1
|
González-Vegas R, Seksek O, Bertho A, Bergs J, Hirayama R, Inaniwa T, Matsufuji N, Shimokawa T, Prezado Y, Yousef I, Martínez-Rovira I. Synchrotron-based infrared microspectroscopy unveils the biomolecular response of healthy and tumour cell lines to neon minibeam radiation therapy. Analyst 2025; 150:342-352. [PMID: 39668677 PMCID: PMC11638702 DOI: 10.1039/d4an01038h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Radioresistant tumours remain complex to manage with current radiotherapy (RT) techniques. Heavy ion beams were proposed for their treatment given their advantageous radiobiological properties. However, previous studies with patients resulted in serious adverse effects in the surrounding healthy tissues. Heavy ion RT could therefore benefit from the tissue-sparing effects of minibeam radiation therapy (MBRT). To investigate the potential of this combination, here we assessed the biochemical response to neon MBRT (NeMBRT) through synchrotron-based Fourier transform infrared microspectroscopy (SR-FTIRM). Healthy (BJ) and tumour (B16-F10) cell lines were subjected to seamless (broad beam) neon RT (NeBB) and NeMBRT at HIMAC. SR-FTIRM measurements were conducted at the MIRAS beamline of ALBA Synchrotron. Principal component analysis (PCA) permitted to assess the biochemical effects after the irradiations and 24 hours post-irradiation for the different RT modalities and doses. For the healthy cells, NeMBRT resulted in the most dissimilar spectral signatures from non-irradiated cells early after irradiations, mainly due to protein conformational modifications. Nevertheless, most of the damage appeared to recover one day post-RT; conversely, protein- and nucleic acid-related IR bands were strongly affected by NeBB 24 hours after treatment, suggesting superior oxidative damage and nucleic acid degradation. Tumour cells appeared to be less sensitive to NeBB than to NeMBRT shortly after RT. Still, after one day, both NeBB and the high-dose NeMBRT regions yielded important spectral modifications, suggestive of cell death processes, protein oxidation or oxidative stress. Lipid-associated spectral changes, especially due to the NeBB and NeMBRT peak groups for the tumour cell line, were consistent with reactive oxygen species attacks.
Collapse
Affiliation(s)
- R González-Vegas
- Physics Department, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - O Seksek
- IJCLab, French National Centre for Scientific Research, 91450 Orsay, France
| | - A Bertho
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - J Bergs
- Radiology Department, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - R Hirayama
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Japan
| | - T Inaniwa
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Japan
- Department of Accelerator and Medical Physics, QST, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Japan
| | - N Matsufuji
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Japan
- Department of Accelerator and Medical Physics, QST, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Japan
| | - T Shimokawa
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Japan
- Department of Accelerator and Medical Physics, QST, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Japan
| | - Y Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
- New Approaches in Radiotherapy Lab, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
- Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain
| | - I Yousef
- MIRAS Beamline, ALBA Synchrotron, 08209 Cerdanyola del Vallès, Barcelona, Spain
| | - I Martínez-Rovira
- Physics Department, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
2
|
Burr DJ, Drauschke J, Kanevche K, Kümmel S, Stryhanyuk H, Heberle J, Perfumo A, Elsaesser A. Stable Isotope Probing-nanoFTIR for Quantitation of Cellular Metabolism and Observation of Growth-Dependent Spectral Features. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400289. [PMID: 38708804 DOI: 10.1002/smll.202400289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/16/2024] [Indexed: 05/07/2024]
Abstract
This study utilizes nanoscale Fourier transform infrared spectroscopy (nanoFTIR) to perform stable isotope probing (SIP) on individual bacteria cells cultured in the presence of 13C-labelled glucose. SIP-nanoFTIR simultaneously quantifies single-cell metabolism through infrared spectroscopy and acquires cellular morphological information via atomic force microscopy. The redshift of the amide I peak corresponds to the isotopic enrichment of newly synthesized proteins. These observations of single-cell translational activity are comparable to those of conventional methods, examining bulk cell numbers. Observing cells cultured under conditions of limited carbon, SIP- nanoFTIR is used to identify environmentally-induced changes in metabolic heterogeneity and cellular morphology. Individuals outcompeting their neighboring cells will likely play a disproportionately large role in shaping population dynamics during adverse conditions or environmental fluctuations. Additionally, SIP-nanoFTIR enables the spectroscopic differentiation of specific cellular growth phases. During cellular replication, subcellular isotope distribution becomes more homogenous, which is reflected in the spectroscopic features dependent on the extent of 13C-13C mode coupling or to specific isotopic symmetries within protein secondary structures. As SIP-nanoFTIR captures single-cell metabolism, environmentally-induced cellular processes, and subcellular isotope localization, this technique offers widespread applications across a variety of disciplines including microbial ecology, biophysics, biopharmaceuticals, medicinal science, and cancer research.
Collapse
Affiliation(s)
- David J Burr
- Department of Physics, Experimental Biophysics and Space Sciences, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Janina Drauschke
- Department of Physics, Experimental Biophysics and Space Sciences, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Katerina Kanevche
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Steffen Kümmel
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Hryhoriy Stryhanyuk
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Joachim Heberle
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Amedea Perfumo
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, Telegrafenberg, 14473, Potsdam, Germany
| | - Andreas Elsaesser
- Department of Physics, Experimental Biophysics and Space Sciences, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| |
Collapse
|
3
|
Martínez-Rovira I, Montay-Gruel P, Petit B, Leavitt RJ, González-Vegas R, Froidevaux P, Juchaux M, Prezado Y, Yousef I, Vozenin MC. Infrared microspectroscopy to elucidate the underlying biomolecular mechanisms of FLASH radiotherapy. Radiother Oncol 2024; 196:110238. [PMID: 38527626 DOI: 10.1016/j.radonc.2024.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND FLASH-radiotherapy (FLASH-RT) is an emerging modality that uses ultra-high dose rates of radiation to enable curative doses to the tumor while preserving normal tissue. The biological studies showed the potential of FLASH-RT to revolutionize radiotherapy cancer treatments. However, the complex biological basis of FLASH-RT is not fully known yet. AIM Within this context, our aim is to get deeper insights into the biomolecular mechanisms underlying FLASH-RT through Fourier Transform Infrared Microspectroscopy (FTIRM). METHODS C57Bl/6J female mice were whole brain irradiated at 10 Gy with the eRT6-Oriatron system. 10 Gy FLASH-RT was delivered in 1 pulse of 1.8μs and conventional irradiations at 0.1 Gy/s. Brains were sampled and prepared for analysis 24 h post-RT. FTIRM was performed at the MIRAS beamline of ALBA Synchrotron. Infrared raster scanning maps of the whole mice brain sections were collected for each sample condition. Hyperspectral imaging and Principal Component Analysis (PCA) were performed in several regions of the brain. RESULTS PCA results evidenced a clear separation between conventional and FLASH irradiations in the 1800-950 cm-1 region, with a significant overlap between FLASH and Control groups. An analysis of the loading plots revealed that most of the variance accounting for the separation between groups was associated to modifications in the protein backbone (Amide I). This protein degradation and/or conformational rearrangement was concomitant with nucleic acid fragmentation/condensation. Cluster separation between FLASH and conventional groups was also present in the 3000-2800 cm-1 region, being correlated with changes in the methylene and methyl group concentrations and in the lipid chain length. Specific vibrational features were detected as a function of the brain region. CONCLUSION This work provided new insights into the biomolecular effects involved in FLASH-RT through FTIRM. Our results showed that beyond nucleic acid investigations, one should take into account other dose-rate responsive molecules such as proteins, as they might be key to understand FLASH effect.
Collapse
Affiliation(s)
| | - Pierre Montay-Gruel
- Department of Radiation Oncology, Iridium Network, 2610, Wilrijk (Antwerp), Belgium; Centre for Oncological Research (CORE), University of Antwerp, 2610, Antwerp, Belgium
| | - Benoît Petit
- Laboratory of Radiation Oncology, Radiation Oncology Service and Oncology Department, Lausanne University Hospital and University of Lausanne, 1066, Lausanne, Switzerland
| | - Ron J Leavitt
- Laboratory of Radiation Oncology, Radiation Oncology Service and Oncology Department, Lausanne University Hospital and University of Lausanne, 1066, Lausanne, Switzerland
| | - Roberto González-Vegas
- Physics Department, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès (Barcelona), Spain
| | - Pascal Froidevaux
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, 1066, Lausanne, Switzerland
| | - Marjorie Juchaux
- Centre de recherche d'Orsay, Institut Curie, 91401, Orsay, France
| | - Yolanda Prezado
- Centre de recherche d'Orsay, Institut Curie, 91401, Orsay, France
| | - Ibraheem Yousef
- MIRAS Beamline, ALBA Synchotron, 08290, Cerdanyola del Vallès (Barcelona), Spain
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Radiation Oncology Service and Oncology Department, Lausanne University Hospital and University of Lausanne, 1066, Lausanne, Switzerland; Radiotherapy and Radiobiology sector, Radiation Therapy service, University hospital of Geneva (Current address), 1205, Geneva, Switzerland
| |
Collapse
|
4
|
Quetglas-Llabrés MM, Monserrat-Mesquida M, Bouzas C, García S, Mateos D, Casares M, Gómez C, Ugarriza L, Tur JA, Sureda A. Effects of a Two-Year Lifestyle Intervention on Intrahepatic Fat Reduction and Renal Health: Mitigation of Inflammation and Oxidative Stress, a Randomized Trial. Antioxidants (Basel) 2024; 13:754. [PMID: 39061823 PMCID: PMC11273830 DOI: 10.3390/antiox13070754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease observed in clinical practice worldwide. This disorder has been independently associated with an increased risk of developing chronic kidney disease (CKD). The aim of this study was to evaluate whether a 2-year intervention based on a Mediterranean diet (MedDiet) and physical activity focussed on reducing intrahepatic fat contents (IFC) was associated with a decreased risk of CKD. Forty adults (50% women) residing in Mallorca, aged 48 to 60 years, diagnosed with MAFLD were recruited. Participants were divided into two groups based on whether they improved IFC measured by nuclear magnetic resonance. Anthropometric and clinical parameters improved in responders, including reduced weight, body mass index (BMI), and waist circumference. Only responders showed improvements in lipid profile and liver enzymes. Haematological parameters showed favourable changes in both groups. Oxidative stress and inflammatory biomarkers differed between groups. Responders had lower plasma interleukine-18 (IL-18) levels, but higher erythrocyte malonaldehyde (MDA) levels. Non-responders showed increased erythrocyte catalase and superoxide dismutase activity. After 2 years, non-responders had higher serum creatinine, Modification of Diet in Renal Disease (MDRD), and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) levels, while responders showed reductions in these parameters together with uric acid and urine albumin-to-creatinine ratio (UACR). Positive correlations were found between changes in IFC and kidney injury biomarkers, including MDRD and serum creatinine levels. In conclusion, a healthy diet based on the Mediterranean dietary pattern and lifestyle promotes significant improvements in parameters related to cardiovascular, hepatic, and renal health.
Collapse
Affiliation(s)
- Maria Magdalena Quetglas-Llabrés
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.M.Q.-L.); (M.M.-M.); (C.B.); (S.G.); (D.M.); (L.U.); (A.S.)
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-IUNICS, 07120 Palma de Mallorca, Spain;
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Margalida Monserrat-Mesquida
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.M.Q.-L.); (M.M.-M.); (C.B.); (S.G.); (D.M.); (L.U.); (A.S.)
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-IUNICS, 07120 Palma de Mallorca, Spain;
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Cristina Bouzas
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.M.Q.-L.); (M.M.-M.); (C.B.); (S.G.); (D.M.); (L.U.); (A.S.)
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-IUNICS, 07120 Palma de Mallorca, Spain;
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Silvia García
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.M.Q.-L.); (M.M.-M.); (C.B.); (S.G.); (D.M.); (L.U.); (A.S.)
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-IUNICS, 07120 Palma de Mallorca, Spain;
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - David Mateos
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.M.Q.-L.); (M.M.-M.); (C.B.); (S.G.); (D.M.); (L.U.); (A.S.)
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-IUNICS, 07120 Palma de Mallorca, Spain;
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Miguel Casares
- Radiodiagnosis Service, Red Asistencial Juaneda, 07011 Palma de Mallorca, Spain;
| | - Cristina Gómez
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-IUNICS, 07120 Palma de Mallorca, Spain;
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- Clinical Analysis Service, University Hospital Son Espases, 07198 Palma de Mallorca, Spain
| | - Lucía Ugarriza
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.M.Q.-L.); (M.M.-M.); (C.B.); (S.G.); (D.M.); (L.U.); (A.S.)
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-IUNICS, 07120 Palma de Mallorca, Spain;
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- C.S. Camp Redó, IBSalut, 07010 Palma de Mallorca, Spain
| | - Josep A. Tur
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.M.Q.-L.); (M.M.-M.); (C.B.); (S.G.); (D.M.); (L.U.); (A.S.)
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-IUNICS, 07120 Palma de Mallorca, Spain;
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Antoni Sureda
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.M.Q.-L.); (M.M.-M.); (C.B.); (S.G.); (D.M.); (L.U.); (A.S.)
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-IUNICS, 07120 Palma de Mallorca, Spain;
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| |
Collapse
|
5
|
Binns HC, Alipour E, Sherlock CE, Nahid DS, Whitesides JF, Cox AO, Furdui CM, Marrs GS, Kim-Shapiro DB, Cordy RJ. Amino acid supplementation confers protection to red blood cells before Plasmodium falciparum bystander stress. Blood Adv 2024; 8:2552-2564. [PMID: 38537079 PMCID: PMC11131086 DOI: 10.1182/bloodadvances.2023010820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/27/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
ABSTRACT Malaria is a highly oxidative parasitic disease in which anemia is the most common clinical symptom. A major contributor to the malarial anemia pathogenesis is the destruction of bystander, uninfected red blood cells (RBCs). Metabolic fluctuations are known to occur in the plasma of individuals with acute malaria, emphasizing the role of metabolic changes in disease progression and severity. Here, we report conditioned medium from Plasmodium falciparum culture induces oxidative stress in uninfected, catalase-depleted RBCs. As cell-permeable precursors to glutathione, we demonstrate the benefit of pre-exposure to exogenous glutamine, cysteine, and glycine amino acids for RBCs. Importantly, this pretreatment intrinsically prepares RBCs to mitigate oxidative stress.
Collapse
Affiliation(s)
- Heather Colvin Binns
- Department of Biology, Wake Forest University, Winston-Salem, NC
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Elmira Alipour
- Department of Physics, Wake Forest University, Winston-Salem, NC
| | | | - Dinah S. Nahid
- Department of Biology, Wake Forest University, Winston-Salem, NC
| | - John F. Whitesides
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Anderson O’Brien Cox
- Proteomics and Metabolomics Shared Resource, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Cristina M. Furdui
- Proteomics and Metabolomics Shared Resource, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Glen S. Marrs
- Department of Biology, Wake Forest University, Winston-Salem, NC
| | | | - Regina Joice Cordy
- Department of Biology, Wake Forest University, Winston-Salem, NC
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
6
|
González-Vegas R, Yousef I, Seksek O, Ortiz R, Bertho A, Juchaux M, Nauraye C, Marzi LD, Patriarca A, Prezado Y, Martínez-Rovira I. Investigating the biochemical response of proton minibeam radiation therapy by means of synchrotron-based infrared microspectroscopy. Sci Rep 2024; 14:11973. [PMID: 38796617 PMCID: PMC11128026 DOI: 10.1038/s41598-024-62373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024] Open
Abstract
The biology underlying proton minibeam radiation therapy (pMBRT) is not fully understood. Here we aim to elucidate the biological effects of pMBRT using Fourier Transform Infrared Microspectroscopy (FTIRM). In vitro (CTX-TNA2 astrocytes and F98 glioma rat cell lines) and in vivo (healthy and F98-bearing Fischer rats) irradiations were conducted, with conventional proton radiotherapy and pMBRT. FTIRM measurements were performed at ALBA Synchrotron, and multivariate data analysis methods were employed to assess spectral differences between irradiation configurations and doses. For astrocytes, the spectral regions related to proteins and nucleic acids were highly affected by conventional irradiations and the high-dose regions of pMBRT, suggesting important modifications on these biomolecules. For glioma, pMBRT had a great effect on the nucleic acids and carbohydrates. In animals, conventional radiotherapy had a remarkable impact on the proteins and nucleic acids of healthy rats; analysis of tumour regions in glioma-bearing rats suggested major nucleic acid modifications due to pMBRT.
Collapse
Affiliation(s)
- Roberto González-Vegas
- Physics Department, Universitat Autònoma de Barcelona (UAB), Campus UAB Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | - Ibraheem Yousef
- MIRAS Beamline BL01, ALBA-CELLS Synchrotron, Cerdanyola del Vallès, 08209, Barcelona, Spain
| | - Olivier Seksek
- IJCLab, French National Centre for Scientific Research, 91450, Orsay, France
| | - Ramon Ortiz
- Institut Curie, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, 91400, Orsay, France
| | - Annaïg Bertho
- Institut Curie, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, 91400, Orsay, France
| | - Marjorie Juchaux
- Institut Curie, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, 91400, Orsay, France
| | - Catherine Nauraye
- Radiation Oncology Department, Institut Curie, INSERM LITO, PSL Research University, University Paris-Saclay, Campus Universitaire, 91898, Orsay, France
| | - Ludovic De Marzi
- Radiation Oncology Department, Institut Curie, INSERM LITO, PSL Research University, University Paris-Saclay, Campus Universitaire, 91898, Orsay, France
| | - Annalisa Patriarca
- Radiation Oncology Department, Institut Curie, INSERM LITO, PSL Research University, University Paris-Saclay, Campus Universitaire, 91898, Orsay, France
| | - Yolanda Prezado
- Institut Curie, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, 91400, Orsay, France
- New Approaches in Radiotherapy Lab, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706, Santiago de Compostela, A Coruña, Spain
- Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain
| | - Immaculada Martínez-Rovira
- Physics Department, Universitat Autònoma de Barcelona (UAB), Campus UAB Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| |
Collapse
|
7
|
Blat A, Makowski W, Smenda J, Pięta Ł, Bania M, Zapotoczny S, Malek K. Human erythrocytes under stress. Spectroscopic fingerprints of known oxidative mechanisms and beyond. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124142. [PMID: 38493515 DOI: 10.1016/j.saa.2024.124142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
In this work, we investigated the oxidative stress-related biochemical alterations in red blood cells (RBCs) and their membranes with the use of spectroscopic techniques. We aimed to show their great advantage for the in situ detection of lipid classes and secondary structures of proteins without the need for their extraction in the cellular environment. The exposition of the cells to peroxides, t-butyl hydroperoxide (tBOOH) or hydrogen peroxide (H2O2) led to different degradation processes encompassing the changes in the composition of membranes and structural modifications of hemoglobin (Hb). Our results indicated that tBOOH is generally a stronger oxidizing agent than H2O2 and this observation was congruent with the activity of superoxide and glutathione peroxidase. ATR-FTIR and Raman spectroscopies of membranes revealed that tBOOH caused primarily the partial loss and peroxidation of the lipids resulting in loss of the integrity of membranes. In turn, both peroxides induced several kinds of damage in the protein layer, including the partial decrease of their content and irreversible aggregation of spectrin, ankyrin, and membrane-bound globin. These changes were especially pronounced on the membrane surface where stress conditions induced the formation of β-sheets and intramolecular aggregates, particularly for tBOOH. Interestingly, nano-FTIR spectroscopy revealed the lipid peroxidative damage on the membrane surface in both cases. As far as hemoglobin was concerned, tBOOH and H2O2 caused the increase of the oxyhemoglobin species and conformational alterations of its polypeptide chain into β-sheets. Our findings confirm that applied spectroscopies effectively track the oxidative changes occurring in the structural components of red blood cells and the simplicity of conducting measurements and sample preparation can be readily applied to pharmacological and clinical studies.
Collapse
Affiliation(s)
- Aneta Blat
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Wojciech Makowski
- Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. 29 Listopada 54, 31-425 Krakow, Poland
| | - Joanna Smenda
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Prof. S. Lojasiewicza 11, 30-348 Krakow, Poland
| | - Łukasz Pięta
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Prof. S. Lojasiewicza 11, 30-348 Krakow, Poland
| | - Monika Bania
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
8
|
Jercălău CE, Andrei CL, Darabont RO, Guberna S, Staicu AM, Rusu CT, Ceban O, Sinescu CJ. Blood Cell Ratios Unveiled: Predictive Markers of Myocardial Infarction Prognosis. Healthcare (Basel) 2024; 12:824. [PMID: 38667586 PMCID: PMC11049867 DOI: 10.3390/healthcare12080824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Even if the management and treatment of patients with non-ST-elevation myocardial infarction (NSTEMI) have significantly evolved, it is still a burgeoning disease, an active volcano with very high rates of morbidity and mortality. Therefore, novel management and therapeutic strategies for this condition are urgently needed. Lately, theories related to the role of various blood cells in NSTEMI have emerged, with most of this research having so far been focused on correlating the ratios between various leukocyte types (neutrophil/lymphocyte ratio-NLR, neutrophil/monocyte ratio-NMR). But what about erythrocytes? Is there an interaction between these cells and leukocytes, and furthermore, can this relationship influence NSTEMI prognosis? Are they partners in crime? METHODS Through the present study, we sought, over a period of sixteen months, to evaluate the neutrophil/red blood cell ratio (NRR), monocyte/red blood cell ratio (MRR) and lymphocyte/red blood cell ratio (LRR), assessing their potential role as novel prognostic markers in patients with NSTEMI. RESULTS There was a statistically significant correlation between the NRR, LRR, MRR and the prognosis of NSTEMI patients. CONCLUSIONS These new predictive markers could represent the start of future innovative therapies that may influence crosstalk pathways and have greater benefits in terms of cardiac repair and the secondary prevention of NSTEMI.
Collapse
Affiliation(s)
- Cosmina Elena Jercălău
- Department of Cardiology, “Bagdasar Arseni” Emergency Hospital, University of Medicine and Pharmacy “Carol Davila”, 011241 Bucharest, Romania; (R.O.D.); (C.J.S.)
| | - Cătălina Liliana Andrei
- Department of Cardiology, “Bagdasar Arseni” Emergency Hospital, University of Medicine and Pharmacy “Carol Davila”, 011241 Bucharest, Romania; (R.O.D.); (C.J.S.)
| | - Roxana Oana Darabont
- Department of Cardiology, “Bagdasar Arseni” Emergency Hospital, University of Medicine and Pharmacy “Carol Davila”, 011241 Bucharest, Romania; (R.O.D.); (C.J.S.)
| | - Suzana Guberna
- Department of Cardiology, Emergency Hospital “Bagdasar-Arseni”, 050474 Bucharest, Romania; (S.G.); (A.M.S.)
| | - Arina Maria Staicu
- Department of Cardiology, Emergency Hospital “Bagdasar-Arseni”, 050474 Bucharest, Romania; (S.G.); (A.M.S.)
| | - Cătălin Teodor Rusu
- Department of Internal Medicine, “Coltea” Clinical Hospital, 030167 Bucharest, Romania;
| | - Octavian Ceban
- Economic Cybernetics and Informatics Department, The Bucharest University of Economic Studies, 010374 Bucharest, Romania;
| | - Crina Julieta Sinescu
- Department of Cardiology, “Bagdasar Arseni” Emergency Hospital, University of Medicine and Pharmacy “Carol Davila”, 011241 Bucharest, Romania; (R.O.D.); (C.J.S.)
| |
Collapse
|
9
|
V. D. dos Santos AC, Hondl N, Ramos-Garcia V, Kuligowski J, Lendl B, Ramer G. AFM-IR for Nanoscale Chemical Characterization in Life Sciences: Recent Developments and Future Directions. ACS MEASUREMENT SCIENCE AU 2023; 3:301-314. [PMID: 37868358 PMCID: PMC10588935 DOI: 10.1021/acsmeasuresciau.3c00010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 10/24/2023]
Abstract
Despite the ubiquitous absorption of mid-infrared (IR) radiation by virtually all molecules that belong to the major biomolecules groups (proteins, lipids, carbohydrates, nucleic acids), the application of conventional IR microscopy to the life sciences remained somewhat limited, due to the restrictions on spatial resolution imposed by the diffraction limit (in the order of several micrometers). This issue is addressed by AFM-IR, a scanning probe-based technique that allows for chemical analysis at the nanoscale with resolutions down to 10 nm and thus has the potential to contribute to the investigation of nano and microscale biological processes. In this perspective, in addition to a concise description of the working principles and operating modes of AFM-IR, we present and evaluate the latest key applications of AFM-IR to the life sciences, summarizing what the technique has to offer to this field. Furthermore, we discuss the most relevant current limitations and point out potential future developments and areas for further application for fruitful interdisciplinary collaboration.
Collapse
Affiliation(s)
| | - Nikolaus Hondl
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Victoria Ramos-Garcia
- Health
Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Julia Kuligowski
- Health
Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Bernhard Lendl
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Georg Ramer
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
10
|
Ferreira MML, de Souza SEG, da Silva CC, Souza LEA, Bicev RN, da Silva ER, Nakaie CR. Pyroglutamination-Induced Changes in the Physicochemical Features of a CXCR4 Chemokine Peptide: Kinetic and Structural Analysis. Biochemistry 2023; 62:2530-2540. [PMID: 37540799 DOI: 10.1021/acs.biochem.3c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
We investigate the physicochemical effects of pyroglutamination on the QHALTSV-NH2 peptide, a segment of cytosolic helix 8 of the human C-X-C chemokine G-protein-coupled receptor type 4 (CXCR4). This modification, resulting from the spontaneous conversion of glutamine to pyroglutamic acid, has significant impacts on the physicochemical features of peptides. Using a static approach, we compared the transformation in different conditions and experimentally found that the rate of product formation increases with temperature, underscoring the need for caution during laboratory experiments to prevent glutamine cyclization. Circular dichroism experiments revealed that the QHALTSV-NH2 segment plays a minor role in the structuration of H8 CXCR4; however, its pyroglutaminated analogue interacts differently with its chemical environment, showing increased susceptibility to solvent variations compared to the native form. The pyroglutaminated analogue exhibits altered behavior when interacting with lipid models, suggesting a significant impact on its interaction with cell membranes. A unique combination of atomic force microscopy and infrared nanospectroscopy revealed that pyroglutamination affects supramolecular self-assembly, leading to highly packed molecular arrangements and a crystalline structure. Moreover, the presence of pyroglumatic acid has been found to favor the formation of amyloidogenic aggregates. Our findings emphasize the importance of considering pyroglutamination in peptide synthesis and proteomics and its potential significance in amyloidosis.
Collapse
Affiliation(s)
- Mariana M L Ferreira
- Departamento de Biofísica─Escola Paulista de Medicina, Universidade Federal de São Paulo─São Paulo, São Paulo 04023-062, Brazil
| | - Sinval E G de Souza
- Departamento de Biofísica─Escola Paulista de Medicina, Universidade Federal de São Paulo─São Paulo, São Paulo 04023-062, Brazil
| | - Caroline C da Silva
- Departamento de Biofísica─Escola Paulista de Medicina, Universidade Federal de São Paulo─São Paulo, São Paulo 04023-062, Brazil
| | - Louise E A Souza
- Departamento de Biofísica─Escola Paulista de Medicina, Universidade Federal de São Paulo─São Paulo, São Paulo 04023-062, Brazil
| | - Renata N Bicev
- Departamento de Biofísica─Escola Paulista de Medicina, Universidade Federal de São Paulo─São Paulo, São Paulo 04023-062, Brazil
| | - Emerson R da Silva
- Departamento de Biofísica─Escola Paulista de Medicina, Universidade Federal de São Paulo─São Paulo, São Paulo 04023-062, Brazil
| | - Clovis R Nakaie
- Departamento de Biofísica─Escola Paulista de Medicina, Universidade Federal de São Paulo─São Paulo, São Paulo 04023-062, Brazil
| |
Collapse
|
11
|
Liang Q, Zhang Y, Liang J. Elevated Serum Total Bilirubin Might Indicate Poor Coronary Conditions for Unstable Angina Pectoris Patients beyond as a Cardiovascular Protector. Cardiovasc Ther 2023; 2023:5532917. [PMID: 37705934 PMCID: PMC10497366 DOI: 10.1155/2023/5532917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 09/15/2023] Open
Abstract
Backgrounds Serum total bilirubin (STB) is recently more regarded as an antioxidant with vascular protective effects. However, we noticed that elevated STB appeared in unstable angina pectoris (UAP) patients with diffused coronary lesions. We aimed to explore STB's roles in UAP patients, which have not been reported by articles. Methods and Results 1120 UAP patients were retrospectively screened, and 296 patients were finally enrolled. They were grouped by Canadian Cardiovascular Society (CCS) angina grades. The synergy between PCI with TAXUS stent and cardiac surgery score (SYNTAX score) and corrected thrombolysis in myocardial infarction flow count (CTFC) were adopted to profile coronary features. The results showed that STB, mean platelet volume (MPV), hs-CRP, fasting blood glucose (FBG), red blood cell width (RDW), and CTFC elevated significantly in the CCS high-risk group. STB (B = 0.59, 95% CI: 0.39-0.74, P < 0.01) and MPV (B = 0.86, 95% CI: 0.42-1.31, P < 0.01) could indicate SYNTAX score changes for these patients. STB (≥21.7 μmol/L) could even indicate a coronary slow flow condition (AUC: 0.88, 95% CI: 0.84-0.93, P < 0.01). Moreover, UAP patients with elevated STB had a lower event-free survival rate by the Kaplan-Meier curve. STB ≥21.7 μmol/L could reflect a poor coronary flow status and indicate 1-year poor outcomes for these patients (HR: 2.01, 95% CI: 1.06-3.84, P < 0.01). Conclusion Elevated STB in UAP patients has a close relationship with changes in SYNTAX score. STB (over 21.7 μmol/L) could even indicate a coronary slow flow condition and poor outcomes for the UAP patients.
Collapse
Affiliation(s)
- Qi Liang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta Rd, Shaanxi, Xi'an 710061, China
| | - Yongjian Zhang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta Rd, Shaanxi, Xi'an 710061, China
| | - Jin Liang
- Department of Medical Insurance, Xi'an Affiliated Hospital of the Shaanxi University of Chinese Medicine, China
| |
Collapse
|
12
|
Kozlova E, Sherstyukova E, Sergunova V, Grechko A, Kuzovlev A, Lyapunova S, Inozemtsev V, Kozlov A, Chernysh A. Atomic Force Microscopy and High-Resolution Spectrophotometry for Study of Anoxemia and Normoxemia in Model Experiment In Vitro. Int J Mol Sci 2023; 24:11043. [PMID: 37446221 PMCID: PMC10341442 DOI: 10.3390/ijms241311043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The oxygen content in the blood may decrease under the influence of various physicochemical factors and different diseases. The state of hypoxemia is especially dangerous for critically ill patients. In this paper, we describe and analyze the changes in the characteristics of red blood cells (RBCs) with decreasing levels of oxygen in the RBC suspension from normoxemia to hypoxemia/anoxemia in an in vitro model experiment. The RBCs were stored in hypoxemia/anoxemia and normoxemia conditions in closed and open tubes correspondingly. For the quantitative study of RBC parameter changes, we used atomic force microscopy, digital spectrophotometry, and nonlinear curve fitting of the optical spectra. In both closed and open tubes, at the end of the storage period by day 29, only 2% of discocytes remained, and mainly irreversible types, such as microspherocytes and ghosts, were observed. RBC hemolysis occurred at a level of 25-30%. Addition of the storage solution, depending on the concentration, changed the influence of hypoxemia on RBCs. The reversibility of the change in hemoglobin derivatives was checked. Based on the experimental data and model approach, we assume that there is an optimal level of hypoxemia at which the imbalance between the oxidative and antioxidant systems, the rate of formation of reactive oxygen species, and, accordingly, the disturbances in RBCs, will be minimal.
Collapse
Affiliation(s)
- Elena Kozlova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.K.); (E.S.); (V.S.); (V.I.); (A.C.)
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Faculty of Physics, Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ekaterina Sherstyukova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.K.); (E.S.); (V.S.); (V.I.); (A.C.)
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Viktoria Sergunova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.K.); (E.S.); (V.S.); (V.I.); (A.C.)
| | - Andrey Grechko
- Administration, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (A.G.); (A.K.)
| | - Artem Kuzovlev
- Administration, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (A.G.); (A.K.)
| | - Snezhanna Lyapunova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.K.); (E.S.); (V.S.); (V.I.); (A.C.)
| | - Vladimir Inozemtsev
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.K.); (E.S.); (V.S.); (V.I.); (A.C.)
| | - Aleksandr Kozlov
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Aleksandr Chernysh
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.K.); (E.S.); (V.S.); (V.I.); (A.C.)
| |
Collapse
|
13
|
Binns HC, Alipour E, Nahid DS, Whitesides JF, Cox AO, Furdui CM, Marrs GS, Kim-Shapiro DB, Cordy RJ. Amino acid supplementation confers protection to red blood cells prior to Plasmodium falciparum bystander stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.540951. [PMID: 37292635 PMCID: PMC10245693 DOI: 10.1101/2023.05.16.540951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Malaria is a highly oxidative parasitic disease in which anemia is the most common clinical symptom. A major contributor to malarial anemia pathogenesis is the destruction of bystander, uninfected red blood cells. Metabolic fluctuations are known to occur in the plasma of individuals with acute malaria, emphasizing the role of metabolic changes in disease progression and severity. Here, we report that conditioned media from Plasmodium falciparum culture induces oxidative stress in healthy uninfected RBCs. Additionally, we show the benefit of amino acid pre-exposure for RBCs and how this pre-treatment intrinsically prepares RBCs to mitigate oxidative stress. Key points Intracellular ROS is acquired in red blood cells incubated with Plasmodium falciparum conditioned media Glutamine, cysteine, and glycine amino acid supplementation increased glutathione biosynthesis and reduced ROS levels in stressed RBCs.
Collapse
|
14
|
Nixon-Abell J, Ruggeri FS, Qamar S, Herling TW, Czekalska MA, Shen Y, Wang G, King C, Fernandopulle MS, Sneideris T, Watson JL, Pillai VVS, Meadows W, Henderson JW, Chambers JE, Wagstaff JL, Williams SH, Coyle H, Lu Y, Zhang S, Marciniak SJ, Freund SMV, Derivery E, Ward ME, Vendruscolo M, Knowles TPJ, St George-Hyslop P. ANXA11 biomolecular condensates facilitate protein-lipid phase coupling on lysosomal membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533832. [PMID: 36993242 PMCID: PMC10055329 DOI: 10.1101/2023.03.22.533832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Phase transitions of cellular proteins and lipids play a key role in governing the organisation and coordination of intracellular biology. The frequent juxtaposition of proteinaceous biomolecular condensates to cellular membranes raises the intriguing prospect that phase transitions in proteins and lipids could be co-regulated. Here we investigate this possibility in the ribonucleoprotein (RNP) granule-ANXA11-lysosome ensemble, where ANXA11 tethers RNP granule condensates to lysosomal membranes to enable their co-trafficking. We show that changes to the protein phase state within this system, driven by the low complexity ANXA11 N-terminus, induce a coupled phase state change in the lipids of the underlying membrane. We identify the ANXA11 interacting proteins ALG2 and CALC as potent regulators of ANXA11-based phase coupling and demonstrate their influence on the nanomechanical properties of the ANXA11-lysosome ensemble and its capacity to engage RNP granules. The phenomenon of protein-lipid phase coupling we observe within this system offers an important template to understand the numerous other examples across the cell whereby biomolecular condensates closely juxtapose cell membranes. GRAPHICAL ABSTRACT
Collapse
|
15
|
Keane PM, Zehe C, Poynton FE, Bright SA, Estayalo-Adrián S, Devereux SJ, Donaldson PM, Sazanovich IV, Towrie M, Botchway SW, Cardin CJ, Williams DC, Gunnlaugsson T, Long C, Kelly JM, Quinn SJ. Time-resolved infra-red studies of photo-excited porphyrins in the presence of nucleic acids and in HeLa tumour cells: insights into binding site and electron transfer dynamics. Phys Chem Chem Phys 2022; 24:27524-27531. [PMID: 36345709 DOI: 10.1039/d2cp04604k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Cationic porphyrins based on the 5,10,15,20-meso-(tetrakis-4-N-methylpyridyl) core (TMPyP4) have been studied extensively over many years due to their strong interactions with a variety of nucleic acid structures, and their potential use as photodynamic therapeutic agents and telomerase inhibitors. In this paper, the interactions of metal-free TMPyP4 and Pt(II)TMPyP4 with guanine-containing nucleic acids are studied for the first time using time-resolved infrared spectroscopy (TRIR). In D2O solution (where the metal-free form exists as D2TMPyP4) both compounds yielded similar TRIR spectra (between 1450-1750 cm-1) following pulsed laser excitation in their Soret B-absorption bands. Density functional theory calculations reveal that vibrations centred on the methylpyridinium groups are responsible for the dominant feature at ca. 1640 cm-1. TRIR spectra of D2TMPyP4 or PtTMPyP4 in the presence of guanosine 5'-monophosphate (GMP), double-stranded {d(GC)5}2 or {d(CGCAAATTTGCG)}2 contain negative-going signals, 'bleaches', indicative of binding close to guanine. TRIR signals for D2TMPyP4 or PtTMPyP bound to the quadruplex-forming cMYC sequence {d(TAGGGAGGG)}2T indicate that binding occurs on the stacked guanines. For D2TMPyP4 bound to guanine-containing systems, the TRIR signal at ca. 1640 cm-1 decays on the picosecond timescale, consistent with electron transfer from guanine to the singlet excited state of D2TMPyP4, although IR marker bands for the reduced porphyrin/oxidised guanine were not observed. When PtTMPyP is incorporated into HeLa tumour cells, TRIR studies show protein binding with time-dependent ps/ns changes in the amide absorptions demonstrating TRIR's potential for studying light-activated molecular processes not only with nucleic acids in solution but also in biological cells.
Collapse
Affiliation(s)
- Páraic M Keane
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
- School of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Clara Zehe
- School of Chemistry, University College Dublin, Dublin 4, Ireland.
| | - Fergus E Poynton
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, The University of Dublin, Pearse St., Dublin 2, Ireland
| | - Sandra A Bright
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, The University of Dublin, Pearse St., Dublin 2, Ireland
| | - Sandra Estayalo-Adrián
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, The University of Dublin, Pearse St., Dublin 2, Ireland
| | | | - Paul M Donaldson
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Igor V Sazanovich
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Michael Towrie
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Stanley W Botchway
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Christine J Cardin
- School of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - D Clive Williams
- Trinity Biomedical Sciences Institute, The University of Dublin, Pearse St., Dublin 2, Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, The University of Dublin, Pearse St., Dublin 2, Ireland
| | - Conor Long
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| | - John M Kelly
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
16
|
Valenta H, Dupré-Crochet S, Abdesselem M, Bizouarn T, Baciou L, Nüsse O, Deniset-Besseau A, Erard M. Consequences of the constitutive NOX2 activity in living cells: Cytosol acidification, apoptosis, and localized lipid peroxidation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119276. [PMID: 35489654 DOI: 10.1016/j.bbamcr.2022.119276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The phagocyte NADPH oxidase (NOX2) is a key enzyme of the innate immune system generating superoxide anions (O2•-), precursors of reactive oxygen species. The NOX2 protein complex is composed of six subunits: two membrane proteins (gp91phox and p22phox) forming the catalytic core, three cytosolic proteins (p67phox, p47phox and p40phox) and a small GTPase Rac. The sophisticated activation mechanism of the NADPH oxidase relies on the assembly of cytosolic subunits with the membrane-bound components. A chimeric protein, called 'Trimera', composed of the essential domains of the cytosolic proteins p47phox (aa 1-286), p67phox (aa 1-212) and full-length Rac1Q61L, enables a constitutive and robust NOX2 activity in cells without the need of any stimulus. We employed Trimera as a single activating protein of the phagocyte NADPH oxidase in living cells and examined the consequences on the cell physiology of this continuous and long-term NOX activity. We showed that the sustained high level of NOX activity causes acidification of the intracellular pH, triggers apoptosis and leads to local peroxidation of lipids in the membrane. These local damages to the membrane correlate with the strong tendency of the Trimera to clusterize in the plasma membrane observed by FRET-FLIM microscopy.
Collapse
Affiliation(s)
- Hana Valenta
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Sophie Dupré-Crochet
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Mouna Abdesselem
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Tania Bizouarn
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Laura Baciou
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Oliver Nüsse
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Ariane Deniset-Besseau
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Marie Erard
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, 91405 Orsay, France.
| |
Collapse
|
17
|
Abstract
Blood cell analysis is essential for the diagnosis and identification of hematological malignancies. The use of digital microscopy systems has been extended in clinical laboratories. Super-resolution microscopy (SRM) has attracted wide attention in the medical field due to its nanoscale spatial resolution and high sensitivity. It is considered to be a potential method of blood cell analysis that may have more advantages than traditional approaches such as conventional optical microscopy and hematology analyzers in certain examination projects. In this review, we firstly summarize several common blood cell analysis technologies in the clinic, and analyze the advantages and disadvantages of these technologies. Then, we focus on the basic principles and characteristics of three representative SRM techniques, as well as the latest advances in these techniques for blood cell analysis. Finally, we discuss the developmental trend and possible research directions of SRM, and provide some discussions on further development of technologies for blood cell analysis.
Collapse
|
18
|
The Toxic Influence of Excess Free Iron on Red Blood Cells in the Biophysical Experiment: An In Vitro Study. J Toxicol 2022; 2022:7113958. [PMID: 35256882 PMCID: PMC8898121 DOI: 10.1155/2022/7113958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Iron is needed for life-essential processes, but free iron overload causes dangerous clinical consequences. The study of the role of red blood cells (RBCs) in the influence of excess free iron in the blood on the pathological consequences in an organism is relevant. Here, in a direct biophysical experiment in vitro, we studied the action of free iron overload on the packed red blood cell (pRBC) characteristics. In experiments, we incubated pRBCs with the ferrous sulfate solution (Fe2+). Wе used free iron in a wide range of concentrations. High Fe2+ concentrations made us possible to establish the pattern of the toxic effect of excess iron on pRBCs during a reduced incubation time in a biophysical experiment in vitro. It was found that excess free iron causes changes in pRBC morphology, the appearance of bridges between cells, and the formation of clots, increasing the membrane stiffness and methemoglobin concentration. We created a kinetic model of changes in the hemoglobin derivatives. The complex of simultaneous distortions of pRBCs established in our experiments can be taken into account when studying the mechanism of the toxic influence of excess free iron in the blood on pathological changes in an organism.
Collapse
|
19
|
Trends in biomedical analysis of red blood cells – Raman spectroscopy against other spectroscopic, microscopic and classical techniques. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Blackburn TJ, Tyler SM, Pemberton JE. Optical Spectroscopy of Surfaces, Interfaces, and Thin Films. Anal Chem 2022; 94:515-558. [DOI: 10.1021/acs.analchem.1c05323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Thomas J. Blackburn
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Sarah M. Tyler
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Jeanne E. Pemberton
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
21
|
Morphometry and Stiffness of Red Blood Cells—Signatures of Neurodegenerative Diseases and Aging. Int J Mol Sci 2021; 23:ijms23010227. [PMID: 35008653 PMCID: PMC8745649 DOI: 10.3390/ijms23010227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Human red blood cells (RBCs) are unique cells with the remarkable ability to deform, which is crucial for their oxygen transport function, and which can be significantly altered under pathophysiological conditions. Here we performed ultrastructural analysis of RBCs as a peripheral cell model, looking for specific signatures of the neurodegenerative pathologies (NDDs)—Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD), utilizing atomic force (AFM) and conventional optical (OM) microscopy. We found significant differences in the morphology and stiffness of RBCs isolated from patients with the selected NDDs and those from healthy individuals. Neurodegenerative pathologies’ RBCs are characterized by a reduced abundance of biconcave discoid shape, lower surface roughness and a higher Young’s modulus, compared to healthy cells. Although reduced, the biconcave is still the predominant shape in ALS and AD cells, while the morphology of PD is dominated by crenate cells. The features of RBCs underwent a marked aging-induced transformation, which followed different aging pathways for NDDs and normal healthy states. It was found that the diameter, height and volume of the different cell shape types have different values for NDDs and healthy cells. Common and specific morphological signatures of the NDDs were identified.
Collapse
|
22
|
Volkov VV, McMaster J, Aizenberg J, Perry CC. Mapping blood biochemistry by Raman spectroscopy at the cellular level. Chem Sci 2021; 13:133-140. [PMID: 35059161 PMCID: PMC8694331 DOI: 10.1039/d1sc05764b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022] Open
Abstract
We report how Raman difference imaging provides insight on cellular biochemistry in vivo as a function of sub-cellular dimensions and the cellular environment. We show that this approach offers a sensitive diagnostic to address blood biochemistry at the cellular level. We examine Raman microscopic images of the distribution of the different hemoglobins in both healthy (discocyte) and unhealthy (echinocyte) blood cells and interpret these images using pre-calculated, accurate pre-resonant Raman tensors for scattering intensities specific to hemoglobins. These tensors are developed from theoretical calculations of models of the oxy, deoxy and met forms of heme benchmarked against the experimental visible spectra of the corresponding hemoglobins. The calculations also enable assignments of the electronic transitions responsible for the colour of blood: these are mainly ligand to metal charge transfer transitions. We assign the electronic transitions responsible for the colour of blood and present a Raman imaging diagnostic approach for individual blood cells.![]()
Collapse
Affiliation(s)
- Victor V Volkov
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University. Clifton Lane Nottingham NG11 8NS UK +44 (0)115 8486695
| | - Jonathan McMaster
- School of Chemistry, Faculty of Science, The University of Nottingham Nottingham NG7 2RD UK
| | - Joanna Aizenberg
- John A. Poulson School of Engineering and Applied Sciences, Harvard University 29 Oxford Street Cambridge MA 02138 USA
| | - Carole C Perry
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University. Clifton Lane Nottingham NG11 8NS UK +44 (0)115 8486695
| |
Collapse
|
23
|
Fellows AP, Casford MTL, Davies PB. Chemically characterizing the cortical cell nano-structure of human hair using atomic force microscopy integrated with infrared spectroscopy (AFM-IR). Int J Cosmet Sci 2021; 44:42-55. [PMID: 34820858 DOI: 10.1111/ics.12753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The use of conventional microscopy and vibrational spectroscopy in the optical region to investigate the chemical nature of hair fibres on a nanometre scale is frustrated by the diffraction limit of light, prohibiting the spectral elucidation of nanoscale sub-structures that contribute to the bulk properties of hair. The aim of this work was to overcome this limitation and gain unprecedented chemical resolution of cortical cell nano-structure of hair. METHODS The hybrid technique of AFM-IR, combining atomic force microscopy with an IR laser, circumvents the diffraction limit of light and achieves nanoscale chemical resolution down to the AFM tip radius. In this work, AFM-IR was employed on ultra-thin microtomed cross-sections of human hair fibres to spectrally distinguish and characterize the specific protein structures and environments within the nanoscale components of cortical cells. RESULTS At first, a topographical and chemical distinction between the macrofibrils and the surrounding intermacrofibillar matrix was achieved based on 2.5 × 2.5 μm maps of cortical cell cross-sections. It was found that the intermacrofibrillar matrix has a large protein content and specific cysteine-related residues, whereas the macrofibrils showed bigger contributions from aliphatic amino acid residues and acidic-/ester-containing species (e.g. lipids). Localized spectra recorded at a spatial resolution of the order of the AFM tip radius enabled the chemical composition of each region to be determined following deconvolution of the Amide-I and Amide-II bands. This provided specific evidence for a greater proportion of α-helices in the macrofibrils and correspondingly larger contributions of β-sheet secondary structures in the intermacrofibrillar matrix, as inferred in earlier studies. Analysis of the parallel and antiparallel β-sheet structures, and of selected dominant amino acid residues, yielded further novel composition and conformation results for both regions. CONCLUSION In this work, we overcome the diffraction limit of light using atomic force microscopy integrated with IR laser spectroscopy (AFM-IR) to characterize sub-micron features of the hair cortex at ultra-high spatial resolution. The resulting spectral analysis shows clear distinctions in the Amide bands in the macrofibrils and surrounding intermacrofibrillar matrix, yielding novel insight into the molecular structure and intermolecular stabilization interactions of the constituent proteins within each cortical component.
Collapse
Affiliation(s)
- A P Fellows
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - M T L Casford
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - P B Davies
- Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Comparing infrared spectroscopic methods for the characterization of Plasmodium falciparum-infected human erythrocytes. Commun Chem 2021; 4:129. [PMID: 36697584 PMCID: PMC9814045 DOI: 10.1038/s42004-021-00567-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/11/2021] [Indexed: 01/28/2023] Open
Abstract
Malaria, caused by parasites of the species Plasmodium, is among the major life-threatening diseases to afflict humanity. The infectious cycle of Plasmodium is very complex involving distinct life stages and transitions characterized by cellular and molecular alterations. Therefore, novel single-cell technologies are warranted to extract details pertinent to Plasmodium-host cell interactions and underpinning biological transformations. Herein, we tested two emerging spectroscopic approaches: (a) Optical Photothermal Infrared spectroscopy and (b) Atomic Force Microscopy combined with infrared spectroscopy in contrast to (c) Fourier Transform InfraRed microspectroscopy, to investigate Plasmodium-infected erythrocytes. Chemical spatial distributions of selected bands and spectra captured using the three modalities for major macromolecules together with advantages and limitations of each method is presented here. These results indicate that O-PTIR and AFM-IR techniques can be explored for extracting sub-micron resolution molecular signatures within heterogeneous and dynamic samples such as Plasmodium-infected human RBCs.
Collapse
|
25
|
Ruggeri FS, Miller AM, Vendruscolo M, Knowles TPJ. Unraveling the Physicochemical Determinants of Protein Liquid-liquid Phase Separation by Nanoscale Infrared Vibrational Spectroscopy. Bio Protoc 2021; 11:e4122. [PMID: 34541041 DOI: 10.21769/bioprotoc.4122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/02/2022] Open
Abstract
The phenomenon of reversible liquid-liquid phase separation of proteins underlies the formation of membraneless organelles, which are crucial for cellular processes such as signalling and transport. In addition, it is also of great interest to uncover the mechanisms of further irreversible maturation of the functional dense liquid phase into aberrant insoluble assemblies due to its implication in human disease. Recent advances in methods based on atomic force microscopy (AFM) have made it possible to study protein condensates at the nanometer level, providing unprecedented information on the nature of the intermolecular interactions governing phase separation. Here, we provide an in-depth description of a protocol for the characterisation of the morphology, stiffness, and chemical properties of protein condensates using infrared nanospectroscopy (AFM-IR).
Collapse
Affiliation(s)
- Francesco S Ruggeri
- Laboratories of Organic and Physical Chemistry, Stippeneng 4, 6703 WE, Wageningen University and Research, The Netherlands.,Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Alyssa M Miller
- Laboratories of Organic and Physical Chemistry, Stippeneng 4, 6703 WE, Wageningen University and Research, The Netherlands
| | - Michele Vendruscolo
- Laboratories of Organic and Physical Chemistry, Stippeneng 4, 6703 WE, Wageningen University and Research, The Netherlands
| | - Tuomas P J Knowles
- Laboratories of Organic and Physical Chemistry, Stippeneng 4, 6703 WE, Wageningen University and Research, The Netherlands.,Cavendish Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Fellows AP, Casford MTL, Davies PB. Using hybrid atomic force microscopy and infrared spectroscopy (AFM-IR) to identify chemical components of the hair medulla on the nanoscale. J Microsc 2021; 284:189-202. [PMID: 34313326 DOI: 10.1111/jmi.13052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/02/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022]
Abstract
Atomic force microscopy integrated with infrared spectroscopy (AFM-IR) has been used to topographically and chemically examine the medulla of human hair fibres with nanometre scale lateral resolution. The mapping of cross-sections of the medulla showed two distinct structural components which were subsequently characterised spectroscopically. One of these components was shown to be closely similar to cortical cell species, consistent with the fibrillar structures found in previous electron microscope (EM) investigations. The other component showed large chemical differences from cortical cells and was assigned to globular vacuole species, also confirming EM observations. Further characterisation of the two components was achieved through spectral deconvolution of the protein Amide-I and -II bands. This showed that the vacuoles have a greater proportion of the most thermodynamically stable conformation, namely the antiparallel β-sheet structures. This chimes with the observed lower cysteine concentration, indicating a lower proportion of restrictive disulphide cross-link bonding. Furthermore, the large α-helix presence within the vacuoles points to a loss of matrix-like material as well as significant intermolecular stabilisation of the protein structures. By analysing the carbonyl stretching region, it was established that the fibrillar, cortical cell-like components showed considerable stabilisation from H-bonding interactions, similar to the cortex, involving amino acid side chains whereas, in contrast, the vacuoles were found to only be stabilised significantly by structural lipids.
Collapse
Affiliation(s)
| | | | - Paul B Davies
- Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
27
|
Otzen DE, Dueholm MS, Najarzadeh Z, Knowles TPJ, Ruggeri FS. In situ Sub-Cellular Identification of Functional Amyloids in Bacteria and Archaea by Infrared Nanospectroscopy. SMALL METHODS 2021; 5:e2001002. [PMID: 34927901 DOI: 10.1002/smtd.202001002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/16/2021] [Indexed: 06/14/2023]
Abstract
Formation of amyloid structures is originally linked to human disease. However, amyloid materials are found extensively in the animal and bacterial world where they stabilize intra- and extra-cellular environments like biofilms or cell envelopes. To date, functional amyloids have largely been studied using optical microscopy techniques in vivo, or after removal from their biological context for higher-resolution studies in vitro. Furthermore, conventional microscopies only indirectly identify amyloids based on morphology or unspecific amyloid dyes. Here, the high chemical and spatial (≈20 nm) resolution of Infrared Nanospectroscopy (AFM-IR) to investigate functional amyloid from Escherichia coli (curli), Pseudomonas (Fap), and the Archaea Methanosaeta (MspA) in situ is exploited. It is demonstrated that AFM-IR identifies amyloid protein within single intact cells through their cross β-sheet secondary structure, which has a unique spectroscopic signature in the amide I band of protein. Using this approach, nanoscale-resolved chemical images and spectra of purified curli and Methanosaeta cell wall sheaths are provided. The results highlight significant differences in secondary structure between E. coli cells with and without curli. Taken together, these results suggest that AFM-IR is a new and powerful label-free tool for in situ investigations of the biophysical state of functional amyloid and biomolecules in general.
Collapse
Affiliation(s)
- Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, Aarhus, 8000, Denmark
| | - Morten S Dueholm
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, 9220, Denmark
| | - Zahra Najarzadeh
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, Aarhus, 8000, Denmark
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB30HE, UK
| | - Francesco Simone Ruggeri
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Laboratory of Organic Chemistry, Wageningen University, Wageningen, WE 6703, the Netherlands
- Laboratory of Physical Chemistry, Wageningen University, Wageningen, WE 6703, the Netherlands
| |
Collapse
|
28
|
Infrared nanospectroscopy reveals the molecular interaction fingerprint of an aggregation inhibitor with single Aβ42 oligomers. Nat Commun 2021; 12:688. [PMID: 33514697 PMCID: PMC7846799 DOI: 10.1038/s41467-020-20782-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Significant efforts have been devoted in the last twenty years to developing compounds that can interfere with the aggregation pathways of proteins related to misfolding disorders, including Alzheimer’s and Parkinson’s diseases. However, no disease-modifying drug has become available for clinical use to date for these conditions. One of the main reasons for this failure is the incomplete knowledge of the molecular mechanisms underlying the process by which small molecules interact with protein aggregates and interfere with their aggregation pathways. Here, we leverage the single molecule morphological and chemical sensitivity of infrared nanospectroscopy to provide the first direct measurement of the structure and interaction between single Aβ42 oligomeric and fibrillar species and an aggregation inhibitor, bexarotene, which is able to prevent Aβ42 aggregation in vitro and reverses its neurotoxicity in cell and animal models of Alzheimer’s disease. Our results demonstrate that the carboxyl group of this compound interacts with Aβ42 aggregates through a single hydrogen bond. These results establish infrared nanospectroscopy as a powerful tool in structure-based drug discovery for protein misfolding diseases. Our understanding of the molecular mechanisms underlying pathological protein aggregation remains incomplete. Here, single molecule infrared nanospectroscopy (AFM-IR) offers insight into the structure of Aβ42 oligomeric and fibrillar species and their interaction with an aggregation inhibitor, paving the way for single molecule drug discovery studies.
Collapse
|
29
|
Martínez-Rovira I, Seksek O, Dokic I, Brons S, Abdollahi A, Yousef I. Study of the intracellular nanoparticle-based radiosensitization mechanisms in F98 glioma cells treated with charged particle therapy through synchrotron-based infrared microspectroscopy. Analyst 2020; 145:2345-2356. [PMID: 31993615 DOI: 10.1039/c9an02350j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The use of nanoparticles (NP) as dose enhancers in radiotherapy (RT) is a growing research field. Recently, the use of NP has been extended to charged particle therapy in order to improve the performance in radioresistant tumors. However, the biological mechanisms underlying the synergistic effects involved in NP-RT approaches are not clearly understood. Here, we used the capabilities of synchrotron-based Fourier Transform Infrared Microspectroscopy (SR-FTIRM) as a bio-analytical tool to elucidate the NP-induced cellular damage at the molecular level and at a single-cell scale. F98 glioma cells doped with AuNP and GdNP were irradiated using several types of medical ion beams (proton, helium, carbon and oxygen). Differences in cell composition were analyzed in the nucleic acids, protein and lipid spectral regions using multivariate methods (Principal Component Analysis, PCA). Several NP-induced cellular modifications were detected, such as conformational changes in secondary protein structures, intensity variations in the lipid CHx stretching bands, as well as complex DNA rearrangements following charged particle therapy irradiations. These spectral features seem to be correlated with the already shown enhancement both in the DNA damage response and in the reactive oxygen species (ROS) production by the NP, which causes cell damage in the form of protein, lipid, and/or DNA oxidations. Vibrational features were NP-dependent due to the NP heterogeneous radiosensitization capability. Our results provided new insights into the molecular changes in response to NP-based RT treatments using ion beams, and highlighted the relevance of SR-FTIRM as a useful and precise technique for assessing cell response to innovative radiotherapy approaches.
Collapse
Affiliation(s)
- I Martínez-Rovira
- MIRAS beamline BL01, ALBA-CELLS Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain.
| | - O Seksek
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France and Université de Paris, IJCLab, 91405 Orsay, France
| | - I Dokic
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany and Clinical Cooperation Unite Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - S Brons
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - A Abdollahi
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany and Clinical Cooperation Unite Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - I Yousef
- MIRAS beamline BL01, ALBA-CELLS Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain.
| |
Collapse
|
30
|
Pachetti M, Zupin L, Venturin I, Mitri E, Boscolo R, D’Amico F, Vaccari L, Crovella S, Ricci G, Pascolo L. FTIR Spectroscopy to Reveal Lipid and Protein Changes Induced on Sperm by Capacitation: Bases for an Improvement of Sample Selection in ART. Int J Mol Sci 2020; 21:ijms21228659. [PMID: 33212829 PMCID: PMC7698301 DOI: 10.3390/ijms21228659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Although being a crucial step for Assisted Reproduction Technologies (ART) success, to date sperm selection is based only on morphology, motility and concentration characteristics. Considering the many possible alterations, there is a great need for analytical approaches allowing more effective sperm selections. The use of Fourier Transform Infrared (FTIR) may represent an interesting possibility, being able to reveal many macromolecular changes in a single measurement in a nondestructive way. As a proof of concept, in this observational study, we used a FTIR approach to reveal features related to sperm quality and chemical changes promoted by in vitro capacitation. We found indication that α-helix content is increased in capacitated sperm, while high percentages of the β-structures seem to correlate to poor-quality spermatozoa. The most interesting observation was related to the lipid composition, when measured as CH2/CH3 vibrations (ratio 2853/2870), which resulted in being strongly influenced by capacitation and well correlated with sperm motility. Interestingly, this ratio is higher than 1 in infertile samples, suggesting that motility is related to sperm membranes stiffness and lipid composition. Although further analyses are requested, our results support the concept that FTIR can be proposed as a new smart diagnostic tool for semen quality assessment in ART.
Collapse
Affiliation(s)
- Maria Pachetti
- Elettra—Sincrotrone Trieste S.C.p.A., SS14—km 163.5, 34149 Trieste, Italy; (M.P.); (I.V.); (E.M.); (F.D.); (L.V.)
- Department of Physics, University of Trieste, Via Valerio 2, 34143 Trieste, Italy
| | - Luisa Zupin
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (L.Z.); (R.B.); (G.R.)
| | - Irene Venturin
- Elettra—Sincrotrone Trieste S.C.p.A., SS14—km 163.5, 34149 Trieste, Italy; (M.P.); (I.V.); (E.M.); (F.D.); (L.V.)
| | - Elisa Mitri
- Elettra—Sincrotrone Trieste S.C.p.A., SS14—km 163.5, 34149 Trieste, Italy; (M.P.); (I.V.); (E.M.); (F.D.); (L.V.)
| | - Rita Boscolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (L.Z.); (R.B.); (G.R.)
| | - Francesco D’Amico
- Elettra—Sincrotrone Trieste S.C.p.A., SS14—km 163.5, 34149 Trieste, Italy; (M.P.); (I.V.); (E.M.); (F.D.); (L.V.)
| | - Lisa Vaccari
- Elettra—Sincrotrone Trieste S.C.p.A., SS14—km 163.5, 34149 Trieste, Italy; (M.P.); (I.V.); (E.M.); (F.D.); (L.V.)
| | - Sergio Crovella
- Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, P.O. Box 2713 Doha, Qatar;
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (L.Z.); (R.B.); (G.R.)
- Department of Medical, Surgical, and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (L.Z.); (R.B.); (G.R.)
- Correspondence: ; Tel.: +39-040-378-5526
| |
Collapse
|
31
|
Shen Y, Ruggeri FS, Vigolo D, Kamada A, Qamar S, Levin A, Iserman C, Alberti S, George-Hyslop PS, Knowles TPJ. Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition. NATURE NANOTECHNOLOGY 2020; 15:841-847. [PMID: 32661370 PMCID: PMC7116851 DOI: 10.1038/s41565-020-0731-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/05/2020] [Indexed: 05/04/2023]
Abstract
Membrane-less organelles resulting from liquid-liquid phase separation of biopolymers into intracellular condensates control essential biological functions, including messenger RNA processing, cell signalling and embryogenesis1-4. It has recently been discovered that several such protein condensates can undergo a further irreversible phase transition, forming solid nanoscale aggregates associated with neurodegenerative disease5-7. While the irreversible gelation of protein condensates is generally related to malfunction and disease, one case where the liquid-to-solid transition of protein condensates is functional, however, is that of silk spinning8,9. The formation of silk fibrils is largely driven by shear, yet it is not known what factors control the pathological gelation of functional condensates. Here we demonstrate that four proteins and one peptide system, with no function associated with fibre formation, have a strong propensity to undergo a liquid-to-solid transition when exposed to even low levels of mechanical shear once present in their liquid-liquid phase separated form. Using microfluidics to control the application of shear, we generated fibres from single-protein condensates and characterized their structural and material properties as a function of shear stress. Our results reveal generic backbone-backbone hydrogen bonding constraints as a determining factor in governing this transition. These observations suggest that shear can play an important role in the irreversible liquid-to-solid transition of protein condensates, shed light on the role of physical factors in driving this transition in protein aggregation-related diseases and open a new route towards artificial shear responsive biomaterials.
Collapse
Affiliation(s)
- Yi Shen
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Francesco Simone Ruggeri
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Daniele Vigolo
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Ayaka Kamada
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Seema Qamar
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Aviad Levin
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christiane Iserman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Peter St George-Hyslop
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, Division of Neurology, University of Toronto and University Health Network, Toronto, Ontario, Canada
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
32
|
Fellows AP, Casford MTL, Davies PB. Infrared Nanospectroscopy of Air-Sensitive Biological Substrates Protected by Thin Hydrogel Films. Biophys J 2020; 119:1474-1480. [PMID: 33035449 DOI: 10.1016/j.bpj.2020.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022] Open
Abstract
The air sensitivity of many substrates, and specifically biosurfaces, presents an experimental challenge for their analysis by vibrational spectroscopy and, in particular, infrared microscopy on a nanometer scale. The recent development of atomic-force-microscopy-based infrared spectroscopy (AFM-IR), which circumvents the Abbe diffraction limit, allows nanoscale chemical characterization of surfaces. Additionally, this technique has been shown to work for thin films under aqueous environments but is limited to substrates up to 10 nm thick, thus ruling out application to many biological surfaces. To circumvent this restriction, we have utilized hydrogels to cover such surfaces and maintain a more physiologically representative environment for biological substrates. We show that it is feasible to use AFM-IR to chemically characterize this type of substrate buried under a thin hydrogel film. Specifically, this work describes the AFM-IR spectra of red blood cells under polyvinyl alcohol hydrogels.
Collapse
Affiliation(s)
| | - Mike T L Casford
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Paul B Davies
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
33
|
Ruggeri FS, Mannini B, Schmid R, Vendruscolo M, Knowles TPJ. Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy. Nat Commun 2020; 11:2945. [PMID: 32522983 PMCID: PMC7287102 DOI: 10.1038/s41467-020-16728-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
The chemical and structural properties of biomolecules determine their interactions, and thus their functions, in a wide variety of biochemical processes. Innovative imaging methods have been developed to characterise biomolecular structures down to the angstrom level. However, acquiring vibrational absorption spectra at the single molecule level, a benchmark for bulk sample characterization, has remained elusive. Here, we introduce off-resonance, low power and short pulse infrared nanospectroscopy (ORS-nanoIR) to allow the acquisition of infrared absorption spectra and chemical maps at the single molecule level, at high throughput on a second timescale and with a high signal-to-noise ratio (~10-20). This high sensitivity enables the accurate determination of the secondary structure of single protein molecules with over a million-fold lower mass than conventional bulk vibrational spectroscopy. These results pave the way to probe directly the chemical and structural properties of individual biomolecules, as well as their interactions, in a broad range of chemical and biological systems.
Collapse
Affiliation(s)
| | - Benedetta Mannini
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Roman Schmid
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | | | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK.
| |
Collapse
|
34
|
Chan KLA, Lekkas I, Frogley MD, Cinque G, Altharawi A, Bello G, Dailey LA. Synchrotron Photothermal Infrared Nanospectroscopy of Drug-Induced Phospholipidosis in Macrophages. Anal Chem 2020; 92:8097-8107. [PMID: 32396367 DOI: 10.1021/acs.analchem.9b05759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Synchrotron resonance-enhanced infrared atomic force microscopy (RE-AFM-IR) is a near-field photothermal vibrational nanoprobe developed at Diamond Light Source (DLS), capable of measuring mid-infrared absorption spectra with spatial resolution around 100 nm. The present study reports a first application of synchrotron RE-AFM-IR to interrogate biological soft matter at the subcellular level, in this case, on a cellular model of drug-induced phospholipidosis (DIPL). J774A-1 macrophages were exposed to amiodarone (10 μM) or medium for 24 h and chemically fixed. AFM topography maps revealed amiodarone-treated cells with enlarged cytoplasm and very thin regions corresponding to collapsed vesicles. IR maps of the whole cell were analyzed by exploiting the RE-AFM-IR overall signal, i.e., the integrated RE-AFM-IR signal amplitude versus AFM-derived cell thickness, also on lateral resolution around 100 nm. Results show that vibrational band assignment was possible, and all characteristic peaks for lipids, proteins, and DNA/RNA were identified. Both peak ratio and unsupervised chemometric analysis of RE-AFM-IR nanospectra generated from the nuclear and perinuclear regions of untreated and amiodarone-treated cells showed that the perinuclear region (i.e., cytoplasm) of amiodarone-treated cells had significantly elevated band intensities in the regions corresponding to phosphate and carbonyl groups, indicating detection of phospholipid-rich inclusion bodies typical for cells with DIPL. The results of this study are of importance to demonstrate not only the applicability of Synchrotron RE-AFM-IR to soft biological matters with subcellular spatial resolution but also that the spectral information gathered from an individual submicron sample volume enables chemometric identification of treatment and biochemical differences between mammalian cells.
Collapse
Affiliation(s)
- Ka Lung Andrew Chan
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Ioannis Lekkas
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton-Didcot OX11 0DE, U.K
| | - Mark D Frogley
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton-Didcot OX11 0DE, U.K
| | - Gianfelice Cinque
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton-Didcot OX11 0DE, U.K
| | - Ali Altharawi
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Gianluca Bello
- Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Lea Ann Dailey
- Department of Pharmaceutical Technology and Biopharmacy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
35
|
Ruggeri FS, Flagmeier P, Kumita JR, Meisl G, Chirgadze DY, Bongiovanni MN, Knowles TPJ, Dobson CM. The Influence of Pathogenic Mutations in α-Synuclein on Biophysical and Structural Characteristics of Amyloid Fibrils. ACS NANO 2020; 14:5213-5222. [PMID: 32159944 DOI: 10.1021/acsnano.9b09676] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proteinaceous deposits of α-synuclein amyloid fibrils are a hallmark of human disorders including Parkinson's disease. The onset of this disease is also associated with five familial mutations of the gene encoding the protein. However, the mechanistic link between single point mutations and the kinetics of aggregation, biophysical properties of the resulting amyloid fibrils, and an increased risk of disease is still elusive. Here, we demonstrate that the disease-associated mutations of α-synuclein generate different amyloid fibril polymorphs compared to the wild type protein. Remarkably, the α-synuclein variants forming amyloid fibrils of a comparable structure, morphology, and heterogeneity show similar microscopic steps defining the aggregation kinetics. These results demonstrate that a single point mutation can significantly alter the distribution of fibrillar polymorphs in α-synuclein, suggesting that differences in the clinical phenotypes of familial Parkinson's disease could be associated with differences in the mechanism of formation and the structural characteristics of the aggregates.
Collapse
Affiliation(s)
- Francesco Simone Ruggeri
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick Flagmeier
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Janet R Kumita
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Georg Meisl
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Dimitri Y Chirgadze
- Department of Biochemistry, University of Cambridge, Old Addenbrooke's Site, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Marie N Bongiovanni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
36
|
Esteve E, Luque Y, Waeytens J, Bazin D, Mesnard L, Jouanneau C, Ronco P, Dazzi A, Daudon M, Deniset-Besseau A. Nanometric Chemical Speciation of Abnormal Deposits in Kidney Biopsy: Infrared-Nanospectroscopy Reveals Heterogeneities within Vancomycin Casts. Anal Chem 2020; 92:7388-7392. [PMID: 32406230 DOI: 10.1021/acs.analchem.0c00290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infrared (IR) spectromicroscopy allows chemical mapping of a kidney biopsy. It is particularly interesting for chemical speciation of abnormal tubular deposits and calcification. In 2017, using IR spectromicroscopy, we described a new entity called vancomycin cast nephropathy. However, despite recent progresses, the IR microspectrometer spatial resolution is intrinsically limited by diffraction (a few micrometers). Combining atomic force microscopy and IR lasers (AFMIR) allows acquisition of infrared absorption spectra with a resolution and sensitivity in between 10 and 100 nm. Here we show that AFMIR can be used on standard paraffin embedded kidney biopsies. Vancomycin cast could be identified in a damaged tubule. Interestingly unlike standard IR spectromicroscopy, AFMIR revealed heterogeneity of the deposits and established that vancomycin coprecipitated with phosphate containing molecules. These findings highlight the high potential of this approach with nanometric spatial resolution which opens new perspectives for studies on drug-induced nephritis, nanocrystals, and local lipid or carbohydrates alterations.
Collapse
Affiliation(s)
- Emmanuel Esteve
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France.,Nephrology and Dialysis Department, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Yosu Luque
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France.,Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Jehan Waeytens
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France.,Structure et Fonction des Membranes Biologiques, Faculté des Sciences, Université Libre de Bruxelles (ULB), CP 206/02, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
| | - Dominique Bazin
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Laurent Mesnard
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France.,Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Chantal Jouanneau
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Pierre Ronco
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France.,Nephrology and Dialysis Department, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Alexandre Dazzi
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Michel Daudon
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France.,Explorations Fonctionnelles Multidisciplinaires, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Ariane Deniset-Besseau
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| |
Collapse
|
37
|
Balogh G, Chakraborty P, Dugmonits KN, Péter M, Végh AG, Vígh L, Hermesz E. Sustained maternal smoking-associated changes in the physico-chemical properties of fetal RBC membranes might serve as early markers for vascular comorbidities. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158615. [PMID: 31926297 DOI: 10.1016/j.bbalip.2020.158615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/18/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023]
Abstract
Maternal smoking-induced congenital heart and microvascular defects are closely associated with the impaired functioning of the in-utero feto-placental circulation system. Current groundbreaking facts revealed intimate crosstalk between circulating red blood cells (RBCs) and the vascular endothelium. Thus, RBCs have become the protagonists under varied pathological and adverse pro-oxidative cellular stress conditions. We isolated and screened fetal RBCs from the arterial cord blood of neonates, born to non-smoking (RBC-NS) and smoking mothers (RBC-S), assuming that parameters of fetal RBCs are blueprints of conditions experienced in-utero. Using atomic force microscopy and mass spectrometry-based shotgun lipidomics in the RBC-S population we revealed induced membrane stiffness, loss in intrinsic plastic activities and several abnormalities in their membrane-lipid composition, that could consequently result in perturbed hemodynamic flow movements. Altogether, these features are indicative of the outcome of neonatal microvascular complications and suggest unavailability for the potential rescue mechanism in cases of vascular endothelium impairment due to altered membrane integrity and rheological properties.
Collapse
Affiliation(s)
- Gábor Balogh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Payal Chakraborty
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Krisztina N Dugmonits
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Attila G Végh
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Edit Hermesz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
38
|
Quaroni L. Characterization of Intact Eukaryotic Cells with Subcellular Spatial Resolution by Photothermal-Induced Resonance Infrared Spectroscopy and Imaging. Molecules 2019; 24:E4504. [PMID: 31835358 PMCID: PMC6943681 DOI: 10.3390/molecules24244504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Photothermal-induced resonance (PTIR) spectroscopy and imaging with infrared light has seen increasing application in the molecular spectroscopy of biological samples. The appeal of the technique lies in its capability to provide information about IR light absorption at a spatial resolution better than that allowed by light diffraction, typically below 100 nm. In the present work, we tested the capability of the technique to perform measurements with subcellular resolution on intact eukaryotic cells, without drying or fixing. We demonstrate the possibility of obtaining PTIR images and spectra from the nucleus and multiple organelles with high resolution, better than that allowed by diffraction with infrared light. We obtain particularly strong signal from bands typically assigned to acyl lipids and proteins. We also show that while a stronger signal is obtained from some subcellular structures, other large subcellular components provide a weaker or undetectable PTIR response. The mechanism that underlies such variability in response is presently unclear. We propose and discuss different possibilities, addressing thermomechanical, geometrical, and electrical properties of the sample and the presence of cellular water, from which the difference in response may arise.
Collapse
Affiliation(s)
- Luca Quaroni
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland; ; Tel.: +48-12-6862520
- Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Kraków, Poland
| |
Collapse
|
39
|
Targosz-Korecka M, Wnętrzak A, Chachaj-Brekiesz A, Gonet-Surówka A, Kubisiak A, Filiczkowska A, Szymoński M, Dynarowicz-Latka P. Effect of selected B-ring-substituted oxysterols on artificial model erythrocyte membrane and isolated red blood cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183067. [PMID: 31634445 DOI: 10.1016/j.bbamem.2019.183067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/19/2019] [Accepted: 09/11/2019] [Indexed: 01/24/2023]
Abstract
In this paper, systematic studies concerning the influence of selected oxysterols on the structure and fluidity of human erythrocyte membrane modeled as Langmuir monolayers have been performed. Three oxidized cholesterol derivatives, namely 7α-hydroxycholesterol (7α-OH) 7β-hydroxycholesterol (7β-OH) and 7-ketocholesterol (7-K) have been incorporated in two different proportions (10 and 50%) into artificial erythrocyte membrane, modeled as two-component (cholesterol:POPC) Langmuir monolayer. All the studied oxysterols were found to alter membrane fluidity and the effect was more pronounced for higher oxysterol content. 7α-OH increased membrane fluidity while opposite effect was observed for 7β-OH and 7-K. Experiments performed on model systems have been verified in biological studies on red blood cells (RBC). Consistent results have been found, i.e. under the influence of 7α-OH, the elasticity of erythrocytes increased, and in the presence of other investigated oxysterols - decreased. The strongest effect was noticed for 7-K. Change of membrane elasticity was associated with the change of erythrocytes shape, being most noticeable under the influence of 7-K.
Collapse
Affiliation(s)
- Marta Targosz-Korecka
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Anna Chachaj-Brekiesz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Agata Kubisiak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Anna Filiczkowska
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Marek Szymoński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | | |
Collapse
|
40
|
Lipiec E, Ruggeri FS, Benadiba C, Borkowska AM, Kobierski JD, Miszczyk J, Wood BR, Deacon GB, Kulik A, Dietler G, Kwiatek WM. Infrared nanospectroscopic mapping of a single metaphase chromosome. Nucleic Acids Res 2019; 47:e108. [PMID: 31562528 PMCID: PMC6765102 DOI: 10.1093/nar/gkz630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 07/07/2019] [Accepted: 07/13/2019] [Indexed: 01/27/2023] Open
Abstract
The integrity of the chromatin structure is essential to every process occurring within eukaryotic nuclei. However, there are no reliable tools to decipher the molecular composition of metaphase chromosomes. Here, we have applied infrared nanospectroscopy (AFM-IR) to demonstrate molecular difference between eu- and heterochromatin and generate infrared maps of single metaphase chromosomes revealing detailed information on their molecular composition, with nanometric lateral spatial resolution. AFM-IR coupled with principal component analysis has confirmed that chromosome areas containing euchromatin and heterochromatin are distinguishable based on differences in the degree of methylation. AFM-IR distribution of eu- and heterochromatin was compared to standard fluorescent staining. We demonstrate the ability of our methodology to locate spatially the presence of anticancer drug sites in metaphase chromosomes and cellular nuclei. We show that the anticancer 'rule breaker' platinum compound [Pt[N(p-HC6F4)CH2]2py2] preferentially binds to heterochromatin, forming localized discrete foci due to condensation of DNA interacting with the drug. Given the importance of DNA methylation in the development of nearly all types of cancer, there is potential for infrared nanospectroscopy to be used to detect gene expression/suppression sites in the whole genome and to become an early screening tool for malignancy.
Collapse
Affiliation(s)
- Ewelina Lipiec
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Centre for Biospectroscopy and School of Chemistry, Monash University, 3800 Victoria, Australia
| | - Francesco S Ruggeri
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department of Chemistry, University of Cambridge, CB21EW, UK
| | - Carine Benadiba
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Anna M Borkowska
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Jan D Kobierski
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy Jagiellonian University Medical College, PL-31007 Cracow, Poland
| | - Justyna Miszczyk
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Bayden R Wood
- Centre for Biospectroscopy and School of Chemistry, Monash University, 3800 Victoria, Australia
| | - Glen B Deacon
- School of Chemistry, Faculty of Science, Monash University, 3800 Victoria, Australia
| | - Andrzej Kulik
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Giovanni Dietler
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
41
|
Blat A, Dybas J, Kaczmarska M, Chrabaszcz K, Bulat K, Kostogrys RB, Cernescu A, Malek K, Marzec KM. An Analysis of Isolated and Intact RBC Membranes-A Comparison of a Semiquantitative Approach by Means of FTIR, Nano-FTIR, and Raman Spectroscopies. Anal Chem 2019; 91:9867-9874. [PMID: 31241915 DOI: 10.1021/acs.analchem.9b01536] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This work presents the potential of vibrational spectroscopy, Vis and NIR Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) in reflection and transmission modes, and nano-FTIR microscopy to study the biochemical alterations in membranes of isolated and intact red blood cells (RBCs). The main goal was to propose the best spectroscopic method which enabled following biochemical alterations in the RBC membranes and then to translate this spectroscopic signature of degradation to in situ analysis of RBCs. Two models corresponding to two distinct cases of RBC membrane conditions were employed, and they were derived from healthy and young mice and mature mice with advanced atherosclerosis. It was shown that each technique provided essential information about biochemical alterations of the isolated membranes as well as membranes in the intact RBCs, which can be used in the development of a rapid and in situ analytical technology. Finally, we proposed that the combination of macro- and nanoprobing implemented in IR spectroscopy provided a wide chemical characterization of the RBC membranes, including alterations in lipid and protein fractions. This study also examined the effect of the sample preparation to determine destructive factors influencing a spectroscopic analysis of isolated membranes and intact RBCs derived from healthy and disease-affected mice.
Collapse
Affiliation(s)
- Aneta Blat
- Jagiellonian Center for Experimental Therapeutics , Jagiellonian University , 14 Bobrzynskiego Str. , 30-348 Krakow , Poland.,Faculty of Chemistry , Jagiellonian University , 2 Gronostajowa Str. , 30-387 Krakow , Poland
| | - Jakub Dybas
- Jagiellonian Center for Experimental Therapeutics , Jagiellonian University , 14 Bobrzynskiego Str. , 30-348 Krakow , Poland
| | - Magdalena Kaczmarska
- Jagiellonian Center for Experimental Therapeutics , Jagiellonian University , 14 Bobrzynskiego Str. , 30-348 Krakow , Poland
| | - Karolina Chrabaszcz
- Jagiellonian Center for Experimental Therapeutics , Jagiellonian University , 14 Bobrzynskiego Str. , 30-348 Krakow , Poland.,Faculty of Chemistry , Jagiellonian University , 2 Gronostajowa Str. , 30-387 Krakow , Poland.,Center for Medical Genomics (OMICRON) , Jagiellonian University Medical College , 7c Kopernika Str. , 31-034 Krakow , Poland
| | - Katarzyna Bulat
- Jagiellonian Center for Experimental Therapeutics , Jagiellonian University , 14 Bobrzynskiego Str. , 30-348 Krakow , Poland
| | - Renata B Kostogrys
- Faculty of Food Technology , University of Agriculture in Krakow , 122 Balicka Str. , 30-149 Krakow , Poland
| | | | - Kamilla Malek
- Faculty of Chemistry , Jagiellonian University , 2 Gronostajowa Str. , 30-387 Krakow , Poland
| | - Katarzyna M Marzec
- Jagiellonian Center for Experimental Therapeutics , Jagiellonian University , 14 Bobrzynskiego Str. , 30-348 Krakow , Poland.,Center for Medical Genomics (OMICRON) , Jagiellonian University Medical College , 7c Kopernika Str. , 31-034 Krakow , Poland
| |
Collapse
|
42
|
Martín Giménez VM, Díaz-Rodríguez P, Sanz RL, Vivero-Lopez M, Concheiro A, Diez E, Prado N, Enrique Kassuha D, Alvarez-Lorenzo C, Manucha W. Anandamide-nanoformulation obtained by electrospraying for cardiovascular therapy. Int J Pharm 2019; 566:1-10. [DOI: 10.1016/j.ijpharm.2019.05.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/20/2023]
|
43
|
Wright MA, Ruggeri FS, Saar KL, Challa PK, Benesch JLP, Knowles TPJ. Analysis of αB-crystallin polydispersity in solution through native microfluidic electrophoresis. Analyst 2019; 144:4413-4424. [PMID: 31215547 DOI: 10.1039/c9an00382g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, significant advancements have been made in the understanding of the population distributions and dynamic oligomeric states of the molecular chaperone αB-crystallin and its core domain variants. In this work, we provide solution-phase evidence of the polydispersity of αB-crystallin using microfluidic methods, used for separating the oligomeric species present in solution according to their different electrophoretic mobilities on-chip in a matter of seconds. We in particular demonstrate that microfluidic high-field electrophoresis and diffusion can detect the oligomerisation of these highly dynamic molecular chaperones and characterise the dominant oligomeric species present. We thereby provide a robust microfluidic method for characterising the individual species within complex protein mixtures of biological relevance.
Collapse
Affiliation(s)
- Maya A Wright
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK. and Fluidic Analytics Ltd., Unit 5 Chesterton Mill, French's Road CB4 3NP, UK
| | | | - Kadi L Saar
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK.
| | - Pavan K Challa
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK.
| | - Justin L P Benesch
- Department of Physical and Theoretical Chemistry, University of Oxford, UK
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK. and Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK
| |
Collapse
|
44
|
Ruggeri FS, Šneideris T, Vendruscolo M, Knowles TPJ. Atomic force microscopy for single molecule characterisation of protein aggregation. Arch Biochem Biophys 2019; 664:134-148. [PMID: 30742801 PMCID: PMC6420408 DOI: 10.1016/j.abb.2019.02.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022]
Abstract
The development of atomic force microscopy (AFM) has opened up a wide range of novel opportunities in nanoscience and new modalities of observation in complex biological systems. AFM imaging has been widely employed to resolve the complex and heterogeneous conformational states involved in protein aggregation at the single molecule scale and shed light onto the molecular basis of a variety of human pathologies, including neurodegenerative disorders. The study of individual macromolecules at nanoscale, however, remains challenging, especially when fully quantitative information is required. In this review, we first discuss the principles of AFM with a special emphasis on the fundamental factors defining its sensitivity and accuracy. We then review the fundamental parameters and approaches to work at the limit of AFM resolution in order to perform single molecule statistical analysis of biomolecules and nanoscale protein aggregates. This single molecule statistical approach has proved to be powerful to unravel the molecular and hierarchical assembly of the misfolded species present transiently during protein aggregation, to visualise their dynamics at the nanoscale, as well to study the structural properties of amyloid-inspired functional nanomaterials.
Collapse
Affiliation(s)
- Francesco Simone Ruggeri
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom.
| | - Tomas Šneideris
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom; Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Michele Vendruscolo
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom; Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom.
| |
Collapse
|
45
|
Martínez-Rovira I, Seksek O, Yousef I. A synchrotron-based infrared microspectroscopy study on the cellular response induced by gold nanoparticles combined with X-ray irradiations on F98 and U87-MG glioma cell lines. Analyst 2019; 144:6352-6364. [DOI: 10.1039/c9an01109a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Synchrotron-based infrared microspectroscopy is a powerful tool for nanoparticle-based treatment response at single cell-level.
Collapse
Affiliation(s)
- I. Martínez-Rovira
- MIRAS Beamline BL01
- ALBA-CELLS Synchrotron
- 08290 Cerdanyola del Vallès
- Spain
| | - O. Seksek
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC)
- Centre National de la Recherche Scientifique (CNRS); Université Paris Sud
- Université Paris-Saclay
- Campus Universitaire
- F-91400 Orsay
| | - I. Yousef
- MIRAS Beamline BL01
- ALBA-CELLS Synchrotron
- 08290 Cerdanyola del Vallès
- Spain
| |
Collapse
|
46
|
Liao C, Li Y, Tjong SC. Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity. Int J Mol Sci 2018; 19:E3564. [PMID: 30424535 PMCID: PMC6274822 DOI: 10.3390/ijms19113564] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022] Open
Abstract
Graphene, graphene oxide, and reduced graphene oxide have been widely considered as promising candidates for industrial and biomedical applications due to their exceptionally high mechanical stiffness and strength, excellent electrical conductivity, high optical transparency, and good biocompatibility. In this article, we reviewed several techniques that are available for the synthesis of graphene-based nanomaterials, and discussed the biocompatibility and toxicity of such nanomaterials upon exposure to mammalian cells under in vitro and in vivo conditions. Various synthesis strategies have been developed for their fabrication, generating graphene nanomaterials with different chemical and physical properties. As such, their interactions with cells and organs are altered accordingly. Conflicting results relating biocompatibility and cytotoxicity induced by graphene nanomaterials have been reported in the literature. In particular, graphene nanomaterials that are used for in vitro cell culture and in vivo animal models may contain toxic chemical residuals, thereby interfering graphene-cell interactions and complicating interpretation of experimental results. Synthesized techniques, such as liquid phase exfoliation and wet chemical oxidation, often required toxic organic solvents, surfactants, strong acids, and oxidants for exfoliating graphite flakes. Those organic molecules and inorganic impurities that are retained in final graphene products can interact with biological cells and tissues, inducing toxicity or causing cell death eventually. The residual contaminants can cause a higher risk of graphene-induced toxicity in biological cells. This adverse effect may be partly responsible for the discrepancies between various studies in the literature.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
47
|
S AlSalhi M, Devanesan S, E AlZahrani K, AlShebly M, Al-Qahtani F, Farhat K, Masilamani V. Impact of Diabetes Mellitus on Human Erythrocytes: Atomic Force Microscopy and Spectral Investigations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15112368. [PMID: 30373127 PMCID: PMC6266196 DOI: 10.3390/ijerph15112368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus (DM) is a common metabolic disease indicated by high sugar levels in the blood over a prolonged period. When left untreated, it can lead to long-term complications, such as cardiovascular disease, stroke, and diabetic retinopathy or foot ulcers. Approximately 415 million people (about 8.3% of the world’s population) had diabetes worldwide in 2015, with 90% of the cases classified as Type 2 DM, which is caused by insulin resistance that arises mostly from being overweight and from a lack of exercise. DM affects every part of the body, including the erythrocytes. The aim of the present report is to gain insight into the damage done to the erythrocytes of patients classified with pre-diabetes and diabetes (plenty are found in the Kingdom of Saudi Arabia, a country where young people encompass a large segment of the population). The study presents results on the morphological analysis of erythrocytes by atomic force microscopy (AFM) and molecular investigations by fluorescence spectroscopy (FS). Our results indicate significant differences (in the morphology, size, and hemolytic end products) between the erythrocytes of diabetic patients (HbA1C, glycated hemoglobin, levels of 8–10%) and normal controls. It is well-known that DM and smoking are two major contributory factors for cardiovascular diseases (CVDs), and our observations presented in this study suggest that diabetes plays a relatively less damaging role than smoking for CVD.
Collapse
Affiliation(s)
- Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Khalid E AlZahrani
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 1451, Saudi Arabia.
| | - Mashael AlShebly
- Department of Obstetrics and Gynecology, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Fatima Al-Qahtani
- Hematology Unit, Department of Pathology, College of Medicine, King Saud University and King Saud University Medical City, Riyadh 11451, Saudi Arabia.
| | - Karim Farhat
- Cancer Research Chair, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Vadivel Masilamani
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|