1
|
Liu X, Chen R, Cui G, Feng R, Liu K. Exosomes derived from platelet-rich plasma present a novel potential in repairing knee articular cartilage defect combined with cyclic peptide-modified β-TCP scaffold. J Orthop Surg Res 2024; 19:718. [PMID: 39497084 PMCID: PMC11533314 DOI: 10.1186/s13018-024-05202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND The aim of this study was to investigate the therapeutic effects and mechanisms of PRP-exos combined with cyclic peptide-modified β-TCP scaffold in the treatment of rabbit knee cartilage defect. METHODS PRP-exos were extracted and characterized by TEM, NTA and WB. The therapeutic effects were evaluated by ICRS score, HE staining, Immunohistochemistry, qRT-PCR and ELISA. The repair mechanism of PRP-exos was estimated and predicted by miRNA sequencing analysis and protein-protein interaction network analysis. RESULTS The results showed that PRP-exos had a reasonable size distribution and exhibited typical exosome morphology. The combination of PRP-exos and cyclic peptide-modified β-TCP scaffold improved ICRS score and the expression level of COL-2, RUNX2, and SOX9. Moreover, this combination therapy reduced the level of MMP-3, TNF-α, IL-1β, and IL-6, while increasing the level of TIMP-1. In PRP-exos miRNA sequencing analysis, the total number of known miRNAs aligned across all samples was 252, and a total of 91 differentially expressed miRNAs were detected. The results of KEGG enrichment analysis and the protein-protein interaction network analysis indicated that the PI3K/AKT signaling pathway could impact the function of chondrocytes by regulating key transcription factors to repair cartilage defect. CONCLUSION PRP-exos combined with cyclic peptide-modified β-TCP scaffold effectively promoted cartilage repair and improved chondrocyte function in rabbit knee cartilage defect. Based on the analysis and prediction of PRP-exos miRNAs sequencing, PI3K/AKT signaling pathway may contribute to the therapeutic effect. These findings provide experimental evidence for the application of PRP-exos in the treatment of cartilage defect.
Collapse
Affiliation(s)
- Xuchang Liu
- Department of Orthopedic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong, China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong, China
| | - Rudong Chen
- Department of Orthopedic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Guanzheng Cui
- Department of Orthopedic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Rongjie Feng
- Department of Orthopedic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong, China.
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong, China.
| |
Collapse
|
2
|
Sun H, Li Z, Liu N, Xu T, Hu K, Shao Y, Chen X. Long Non-coding RNA SNHG7 Suppresses Inflammation and Apoptosis of Chondrocytes Through Inactivating of p38 MAPK Signaling Pathway in Osteoarthritis. Mol Biotechnol 2024; 66:2287-2296. [PMID: 37632672 DOI: 10.1007/s12033-023-00856-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/08/2023] [Indexed: 08/28/2023]
Abstract
This study aims to explore the molecular mechanism of LncRNA SNHG7 in Osteoarthritis (OA). Cartilage tissues of OA patients or patients with trauma or amputation were collected. Compared to normal cartilage tissues, SNHG7 was downregulated while miR-324-3p was upregulated in cartilage tissues of OA patients. IL-1β was used to induce damage to chondrocytes and treatment with IL-1β reduced SNHG7 expression in OA chondrocytes. In IL-1β-treated OA chondrocytes, SNHG7 overexpression reduced the levels of TNF-α and IL-6, inhibited cell apoptosis, and increased cell viability. Additionally, the luciferase reporter assay proved that SNHG7 upregulated dual-specificity phosphatase 1 (DUSP1) by sponging miR-324-3p, thereby inactivating the p38 MAPK signaling pathway by regulating the miR-324-3p/DUSP1 axis. Anisomycin (a p38 MAPK activator) enhanced OA chondrocytes inflammation, promoted cell apoptosis, and reduced cell viability; however, this was reversed by SNHG7 overexpression. This study demonstrates that the SNHG7/miR-324-3p/DUSP1 axis suppresses OA chondrocytes inflammation and apoptosis by inhibiting the p38 MAPK signaling pathway. Thus, this study indicates that SNHG7 is a novel target for OA treatment.
Collapse
Affiliation(s)
- Heyan Sun
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui, 230022, China
| | - Zhenwei Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui, 230022, China
| | - Nannan Liu
- Department of Histology and Embrology, Anhui Medical University, No.81 meishan Road, Hefei, Anhui, 230032, China
| | - Tao Xu
- School of Pharmacy, Anhui Medical University, No.81 meishan Road, Hefei, Anhui, 230032, China
| | - Kongzu Hu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui, 230022, China
| | - Yubao Shao
- Department of Histology and Embrology, Anhui Medical University, No.81 meishan Road, Hefei, Anhui, 230032, China
| | - Xiaoyu Chen
- Department of Histology and Embrology, Anhui Medical University, No.81 meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
3
|
Xie X, Zhang H, Liu L, Ni F, Yu X, Zhong Y, Yan M, Zhang C, Wang Z, Xu N, Xiao W. A new butylphthalide from Ligusticum striatum DC. Nat Prod Res 2024; 38:2941-2948. [PMID: 37042678 DOI: 10.1080/14786419.2023.2200944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023]
Abstract
One new butylphthalide ligusticumolide H (1), together with the known butylphthalides senkyunolide I (2), senkyunolide H (3), (3 R,3'S)-3'-hydroxy-3-butylphthalide (4), (3 R)-4-hydroxy-3-butylphthalide (5) and senkyunolide C (6) was isolated from the rhizome of Ligusticum striatum DC. Their structures were determined by extensive spectroscopic analyses including HR-ESI-MS, 1D and 2D NMR, and the absolute configuration of 1 was established by NMR and ECD calculations. Their effect on NO production in IL-1β-stimulated chondrocytes was also evaluated.
Collapse
Affiliation(s)
- Xue Xie
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| | - Hongda Zhang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| | - Lina Liu
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| | - Fuyong Ni
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| | - Xiao Yu
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| | - Yan Zhong
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| | - Ming Yan
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| | - Chenfeng Zhang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| | - Zhenzhong Wang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| | - Nan Xu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Wei Xiao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| |
Collapse
|
4
|
Villagrán-Andrade KM, Núñez-Carro C, Blanco FJ, de Andrés MC. Nutritional Epigenomics: Bioactive Dietary Compounds in the Epigenetic Regulation of Osteoarthritis. Pharmaceuticals (Basel) 2024; 17:1148. [PMID: 39338311 PMCID: PMC11434976 DOI: 10.3390/ph17091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Nutritional epigenomics is exceptionally important because it describes the complex interactions among food compounds and epigenome modifications. Phytonutrients or bioactive compounds, which are secondary metabolites of plants, can protect against osteoarthritis by suppressing the expression of inflammatory and catabolic mediators, modulating epigenetic changes in DNA methylation, and the histone or chromatin remodelling of key inflammatory genes and noncoding RNAs. The combination of natural epigenetic modulators is crucial because of their additive and synergistic effects, safety and therapeutic efficacy, and lower adverse effects than conventional pharmacology in the treatment of osteoarthritis. In this review, we have summarized the chondroprotective properties of bioactive compounds used for the management, treatment, or prevention of osteoarthritis in both human and animal studies. However, further research is needed into bioactive compounds used as epigenetic modulators in osteoarthritis, in order to determine their potential value for future clinical applications in osteoarthritic patients as well as their relation with the genomic and nutritional environment, in order to personalize food and nutrition together with disease prevention.
Collapse
Affiliation(s)
- Karla Mariuxi Villagrán-Andrade
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Carmen Núñez-Carro
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Francisco J Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña (UDC), 15008 A Coruña, Spain
| | - María C de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| |
Collapse
|
5
|
Zhang CJ, Wang Y, Jin YQ, Zhu YW, Zhu SG, Wang QM, Jing MR, Zhang YX, Cai CB, Feng ZF, Ji XY, Wu DD. Recent advances in the role of hydrogen sulfide in age-related diseases. Exp Cell Res 2024; 441:114172. [PMID: 39053869 DOI: 10.1016/j.yexcr.2024.114172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
In recent years, the impact of age-related diseases on human health has become increasingly severe, and developing effective drugs to deal with these diseases has become an urgent task. Considering the essential regulatory role of hydrogen sulfide (H2S) in these diseases, it is regarded as a promising target for treatment. H2S is a novel gaseous transmitter involved in many critical physiological activities, including anti-oxidation, anti-inflammation, and angiogenesis. H2S also regulates cell activities such as cell proliferation, migration, invasion, apoptosis, and autophagy. These regulatory effects of H2S contribute to relieving and treating age-related diseases. In this review, we mainly focus on the pathogenesis and treatment prospects of H2S in regulating age-related diseases.
Collapse
Affiliation(s)
- Chao-Jing Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shuai-Gang Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Qi-Meng Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Mi-Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chun-Bo Cai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
6
|
Liu Y, Lin R, Fang H, Li L, Zhang M, Lu L, Gao X, Song J, Wei J, Xiao Q, Zhang F, Wu K, Cui L. Sargassum polysaccharide attenuates osteoarthritis in rats and is associated with the up-regulation of the ITGβ1-PI3K-AKT signaling pathway. J Orthop Translat 2024; 47:176-190. [PMID: 39040490 PMCID: PMC11260896 DOI: 10.1016/j.jot.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Background Osteoarthritis (OA) presents a formidable challenge, characterized by as-yet-unclear mechanical intricacies within cartilage and the dysregulation of bone homeostasis. Our preliminary data revealed the encouraging potential of a Sargassum polysaccharide (SP), in promoting chondrogenesis. The aim of our study is to comprehensively assess the therapeutic effects of SP on OA models and further elucidate its potential mechanism. Methods The protective effects of SP were initially evaluated in an inflammation-induced human chondrocyte (C28) cell model. CCK-8 assays, Alcian blue staining, RT-qPCR and Western blotting were used to verify the chondrogenesis of SP in vitro. To assess the efficacy of SP in vivo, surgically induced medial meniscus destabilization (DMM) OA rats underwent an 8-week SP treatment. The therapeutic effects of SP in OA rats were comprehensively evaluated using X-ray imaging, micro-computed tomography (μ-CT), histopathological analysis, as well as immunohistochemical and immunofluorescent staining. Following these assessments, we delved into the potential signaling pathways of SP in inflammatory chondrocytes utilizing RNA-seq analysis. Validation of these findings was conducted through RT-qPCR and western blotting techniques. Results SP significantly enhance the viability of C28 chondrocytes, and increased the secretion of acidic glycoproteins. Moreover, SP stimulated the expression of chondrogenic genes (Aggrecan, Sox9, Col2a1) and facilitated the synthesis of Collagen II protein in C28 inflammatory chondrocytes. In vivo experiments revealed that SP markedly ameliorated knee joint stenosis, alleviated bone and cartilage injuries, and reduced the histopathological scores in the OA rats. μ-CT analysis confirmed that SP lessened bone impairments in the medial femoral condyle and the subchondral bone of the tibial plateau, significantly improving the microarchitectural parameters of the subchondral bone. Histopathological analyses indicated that SP notably enhanced cartilage quality on the surface of the tibial plateau, leading to increased cartilage thickness and area. Immunohistochemistry staining and immunofluorescence staining corroborated these findings by showing a significant promotion of Collagen II expression in OA joints treated with SP. RNA-seq analysis suggest that SP's effects were mediated through the regulation of the ITGβ1-PI3K-AKT signaling axis, thereby stimulating chondrogenesis. Verification through RT-qPCR and Western blot analyses confirmed that SP significantly upregulated the expression of ITGβ1, p110δ, AKT1, ACAN, and Col2a1. Notably, knock-down of ITGβ1 using siRNA in C28 chondrocytes inhibited the expression of ITGβ1, p110δ, AKT1, and ACAN. However, these inhibitory effects were not completely reversed by supplemental SP intervention. Conclusions In summary, our findings reveal that SP significantly enhances chondrogenesis both in vitro and in vivo, alleviating OA progression both in bone and cartilage. The observed beneficial effects are intricately linked to the activation of the ITGβ1-PI3K-AKT signaling axis. The translational potential of this article Our research marks the first instance unveiling the advantageous effects and underlying mechanisms of SP in OA treatment. With its clinical prospects, SP presents compelling new evidence for the advancement of a next-generation polysaccharide drug for OA therapy.
Collapse
Affiliation(s)
- Yanzhi Liu
- Corresponding author. Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524045, China.
| | | | | | - Lixian Li
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Min Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Lujiao Lu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Xiang Gao
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Jintong Song
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Jinsong Wei
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Qixian Xiao
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Fucheng Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Kefeng Wu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Liao Cui
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
7
|
Javed A, Alam MB, Naznin M, Ahmad R, Lee CH, Kim S, Lee SH. RSM- and ANN-Based Multifrequency Ultrasonic Extraction of Polyphenol-Rich Sargassum horneri Extracts Exerting Antioxidative Activity via the Regulation of MAPK/Nrf2/HO-1 Machinery. Antioxidants (Basel) 2024; 13:690. [PMID: 38929129 PMCID: PMC11200430 DOI: 10.3390/antiox13060690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Sargassum horneri (SH) is widely consumed as a healthy seaweed food in the Asia-Pacific region. However, the bioactive components contributing to its biological activity remain unknown. Herein, we optimized multifrequency ultrasonic-assisted extraction conditions to achieve higher antioxidant activity using a response surface methodology and an artificial neural network. High-resolution mass spectrometry (HRMS; negative mode) was used to tentatively identify the secondary metabolites in the optimized SH extract, which were further tested against oxidative stress in RAW264.7 cells. Additionally, the identified compounds were analyzed in silico to determine their binding energies with the Keap1 protein (4L7B). We identified 89 compounds using HRMS, among which 19 metabolites (8 polyphenolics, 2 flavonoids, 2 lignans, 2 terpenes, 2 tannins, 2 sulfolipids, and 1 phospholipid) were putatively reported for the first time in SH. The in vitro results revealed that optimized SH extract inhibited oxidative stress via the Nrf2/MAPKs/HO-1 pathway in a dose-dependent manner. This result was validated by performing in silico simulation, indicating that sargaquinoic acid and glycitein-7-O-glucuronide had the highest binding energies (-9.20 and -9.52 Kcal/mol, respectively) toward Keap1 (4L7B). This study offers a unique approach for the scientific community to identify potential bioactive compounds by optimizing the multivariant extraction processing conditions, which could be used to develop functional and nutraceutical foods.
Collapse
Affiliation(s)
- Ahsan Javed
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (A.J.); (M.B.A.)
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (A.J.); (M.B.A.)
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; (M.N.); (R.A.)
- Mass Spectroscopy Converging Research Center, Green Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Raees Ahmad
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; (M.N.); (R.A.)
- Mass Spectroscopy Converging Research Center, Green Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chang Hyung Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea;
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; (M.N.); (R.A.)
- Mass Spectroscopy Converging Research Center, Green Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (A.J.); (M.B.A.)
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Liu S, Wu C, Zhang Y. Transcriptomics analyses of IL-1β-stimulated rat chondrocytes in temporomandibular joint condyles and effect of platelet-rich plasma. Heliyon 2024; 10:e26739. [PMID: 38434027 PMCID: PMC10906425 DOI: 10.1016/j.heliyon.2024.e26739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
The biological mechanism of action of platelet-rich plasma (PRP) in the treatment of temporomandibular joint (TMJ) osteoarthritis remains unclear. This study explored the mechanisms underlying interleukin (IL)-1β-induced inflammation and investigated the effect of PRP on TMJ condylar chondrocytes. Primary chondrocytes were isolated from the TMJ condyle of 4-week-old rats, and differentially expressed genes among three treatment groups (phosphate-buffered saline [control], IL-1β, and IL-1β + PRP) were identified using RNA-seq and characterized using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes path-enrichment analyses. IL-1β caused inflammatory injury to chondrocytes by upregulating the TNF, NF-κB, and IL-17 signaling pathways and downregulating the MAPK and PI3K/Akt signaling pathways. PRP activated the MAPK and PI3K/Akt signaling pathways, exerting a protective effect on IL-1β-induced chondrocytes. PRP also activated the TNF and IL-17 signaling pathways, producing an inflammatory effect. Additionally, PRP increased the mRNA expression of the matrix catabolism-related genes Mmp3, Mmp9, and Mmp13; the proliferative markers Mki67 and PCNA; and the anti-apoptotic genes of the Bcl-2 family (Bcl2a1 and Bok), while reducing the expression of the pro-apoptotic genes Casp4 and Casp12. The findings suggest that the protective effect of PRP on IL-1β-induced chondrocyte injury is mainly achieved via MAPK-PI3K/Akt signaling, increasing cell proliferation and inhibiting cell apoptosis.
Collapse
Affiliation(s)
- Shasha Liu
- Department of Rehabilitation Medicine, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Rehabilitation Medicine, Sijing Hospital of the Songjiang District of Shanghai, Shanghai, 201600 China
| | - Chaolun Wu
- Department of Rehabilitation Medicine, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuxin Zhang
- Department of Rehabilitation Medicine, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
9
|
Liu NN, Huang YP, Shao YB, Fan XF, Sun HY, Wang TR, Yao T, Chen XY. The regulatory role and mechanism of lncTUG1 on cartilage apoptosis and inflammation in osteoarthritis. Arthritis Res Ther 2023; 25:106. [PMID: 37340458 DOI: 10.1186/s13075-023-03087-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/04/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Long-stranded non-coding RNA TUG1 is lowly expressed in osteoarthritic chondrocytes. This study aimed to elucidate the role of TUG1 in osteoarthritic cartilage damage and the underlying mechanisms. METHODS Combined database analysis, using primary chondrocytes as well as the C28/I2 cell line, was performed by qRT-PCR, Western blotting, and immunofluorescence to determine the expression of TUG1, miR-144-3p, DUSP1, and other target proteins. Dual luciferase reporter gene and RIP to verify direct interaction of TUG1 with miR-144-3-p and miR-144-3-p with DUSP1, Annexin V-FITC/PI double staining to detect apoptosis. CCK-8 to detect cell proliferation. The biological significance of TUG1, miR-144-3p, and DUSP1 was assessed in vitro experiments using siRNA for TUG1, mimic and repressor for miR-144-3p, and overexpression plasmid for DUSP1. In this study, all data were subjected to a t-test or one-way analysis of variance with a p-value < 0.05 as the cutoff. RESULTS TUG1 expression was closely associated with osteoarthritic chondrocyte damage, and knockdown of TUG1 significantly promoted chondrocyte apoptosis and inflammation. In the present study, we found that TUG1 inhibited chondrocyte apoptosis and inflammation by competitively binding miR-144-3p, deregulating the negative regulatory effect of miR-144-3p on DUSP1, promoting DUSP1 expression, and inhibiting the p38 MAPK signaling pathway. CONCLUSIONS In conclusion, our study clarifies the role of the ceRNA regulatory network of TUG1/miR-144-3p/DUSP1/P38 MAPK in OA cartilage injury and provides an experimental and theoretical basis for genetic engineering tools to promote articular cartilage repair.
Collapse
Affiliation(s)
- Nan-Nan Liu
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Yan-Ping Huang
- Department of Human Anatomy, Histology and Embryology, Anhui Medical College, No. 632 Furong Road, Hefei, 230601, Anhui Province, China
| | - Yu-Bao Shao
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Xue-Fei Fan
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - He-Yan Sun
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Tao-Rong Wang
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Tao Yao
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, No. 390 Huaihe Road, Hefei, 230061, Anhui Province, China.
| | - Xiao-Yu Chen
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
10
|
Zhang R, Deng X, Liu Q, Zhang X, Bai X, Weng S, Chen M. Global research trends and hotspots of PI3K/Akt signaling pathway in the field of osteoarthritis: A bibliometric study. Medicine (Baltimore) 2023; 102:e33489. [PMID: 37058031 PMCID: PMC10101318 DOI: 10.1097/md.0000000000033489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/20/2023] [Indexed: 04/15/2023] Open
Abstract
The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway has gradually become a new target for the treatment of osteoarthritis (OA). Numerous studies of PI3K/Akt signaling in OA have been published in the past few years. By analyzing these research characteristics and qualities, we aimed to reveal the current research focus and emerging trends in PI3K/Akt signaling in OA. We searched the Web of Science database for relevant articles concerning the PI3K/Akt signaling pathway in OA published from inception to October 31, 2022. The following data were extracted: author name, article title, keywords, topic, publication country/region, institution, publication journal, journal impact factor, number of times cited, and H-index. VOSviewer and Excel 2019 were used to conduct the bibliometric study and visualize the analysis. A total of 374 publications were included in this study. In all selected articles, "orthopedics" was the dominant topic (252 of 374, 67.38%). The most productive year was 2021. Frontiers in Pharmacology published the most articles. The People's Republic of China has published the most articles worldwide. The top 5 keywords were "OA," "expression," "apoptosis," "chondrocytes," and "inflammation." The keywords "autophagy," "mitochondrial dysfunction," "inflammatory response," "cartilage degeneration," and "network pharmacology" have increased in recent years. Our study showed a growing trend in published articles related to the PI3K/Akt signaling pathway in OA. Inflammatory response, cartilage degeneration, and apoptosis remain central topics in the field. Research on autophagy, mitochondrial dysfunction, and network pharmacology is on the rise, and the focus on PI3K/Akt will continue to increase.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Orthopedic, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoqin Deng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Quan Liu
- Department of Orthopedic, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xintian Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinxin Bai
- Department of Orthopedic, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Min Chen
- Department of Orthopedic, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
11
|
Liu S, Pan Y, Li T, Zou M, Liu W, Li Q, Wan H, Peng J, Hao L. The Role of Regulated Programmed Cell Death in Osteoarthritis: From Pathogenesis to Therapy. Int J Mol Sci 2023; 24:ijms24065364. [PMID: 36982438 PMCID: PMC10049357 DOI: 10.3390/ijms24065364] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Osteoarthritis (OA) is a worldwide chronic disease that can cause severe inflammation to damage the surrounding tissue and cartilage. There are many different factors that can lead to osteoarthritis, but abnormally progressed programmed cell death is one of the most important risk factors that can induce osteoarthritis. Prior studies have demonstrated that programmed cell death, including apoptosis, pyroptosis, necroptosis, ferroptosis, autophagy, and cuproptosis, has a great connection with osteoarthritis. In this paper, we review the role of different types of programmed cell death in the generation and development of OA and how the different signal pathways modulate the different cell death to regulate the development of OA. Additionally, this review provides new insights into the radical treatment of osteoarthritis rather than conservative treatment, such as anti-inflammation drugs or surgical operation.
Collapse
Affiliation(s)
- Suqing Liu
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Yurong Pan
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Ting Li
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Mi Zou
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wenji Liu
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qingqing Li
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Huan Wan
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Peng
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
- Correspondence: (J.P.); (L.H.); Tel.: +86-15983280459 (J.P.); +86-13607008562 (L.H.)
| | - Liang Hao
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- Correspondence: (J.P.); (L.H.); Tel.: +86-15983280459 (J.P.); +86-13607008562 (L.H.)
| |
Collapse
|
12
|
Connection between Osteoarthritis and Nitric Oxide: From Pathophysiology to Therapeutic Target. Molecules 2023; 28:molecules28041683. [PMID: 36838671 PMCID: PMC9959782 DOI: 10.3390/molecules28041683] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Osteoarthritis (OA), a disabling joint inflammatory disease, is characterized by the progressive destruction of cartilage, subchondral bone remodeling, and chronic synovitis. Due to the prolongation of the human lifespan, OA has become a serious public health problem that deserves wide attention. The development of OA is related to numerous factors. Among the factors, nitric oxide (NO) plays a key role in mediating this process. NO is a small gaseous molecule that is widely distributed in the human body, and its synthesis is dependent on NO synthase (NOS). NO plays an important role in various physiological processes such as the regulation of blood volume and nerve conduction. Notably, NO acts as a double-edged sword in inflammatory diseases. Recent studies have shown that NO and its redox derivatives might be closely related to both normal and pathophysiological joint conditions. They can play vital roles as normal bone cell-conditioning agents for osteoclasts, osteoblasts, and chondrocytes. Moreover, they can also induce cartilage catabolism and cell apoptosis. Based on different conditions, the NO/NOS system can act as an anti-inflammatory or pro-inflammatory agent for OA. This review summarizes the studies related to the effects of NO on all normal and OA joints as well as the possible new treatment strategies targeting the NO/NOS system.
Collapse
|
13
|
Ye JN, Su CG, Jiang YQ, Zhou Y, Sun WX, Zheng XX, Miao JT, Li XY, Zhu J. Effects of acupuncture on cartilage p38MAPK and mitochondrial pathways in animal model of knee osteoarthritis: A systematic evaluation and meta-analysis. Front Neurosci 2023; 16:1098311. [PMID: 36711149 PMCID: PMC9875597 DOI: 10.3389/fnins.2022.1098311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
Background Most previous studies on acupuncture in the treatment of knee osteoarthritis (KOA) have focused on improving functional efficacy and safety, while related mechanisms have not been systematically reviewed. Acupuncture modulates cytokines to attenuate cartilage extracellular matrix degradation and apoptosis, key to the pathogenesis of KOA, but the mechanisms are complex. Objectives The purpose of this study is to assess the efficacy of acupuncture quantitatively and summarily in animal studies of KOA. Methods Nine databases including PubMed, Embase, Web of Science (including Medline), Cochrane library, Scopus, CNKI, Wan Fang, and VIP were searched to retrieve animal studies on acupuncture interventions in KOA published since the inception of the journal. Relevant literature was screened, and information extracted. Meta-analysis was performed using Revman 5.4 and Stata 17.0 software. Results The 35 included studies involved 247 animals, half of which were in acupuncture groups and half in model groups. The mean quality level was 6.7, indicating moderate quality. Meta-analysis showed that acupuncture had the following significant effects on cytokine levels in p38MAPK and mitochondrial pathways: (1) p38MAPK pathway: It significantly inhibits p38MAPK, interleukin-1beta (IL-1β), tumor necrosis factor alpha (TNF-α), phosphorylated (p)-p38MAPK, matrix metalloproteinase-13 (MMP-13), MMP-1, a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMST-5) expression, and significantly increased the expression of collagen II and aggrecan. (2) mitochondrial pathway: It significantly inhibited the expression of Bcl-2-associated X protein (Bax), cysteine protease-3 (caspase-3), caspase-9, and Cytochrome-c (Cyt-c). And significantly increased the expression of B cell lymphocytoma-2 (Bcl-2). In addition, acupuncture significantly reduced chondrocyte apoptosis, Mankin's score (a measure of cartilage damage), and improved cartilage morphometric characteristics. Conclusion Acupuncture may inhibit cytokine expression in the p38MAPK pathway to attenuate cartilage extracellular matrix degradation, regulate cytokines in the mitochondrial pathway to inhibit chondrocyte apoptosis, and improve cartilage tissue-related phenotypes to delay cartilage degeneration. These findings provide possible explanations for the therapeutic mechanisms and clinical benefits of acupuncture for KOA. Systematic review registration https://inplasy.com, identifier INPLASY20 2290125.
Collapse
Affiliation(s)
- Jiang-nan Ye
- School of Acupuncture–Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng-guo Su
- School of Acupuncture–Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-qing Jiang
- School of Acupuncture–Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Zhou
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-xi Sun
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-xia Zheng
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin-tao Miao
- School of Acupuncture–Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-yue Li
- School of Acupuncture–Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Zhu
- School of Acupuncture–Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7:391. [PMID: 36522308 PMCID: PMC9755275 DOI: 10.1038/s41392-022-01251-0] [Citation(s) in RCA: 305] [Impact Index Per Article: 152.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|
15
|
Jing S, Wan J, Wang T, He Z, Ding Q, Sheng G, Wang S, Zhao H, Zhu Z, Wu H, Li W. Flavokawain A alleviates the progression of mouse osteoarthritis: An in vitro and in vivo study. Front Bioeng Biotechnol 2022; 10:1071776. [PMID: 36545678 PMCID: PMC9760749 DOI: 10.3389/fbioe.2022.1071776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent chronic degenerative joint diseases affecting adults in their middle or later years. It is characterized by symptoms such as joint pain, difficulty in movement, disability, and even loss of motion. Moreover, the onset and progression of inflammation are directly associated with OA. In this research, we evaluated the impact of Flavokawain A (FKA) on osteoarthritis. In-vitro effects of FKA on murine chondrocytes have been examined using cell counting kit-8 (CCK-8), safranin o staining, western blot, immunofluorescence staining, senescence β-galactosidase staining, flow cytometry analysis, and mRFP-GFP-LC3 adenovirus infection. An in-vivo model of destabilization of the medial meniscus (DMM) was employed to investigate FKA's effect on OA mouse. An analysis of bioinformatics was performed on FKA and its potential role in OA. It was observed that FKA blocked interleukin (IL)-1β-induced expression of inflammatory factors, i.e., cyclooxygenase-2 (COX2) and inducible nitric oxide synthase (iNOS) in chondrocytes. In addition, FKA also downregulated the catabolic enzyme expression, i.e., aggrecanase-2 (ADAMTS5) and matrix metalloproteinases (MMPs), and helped in the upregulation of the anabolic protein expression, i.e., type II collagen (Col2), Aggrecan, and sry-box transcription factor 9 (SOX9). Moreover, FKA ameliorated IL-1β-triggered autophagy in chondrocytes, and it was observed that the FKA causes anti-inflammatory effects by the mitogen-activated protein kinase (MAPK) and phosphoinositide-3-kinase/Akt/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathways inhibition. The results of immunohistochemical analysis and microcomputed tomography from the in vivo OA mouse model confirmed the therapeutic effect of FKA. Finally, we assessed the anti-arthritic impacts of FKA by conducting in vivo and in vitro analyses. We concluded that FKA can be employed as a useful therapeutic agent for OA therapy, but the findings require needs further clinical investigation.
Collapse
Affiliation(s)
- Shaoze Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Junlai Wan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianqi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Ding
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanxi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongqi Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziqing Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,*Correspondence: Hua Wu, ; Wenkai Li,
| | - Wenkai Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Hua Wu, ; Wenkai Li,
| |
Collapse
|
16
|
Tan Z, Zhang B. Echinacoside alleviates osteoarthritis in rats by activating the Nrf2-HO-1 signaling pathway. Immunopharmacol Immunotoxicol 2022; 44:850-859. [PMID: 35815581 DOI: 10.1080/08923973.2022.2088384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) is a progressive disease characterized by degeneration of cartilage and echinacoside (Ech) has anti-inflammatory and antioxidant effects in various human diseases. This study aimed to reveal the effect and potential mechanism of Ech on OA. MATERIALS AND METHODS The in vitro OA model was established by rat chondrocytes treated with IL-1β, and the in vivo OA model was established by anterior cruciate ligament transaction. The effect of Ech on the viability, inflammatory response, extracellular matrix (ECM) degradation, and oxidative stress of IL-1β-treated rat chondrocytes were evaluated by Cell Counting Kit-8 assay, enzyme-linked immunosorbent assay, quantitative real-time PCR, Western blot, and immunofluorescence assay. Meanwhile, the mechanism of Ech was assessed using Western blot, Cell Counting Kit-8 assay, enzyme-linked immunosorbent assay, and immunofluorescence analysis. Moreover, the function of Ech in vivo was analyzed in rat models of OA. RESULTS Functionally, Ech enhanced the viability of rat chondrocytes, repressed the inflammatory response and ECM degradation of rat chondrocytes induced by IL-1β with restrained oxidative stress. Mechanically, Ech repressed IL-1β-induced chondrocyte injury by activating the Nrf2/HO-1 signaling pathway. Meanwhile, Ech alleviated the degree of articular cartilage injury in rats and exerted protective effects on the rat model of OA in vivo. DISCUSSION AND CONCLUSIONS Ech alleviated OA in rats by activating the Nrf2-HO-1 signaling pathway.
Collapse
Affiliation(s)
- Zhijun Tan
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Zhang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Vaamonde-García C, Capelo-Mera E, Flórez-Fernández N, Torres MD, Rivas-Murias B, Mejide-Faílde R, Blanco FJ, Domínguez H. In Vitro Study of the Therapeutic Potential of Brown Crude Fucoidans in Osteoarthritis Treatment. Int J Mol Sci 2022; 23:14236. [PMID: 36430716 PMCID: PMC9698873 DOI: 10.3390/ijms232214236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Osteoarthritis, one of the most common joint degenerative pathologies, still has no cure, and current treatments, such as nonsteroidal anti-inflammatory drugs, can cause serious adverse effects when taken for a long time. Brown seaweed crude fucoidans are used for the clinical treatment of several pathologies. In this study, the therapeutical potential of these biocompounds was analyzed in primary chondrocytes and the 260TT human chondrocyte cell line. Crude fucoidan from Undaria pinnatifida (Up) and Sargassum muticum (Sm) was obtained by different extraction techniques (microwave-assisted extraction, pressurized hot-water extraction, ultrasound-assisted extraction) and chemically and structurally characterized by Fourier transform infrared spectroscopy, high-performance size-exclusion chromatography, proton nuclear magnetic resonance, and scanning electron microscopy. Once cell viability was confirmed in chondrocytes treated with crude fucoidans, we evaluated their anti-inflammatory effects, observing a significant reduction in IL-6 production stimulated by IL-1β. Findings were confirmed by analysis of IL-6 and IL-8 gene expression, although only fucoidans from Up achieved a statistically significant reduction. Besides this, the antioxidant capacity of crude fucoidans was observed through the upregulation of Nrf-2 levels and the expression of its transcriptional target genes HO-1 and SOD-2, with compounds from Up again showing a more consistent effect. However, no evidence was found that crude fucoidans modulate senescence, as they failed to reduced β-galactosidase activity, cell proliferation, or IL-6 production in chondrocytes stimulated with etoposide. Thus, the findings of this research seem to indicate that the tested crude fucoidans are capable of partially alleviating OA-associated inflammation and oxidative stress, but fail to attenuate chondrocyte senescence.
Collapse
Affiliation(s)
- Carlos Vaamonde-García
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Emma Capelo-Mera
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Noelia Flórez-Fernández
- Grupo de Biomasa y Desarrollo Sostenible (EQ2), Departamento de Ingeniería Química, Facultad de Ciencias, CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| | - María Dolores Torres
- Grupo de Biomasa y Desarrollo Sostenible (EQ2), Departamento de Ingeniería Química, Facultad de Ciencias, CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| | | | - Rosa Mejide-Faílde
- Grupo de Terapia Celular y Medicina Regenerativa, Universidade da Coruña, CICA-Centro Interdisciplinar de Química y Biología, Complexo Hospitalario Universitario A Coruña, Campus Oza, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain
| | - Herminia Domínguez
- Grupo de Biomasa y Desarrollo Sostenible (EQ2), Departamento de Ingeniería Química, Facultad de Ciencias, CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
18
|
Chen LH, Chan SH, Li CJ, Wu HM, Huang HY. Altered Expression of Interleukin-18 System mRNA at the Level of Endometrial Myometrial Interface in Women with Adenomyosis. Curr Issues Mol Biol 2022; 44:5550-5561. [PMID: 36354688 PMCID: PMC9689074 DOI: 10.3390/cimb44110376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
Adenomyosis is a uterine pathology characterized by a deep invasion of endometrial glands and stroma, disrupting the endometrial−myometrial interface (EMI). Interleukin-18 (IL-18) system is a dominant cytokine involved in the menstrual cycle of human endometrium. IL-18 may play a defensive role against maternal immune response in the uterine cavity. The present study was designed to determine IL-18-mediated immune response at the level of EMI. We uncovered that mRNA of IL-18 system, including IL-18, IL-18 receptor (IL-18R), and its antagonist, IL-18 binding protein (IL-18BP), expressed in eutopic, ectopic endometrium, and corresponding myometrium in patients with adenomyosis. IL-18 system was demonstrated in paired tissue samples by immunochemistry and immunofluorescence study. According to RT-PCR with CT value quantification and 2−∆∆Ct method, a significant down-regulation of IL-18BP in corresponding myometrium in comparison to eutopic endometrium (p < 0.05) indicates that the IL-18 system acts as a local immune modulator at the level of EMI and regulating cytokine networks in the pathogenesis of adenomyosis. Furthermore, an increased IL-18 antagonist to agonist ratio was noted in ectopic endometrium compared with corresponding myometrium. We suggest that altered IL-18 system expression contributes to immunological dysfunction and junctional zone disturbance in women with adenomyosis.
Collapse
Affiliation(s)
- Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - She-Hung Chan
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Cosmetic Science, Providence University, No. 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung 43301, Taiwan
| | - Chin-Jung Li
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hong-Yuan Huang
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence:
| |
Collapse
|
19
|
Seong Choi K, Shin TS, Chun J, Ahn G, Jeong Han E, Kim MJ, Kim JB, Kim SH, Kho KH, Heon Kim D, Shim SY. Sargahydroquinoic acid isolated from Sargassum serratifolium as inhibitor of cellular basophils activation and passive cutaneous anaphylaxis in mice. Int Immunopharmacol 2022; 105:108567. [PMID: 35114442 DOI: 10.1016/j.intimp.2022.108567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 11/19/2022]
Abstract
Basophils and mast cells are characteristic effector cells in allergic reactions. Sargahydorquinoic acid (SHQA), a compound isolated from Sargassum serratifolium (marine alga), possesses various biochemical properties, including potent antioxidant activities. The objective of the present study was to investigate inhibitory effects of SHQA on the activation of human basophilic KU812F cells induced by phorbol myristate acetate and A23187 (PMACI), a calcium ionophore. Furthermore, we confirmed the inhibitory effects of SHQA on the activation of rat basophilic leukemia (RBL)-2H3 cells induced by compound 48/80 (com 48/80), bone marrow-derived mast cells (BMCMCs) induced by anti-dinitrophenyl(DNP)-immunoglobulin E (IgE)/DNP-bovine serum albumin (BSA), DNP/IgE and on the reaction of passive cutaneous anaphylaxis (PCA) mediated by IgE. SHQA reduced PMACI-induced intracellular reactive oxygen species (ROS) and calcium levels. Western blot analysis revealed that SHQA downregulated the activation of ERK, p38, and NF-κB in a dose-dependent manner. Moreover, SHQA suppressed the production and gene expression of various cytokines, including interleukin (IL)-1 β, IL-4, IL-6, and IL-8 in PMACI-induced KU812F cells and IL-4 and tumor necrosis factor (TNF)- α in com 48/80-induced RBL-2H3 cells. It also determined the inhibition of PMACI, com 48/80- and IgE/DNP-induced degranulation by reducing the release of β -hexosaminidase. Furthermore, it attenuated the IgE/DNP-induced PCA reaction in the ears of BALB/c mice. These results suggest that SHQA isolated from S. serratifolium is a potential therapeutic functional food material for inhibiting effector cell activation in allergic reactions and anaphylaxis in animal model.
Collapse
Affiliation(s)
- Kap Seong Choi
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Tai-Sun Shin
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jiyeon Chun
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Eui Jeong Han
- Research Center for Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea; Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Min-Jong Kim
- Cell & Matrix Research Institute, Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jung-Beom Kim
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sang-Hyun Kim
- Cell & Matrix Research Institute, Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kang-Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sun-Yup Shim
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
20
|
Zheng W, Li X, Li J, Wang X, Liu D, Zhai L, Ding B, Li G, Sun Y, Yokota H, Zhang P. Mechanical loading mitigates osteoarthritis symptoms by regulating the inflammatory microenvironment in a mouse model. Ann N Y Acad Sci 2022; 1512:141-153. [DOI: 10.1111/nyas.14760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Weiwei Zheng
- Department of Anatomy and Histology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases Tianjin Medical University Tianjin China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases Tianjin Medical University Tianjin China
| | - Xiaoyu Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases Tianjin Medical University Tianjin China
| | - Lidong Zhai
- Department of Anatomy and Histology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Beibei Ding
- Department of Anatomy and Histology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Guang Li
- Department of Anatomy and Histology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Yuting Sun
- Department of Anatomy and Histology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Hiroki Yokota
- Department of Biomedical Engineering Indiana University‐Purdue University Indianapolis Indianapolis Indiana
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases Tianjin Medical University Tianjin China
- Tianjin Key Laboratory of Spine and Spinal Cord Tianjin Medical University Tianjin China
| |
Collapse
|
21
|
Yang X, Xiao X, Zhang L, Wang B, Li P, Cheng B, Liang C, Ma M, Guo X, Zhang F, Wen Y. An integrative analysis of DNA methylation and transcriptome showed the dysfunction of MAPK pathway was involved in the damage of human chondrocyte induced by T-2 toxin. BMC Mol Cell Biol 2022; 23:4. [PMID: 35038982 PMCID: PMC8762874 DOI: 10.1186/s12860-021-00404-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/28/2021] [Indexed: 12/05/2022] Open
Abstract
Background T-2 toxin is thought to induce the growth plate and articular cartilage damage of Kashin-Beck disease (KBD), an endemic osteochondropathy in China. This study aims to explore the potential underlying mechanism of such toxic effects by integrating DNA methylation and gene expression profiles. Methods In this study, C28/I2 chondrocytes were treated with T-2 toxin (5 ng/mL) for 24 h and 72 h. Global DNA methylation level of chondrocyte was tested by Enzyme-Linked Immuno Sorbent Assay. Genome-wide DNA methylation and expression profiles were detected using Illumina Infinium HumanMethylation850 BeadChip and RNA-seq technique, respectively. Differentially methylated genes (DMGs) and differentially expressed genes (DEGs) were identified mainly for two stages including 24 h group versus Control group and 72 h group versus 24 h group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed by Metascape. DMGs and DEGs were further validated by Sequenom MassARRAY system and quantitative real-time polymerase chain reaction. Results The global DNA methylation levels of chondrocytes exposed to T-2 toxin were significantly increased (P < 0.05). For 24 h group versus Control group (24 VS C), 189 DEGs and 590 DMGs were identified, and 4 of them were overlapping. For 72 h group versus 24 h group (72 VS 24), 1671 DEGs and 637 DMGs were identified, and 45 of them were overlapping. The enrichment analysis results of DMGs and DEGs both showed that MAPK was the one of the mainly involved signaling pathways in the regulation of chondrocytes after T-2 toxin exposure (DEGs: P24VSc = 1.62 × 10− 7; P72VS24 = 1.20 × 10− 7; DMGs: P24VSc = 0.0056; P72VS24 = 3.80 × 10− 5). Conclusions The findings depicted a landscape of genomic methylation and transcriptome changes of chondrocytes after T-2 toxin exposure and suggested that dysfunction of MAPK pathway may play important roles in the chondrocytes damage induced by T-2 toxin, which could provide new clues for understanding the potential biological mechanism of KBD cartilage damage induced by T-2 toxin. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00404-3.
Collapse
Affiliation(s)
- Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xue Xiao
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Bo Wang
- HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaan'xi, 710061, People's Republic of China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
22
|
Bashir N, Ahmad SB, Rehman MU, Muzamil S, Bhat RR, Mir MUR, Shazly GA, Ibrahim MA, Elossaily GM, Sherif AY, Kazi M. Zingerone (4-(four-hydroxy-3-methylphenyl) butane-two-1) modulates adjuvant-induced rheumatoid arthritis by regulating inflammatory cytokines and antioxidants. Redox Rep 2021; 26:62-70. [PMID: 33784959 PMCID: PMC8018447 DOI: 10.1080/13510002.2021.1907518] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
OBJECTIVE Ginger (Zingiber officinale Roscoe) is considered to be one of the most commonly consumed dietary condiments of the world. The present study was designed to explicate the protective role of zingerone; an active ingredient of ginger in complete Freund's adjuvant (FCA)-immunized arthritic rats. METHODS 24 Wistar rats were divided into 4 groups with 6 rats each. Group I as control followed by group II, III and IV were treated with single intradermal injection of FCA (0.1 ml = 100 µg) to induce rheumatoid arthritis. Group III and IV were also administered with zingerone orally at 25 mg/kg b.w for 3 weeks at two different time points. RESULTS Adjuvant-treated rats exhibited a significant increase in lipid peroxidation and a reduction in the enzymatic antioxidants such as SOD, catalase and GPx, in the liver and joint tissues. Moreover, FCA inoculation resulted in the increase in levels of NF-κB, TGF-β, TNF-α, IL-1β, IL-6 and Hs-CRP and a decrease in IL-10 levels. Zingerone significantly reduced the levels of NF-κB, TGF-β, TNF-α, IL-1β, IL-6 and Hs-CRP and markedly increased IL-10 levels. Levels of antioxidant enzymes were also restored by zingerone treatment. DISCUSSION Oral administration of zingerone ameliorated inflammatory outburst and decreased oxidative stress, suggesting its role in the prevention of rheumatoid arthritis. Further mechanistic insights are necessary to study the exact mechanism involved.
Collapse
Affiliation(s)
- Nazirah Bashir
- Faculty of Veterinary Sciences & Animal Husbandry, Division of Veterinary Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir (SKUAST-K), Srinagar, India
| | - Sheikh Bilal Ahmad
- Faculty of Veterinary Sciences & Animal Husbandry, Division of Veterinary Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir (SKUAST-K), Srinagar, India
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Showkeen Muzamil
- Faculty of Veterinary Sciences & Animal Husbandry, Division of Veterinary Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir (SKUAST-K), Srinagar, India
| | - Rahil Razak Bhat
- Faculty of Veterinary Sciences & Animal Husbandry, Division of Veterinary Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir (SKUAST-K), Srinagar, India
| | - Manzoor ur Rahman Mir
- Faculty of Veterinary Sciences & Animal Husbandry, Division of Veterinary Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir (SKUAST-K), Srinagar, India
| | - Gamal A. Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, RiyadhSaudi Arabia
| | - Mohamed A. Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, RiyadhSaudi Arabia
| | - Gehan M. Elossaily
- Department of Pathology, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Abdelrahman Y. Sherif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, RiyadhSaudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, RiyadhSaudi Arabia
| |
Collapse
|
23
|
Shen C, Gao M, Chen H, Zhan Y, Lan Q, Li Z, Xiong W, Qin Z, Zheng L, Zhao J. Reactive oxygen species (ROS)-responsive nanoprobe for bioimaging and targeting therapy of osteoarthritis. J Nanobiotechnology 2021; 19:395. [PMID: 34838028 PMCID: PMC8627084 DOI: 10.1186/s12951-021-01136-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/14/2021] [Indexed: 12/27/2022] Open
Abstract
Stimulus-responsive therapy that allows precise imaging-guided therapy is limited for osteoarthritis (OA) therapy due to the selection of proper physiological markers as stimulus. Based on that the over-production of Reactive Oxygen Species (ROS) is associated with the progression in OA, we selected ROS as markers and designed a cartilage targeting and ROS-responsive theranostic nanoprobe that can be used for effective bioimaging and therapy of OA. This nanoprobe was fabricated by using PEG micelles modified with ROS-sensitive thioketal linkers (TK) and cartilage-targeting peptide, termed TKCP, which was then encapsulated with Dexamethasone (DEX) to form TKCP@DEX nanoparticles. Results showed that the nanoprobe can smartly “turn on” in response to excessive ROS and “turn off” in the normal joint. By applying different doses of ROS inducer and ROS inhibitor, this nanoprobe can emit ROS-dependent fluorescence according to the degree of OA severity, helpful to precise disease classification in clinic. Specifically targeting cartilage, TKCP@DEX could effectively respond to ROS and sustained release DEX to remarkably reduce cartilage damage in the OA joints. This smart, sensitive and endogenously activated ROS-responsive nanoprobe is promising for OA theranostics. ![]()
Collapse
Affiliation(s)
- Chong Shen
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopedics, The Affiliated Hospital of Guilin Medical University, No. 15 Lequn Road, Guilin, 541001, Guangxi, China
| | - Ming Gao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Haimin Chen
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yanting Zhan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Qiumei Lan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zhimin Li
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Wei Xiong
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory On Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
24
|
Liu H, Hu X, Jiang R, Cai J, Lin Q, Fan Z, Zhao P, Wang S, Zou C, Du W, Dong Z, Liu Y. CQMUH-011 Inhibits LPS-Induced Microglia Activation and Ameliorates Brain Ischemic Injury in Mice. Inflammation 2021; 44:1345-1358. [PMID: 33528726 PMCID: PMC8285337 DOI: 10.1007/s10753-021-01420-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 12/23/2022]
Abstract
Excessive microglial activation-mediated neuroinflammation is closely involved in the pathogenesis of several neurological diseases. CQMUH-011, as a novel adamantane sulfonamide compound, has been shown anti-inflammatory properties in activated macrophages (RAW264.7). However, the role of CQMUH-011 in microglial activation-induced neuroinflammation and neuroprotective properties has yet to be elucidated. In the present study, we investigated the potential effects and mechanisms of CQMUH-011 on lipopolysaccharide (LPS)-stimulated primary microglia in vitro and transient middle cerebral artery occlusion (t-MCAO)-induced acute cerebral ischemia/reperfusion (I/R) injury in vivo. The results demonstrated that CQMUH-011 significantly suppressed the production of tumor necrosis factor (TNF)-α and interleukin (IL)-1β by LPS-stimulated primary microglia. In addition, CQMUH-011 inhibited the proliferation of activated microglia by arresting the cell cycle at the G1/S phase accompanied by downregulating the expression of cell cycle regulatory proteins such as proliferating cell nuclear antigen (PCNA) and cyclin D1. CQMUH-011 was seen to induce apoptosis in activated microglia by regulating the expression of Bax and Bcl-2. Furthermore, CQMUH-011 markedly attenuated the protein expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) as well as the phosphorylation levels of nuclear factor-kappa (NF-κB) subunit p65, inhibitory kappa B-alpha (IκBα), and mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK) and p38 kinases. In vivo, CQMUH-011 administration significantly improved neurological function and infarct volume, and ameliorated the inflammatory cytokines and microglia amount around the injury site of mice. In conclusion, these results suggested that CQMUH-011 has a notable anti-inflammatory effect and protects mice from I/R injure. Thus, CQMUH-011 may be a candidate drug for the treatment of cerebral ischemia patients.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Xiangnan Hu
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Rong Jiang
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jianghui Cai
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Qiao Lin
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Zhiguo Fan
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Pan Zhao
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Song Wang
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Chunqiao Zou
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Weimin Du
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Zhi Dong
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Yingju Liu
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
25
|
Chen GY, Chen JQ, Liu XY, Xu Y, Luo J, Wang YF, Zhou TL, Yan ZR, Zhou L, Tao QW. Total Flavonoids of Rhizoma Drynariae Restore the MMP/TIMP Balance in Models of Osteoarthritis by Inhibiting the Activation of the NF- κB and PI3K/AKT Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6634837. [PMID: 33995548 PMCID: PMC8081598 DOI: 10.1155/2021/6634837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/15/2021] [Accepted: 04/04/2021] [Indexed: 12/16/2022]
Abstract
Total flavonoids of Rhizoma Drynariae (TFRD) have been shown to have beneficial effects on osteoarthritis (OA) clinically, but the mechanisms have not been elucidated. In this study, we investigated the effect of TFRD on articular cartilage in an OA rat model established by the Hulth method and in SW1353 chondrocytes induced by the proinflammatory factor interleukin-1β (IL-1β). The results showed that TFRD could alleviate the pathological changes in knee cartilage in OA model rats. In vivo, the qPCR analysis indicated that the mRNA levels of matrix metalloproteinases, MMP-1, MMP-3, and MMP-13, were decreased, while tissue inhibitor of matrix metalloproteinases- (TIMP-) 4 was increased in cartilage, and these changes could be partially prevented by TFRD. In vitro experiments showed that IL-1β could significantly increase the expression of MMP-1, MMP-3, and MMP-13 and decrease the expression of TIMP-4 in SW1353 cells at the mRNA and protein levels. TFRD could increase the expression of MMP-3 and MMP-13 and decrease the expression of TIMP-4. Transfection of siRNA and addition of pathway inhibitors were used to clarify that inhibition of NF-κB and PI3K/AKT pathway decreased MMP-1, MMP-3, and MMP-13 and increased TIMP-4 expression. We also found that in IL-1β-induced SW1353 cells, TFRD pretreatment had a modest inhibitory effect on p-AKT (Ser473) and reversed the increase of nuclear factor kappa-B (NF-κB) p65 in nuclear fraction and the decrease of inhibitor of NF-κB(IκB)-α in the cytosolic fraction. Further immunofluorescence confirmed that TFRD can inhibit IL-1β-induced NF-κB p65 translocation to the nucleus to some extent. In conclusion, TFRD showed chondroprotective effects by restoring the MMP/TIMP balance in OA models by suppressing the activation of the NF-κB and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Guang-Yao Chen
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jia-Qi Chen
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Yu Liu
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuan Xu
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing 100029, China
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jing Luo
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing 100029, China
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yi-Fei Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tong-Liang Zhou
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ze-Ran Yan
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing 100029, China
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li Zhou
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qing-Wen Tao
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing 100029, China
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
26
|
Tiftik RN, Temiz-Reşitoğlu M, Güden DS, Bayrak G, Ün İ, Yılmaz ŞN, Şahan-Fırat S. Involvement of Rho-kinase/IκB-α/NF-κB activation in IL-1β-induced inflammatory response and oxidative stress in human chondrocytes. Can J Physiol Pharmacol 2021; 99:418-426. [PMID: 33769089 DOI: 10.1139/cjpp-2020-0305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been clearly indicated that osteoarthritis (OA) is an inflammatory and degenerative disease that could be promoted by Rho-kinase (ROCK); however, little is known about the role of ROCK/inhibitor κB alpha (IκB-α)/nuclear factor-κB (NF-κB) p65 pathway activation in interleukin-1β (IL-1β) induced inflammatory response and oxidative stress in primary human chondrocytes. To test this hypothesis, we focused on determining ROCK-II, IκB-α, p-IκB-α, NF-κB p65, p-NF-κB p65, IL-6, tumor necrosis factor alpha (TNF-α), cyclooxygenase-2 (COX-2), p22phox, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subtype 4 (NOX4) protein expression, ROCK-II activity, NADPH oxidase levels, and total antioxidant capacity (TAC) in the presence and absence of ROCK-inhibitor fasudil. IL-1β (2 ng·mL-1, 24 h) increased the expression of ROCK-II, p-IκB-α, NF-κB p65, p-NF-κB p65, IL-6, TNF-α, COX-2, and p22phox proteins, and decreased the expression of IκB-α, and the NOX4 protein level did not alter. ROCK activity and NADPH oxidase levels were increased, whereas the TAC was decreased by IL-1β. Fasudil (10-5-10-7 M) reversed all these changes induced by IL-1β. These results demonstrate that ROCK/IκB-α/NF-κB p65 pathway activation contributes to the IL-1β-induced inflammatory response and oxidative stress, and thus, ROCK inhibition might be a beneficial treatment option for OA patients mainly based on its anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Rukiye Nalan Tiftik
- Department of Medical Pharmacology, Medical Faculty, Mersin University, Mersin, Turkey
| | | | - Demet Sinem Güden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Gülsen Bayrak
- Department of Histology and Embryology, Medical Faculty, Mersin University, Mersin, Turkey
| | - İsmail Ün
- Department of Medical Pharmacology, Medical Faculty, Mersin University, Mersin, Turkey
| | - Şakir Necat Yılmaz
- Department of Histology and Embryology, Medical Faculty, Mersin University, Mersin, Turkey
| | - Seyhan Şahan-Fırat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| |
Collapse
|
27
|
Teixeira E, Silva C, Martel F. The role of the glutamine transporter ASCT2 in antineoplastic therapy. Cancer Chemother Pharmacol 2021; 87:447-464. [PMID: 33464409 DOI: 10.1007/s00280-020-04218-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
Cancer cells are metabolically reprogrammed to support their high rates of proliferation, continuous growth, survival, invasion, metastasis, and resistance to cancer treatments. Among changes in cancer cell bioenergetics, the role of glutamine metabolism has been receiving increasing attention. Increased glutaminolysis in cancer cells is associated with increased expression of membrane transporters that mediate the cellular uptake of glutamine. ASCT2 (Alanine, Serine, Cysteine Transporter 2) is a Na+-dependent transmembrane transporter overexpressed in cancer cells and considered to be the primary transporter for glutamine in these cells. The possibility of inhibiting ASCT2 for antineoplastic therapy is currently under investigation. In this article, we will present the pharmacological agents currently known to act on ASCT2, which have been attracting attention in antineoplastic therapy research. We will also address the impact of ASCT2 inhibition on the prognosis of some cancers. We conclude that ASCT2 inhibition and combination of ASCT2 inhibitors with other anti-tumor therapies may be a promising antineoplastic strategy. However, more research is needed in this area.
Collapse
Affiliation(s)
- Estefânia Teixeira
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Al Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Cláudia Silva
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Al Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Instituto de Investigação E Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
| | - Fátima Martel
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Al Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
- Instituto de Investigação E Inovação Em Saúde (i3S), University of Porto, Porto, Portugal.
| |
Collapse
|
28
|
Pang KL, Chow YY, Leong LM, Law JX, Ghafar NA, Soelaiman IN, Chin KY. Establishing SW1353 Chondrocytes as a Cellular Model of Chondrolysis. Life (Basel) 2021; 11:272. [PMID: 33805920 PMCID: PMC8064306 DOI: 10.3390/life11040272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 01/16/2023] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease characterised by chondrocyte cell death. An in vitro model of chondrocyte cell death may facilitate drug discovery in OA management. In this study, the cytotoxicity and mode of cell death of SW1353 chondrocytes treated with 24 h of OA inducers, including interleukin-1β (IL-1β), hydrogen peroxide (H2O2) and monosodium iodoacetate (MIA), were investigated. The microscopic features, oxidative (isoprostane) and inflammatory markers (tumour necrosis factor-alpha; TNF-α) for control and treated cells were compared. Our results showed that 24 h of H2O2 and MIA caused oxidative stress and a concentration-dependent reduction of SW1353 cell viability without TNF-α level upregulation. H2O2 primarily induced chondrocyte apoptosis with the detection of blebbing formation, cell shrinkage and cellular debris. MIA induced S-phase arrest on chondrocytes with a reduced number of attached cells but without significant cell death. On the other hand, 24 h of IL-1β did not affect the cell morphology and viability of SW1353 cells, with a significant increase in intracellular TNF-α levels without inducing oxidative stress. In conclusion, each OA inducer exerts differential effects on SW1353 chondrocyte cell fate. IL-1β is suitable in the inflammatory study but not for chondrocyte cell death. H2O2 and MIA are suitable for inducing chondrocyte cell death and growth arrest, respectively.
Collapse
Affiliation(s)
- Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (K.-L.P.); (I.N.S.)
| | - Yoke Yue Chow
- Department of Orthopaedic and Trauma Medicine, Deanery of Clinical Sciences, The University of Edinburgh, Edinburgh EH16 4SB, UK;
| | - Lek Mun Leong
- Prima Nexus Sdn. Bhd., Kuala Lumpur 50470, Malaysia;
- Department of Biomedical Science, Faculty of Science, Lincoln University College, Petaling Jaya 47301, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
| | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Ima Nirwana Soelaiman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (K.-L.P.); (I.N.S.)
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (K.-L.P.); (I.N.S.)
| |
Collapse
|
29
|
Antiosteoarthritic Effect of Morroniside in Chondrocyte Inflammation and Destabilization of Medial Meniscus-Induced Mouse Model. Int J Mol Sci 2021; 22:ijms22062987. [PMID: 33804203 PMCID: PMC7999654 DOI: 10.3390/ijms22062987] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease that results in joint inflammation as well as pain and stiffness. A previous study has reported that Cornus officinalis (CO) extract inhibits oxidant activities and oxidative stress in RAW 264.7 cells. In the present study, we isolated bioactive compound(s) by fractionating the CO extract to elucidate its antiosteoarthritic effects. A single bioactive component, morroniside, was identified as a potential candidate. The CO extract and morroniside exhibited antiosteoarthritic effects by downregulating factors associated with cartilage degradation, including cyclooxygenase-2 (Cox-2), matrix metalloproteinase 3 (Mmp-3), and matrix metalloproteinase 13 (Mmp-13), in interleukin-1 beta (IL-1β)-induced chondrocytes. Furthermore, morroniside prevented prostaglandin E2 (PGE2) and collagenase secretion in IL-1β-induced chondrocytes. In the destabilization of the medial meniscus (DMM)-induced mouse osteoarthritic model, morroniside administration attenuated cartilage destruction by decreasing expression of inflammatory mediators, such as Cox-2, Mmp3, and Mmp13, in the articular cartilage. Transverse microcomputed tomography analysis revealed that morroniside reduced DMM-induced sclerosis in the subchondral bone plate. These findings suggest that morroniside may be a potential protective bioactive compound against OA pathogenesis.
Collapse
|
30
|
Li Q, Wu M, Fang G, Li K, Cui W, Li L, Li X, Wang J, Cang Y. MicroRNA‑186‑5p downregulation inhibits osteoarthritis development by targeting MAPK1. Mol Med Rep 2021; 23:253. [PMID: 33537828 PMCID: PMC7893783 DOI: 10.3892/mmr.2021.11892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
As a chronic degenerative joint disease, the characteristics of osteoarthritis (OA) are degeneration of articular cartilage, subchondral bone sclerosis and bone hyperplasia. It has been reported that microRNA (miR)-186-5p serves a key role in the development of various tumors, such as osteosarcoma, non-small-cell lung cancer cells, glioma and colorectal cancer. The present study aimed to investigate the effect of miR-186-5p in OA. Different concentrations of IL-1β were used to treat the human chondrocyte cell line CHON-001 to simulate inflammation, and CHON-001 cell injury was assessed by detecting cell viability, apoptosis, caspase-3 activity and the levels of TNF-α, IL-8 and IL-6. Subsequently, reverse transcription-quantitative PCR was performed to measure miR-186-5p expression. The results demonstrated that following IL-1β treatment, CHON-001 cell viability was suppressed, apoptosis was promoted, the caspase-3 activity was significantly enhanced and the release of TNF-α, IL-8 and IL-6 was increased. In addition, IL-1β treatment significantly upregulated miR-186-5p expression in CHON-001 cells. It was also identified that MAPK1 was a target gene of miR-186-5p, and was negatively regulated by miR-186-5p. miR-186 inhibitor and MAPK1-small interfering RNA (siRNA) were transfected into CHON-001 cells to investigate the effect of miR-186-5p on CHON-001 cell injury induced by IL-1β. The results demonstrated that miR-186 inhibitor suppressed the effects of IL-1β on CHON-001 cells, and these effects were reversed by MAPK1-siRNA. In conclusion, the present results indicated that miR-186-5p could attenuate IL-1β-induced chondrocyte inflammation damage by increasing MAPK1 expression, suggesting that miR-186-5p may be used as a potential therapeutic target for OA.
Collapse
Affiliation(s)
- Qing Li
- Department of Orthopedics, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Mingjie Wu
- Department of Orthopedics, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Guofang Fang
- Department of Orthopedics, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Kuangwen Li
- Department of Orthopedics, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Wengang Cui
- Department of Orthopedics, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Liang Li
- Department of Orthopedics, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Xia Li
- Department of Orthopedics, The Second People's Hospital of Huai'an, Huai'an, Jiangsu 223002, P.R. China
| | - Junsheng Wang
- Department of Orthopedics, The Second People's Hospital of Huai'an, Huai'an, Jiangsu 223002, P.R. China
| | - Yanhong Cang
- Department of Orthopedics, The Second People's Hospital of Huai'an, Huai'an, Jiangsu 223002, P.R. China
| |
Collapse
|
31
|
CQMUH-011 Inhibits LPS-Induced Microglia Activation and Ameliorates Brain Ischemic Injury in Mice. Inflammation 2021. [PMID: 33528726 DOI: 10.1007/s10753-021-01420-3.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Excessive microglial activation-mediated neuroinflammation is closely involved in the pathogenesis of several neurological diseases. CQMUH-011, as a novel adamantane sulfonamide compound, has been shown anti-inflammatory properties in activated macrophages (RAW264.7). However, the role of CQMUH-011 in microglial activation-induced neuroinflammation and neuroprotective properties has yet to be elucidated. In the present study, we investigated the potential effects and mechanisms of CQMUH-011 on lipopolysaccharide (LPS)-stimulated primary microglia in vitro and transient middle cerebral artery occlusion (t-MCAO)-induced acute cerebral ischemia/reperfusion (I/R) injury in vivo. The results demonstrated that CQMUH-011 significantly suppressed the production of tumor necrosis factor (TNF)-α and interleukin (IL)-1β by LPS-stimulated primary microglia. In addition, CQMUH-011 inhibited the proliferation of activated microglia by arresting the cell cycle at the G1/S phase accompanied by downregulating the expression of cell cycle regulatory proteins such as proliferating cell nuclear antigen (PCNA) and cyclin D1. CQMUH-011 was seen to induce apoptosis in activated microglia by regulating the expression of Bax and Bcl-2. Furthermore, CQMUH-011 markedly attenuated the protein expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) as well as the phosphorylation levels of nuclear factor-kappa (NF-κB) subunit p65, inhibitory kappa B-alpha (IκBα), and mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK) and p38 kinases. In vivo, CQMUH-011 administration significantly improved neurological function and infarct volume, and ameliorated the inflammatory cytokines and microglia amount around the injury site of mice. In conclusion, these results suggested that CQMUH-011 has a notable anti-inflammatory effect and protects mice from I/R injure. Thus, CQMUH-011 may be a candidate drug for the treatment of cerebral ischemia patients.
Collapse
|
32
|
Alpha-Lipoic Acid Plays a Role in Endometriosis: New Evidence on Inflammasome-Mediated Interleukin Production, Cellular Adhesion and Invasion. Molecules 2021; 26:molecules26020288. [PMID: 33430114 PMCID: PMC7826935 DOI: 10.3390/molecules26020288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Endometriosis is an estrogen-linked gynecological disease defined by the presence of endometrial tissue on extrauterine sites where it forms invasive lesions. Alterations in estrogen-mediated cellular signaling seems to have an essential role in the pathogenesis of endometriosis. Higher estrogen receptor (ER)-β levels and enhanced ER-β activity were detected in endometriotic tissues. It is well known that ER-β interacts with components of the cytoplasmic inflammasome-3 (NALP-3), the NALP-3 activation increases interleukin (IL)-1β and IL-18, enhancing cellular adhesion and proliferation. Otherwise, the inhibition of ER-β activity suppresses the ectopic lesions growth. The present study aims to investigate the potential effect of α-lipoic acid (ALA) on NALP-3 and ER-β expression using a western blot analysis, NALP-3-induced cytokines production by ELISA, migration and invasion of immortalized epithelial (12Z) and stromal endometriotic cells (22B) using a 3D culture invasion assay, and matrix-metalloprotease (MMPs) activity using gelatin zymography. ALA significantly reduces ER-β, NALP-3 protein expression/activity and the secretion of IL-1β and IL-18 in both 12Z and 22B cells. ALA treatment reduces cellular adhesion and invasion via a lower expression of adhesion molecules and MMPs activities. These results provide convincing evidence that ALA might inhibit endometriosis progression.
Collapse
|
33
|
STING promotes senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the NF-κB signaling pathway. Cell Death Dis 2021; 12:13. [PMID: 33414452 PMCID: PMC7791051 DOI: 10.1038/s41419-020-03341-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022]
Abstract
Damaged deoxyribonucleic acid (DNA) is a primary pathologic factor for osteoarthritis (OA); however, the mechanism by which DNA damage drives OA is unclear. Previous research demonstrated that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) participates in DNA damage response. As a result, the current study aimed at exploring the role STING, which is the major effector in the cGAS-STING signaling casacde, in OA progress in vitro, as well as in vivo. In this study, the expression of STING was evaluated in the human and mouse OA tissues, and in chondrocytes exposed to interleukin-1 beta (IL-1β). The influences of STING on the metabolism of the extracellular matrix (ECM), apoptosis, and senescence, were assessed in STING overexpressing and knocking-down chondrocytes. Moreover, the NF-κB-signaling casacde and its role in the regulatory effects of STING on ECM metabolism, apoptosis, and senescence were explored. The STING knockdown lentivirus was intra-articularly injected to evaluate its therapeutic impact on OA in mice in vivo. The results showed that the expression of STING was remarkably elevated in the human and mouse OA tissues and in chondrocytes exposed to IL-1β. Overexpression of STING promoted the expression of MMP13, as well as ADAMTS5, but suppressed the expression of Aggrecan, as well as Collagen II; it also enhanced apoptosis and senescence in chondrocytes exposed to and those untreated with IL-1β. The mechanistic study showed that STING activated NF-κB signaling cascade, whereas the blockage of NF-κB signaling attenuated STING-induced apoptosis and senescence, and ameliorated STING-induced ECM metabolism imbalance. In in vivo study, it was demonstrated that STING knockdown alleviated destabilization of the medial meniscus-induced OA development in mice. In conclusion, STING promotes OA by activating the NF-κB signaling cascade, whereas suppression of STING may provide a novel approach for OA therapy.
Collapse
|
34
|
Sun K, Luo J, Jing X, Xiang W, Guo J, Yao X, Liang S, Guo F, Xu T. Hyperoside ameliorates the progression of osteoarthritis: An in vitro and in vivo study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153387. [PMID: 33130473 DOI: 10.1016/j.phymed.2020.153387] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a common degenerative joint disease. The pathogenesis of OA is closely related to inflammatory responses and apoptosis of chondrocytes. Hyperoside (Hyp), a natural flavonoid compound, exerts multiple bioactivities in various diseases. PURPOSE Our study aims to investigate the anti-arthritic effects of Hyp and delineate the potential mechanism at the cellular level. METHODS Murine chondrocytes were stimulated with interleukin-1β (IL-1β) with or without Hyp treatment. CCK-8 assay was used to evaluate the cytotoxic effect of Hyp. DCFH-DA was used to detect intracellular ROS. Annexin V-FITC/PI method was applied to examine apoptosis of chondrocytes. The anti-arthritic effects of Hyp and related mechanisms were investigated by examining and analyzing relative markers through quantitative PCR, western blot analysis and immunofluorescent staining. C57BL/6 mice were performed the destabilized medial meniscus (DMM) surgery to establish OA model and then injected intraperitoneally with Hyp (20 mg/kg)) for 4 or 8 weeks. Finally, mice were sacrificed and knee joints were collected for histological observation and analysis. RESULTS Hyp inhibited IL-1β-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Additionally, Hyp attenuated IL-1β-induced destruction of the extracellular matrix (ECM) by downregulating the expression of MMPs and ADAMTS5, and meanwhile upregulating the expression of collagen II, aggrecan, and SOX9. Also, Hyp pretreatment reduced IL-1β-induced overproduction of ROS and apoptosis of chondrocytes. Mechanistically, Hypexerted anti-inflammatory effects by partly suppressing the PI3K/AKT/NF-κB and the MAPK signaling pathways, enhancing the Nrf2/HO-1 to limit the activation of NF-κB. Moreover, Hyp played an anti-apoptotic effect via the Nrf2/ROS/BAX/Bcl-xlaxis. In vivo, cartilage degradation was attenuated with a lower OARSI score in Hyp-treated group compared to the DMM group. CONCLUSION Our study demonstrated that anti-arthritic effects of Hyp in vitro and in vivo, indicating Hyp might serve as a potential agent for the treatment of OA.
Collapse
Affiliation(s)
- Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiahui Luo
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Xingzhi Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Xiang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiachao Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xudong Yao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shuang Liang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
35
|
Wang Y, Cui X, Lin Q, Cai J, Tang L, Liang Y. Active Peptide KF-8 from Rice Bran Attenuates Oxidative Stress in a Mouse Model of Aging Induced by d-Galactose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12271-12283. [PMID: 32942847 DOI: 10.1021/acs.jafc.0c04358] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study investigated the effects of a physiologically active peptide derived from rice bran (KF-8) on oxidative stress in d-galactose (d-gal)-induced aging mice and the underlying molecular mechanisms. The aging model was developed by subcutaneously injecting Institute of Cancer Research mice with 250 mg/kg d-gal daily for 12 weeks and simultaneously treating them with 30 mg/kg KF-8. The relative expression levels of Nrf2 and NF-κB in the liver were determined by the western blot. The regulation of Nrf2 and NF-κBp65 by KF-8 was further validated in NIH/3T3 cells. Compared with the control mice, the aging mice had significantly decreased body weights as well as superoxide dismutase and GSH-Px levels (p < 0.05); however, they had increased serum reactive oxygen species and malondialdehyde and 8-hydroxydeoxyguanosine levels accompanied by aortic and brain injuries. They also had elevated RAGE, TLR4, IκB, Bax, and caspase-8 expressions and NF-κB/p65 phosphorylation but reduced BcL-2 expression in the liver. Moreover, in vitro experiments demonstrated that the pretreatment of H2O2-treated NIH/3T3 cells with KF-8 significantly mitigated the NF-κB signaling and attenuated the Nrf2 nuclear transport (both p < 0.05). In conclusion, KF-8 treatment inhibited aging-induced oxidative stress-related organ injury in mice by attenuating NF-κB/p38 signaling and preserving Nrf2 activity.
Collapse
Affiliation(s)
- Yuqian Wang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiaoji Cui
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Jie Cai
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Liuhuan Tang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| |
Collapse
|
36
|
Lopes D, Melo T, Rey F, Meneses J, Monteiro FL, Helguero LA, Abreu MH, Lillebø AI, Calado R, Domingues MR. Valuing Bioactive Lipids from Green, Red and Brown Macroalgae from Aquaculture, to Foster Functionality and Biotechnological Applications. Molecules 2020; 25:E3883. [PMID: 32858862 PMCID: PMC7504498 DOI: 10.3390/molecules25173883] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 01/18/2023] Open
Abstract
Marine edible macroalgae have functional proprieties that might improve human health and wellbeing. Lipids represent a minor fraction of macroalgae, yet with major interest as main carriers of omega 3 polyunsaturated fatty acids and intrinsic bioactive properties. In this study, we used lipid extracts from the green macroalgae Ulva rigida and Codium tomentosum; the red Gracilaria gracilis,Palmaria palmata and Porphyra dioica; and the brown Fucus vesiculosus, produced in a land-based integrated multitrophic aquaculture (IMTA) system. We determined the lipid quality indices based on their fatty acid profiles and their bioactivities as putative antioxidant, anti-inflammatory and antiproliferative agents. The results reveal to be species-specific, namely U. rigida displayed the lowest atherogenicity and thrombogenicity indices. Palmaria palmata and F. vesiculosus lipid extracts displayed the lowest inhibitory concentration in the free radical scavenging antioxidant assays. Ulva rigida, C. tomentosum, P. palmata and P. dioica inhibited COX-2 activity by up to 80%, while P. dioica and P. palmata extracts showed the highest cytotoxic potential in the MDA-MB-231 breast cancer cells. This work enhances the valorization of macroalgae as functional foods and promising ingredients for sustainable and healthy diets and fosters new applications of high-valued algal biomass, in a species-specific context.
Collapse
Affiliation(s)
- Diana Lopes
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (F.R.); (J.M.)
- Centre for Environmental and Marine Studies, CESAM, ECOMARE, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (A.I.L.); (R.C.)
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (F.R.); (J.M.)
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Felisa Rey
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (F.R.); (J.M.)
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Joana Meneses
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (F.R.); (J.M.)
| | - Fátima Liliana Monteiro
- iBIMED-Institute of Biomedicine, Department of Medical Sciences, Universidade de Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (F.L.M.); (L.A.H.)
| | - Luisa A. Helguero
- iBIMED-Institute of Biomedicine, Department of Medical Sciences, Universidade de Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (F.L.M.); (L.A.H.)
| | - Maria Helena Abreu
- ALGAplus-Production and Trading of Seaweeds and Derived Products Lda., 3830-196 Ílhavo, Portugal;
| | - Ana Isabel Lillebø
- Centre for Environmental and Marine Studies, CESAM, ECOMARE, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (A.I.L.); (R.C.)
| | - Ricardo Calado
- Centre for Environmental and Marine Studies, CESAM, ECOMARE, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (A.I.L.); (R.C.)
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (F.R.); (J.M.)
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| |
Collapse
|
37
|
Kim EN, Lee HS, Jeong GS. Cudratricusxanthone O Inhibits H 2O 2-Induced Cell Damage by Activating Nrf2/HO-1 Pathway in Human Chondrocytes. Antioxidants (Basel) 2020; 9:antiox9090788. [PMID: 32854434 PMCID: PMC7555960 DOI: 10.3390/antiox9090788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a common joint degenerative disease induced by oxidative stress in chondrocytes. Although induced-heme oxygenase-1 (HO-1) has been found to protect cells against oxygen radical damage, little information is available regarding the use of bioactive compounds from natural sources for regulating the HO-1 pathway to treat OA. In this study, we explored the inhibitory effects of cudratricusxanthone O (CTO) isolated from the Maclura tricuspidata Bureau (Moraceae) on H2O2-induced damage of SW1353 chondrocytes via regulation of the HO-1 pathway. CTO promoted HO-1 expression by enhancing the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) into the nucleus without inducing toxicity. Pretreatment with CTO-regulated reactive oxygen species (ROS) production by inducing expression of antioxidant enzymes in H2O2-treated cells and maintained the functions of H2O2-damaged chondrocytes. Furthermore, CTO prevented H2O2-induced apoptosis by regulating the expression of anti-apoptotic proteins. Treatment with the HO-1 inhibitor tin-protoporphyrin IX revealed that these protective effects were exerted due to an increase in HO-1 expression induced by CTO. In conclusion, CTO protects chondrocytes from H2O2-induced damages-including ROS accumulation, dysfunction, and apoptosis through activation of the Nrf2/HO-1 signaling pathway in chondrocytes and, therefore, is a potential therapeutic agent for OA treatment.
Collapse
|
38
|
Huoxuezhitong capsule ameliorates MIA-induced osteoarthritis of rats through suppressing PI3K/ Akt/ NF-κB pathway. Biomed Pharmacother 2020; 129:110471. [PMID: 32768958 DOI: 10.1016/j.biopha.2020.110471] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022] Open
Abstract
Huoxuezhitong capsule (HXZT, activating blood circulation and relieving pain capsule), has been applied for osteoarthritis since 1974. It consists of Angelica sinensis (Oliv.) Diels, Panax notoginseng (Burkill) F. H. Chen ex C. H., Boswellia sacra, Borneol, Eupolyphaga sinensis Walker, Pyritum. However, the direct effects of HXZT on osteoarthritis and the underlying mechanisms were poorly understood. In this study, we aimed to explore the analgesia effect of HXZT on MIA-induced osteoarthritis rat and the underlying mechanisms. The analgesia and anti-inflammatory effect of HXZT on osteoarthritis in vivo were tested by the arthritis model rats induced by monosodium iodoacetate (MIA).. Mechanistic studies confirmed that HXZT could inhibit the activation of NF-κB and down-regulate the mRNA expression of related inflammatory factors in LPS-induced RAW264.7 and ATDC5 cells. Furtherly, in LPS-induced RAW264.7 cells, HXZT could suppress NF-κB via inhibiting PI3K/Akt pathway. Taken together, HXZT capsule could ameliorate MIA-induced osteoarthritis of rats through suppressing PI3K/ Akt/ NF-κB pathway.
Collapse
|
39
|
Deligiannidou GE, Papadopoulos RE, Kontogiorgis C, Detsi A, Bezirtzoglou E, Constantinides T. Unraveling Natural Products' Role in Osteoarthritis Management-An Overview. Antioxidants (Basel) 2020; 9:E348. [PMID: 32340224 PMCID: PMC7222394 DOI: 10.3390/antiox9040348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
The natural process of aging gradually causes changes in living organisms, leading to the deterioration of organs, tissues, and cells. In the case of osteoarthritis (OA), the degradation of cartilage is a result of both mechanical stress and biochemical factors. Natural products have already been evaluated for their potential role in the prevention and treatment of OA, providing a safe and effective adjunctive therapeutic approach. This review aimed to assess the therapeutic potential of natural products and their derivatives in osteoarthritis via a systematic search of literature after 2008, including in vitro, in vivo, ex vivo, and animal models, along with clinical trials and meta-analysis. Overall, 170 papers were obtained and screened. Here, we presented findings referring to the preventative and therapeutic potential of 17 natural products and 14 naturally occurring compounds, underlining, when available, the mechanisms implicated. The nature of OA calls to initially focus on the management of symptoms, and, in that context, several naturally occurring compounds have been utilized. Underlying a global need for more sustainable natural sources for treatment, the evidence supporting their chondroprotective potential is still building up. However, arriving at that kind of solution requires more clinical research, targeting the implications of long-term treatment, adverse effects, and epigenetic implications.
Collapse
Affiliation(s)
- Georgia-Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-E.D.); (R.-E.P.); (E.B.); (T.C.)
| | - Rafail-Efraim Papadopoulos
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-E.D.); (R.-E.P.); (E.B.); (T.C.)
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-E.D.); (R.-E.P.); (E.B.); (T.C.)
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-E.D.); (R.-E.P.); (E.B.); (T.C.)
| | - Theodoros Constantinides
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-E.D.); (R.-E.P.); (E.B.); (T.C.)
| |
Collapse
|
40
|
Sun K, Luo J, Guo J, Yao X, Jing X, Guo F. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review. Osteoarthritis Cartilage 2020; 28:400-409. [PMID: 32081707 DOI: 10.1016/j.joca.2020.02.027] [Citation(s) in RCA: 311] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is a complicated degenerative disease that affects whole joint tissue. Currently, apart from surgical approaches to treat late stage OA, effective treatments to reverse OA are not available. Thus, the mechanisms leading to OA, and more effective approaches to treat OA should be investigated. According to available evidence, the PI3K/AKT/mTOR signaling pathway is essential for normal metabolism of joint tissues, but is also involved in development of OA. To provide a wide viewpoint to roles of PI3K/AKT/mTOR signaling pathway in osteoarthritis, a comprehensive literature search was performed using PubMed terms 'PI3K OR AKT OR mTOR' and 'osteoarthritis'. This review highlights the role of PI3K/AKT/mTOR signaling in cartilage degradation, subchondral bone dysfunction, and synovial inflammation, and discusses how this signaling pathway affects development of the disease. We also summarize recent evidences of therapeutic approaches to treat OA by targeting the PI3K/AKT/mTOR pathway, and discuss potential challenges in developing these strategies for clinical treatment of OA.
Collapse
Affiliation(s)
- K Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - J Luo
- The Center for Biomedical Research, The Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China.
| | - J Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - X Yao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - X Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - F Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
41
|
Li X, Zhang Z, Liang W, Zeng J, Shao X, Xu L, Jia L, He X, Li H, Zheng C, Ye H, Asakawa T. Tougu Xiaotong capsules may inhibit p38 MAPK pathway-mediated inflammation: In vivo and in vitro verification. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112390. [PMID: 31760158 DOI: 10.1016/j.jep.2019.112390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tougu Xiaotong capsules (TXC) are an herbal compound commonly used to treat osteoarthritis (OA) in China. AIM OF THE STUDY We attempted to verify TXC's therapeutic effects and mechanisms related to the p38 mitogen-activated protein kinase (MAPK) pathway in vivo and in vitro. MATERIALS AND METHODS TXC's therapeutic effects were assessed by observing cartilage degeneration and inflammatory factors in a modified Hulth's model (in vivo) and a lipopolysaccharides (LPS)-exposed cellular model (in vitro). The expression of biomarkers related to p38 MAPK pathway-mediated inflammation was also investigated. RESULTS TXC treatment reversed cartilage degeneration related biomarkers (ADAMTS 4, ADAMTS 5, Col I, Col V, MMP 3, MMP 9, and MMP 13) and inflammation factors (IL-1β, TNF-α, and IL-6) in both the animal and cellular OA models. Expression of p-p38 MAPK was downregulated following TXC administration, and changes to microRNAs in the cellular models were recovered. These results indicated that the p38 MAPK pathway-related mechanism may involve therapeutic effects of TXC. CONCLUSIONS This study verified TXC's efficacy to treat OA in vivo and in vitro and suggests that p38 MAPK pathway-related mechanisms may be involved in TXC's therapeutic effects.
Collapse
Affiliation(s)
- Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, PR China.
| | - Zhenli Zhang
- SIPO Patent Examination (Beijing) Center, Beijing, 100160, PR China.
| | - Wenna Liang
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Jianwei Zeng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China.
| | - Xiang Shao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China.
| | - Limei Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China.
| | - Liangliang Jia
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China.
| | - Xiaojuan He
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China.
| | - Hui Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China.
| | - Chunsong Zheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China.
| | - Hongzhi Ye
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, PR China.
| | - Tetsuya Asakawa
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Department of Neurosurgery, Hamamatsu University School of Medicine, Handayama, 1-20-1, Higashi-ku, Hamamatsu-city, Shizuoka, 431-3192, Japan.
| |
Collapse
|
42
|
Saraswati, Giriwono PE, Iskandriati D, Tan CP, Andarwulan N. Sargassum Seaweed as a Source of Anti-Inflammatory Substances and the Potential Insight of the Tropical Species: A Review. Mar Drugs 2019; 17:E590. [PMID: 31627414 PMCID: PMC6835611 DOI: 10.3390/md17100590] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 02/06/2023] Open
Abstract
Sargassum is recognized both empirically and scientifically as a potential anti-inflammatory agent. Inflammation is an important response in the body that helps to overcome various challenges to body homeostasis such as microbial infections, tissue stress, and certain injuries. Excessive and uncontrolled inflammatory conditions can affect the pathogenesis of various diseases. This review aims to explore the potential of Sargassum's anti-inflammatory activity, not only in crude extracts but also in sulfated polysaccharides and purified compounds. The tropical region has a promising availability of Sargassum biomass because its climate allows for the optimal growth of seaweed throughout the year. This is important for its commercial utilization as functional ingredients for both food and non-food applications. To the best of our knowledge, studies related to Sargassum's anti-inflammatory activity are still dominated by subtropical species. Studies on tropical Sargassum are mainly focused on the polysaccharides group, though there are some other potentially bioactive compounds such as polyphenols, terpenoids, fucoxanthin, fatty acids and their derivatives, typical polar lipids, and other groups. Information on the modulation mechanism of Sargassum's bioactive compounds on the inflammatory response is also discussed here, but specific mechanisms related to the interaction between bioactive compounds and targets in cells still need to be further studied.
Collapse
Affiliation(s)
- Saraswati
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (S.); (P.E.G.)
| | - Puspo Edi Giriwono
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (S.); (P.E.G.)
- Southeast Asian Food and Agricultural Science Technology (SEAFAST) Center, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Diah Iskandriati
- Primate Research Center, Bogor Agricultural University, Bogor 16151, Indonesia;
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nuri Andarwulan
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (S.); (P.E.G.)
- Southeast Asian Food and Agricultural Science Technology (SEAFAST) Center, Bogor Agricultural University, Bogor 16680, Indonesia
| |
Collapse
|
43
|
Zhang WJ, Liu Y, Wei JS, Wu YL. Ginsenoside Rd inhibits IL-1β-induced inflammation and degradation of intervertebral disc chondrocytes by increasing IL1RAP ubiquitination. Braz J Med Biol Res 2019; 52:e8525. [PMID: 31411316 PMCID: PMC6694592 DOI: 10.1590/1414-431x20198525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/29/2019] [Indexed: 02/28/2023] Open
Abstract
Many compounds of ginsenosides show anti-inflammatory properties. However, their anti-inflammatory effects in intervertebral chondrocytes in the presence of inflammatory factors have never been shown. Increased levels of pro-inflammatory cytokines are generally associated with the degradation and death of chondrocytes; therefore, finding an effective and nontoxic substance that attenuates the inflammation is worthwhile. In this study, chondrocytes were isolated from the nucleus pulposus tissues, and the cells were treated with ginsenoside compounds and IL-1β, alone and in combination. Cell viability and death rate were assessed by CCK-8 and flow cytometry methods, respectively. PCR, western blot, and immunoprecipitation assays were performed to determine the mRNA and protein expression, and the interactions between proteins, respectively. Monomeric component of ginsenoside Rd had no toxicity at the tested range of concentrations. Furthermore, Rd suppressed the inflammatory response of chondrocytes to interleukin (IL)-1β by suppressing the increase in IL-1β, tumor necrosis factor (TNF)-α, IL-6, COX-2, and inducible nitric oxide synthase (iNOS) expression, and retarding IL-1β-induced degradation of chondrocytes by improving cell proliferation characteristics and expression of aggrecan and COL2A1. These protective effects of Rd were associated with ubiquitination of IL-1 receptor accessory protein (IL1RAP), blocking the stimulation of IL-1β to NF-κB. Bioinformatics analysis showed that NEDD4, CBL, CBLB, CBLC, and ITCH most likely target IL1RAP. Rd increased intracellular ITCH level and the amount of ITCH attaching to IL1RAP. Thus, IL1RAP ubiquitination promoted by Rd is likely to occur by up-regulation of ITCH. In summary, Rd inhibited IL-1β-induced inflammation and degradation of intervertebral disc chondrocytes by increasing IL1RAP ubiquitination.
Collapse
Affiliation(s)
- Wei-Jia Zhang
- School of Pharmacy, Xinhua College of Sun Yat-Sen University, Tianhe District, Guangzhou City, Guangzhou, China
| | - Ying Liu
- School of Pharmacy, Xinhua College of Sun Yat-Sen University, Tianhe District, Guangzhou City, Guangzhou, China
| | - Jie-Shu Wei
- School of Pharmacy, Xinhua College of Sun Yat-Sen University, Tianhe District, Guangzhou City, Guangzhou, China
| | - Ya-Li Wu
- School of Rehabilitation Medicine, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou City, Guangzhou, China
| |
Collapse
|
44
|
Cossetin JF, da Silva Brum E, Casoti R, Camponogara C, Dornelles RC, Maziero M, Tatiane de David Antoniazzi C, Guex CG, Ramos AP, Pintos FG, Engelmann AM, Melazzo de Andrade C, Manfron MP, Oliveira SM, de Freitas Bauermann L, Sagrillo MR, Machado AK, Soares Santos AR, Trevisan G. Peanut leaf extract has antioxidant and anti-inflammatory activity but no acute toxic effects. Regul Toxicol Pharmacol 2019; 107:104407. [PMID: 31226392 DOI: 10.1016/j.yrtph.2019.104407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/17/2019] [Accepted: 06/17/2019] [Indexed: 01/26/2023]
Abstract
Arachis hypogaea L. (peanut) leaves have been popularly used for the treatment of insomnia and inflammation, but no toxicological study has been performed for this plant preparation. This study aimed to examine the phytochemical composition of peanut leaf hydroalcoholic extract (PLHE) and describe its potential toxic effects and antioxidant and anti-inflammatory properties. The qualitative chemical analysis of PLHE by UHPLC-ESI-HRMS allowed the identification of eight metabolites types (totaling 29 compounds). The 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay revealed that PLHE had strong antioxidant effects; it also exhibited nitric oxide (NO)-scavenging capacity. Human peripheral blood mononuclear cells (PBMCs) exposed to PLHE showed no reduced cell viability or increased free double-stranded DNA, NO, or reactive species production. PLHE reversed the cytotoxicity, pro-inflammatory (release of interleukin-1β), and pro-oxidant effects of H2O2 on human PBMCs. Acute PLHE toxicity analysis was performed in vivo using the Organization for Economic Co-operation and Development (OECD) 423 guidelines. PLHE single injection (2000 mg/kg, intragastric) did not cause mortality or morbidity or induce changes in hematological or biochemical parameters after 14 days of administration. Thus, PLHE could be a source of bioactive compounds and possesses antioxidant and anti-inflammatory properties without elicitin cytotoxicity or genotoxicity in human PBMCs or acute toxicity in rats.
Collapse
Affiliation(s)
| | - Evelyne da Silva Brum
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Rosana Casoti
- Graduate Program in Pharmaceutical Sciences, University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, 14040-903, Ribeirão Preto, SP, Brazil
| | - Camila Camponogara
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Rafaela Castro Dornelles
- Graduate Program in Pharmacology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil; Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Maiara Maziero
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | | | - Camille Gaube Guex
- Graduate Program in Pharmacology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Andiara Prattes Ramos
- Graduate Program in Nanoscience, Franciscan University Center (UFN), 97010-032, Santa Maria, RS, Brazil
| | - Francielle Guedes Pintos
- Graduate Program in Nanoscience, Franciscan University Center (UFN), 97010-032, Santa Maria, RS, Brazil
| | - Ana Martiele Engelmann
- Veterinary Hospital, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | | | - Melânia Palermo Manfron
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | | | - Michele Rorato Sagrillo
- Graduate Program in Nanoscience, Franciscan University Center (UFN), 97010-032, Santa Maria, RS, Brazil
| | - Alencar Kolinski Machado
- Laboratory of Cell Culture and Genetics, Franciscan University (UFN), 97010-032, Santa Maria, RS, Brazil
| | - Adair Roberto Soares Santos
- Graduate Program in Pharmacology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil; Graduate Program in Neuroscience, Laboratory of Neurobiology of Pain and Inflammation, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
45
|
Chen K, Lv ZT, Zhou CH, Liang S, Huang W, Wang ZG, Zhu WT, Wang YT, Jing XZ, Lin H, Guo FJ, Cheng P, Chen AM. Peimine suppresses interleukin‑1β‑induced inflammation via MAPK downregulation in chondrocytes. Int J Mol Med 2019; 43:2241-2251. [PMID: 30896805 DOI: 10.3892/ijmm.2019.4141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/13/2019] [Indexed: 11/06/2022] Open
Abstract
Osteoarthritis (OA) is the most common type of degenerative joint disease and secreted inflammatory molecules serve a pivotal role in it. Peimine has been reported to have anti‑inflammatory activity. In order to investigate the potential therapeutic role of Peimine in OA, mouse articular chondrocytes were treated with IL‑1β and different doses of Peimine in vitro. The data revealed that Peimine not only suppressed IL‑1β‑induced production of nitric oxide (NO) and prostaglandin E2, but also reduced the protein levels of inducible NO synthase (iNOS) and cyclooxygenase‑2 (COX‑2). In addition, Peimine inhibited the IL‑1β‑induced mRNA expression of matrix metalloproteinase (MMP)‑1, MMP‑3, MMP‑9, MMP‑13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)‑4 and ADAMTS‑5. Furthermore, Peimine inhibited IL‑1β‑induced activation of the mitogen‑activated protein kinase (MAPK) pathway. The protective effect of Peimine on IL‑1β‑treated chondrocytes was attenuated following activation of the MAPK pathway, as demonstrated by the increased expression levels of MMP‑3, MMP‑13, ADAMTS‑5, iNOS and COX‑2 compared with the Peimine group. The in vivo data suggested that Peimine limited the development of OA in the mouse model. In general, the data indicate that Peimine suppresses IL‑1β‑induced inflammation in mouse chondrocytes by inhibiting the MAPK pathway, suggesting a promising therapeutic role for Peimine in the treatment of OA.
Collapse
Affiliation(s)
- Kun Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zheng-Tao Lv
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Chen-He Zhou
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Shuang Liang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wen Huang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Zheng-Gang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wen-Tao Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu-Ting Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xing-Zhi Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hui Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Feng-Jing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - An-Min Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|