatin), growth hormone secretagogue receptors (GHS-Rs), and ghrelin-O-acyl-transferase (GOAT), plays an important role in the physiology and pathology of the gastrointestinal (GI) tract. It promotes various physiological effects, including energy metabolism and amelioration of inflammation. The ghrelin system plays a role in the pathogenesis of inflammatory bowel diseases (IBDs), which are well known risk factors for the development of CRC, as well as inflammatory liver diseases which can trigger the development of HCC. Colitis-associated cancer serves as a prototype of inflammation-associated cancers. Little is known about the role of the ghrelin system in the mechanisms of transformation of chronic inflammation to low- and high-grade dysplasia, and, finally, to CRC. HCC is also associated with chronic inflammation and fibrosis arising from different etiologies, including alcoholic and nonalcoholic fatty liver diseases (NAFLD), and/or hepatitis B (HBV) and hepatitis C virus (HCV) infections. However, the exact role of ghrelin in the progression of the chronic inflammatory lesions into HCC is still unknown. The aim of this review is to summarize findings on the role of the ghrelin system in inflammatory bowel and liver diseases in order to better understand the impact of this system on the development of inflammatory-related cancers, namely CRC and HCC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Święcicki Street 6, 60-781 Poznań, Poland
- Correspondence: ; Tel.: +48-61-8546441; Fax: +48-61-8546440
| | - Agnieszka Adamek
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, University of Medical Sciences, Szwajcarska Street 3, 61-285 Poznań, Poland
| |
Collapse
|
8
|
Zeinalian R, Mosharkesh E, Tahmassian AH, Kalhori A, Alizadeh M, Kheirouri S, Jabbari M. The association of a body shape index and visceral adiposity index with neurotrophic, hormonal and metabolic factors among apparently healthy women: a cross-sectional analysis. J Diabetes Metab Disord 2022; 21:209-218. [PMID: 35673422 PMCID: PMC9167328 DOI: 10.1007/s40200-021-00959-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/08/2021] [Indexed: 11/28/2022]
Abstract
Purpose A body shape index (ABSI) and visceral; adiposity index (VAI) can reflect some cardio-metabolic risk factors in the population. To the best of our knowledge, there are no previous studies conducted on the assessment of the association between neurotrophic factors, Ghrelin and Obestatin with ABSI and VAI. We aimed to investigate this association among apparently healthy women. Methods Ninety apparently healthy women were recruited in the present study. All participants were in need of dietary intervention for weight loss and participated in the study before receiving any intervention. Dietary, anthropometric, physical activity, stress level and biochemical assessments, as well as blood pressure measurements were done for all participants. Results Women in the highest tertile of ABSI had significantly lower SBP compared to the lowest ABSI tertile. Women who were in the highest tertile of VAI had significantly lower serum Obestatin levels compared to the first and second tertiles in both crude and adjusted comparisons. Serum NGF, Obestatin and Ghrelin levels were significantly lower in the highest tertile of VAI compared to the lowest tertile in both crude and adjusted comparisons. HOMA-IR, serum insulin, LDL-C, TG and TC were significantly higher in the highest tertile of VAI compared to the lowest tertile. QUICKI in the highest tertiles were significantly lower than the first tertile in adjusted model. Conclusion This evidence can be useful for researchers in applying appropriate anthropometric indices regarding different populations with multifactorial metabolic complications. The current findings need approving by prospective population study and also clinical trial researches.
Collapse
Affiliation(s)
- Reihaneh Zeinalian
- Department of Nutrition in Community, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Mosharkesh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Amir Hossein Tahmassian
- Department of Clinical Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Kalhori
- Nutrition department, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Jabbari
- Faculty of Nutrition Sciences and Food Industry, Department of Community Nutrition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Villarreal D, Pradhan G, Zhou Y, Xue B, Sun Y. Diverse and Complementary Effects of Ghrelin and Obestatin. Biomolecules 2022; 12:biom12040517. [PMID: 35454106 PMCID: PMC9028691 DOI: 10.3390/biom12040517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Ghrelin and obestatin are two “sibling proteins” encoded by the same preproghrelin gene but possess an array of diverse and complex functions. While there are ample literature documenting ghrelin’s functions, the roles of obestatin are less clear and controversial. Ghrelin and obestatin have been perceived to be antagonistic initially; however, recent studies challenge this dogma. While they have opposing effects in some systems, they function synergistically in other systems, with many functions remaining debatable. In this review, we discuss their functional relationship under three “C” categories, namely complex, complementary, and contradictory. Their functions in food intake, weight regulation, hydration, gastrointestinal motility, inflammation, and insulin secretion are complex. Their functions in pancreatic beta cells, cardiovascular, muscle, neuroprotection, cancer, and digestive system are complementary. Their functions in white adipose tissue, thermogenesis, and sleep regulation are contradictory. Overall, this review accumulates the multifaceted functions of ghrelin and obestatin under both physiological and pathological conditions, with the intent of contributing to a better understanding of these two important gut hormones.
Collapse
Affiliation(s)
- Daniel Villarreal
- Department of Nutrition, Texas A & M University, College Station, TX 77843, USA;
| | - Geetali Pradhan
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China;
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
| | - Yuxiang Sun
- Department of Nutrition, Texas A & M University, College Station, TX 77843, USA;
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Correspondence: ; Tel.: +1-979-862-9143
| |
Collapse
|
10
|
Long J, Liu XK, Kang ZP, Wang MX, Zhao HM, Huang JQ, Xiao QP, Liu DY, Zhong YB. Ginsenoside Rg1 ameliorated experimental colitis by regulating the balance of M1/M2 macrophage polarization and the homeostasis of intestinal flora. Eur J Pharmacol 2022; 917:174742. [PMID: 34999087 DOI: 10.1016/j.ejphar.2022.174742] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022]
Abstract
Aberrant M1/M2 macrophage polarization and dysbiosis are involved in the pathogenesis of ulcerative colitis (UC). Ginsenoside Rg1 exhibits optimal immunomodulatory and anti-inflammatory effects in treating UC of humans and animals, but the action mechanism through the regulation of M1/M2 macrophage polarization and intestinal flora composition remain unclear. Here, experimental colitis was induced in BALB/c mice using dextran sulfate sodium, and Rock1 inhibitor Y27632 was used to explore the action mechanism of ginsenoside Rg1. Following treatment with ginsenoside Rg1 (200 mg/kg/day) and Y27632 (10 mg/kg/day) for 14 consecutive days, the rate of change in mouse body weight, mouse final weight, colonic weight, colonic length, colonic weight index and pathological damage scores of colitis mice were effectively improved, accompanied by less ulcer formation and inflammatory cell infiltration, lower levels of interleukin (IL)-6, IL-33, chemokine (C-C motif) ligand 2 (CCL-2), tumor necrosis factor alpha (TNF-α), and higher IL-4 and IL-10. Importantly, ginsenoside Rg1 and Y27632 significantly down-regulated CD11b+F4/80+, CD11b+F4/80+Tim-1+ and CD11b+F4/80+TLR4+ macrophages, and CD11b+F4/80+iNOS+ M1 macrophages, and significantly up-regulated CD11b+F4/80+CD206+ and CD11b+F4/80+CD163+ M2 macrophages in colitis mice; concomitantly, ginsenoside Rg1 improved the diversity of colonic microbiota and regulated Lachnospiraceae, Staphylococcus, Bacteroide and Ruminococcaceae_UCG_014 at genus level in colitis mice, but the flora regulated by Y27632 was not identical to it. Moreover, ginsenoside Rg1 and Y27632 down-regulated the protein levels of Rock1, RhoA and Nogo-B in colitis mice. These results suggested that ginsenoside Rg1 and Y27632 ameliorated colitis by regulating M1/M2 macrophage polarization and microbiota composition, associated with inhibition of the Nogo-B/RhoA signaling pathway.
Collapse
Affiliation(s)
- Jian Long
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Xue-Ke Liu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Zeng-Ping Kang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Meng-Xue Wang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Hai-Mei Zhao
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Jia-Qi Huang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Qiu-Ping Xiao
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, 330004, Jiangxi Province, China
| | - Duan-Yong Liu
- Formula-Pattern Research Center of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - You-Bao Zhong
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China; Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, China; Key Laboratory of Animal Model of TCM Syndromes of Depression, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| |
Collapse
|
11
|
Ding Y, Liu B, Zhang Y, Fang F, Li X, Wang S, Wen J. Hydrogen sulphide protects mice against the mutual aggravation of cerebral ischaemia/reperfusion injury and colitis. Eur J Pharmacol 2022; 914:174682. [PMID: 34871558 DOI: 10.1016/j.ejphar.2021.174682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
This study was undertaken to determine whether ischaemia/reperfusion (I/R)-induced brain injury and dextran sulfate sodium (DSS)-induced colitis in mice are related. A cerebral I/R model of mice was established by blocking the bilateral common carotid arteries; 3% DSS in drinking water was administered to mice for 7 days to induce colitis; mice with cerebral I/R and colitis were administered DSS for 7 days from the third day onwards after acute cerebral I/R. Brain damage and intestinal inflammation were also tested. The results revealed that cerebral I/R induced brain damage and a marked increase in glial fibrillary acidic protein (GFAP) expression and upregulation of Rho-associated coiled coil-forming protein kinase (RhoA/ROCK) pathway in mouse hippocampal tissues. However, in the colon tissues of mice with colitis, we found a reduction in GFAP. In addition, the expression of endogenous hydrogen sulphide (H2S) synthase reduced in mice brain tissues with cerebral I/R injury, as well. as in mouse colon tissues with colitis. Interestingly, the cerebral I/R-induced pathological changes in mouse brain tissues were aggravated by colitis, colitis mediated colon inflammation, and pathological changes in intestinal tissues had deteriorated when the mice suffered cerebral I/R 2 days before DSS administration. However, brain injury and colon inflammation in mice suffering from both cerebral I/R and colitis were ameliorated by NaHS, an exogenous H2S donor. Furthermore, we found that NaHS promoted the transformation of astrocytes from "A1" to "A2" type. These findings reveal that cerebral I/R injury and colitis are related, the mechanism is correlated with endogenous H2S deficiency.
Collapse
Affiliation(s)
- Yanyu Ding
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Bo Liu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Fang Fang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xueyan Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Song Wang
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230032, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
12
|
Ahmed O, Abdel-Halim M, Farid A, Elamir A. Taurine loaded chitosan-pectin nanoparticle shows curative effect against acetic acid-induced colitis in rats. Chem Biol Interact 2022; 351:109715. [PMID: 34695389 DOI: 10.1016/j.cbi.2021.109715] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/29/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
Owing to the poor outcomes and adverse side effects of existing ulcerative colitis drugs, the study aimed to develop an alternative nano-based treatment approach. The study was designed to characterize the in vitro and in vivo properties of taurine, taurine-loaded chitosan pectin nanoparticles (Tau-CS-PT-NPs) and chitosan pectin nanoparticles (CS-PT-NPs) in the therapy of acetic acid (AA)-induced colitis in rats. CS-PT-NPs and Tau-CS-PT-NPs were prepared by ionic gelation method then in vitro characterized, including transmission electron microscopy (TEM), polydispersity index (PDI), zeta potential, Fourier transform infrared (FTIR) spectroscopy, encapsulation efficiency (EE), and drug release profile. Following colitis induction, rats were orally administrated with free taurine, Tau-CS-PT-NPs, and CS-PT-NPs once per day for six days. The sizes of Tau-CS-PT-NPs and CS-PT-NPs were 74.17 ± 2.88 nm and 42.22 ± 2.41 nm, respectively. EE was about 69.09 ± 1.58%; furthermore, 60% of taurine was released in 4 h in simulated colon content. AA-induced colitis in untreated rats led to necrosis of colon tissues and a significant increase in interleukin-1beta (IL-1β), Tumor Necrosis Factor-alpha (TNF-α), myeloperoxidase (MPO), and malondialdehyde (MDA) levels associated with a remarkable reduction in glutathione (GSH) level in colon tissue in comparison to control group. Treatment with taurine, Tau-CS-PT-NPs, and CS-PT-NPs partly reversed these effects. The present study demonstrated that the administration of free taurine, CS-PT-NPs, and Tau-CS-PT-NPs exerted beneficial effects in acetic acid-induced colitis by their anti-inflammatory and antioxidant activities. The best therapeutic effect was observed in animals treated with taurine-loaded chitosan pectin nanoparticles.
Collapse
Affiliation(s)
- Osama Ahmed
- Zoology Dep., Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Mohammad Abdel-Halim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University, Cairo, 11835, Egypt
| | - Alyaa Farid
- Zoology Dep., Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Azza Elamir
- Zoology Dep., Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
13
|
El-Haggar SM, Hegazy SK, Abd-Elsalam SM, Bahaa MM. Pentoxifylline, a nonselective phosphodiesterase inhibitor, in adjunctive therapy in patients with irritable bowel syndrome treated with mebeverine. Biomed Pharmacother 2021; 145:112399. [PMID: 34775240 DOI: 10.1016/j.biopha.2021.112399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a functional gastrointestinal condition marked by chronic bowel pain or discomfort, as well as changes in abdominal motility. Despite its worldwide prevalence and clinical impact, the cause of IBS is unknown. Inflammation could play a fundamental role in the development of IBS. The aim of this study was to examine whether pentoxifylline, a competitive nonselective phosphodiesterase inhibitor, is useful in alleviating abdominal pain in IBS patients treated with mebeverine. METHODS A randomized, controlled, and prospective clinical study that included 50 outpatients who met the inclusion criteria for IBS. Patients are allocated randomly into two groups (n = 25). Group 1 (mebeverine group) received mebeverine 135 mg three times daily (t.i.d) for three months. Group 2 (pentoxifylline group) received mebeverine 135 mg t.i.d and pentoxifylline 400 mg two times daily for three months. Patients were assessed by a gastroenterologist at baseline and three months after the medication had been started. The serum levels of interleukin-6, interleukin-8 and tumor necrosis factor-alpha, fecal Neutrophil Gelatinase Associated Lipocalin (NGAL), and fecal myeloperoxidase were measured at the start and after three months of therapy. The Numeric Pain Rating scale (NRS) was assessed at baseline and after therapy. RESULTS the pentoxifylline group showed a significant decrease in the level of measured biomarkers and a significant decrease in NRS. CONCLUSION Pentoxifylline could be a promising adjuvant anti-inflammatory drug in the treatment of abdominal pain in IBS patients treated with mebeverine.
Collapse
Affiliation(s)
- Sahar M El-Haggar
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Guiesh Street, El-Gharbia Government, Tanta 31527, Egypt
| | - Sahar K Hegazy
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Guiesh Street, El-Gharbia Government, Tanta 31527, Egypt
| | - Sherief M Abd-Elsalam
- Tropical Medicine and Infectious Diseases Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt.
| |
Collapse
|
14
|
Okada K, Ikemoto M. A New Hybrid Protein Is a Novel Regulator for Experimental Colitis in Rats. Inflammation 2021; 45:180-195. [PMID: 34628574 PMCID: PMC8502114 DOI: 10.1007/s10753-021-01537-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/06/2021] [Indexed: 11/26/2022]
Abstract
We newly developed a hybrid protein, tentatively named rMIKO-1, using gene technology. We herein investigated the effects of rMIKO-1 on activated macrophages and discussed its potential as a suppressor of experimental colitis. Fluorescent microscopy was used to observe the dynamic mobility of rMIKO-1 in macrophages. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting, fluorescent immunochemical staining, flow cytometry, enzyme-linked immunosorbent assays, a polymerase chain reaction/quantitative polymerase chain reaction, and hematoxylin and eosin staining were conducted to assess the potential activity of rMIKO-1. A large amount of bleeding was observed in rats treated with 5% dextran sulfate sodium (DSS) alone on day 8 after treatment initiation, but not in those treated with 5% DSS plus rMIKO-1. In the in vitro assay, rMIKO-1 rapidly bound to macrophages, immediately entered cells by an unknown mechanism, and then migrated inside the nucleus. This result suggests that rMIKO-1 plays important immunological roles in the nucleus. Despite the activation of macrophages by lipopolysaccharide, the mRNA expression of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6, and interleukin-1β, was significantly suppressed in macrophages preliminarily treated with rMIKO-1 for 1 h. Complexes of rMIKO-1 with nuclear factor-kappa B (NF-κB)/p65 and β-actin formed in activated macrophages, which attenuated experimental colitis in rats. These results strongly suggest that rMIKO-1 negatively regulates excessively activated macrophages through the NF-κB/p65 signaling pathway. Therefore, rMIKO-1 is a novel suppressor of experimental colitis in rats through the negative regulation of activated macrophages.
Collapse
Affiliation(s)
- Kohki Okada
- Department of Medical Technology and Sciences, Faculty of Health Sciences, Kyoto Tachibana University, 34 Yamada-cho Oyake Yamashina-ku, Kyoto, 607-8175 Japan
| | - Masaki Ikemoto
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama-shi, Shiga, Tamuracho 1266526-0829 Japan
| |
Collapse
|
15
|
Protective and Healing Effects of Ghrelin and Risk of Cancer in the Digestive System. Int J Mol Sci 2021; 22:ijms221910571. [PMID: 34638910 PMCID: PMC8509076 DOI: 10.3390/ijms221910571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/19/2023] Open
Abstract
Ghrelin is an endogenous ligand for the ghrelin receptor, previously known as the growth hormone secretagogue receptor. This hormone is mainly produced by endocrine cells present in the gastric mucosa. The ghrelin-producing cells are also present in other organs of the body, mainly in the digestive system, but in much smaller amount. Ghrelin exhibits a broad spectrum of physiological effects, such as stimulation of growth hormone secretion, gastric secretion, gastrointestinal motility, and food intake, as well as regulation of glucose homeostasis and bone formation, and inhibition of inflammatory processes. This review summarizes the recent findings concerning animal and human data showing protective and therapeutic effects of ghrelin in the gut, and also presents the role of growth hormone and insulin-like growth factor-1 in these effects. In addition, the current data on the possible influence of ghrelin on the carcinogenesis, its importance in predicting the risk of developing gastrointestinal malignances, as well as the potential usefulness of ghrelin in the treatment of cancer, have been presented.
Collapse
|
16
|
Zatorski H, Salaga M, Zielińska M, Mokrowiecka A, Jacenik D, Krajewska WM, Małecka-Panas E, Fichna J. Colonic inflammation induces changes in glucose levels through modulation of incretin system. Pharmacol Rep 2021; 73:1670-1679. [PMID: 34535873 PMCID: PMC8599322 DOI: 10.1007/s43440-021-00327-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022]
Abstract
Background The role of the incretin hormone, glucagon-like peptide (GLP-1), in Crohn’s disease (CD), is still poorly understood. The aim of this study was to investigate whether colitis is associated with changes in blood glucose levels and the possible involvement of the incretin system as an underlaying factor. Methods We used a murine model of colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). Macroscopic and microscopic score and expression of inflammatory cytokines were measured. The effect of colitis on glucose level was studied by measurement of fasting glucose and GLP-1, dipeptidyl peptidase IV (DPP IV) levels, prohormone convertase 1/3 (PC 1/3) and GLP-1 receptor (GLP-1R) expression in mice. We also measured the level of GLP-1, DPP IV and expression of glucagon (GCG) and PC 1/3 mRNA in serum and colon samples from healthy controls and CD patients. Results Fasting glucose levels were increased in animals with colitis compared to controls. GLP-1 was decreased in both serum and colon of mice with colitis in comparison to the control group. DPP IV levels were significantly increased in serum, but not in the colon of mice with colitis as compared to healthy animals. Furthermore, PC 1/3 and GLP-1R expression levels were increased in mice with colitis as compared to controls. In humans, no differences were observed in fasting glucose level between healthy subjects and CD patients. GLP-1 levels were significantly decreased in the serum. Interestingly, GLP-1 level was significantly increased in colon samples of CD patients compared to healthy subjects. No significant differences in DPP IV levels in serum and colon samples were observed between groups. Conclusions Changes in the incretin system during colitis seem to contribute to the impaired glucose levels. Differences in incretin levels seem to be modulated by degrading enzyme DPP-IV and PC 1/3. Obtained results suggest that the incretin system may become a novel therapeutic approach in the treatment of CD.
Collapse
Affiliation(s)
- Hubert Zatorski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland.,Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Maciej Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Anna Mokrowiecka
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Wanda Małgorzata Krajewska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ewa Małecka-Panas
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland.
| |
Collapse
|
17
|
Morsy MA, Khalaf HM, Rifaai RA, Bayoumi AMA, Khalifa EMMA, Ibrahim YF. Canagliflozin, an SGLT-2 inhibitor, ameliorates acetic acid-induced colitis in rats through targeting glucose metabolism and inhibiting NOX2. Biomed Pharmacother 2021; 141:111902. [PMID: 34328119 DOI: 10.1016/j.biopha.2021.111902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease is defined as chronic noninfectious inflammation of the gastrointestinal tract, including ulcerative colitis and Crohn's disease. Its incidence and predominance have increased globally, with no effective agents for preventing its recurrence or treatment until now. AIM The current study aimed to investigate the possible role of canagliflozin (CANA), a sodium-glucose co-transporter-2 inhibitor (SGLT-2), to prevent and treat acetic acid (AA)-induced colitis in a rat model. METHODS Colitis was induced in male Wistar rats by intrarectal instillation of 1 ml of 4% (v/v) AA. Rats were treated orally with either CANA (30 mg/kg/day, p.o.) for 10 days before or after colitis induction or sulfasalazine (360 mg/kg/day, p.o.) for 10 days before colitis induction. RESULTS AA resulted in a significant increase in disease activity index, colonic weight over length ratio, colon macroscopic damage score, and histological signs of colitis. All of these effects were significantly decreased by CANA administration. Additionally, CANA markedly inhibited AA-induced oxidative stress and inflammatory responses by significantly reducing the up-regulated levels in malondialdehyde, total nitrite, NF-κB, interleukin-1β, and TNF-α, and significantly increasing the down-regulated levels in reduced glutathione, superoxide dismutase, and interleukin-10. CANA significantly inhibited caspase-3 level while rescued survivin expression in colons. Finally, CANA reduced the elevated levels of pyruvic acid and G6PDH activity, as well as the levels of p22phox and NOX2 in the AA-induced colitis. CONCLUSION Our findings provide novel evidence that CANA has protective and therapeutic effects against AA-induced colitis by the impact of its antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt.
| | - Hanaa M Khalaf
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Rehab A Rifaai
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Asmaa M A Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt
| | - Esraa M M A Khalifa
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, El-Minia 61111, Egypt
| | - Yasmine F Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
18
|
Chen YJ, Chu WY, Yu WH, Chen CJ, Chia ST, Wang JN, Lin YC, Wei YJ. Massive Gastric Hemorrhage after Indomethacin Therapy: A Rare Presentation and Critical Management in an Extremely Preterm Infant. CHILDREN-BASEL 2021; 8:children8070545. [PMID: 34202886 PMCID: PMC8304301 DOI: 10.3390/children8070545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/03/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022]
Abstract
Indomethacin has been widely used in preterm infants with hemodynamically significant patent ductus arteriosus (PDA). Gastrointestinal complications of indomethacin have been reported in 5% of treated neonates. However, massive gastric mucosa hemorrhage is a rarely reported complication. To the best of our knowledge, the infant in this report is the smallest reported in the literature to have undergone successful surgery for such a complication. A male preterm infant weighing 566 g was born at 252/7 weeks of gestational age without a complicated maternal history. Soon after birth, he received nasal noninvasive respiratory support and minimal feeding. PDA was observed since the first day of life (DOL), treatments were initiated on the second DOL for the hemodynamical significance, and PDA was closed after two courses of indomethacin therapy (0.2 mg/kg). At midnight on the seventh DOL, generalized pallor, bloody gastric drainage, and a distended stomach were observed. Massive gastric bleeding was suspected. He suffered from intermittent hypotension, which was corrected with blood products and fluid resuscitation under monitoring with a radial arterial line. Gastric lavage with cooling saline was performed twice but in vain. Prior to surgical consultation, intravascular volume transfusion was given twice. An exploratory laparotomy was arranged after obtaining the parents' consent. Blood oozing from the gastric mucosa was observed through gastrostomy and was successfully stopped via epinephrine-soaked gauze compression. After the operation, his clinical course remained uneventful, and he was discharged without neurological anomaly at two-year follow-up. Physicians need to be cautious of indomethacin's effect on platelet dysfunction in preterm infants with multiple predisposing factors. The tendency for mucosal bleeding should be continuously monitored after indomethacin therapy.
Collapse
Affiliation(s)
- Yen-Ju Chen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng-Kung University, Tainan 704302, Taiwan; (Y.-J.C.); (W.-H.Y.); (J.-N.W.)
| | - Wei-Ying Chu
- Department of Pediatrics, Tainan Hospital, Ministry of Health and Welfare, Tainan 700007, Taiwan;
| | - Wen-Hao Yu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng-Kung University, Tainan 704302, Taiwan; (Y.-J.C.); (W.-H.Y.); (J.-N.W.)
| | - Chau-Jing Chen
- Department of Surgery, Tainan Sinlau Hospital, Tainan 701002, Taiwan;
- Department of Surgery, College of Medicine, National Cheng-Kung University, Tainan 701401, Taiwan;
| | - Shu-Ti Chia
- Department of Surgery, College of Medicine, National Cheng-Kung University, Tainan 701401, Taiwan;
| | - Jieh-Neng Wang
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng-Kung University, Tainan 704302, Taiwan; (Y.-J.C.); (W.-H.Y.); (J.-N.W.)
| | - Yung-Chieh Lin
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
- Correspondence: (Y.-C.L.); (Y.-J.W.); Tel.: +81-052-853-8244 (Y.-C.L.); +886-62-353-535 (ext. 4189) (Y.-J.W.)
| | - Yu-Jen Wei
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng-Kung University, Tainan 704302, Taiwan; (Y.-J.C.); (W.-H.Y.); (J.-N.W.)
- Correspondence: (Y.-C.L.); (Y.-J.W.); Tel.: +81-052-853-8244 (Y.-C.L.); +886-62-353-535 (ext. 4189) (Y.-J.W.)
| |
Collapse
|
19
|
Adakudugu EA, Ameyaw EO, Obese E, Biney RP, Henneh IT, Aidoo DB, Oge EN, Attah IY, Obiri DD. Protective effect of bergapten in acetic acid-induced colitis in rats. Heliyon 2020; 6:e04710. [PMID: 32885074 PMCID: PMC7452552 DOI: 10.1016/j.heliyon.2020.e04710] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/30/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Bergapten (5-methoxysporalen) is a furanocoumarin extracted from several species of citrus and bergamot oil. Bergamot essential oil is used traditionally in the management of inflammatory conditions. Previous studies on bergapten have explored mainly its in vitro anti-inflammatory activities which include suppression of the expression and release of pro-inflammatory cytokines such as TNF-α and interleukins as well as prostaglandins. Bergapten enhances the clearance of neutrophils and macrophages from the site of inflammation and reduces oxidative stress by inhibition of reactive oxygen species (ROS). Bergapten was assessed for its anti-inflammatory properties in acetic acid-induced colitis. Animals were obtained and randomly placed in six (6) groups (n = 5) after acclimatization. Colitis was induced by rectal administration using 4% v/v acetic acid in Sprague Dawley rats after pre-treatment for 5 days. Bergapten was administered at doses of 3, 10, and 30 mg kg-1 p.o. while the control group received saline 5 mL kg-1 p.o. and the standard drug employed was sulphasalazine at a dose of 500 mg kg-1. Assessments made for colon-weight-to-length ratio, colonic injury, and mucosal mast cell degranulation. There were reduced colon-weight-to-length ratios in animals treated with bergapten which was significant (p < 0.5) for doses 10 and 30 mg kg-1 compared to the disease control group Both macroscopic and microscopic damage were reduced as well, with a lesser percentage of degranulated mast cells. Macroscopic damage was reduced for bergapten at doses 10 and 30 mg kg-1 significantly at p < 0.5 and p < 0.001, respectively. Similarly, microscopic damage was reduced at p < 0.01 and p < 0.001 respectively for bergapten 10 and 30 mg kg-1. The reduction of degranulation by bergapten was significant at p < 0.001. There was generally reduced damage at inflammatory sites as well as decreased infiltration of inflammatory cells. Overall, bergapten reduces inflammation in acetic acid-induced colitis.
Collapse
Affiliation(s)
- Emmanuel A. Adakudugu
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- School of Pharmacy and Pharmaceutical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Elvis O. Ameyaw
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- School of Pharmacy and Pharmaceutical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ernest Obese
- Department of Pharmacology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- School of Pharmacy and Pharmaceutical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Robert P. Biney
- Department of Pharmacology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Isaac T. Henneh
- Department of Pharmacology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- School of Pharmacy and Pharmaceutical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Douglas B. Aidoo
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Elizabeth N. Oge
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Isaac Y. Attah
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - David D. Obiri
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- School of Pharmacy and Pharmaceutical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
20
|
Almási N, Török S, Dvorácskó S, Tömböly C, Csonka Á, Baráth Z, Murlasits Z, Valkusz Z, Pósa A, Varga C, Kupai K. Lessons on the Sigma-1 Receptor in TNBS-Induced Rat Colitis: Modulation of the UCHL-1, IL-6 Pathway. Int J Mol Sci 2020; 21:E4046. [PMID: 32516975 PMCID: PMC7312485 DOI: 10.3390/ijms21114046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is an autoimmune ailment of the gastrointestinal (GI) tract, which is characterized by enhanced activation of proinflammatory cytokines. It is suggested that the sigma-1 receptor (σ1R) confers anti-inflammatory effects. As the exact pathogenesis of IBD is still unknown and treatment options are limited, we aimed to investigate the effects of σ1R in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced experimental colitis. To this end, male Wistar-Harlan rats were used to model colitic inflammation through the administration of TNBS. To investigate the effects of σ1R, Fluvoxamine (FLV, σ1R agonist) and BD1063 (σ1R antagonist) were applied via intracolonic administration to the animals once a day for three days. Our radioligand binding studies indicated the existence of σ1Rs as [3H](+)-pentazocine binding sites, and FLV treatment increased the reduced σ1R maximum binding capacity in TNBS-induced colitis. Furthermore, FLV significantly attenuated the colonic damage, the effect of which was abolished by the administration of BD1063. Additionally, FLV potentially increased the expression of ubiquitin C-terminal hydrolase ligase-1 (UCHL-1) and the levels of endothelial nitric oxide synthase (eNOS), and decreased the levels of interleukin-6 (IL-6) and inducible NOS (iNOS) expression. In summary, our study offers evidence for the anti-inflammatory potential of FLV and σ1R in experimental colitis, and our results present a promising approach to the development of new σ1R-targeted treatment options against IBD.
Collapse
Affiliation(s)
- Nikoletta Almási
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (N.A.); (S.T.); (A.P.); (C.V.)
| | - Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (N.A.); (S.T.); (A.P.); (C.V.)
| | - Szabolcs Dvorácskó
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary; (S.D.); (C.T.)
- Department of Medical Chemistry, University of Szeged, H-6725 Szeged, Hungary
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary; (S.D.); (C.T.)
| | - Ákos Csonka
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary;
| | - Zoltán Baráth
- Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, University of Szeged, H-6720 Szeged, Hungary;
| | - Zsolt Murlasits
- Laboratory Animals Research Center, Qatar University, Doha 2713, Qatar;
| | - Zsuzsanna Valkusz
- 1st Department of Medicine, Medical Faculty, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6720 Szeged, Hungary;
| | - Anikó Pósa
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (N.A.); (S.T.); (A.P.); (C.V.)
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (N.A.); (S.T.); (A.P.); (C.V.)
| | - Krisztina Kupai
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (N.A.); (S.T.); (A.P.); (C.V.)
| |
Collapse
|
21
|
Cilostazol protects against acetic acid-induced colitis in rats: Possible role for cAMP/SIRT1 pathway. Eur J Pharmacol 2020; 881:173234. [PMID: 32497625 DOI: 10.1016/j.ejphar.2020.173234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
The phosphodiesterase-3 inhibitor, cilostazol has been recently shown to protect against chemically induced colitis in animal models. However, whether cyclic adenosine monophosphate (cAMP) contributes to the anti-inflammatory activity of cilostazol in colitis is still unknown. In the current study, we investigated the role of cAMP/silent information regulator-1 (SIRT-1) pathway in the protective effect of cilostazol using rat model of acetic acid-induced colitis. Upregulation of SIRT1 activity and expression has been recently shown to protect against chemically induced colitis. Our results demonstrated that cilostazol alleviated the histopathological changes associated with acetic acid-induced colitis. Interestingly, pre-administration of cilostazol increased cAMP concentration and SIRT1 expression in colonic mucosa to levels similar to that observed in control animals without induction of colitis. In addition, cilostazol inhibited the SIRT1 targets; NF-κB, Akt and MAPK inflammatory pathways as demonstrated by suppression of acetic acid-induced upregulation of NF-κB activity, p-AKT levels and the expression of p38 MAPK. NF-κB activity and the levels of p-AKT, tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) were similar in rats pretreated with cilostazol prior to induction of colitis and the control rats without colitis. Furthermore, cilostazol reduced acetic acid-induced oxidative stress and apoptosis. In conclusion, the protective effect of cilostazol against acetic acid-induced colitis may be attributed to activation of SIRT1 expression by cAMP. SIRT1 is suggested to contribute to cilostazol-induced suppression of NF-κB, Akt and MAPK inflammatory pathways, oxidative stress and apoptosis.
Collapse
|
22
|
Maduzia D, Ceranowicz P, Cieszkowski J, Gałązka K, Kuśnierz-Cabala B, Warzecha Z. Pretreatment with Warfarin Attenuates the Development of Ischemia/Reperfusion-Induced Acute Pancreatitis in Rats. Molecules 2020; 25:E2493. [PMID: 32471279 PMCID: PMC7321200 DOI: 10.3390/molecules25112493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
In acute pancreatitis (AP), pancreatic damage leads to local vascular injury, manifesting as endothelial damage and activation, increased vascular permeability, leukocyte rolling, sticking and transmigration to pancreatic tissue as well as activation of coagulation. Previous studies have shown that pretreatment with heparin or acenocoumarol inhibits the development of AP. The aim of the present study was to check the impact of pretreatment with warfarin, an oral vitamin K antagonist, on the development of ischemia/reperfusion-induced AP in rats. AP was induced by pancreatic ischemia followed by reperfusion of the gland. Warfarin (90, 180 or 270 µg/kg/dose) or vehicle were administered intragastrically once a day for 7 days before induction of AP. The effect of warfarin on the severity of AP was assessed 6 h after pancreatic reperfusion. The assessment included histological, functional, and biochemical analyses. Pretreatment with warfarin given at a dose of 90 or 180 µg/kg/dose increased the international normalized ratio and reduced morphological signs of pancreatic damage such as pancreatic edema, vacuolization of acinar cells, necrosis and the number of hemorrhages. These effects were accompanied by an improvement of pancreatic blood flow and a decrease in serum level amylase, lipase, pro-inflammatory interleukin-1β and plasma level of D-dimer. In contrast, pretreatment with warfarin given at a dose of 270 µg/kg/dose led to an increase in severity of pancreatic damage and biochemical indicators of AP. In addition, this dose of warfarin resulted in deaths in some animals. Pretreatment with low doses of warfarin inhibits the development of AP induced by pancreatic ischemia followed by reperfusion.
Collapse
Affiliation(s)
- Dawid Maduzia
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.M.); (J.C.); (Z.W.)
- Department of Anatomy, Faculty of Medicine, Jagiellonian University Medical College, 31-034 Cracow, Poland
| | - Piotr Ceranowicz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.M.); (J.C.); (Z.W.)
| | - Jakub Cieszkowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.M.); (J.C.); (Z.W.)
| | - Krystyna Gałązka
- Department of Pathology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland;
| | - Beata Kuśnierz-Cabala
- Department of Diagnostics, Chair of Clinical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Cracow, Poland;
| | - Zygmunt Warzecha
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.M.); (J.C.); (Z.W.)
| |
Collapse
|
23
|
Chien SY, Tsai CH, Liu SC, Huang CC, Lin TH, Yang YZ, Tang CH. Noggin Inhibits IL-1β and BMP-2 Expression, and Attenuates Cartilage Degeneration and Subchondral Bone Destruction in Experimental Osteoarthritis. Cells 2020; 9:cells9040927. [PMID: 32290085 PMCID: PMC7226847 DOI: 10.3390/cells9040927] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a chronic inflammatory and progressive joint disease that results in cartilage degradation and subchondral bone remodeling. The proinflammatory cytokine interleukin 1 beta (IL-1β) is abundantly expressed in OA and plays a crucial role in cartilage remodeling, although its role in the activity of chondrocytes in cartilage and subchondral remodeling remains unclear. In this study, stimulating chondrogenic ATDC5 cells with IL-1β increased the levels of bone morphogenetic protein 2 (BMP-2), promoted articular cartilage degradation, and enhanced structural remodeling. Immunohistochemistry staining and microcomputed tomography imaging of the subchondral trabecular bone region in the experimental OA rat model revealed that the OA disease promotes levels of IL-1β, BMP-2, and matrix metalloproteinase 13 (MMP-13) expression in the articular cartilage and enhances subchondral bone remodeling. The intra-articular injection of Noggin protein (a BMP-2 inhibitor) attenuated subchondral bone remodeling and disease progression in OA rats. We also found that IL-1β increased BMP-2 expression by activating the mitogen-activated protein kinase (MEK), extracellular signal-regulated kinase (ERK), and specificity protein 1 (Sp1) signaling pathways. We conclude that IL-1β promotes BMP-2 expression in chondrocytes via the MEK/ERK/Sp1 signaling pathways. The administration of Noggin protein reduces the expression of IL-1β and BMP-2, which prevents cartilage degeneration and OA development.
Collapse
Affiliation(s)
- Szu-Yu Chien
- Department of Exercise Health Science, National Taiwan University of Sport, Taichung 404393, Taiwan;
- School of Medicine, China Medical University, Taichung 404022, Taiwan;
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404022, Taiwan;
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 404022, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 651012, Taiwan;
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung 404022, Taiwan;
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung 404022, Taiwan
| | - Tzu-Hung Lin
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 310401, Taiwan; (T.-H.L.); (Y.-Z.Y.)
| | - Yu-Zhen Yang
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 310401, Taiwan; (T.-H.L.); (Y.-Z.Y.)
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung 404022, Taiwan;
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404022, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404022, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-4-2205-2121 (ext. 7726)
| |
Collapse
|
24
|
Monteiro CES, Sousa JAO, Lima LM, Barreiro EJ, da Silva-Leite KES, de Carvalho CMM, Girão DKFB, Reis Barbosa AL, de Souza MHLP, Gomes Soares PM. LASSBio-596 protects gastric mucosa against the development of ethanol-induced gastric lesions in mice. Eur J Pharmacol 2019; 863:172662. [DOI: 10.1016/j.ejphar.2019.172662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 02/08/2023]
|
25
|
Stempniewicz A, Ceranowicz P, Warzecha Z. Potential Therapeutic Effects of Gut Hormones, Ghrelin and Obestatin in Oral Mucositis. Int J Mol Sci 2019; 20:ijms20071534. [PMID: 30934722 PMCID: PMC6479885 DOI: 10.3390/ijms20071534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy and/or head and neck radiotherapy are frequently associated with oral mucositis. Oral pain, odynophagia and dysphagia, opioid use, weight loss, dehydration, systemic infection, hospitalization and introduction of a feeding tube should be mentioned as the main determinated effect of oral mucositis. Oral mucositis leads to a decreased quality of life and an increase in treatment costs. Moreover, oral mucositis is a life-threatening disease. In addition to its own direct life-threatening consequences, it can also lead to a reduced survival due to the discontinuation or dose reduction of anti-neoplasm therapy. There are numerous strategies for the prevention or treatment of oral mucositis; however, their effectiveness is limited and does not correspond to expectations. This review is focused on the ghrelin and obestatin as potentially useful candidates for the prevention and treatment of chemo- or/and radiotherapy-induced oral mucositis.
Collapse
Affiliation(s)
- Agnieszka Stempniewicz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Grzegórzecka 16 St., 31-531 Krakow, Poland.
| | - Piotr Ceranowicz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Grzegórzecka 16 St., 31-531 Krakow, Poland.
| | - Zygmunt Warzecha
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Grzegórzecka 16 St., 31-531 Krakow, Poland.
| |
Collapse
|
26
|
Kozłowska A, Godlewski J, Majewski M. Distribution Patterns of Cocaine- and Amphetamine-Regulated Transcript- and/or Galanin-Containing Neurons and Nerve Fibers Located in the Human Stomach Wall Affected by Tumor. Int J Mol Sci 2018; 19:ijms19113357. [PMID: 30373200 PMCID: PMC6275062 DOI: 10.3390/ijms19113357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of the study was to investigate the distribution patterns of cocaine- and amphetamine-regulated transcript- (CART-) and galanin-immunoreactive (GAL-IR) neuronal structures in the human stomach wall, focusing on differences observed in regions directly affected by the cancer process, and those from the surgical margin. Samples from the stomach wall were collected from 10 patients (3 women and 7 men, the mean age 67.0 ± 11.9). Next, triple-immunofluorescence staining was used to visualize the changes in the frequency of neurons inside myenteric plexi and intramural fibers containing CART and/or GAL, as well as protein gene product 9.5 (as panneuronal marker). Tumor into the stomach wall caused a decrease in the number of CART-positive (+) nerve fibers in the longitudinal (LML) and circular muscle layers (CML). Notable changes in the dense network of CART+/GAL+ nerve fibers (an increase) were observed in the LML and lamina muscularis mucosae (LMM) within carcinoma-affected areas of the human stomach. Additionally, an elevated number of these nerve fibers from LMM were accompanied by an increase in the number of fibers containing GAL in the vicinity of the neoplastic proliferation. Obtained results suggest that a carcinoma invasion may affect the innervation pattern of the human stomach wall and their function(s).
Collapse
Affiliation(s)
- Anna Kozłowska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Av 30, 10-082 Olsztyn, Poland.
| | - Janusz Godlewski
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Av 30, 10-082 Olsztyn, Poland.
| | - Mariusz Majewski
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Av 30, 10-082 Olsztyn, Poland.
| |
Collapse
|
27
|
Skonieczna-Żydecka K, Stachowska E, Maciejewska D, Ryterska K, Palma J, Czerwińska-Rogowska M, Kaczmarczyk M, Gudan A, Mruk H, Świniarska B, Kałduńska J, Stachowska Z, Mijal P, Mazur T, Kupczyński M, Marlicz W. The Digestive Health among Participants of the Woodstock Rock Festival in Poland-A Cross-Sectional Survey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2256. [PMID: 30326654 PMCID: PMC6210346 DOI: 10.3390/ijerph15102256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
Alterations of gut microbiota, intestinal barrier and the gut-brain axis may be involved in pathophysiology of functional gastrointestinal disorders. Our aim was to assess the prevalence of digestive tract symptoms and identify common variables potentially disrupting the gut-brain axis among participants of the Woodstock Festival Poland, 2017. In total 428 people filled in a questionnaire assessing health of their digestive tract. The investigator collected answers on an electronic device, while the study participant responded using a paper version of the same questionnaire. Liver and gallbladder related symptoms were the most prevalent among our study group (n = 266, 62%), however symptoms related to altered intestinal permeability were found to be the most intensive complaints. In females the intensity of gastrointestinal complaints was higher compared to men (p < 0.05), as well as the incidence of factors with the potential to alter gut-brain axis (p < 0.0001). Chronic psychological distress, intake of non-steroidal anti-inflammatory drugs (NSAIDs) and antibiotics, were the most common associations with gastrointestinal symptoms, which were the most prevalent in females. Further attention should be focused on stress as one of the main factors negatively influencing public health.
Collapse
Affiliation(s)
| | - Ewa Stachowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, 71-460 Szczecin, Poland.
| | - Dominika Maciejewska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, 71-460 Szczecin, Poland.
| | - Karina Ryterska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, 71-460 Szczecin, Poland.
| | - Joanna Palma
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, 71-460 Szczecin, Poland.
| | - Maja Czerwińska-Rogowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, 71-460 Szczecin, Poland.
| | - Mariusz Kaczmarczyk
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, 70-111 Szczecin, Poland.
| | - Anna Gudan
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, 71-460 Szczecin, Poland.
| | - Honorata Mruk
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, 71-460 Szczecin, Poland.
| | - Barbara Świniarska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, 71-460 Szczecin, Poland.
| | - Justyna Kałduńska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, 71-460 Szczecin, Poland.
| | - Zofia Stachowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, 71-460 Szczecin, Poland.
| | - Przemysław Mijal
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, 71-460 Szczecin, Poland.
| | - Tomasz Mazur
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, 71-460 Szczecin, Poland.
| | - Maciej Kupczyński
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, 71-460 Szczecin, Poland.
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University, 71-252 Szczecin, Poland.
| |
Collapse
|