1
|
Ostróżka-Cieślik A, Michalak M, Bryś T, Kudła M. The Potential of Hydrogel Preparations Containing Plant Materials in Supporting the Treatment of Vaginal and Vulvar Infections-Current State of Knowledge. Polymers (Basel) 2025; 17:470. [PMID: 40006132 PMCID: PMC11859247 DOI: 10.3390/polym17040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Vaginal hydrogels are a modern alternative to solid (tablets, globules) and other semi-solid forms of medication (ointments, creams) in the control of pathogenic microorganisms in diseases of the female reproductive tract. This review aims to summarize the current state of knowledge regarding the efficacy of hydrogels containing plant materials in the treatment of vaginal and vulvar infections. New therapies are essential to address the growing antimicrobial resistance crisis. Google Scholar, Web of Science, Cochrane, and Medline (PubMed) databases were searched. Twenty-five studies were included in the review, including basic, pre-clinical, and clinical studies. The results obtained confirmed the therapeutic potential of plant raw materials embedded in the polymer matrix of hydrogels. However, due to the small number of clinical trials conducted, further research in this area is needed.
Collapse
Affiliation(s)
- Aneta Ostróżka-Cieślik
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia,41-200 Sosnowiec, Poland
| | - Monika Michalak
- Department of Pharmaceutical Sciences, Medical College, Jan Kochanowski University, 25-317 Kielce, Poland;
| | - Tomasz Bryś
- Clinical Department of Perinatology and Oncological Gynaecology, Medical University of Silesia, 41-200 Sosnowiec, Poland; (T.B.); (M.K.)
| | - Marek Kudła
- Clinical Department of Perinatology and Oncological Gynaecology, Medical University of Silesia, 41-200 Sosnowiec, Poland; (T.B.); (M.K.)
| |
Collapse
|
2
|
Peng BY, Wu CY, Lee CJ, Chang TM, Tsao YT, Liu JF. Nimbolide Induces Cell Apoptosis via Mediating ER Stress-Regulated Apoptotic Signaling in Human Oral Squamous Cell Carcinoma. ENVIRONMENTAL TOXICOLOGY 2025; 40:347-356. [PMID: 39462890 DOI: 10.1002/tox.24436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/29/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Human oral squamous cell carcinoma (OSCC) poses a significant health challenge in Asia, with current therapeutic strategies failing to improve the survival rates for OSCC patients sufficiently. To elucidate the effects of Nimbolide on OSCC cell proliferation and apoptosis, we performed a series of experiments, including cell proliferation assays, annexin V/PI assays, and cell cycle analysis. We further investigated nimbolide's role in modulating endoplasmic reticulum (ER) stress, reactive oxygen species (ROS) production, and mitochondrial dysfunction using flow cytometry. Additionally, Western blotting was used to detect apoptosis-related protein expression. Our findings reveal that nimbolide exerts its anti-proliferative effects on OSCC cells by inducing apoptosis. The nimbolide increased intracellular ROS levels and acceleration of cellular calcium accumulation, respectively promoting endoplasmic reticulum stress and cancer cell apoptosis. Furthermore, nimbolide activates the caspase cascade by altering the mitochondrial membrane potential and apoptotic protein expression, thereby inhibiting the viability of tumor cells. Our data show that Nimbolide suppresses tumor growth through the induction of ROS production, ER stress, and mitochondrial dysfunction, resulting in apoptosis in OSCC cells. Overall, our study highlights nimbolide as a potential natural compound for OSCC therapy.
Collapse
Affiliation(s)
- Bou-Yue Peng
- Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yu Wu
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Chia-Jung Lee
- Department of Otolaryngology Head and Neck Surgery, Shin-Kong Wu-Ho-Su Memorial Hospital, Taipei, Taiwan, ROC
- School of Medicine, Fu-Jen Catholic University, Taipei, Taiwan, ROC
| | - Tsung-Ming Chang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ya-Ting Tsao
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, ROC
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC
| |
Collapse
|
3
|
Otun S, Achilonu I, Odero-Marah V. Unveiling the potential of Muscadine grape Skin extract as an innovative therapeutic intervention in cancer treatment. J Funct Foods 2024; 116:106146. [PMID: 38817632 PMCID: PMC11139022 DOI: 10.1016/j.jff.2024.106146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
The use of muscadine grape extracts (MGSE). in cancer treatment has gained attention due to its distinctive composition of polyphenols and antioxidants. This review analyses the reported anti-cancer properties of MGSE. The study commences by reviewing the phytochemical composition of MGSE, highlighting the presence of resveratrol and ellagic acid. Furthermore, the review underscores the mechanism of action of these active compounds in MGSE in combating cancer cells. The anti-cancer potential of MGSE compared to other plant extracts is also discussed. In addition, it highlights MGSE's superiority and distinct phytochemical composition in preventing cancer growth by comparing its anti-cancer compounds with those of other anti-cancer medicinal plants. Lastly, the combinatory approaches of MGSE with traditional cancer therapies, its safety, and its possible side effects were highlighted. This work provides an understanding of the anti-cancer properties of MGSE, positioning it as a valuable and unique challenge within the field of cancer therapy.
Collapse
Affiliation(s)
- Sarah Otun
- School of Molecular and Cell Biology, Faculty of Science, Protein Structure-Function and Research Unit, University of the Witwatersrand, Braamfontein, Johannesburg, South Africa
| | - Ikechukwu Achilonu
- School of Molecular and Cell Biology, Faculty of Science, Protein Structure-Function and Research Unit, University of the Witwatersrand, Braamfontein, Johannesburg, South Africa
| | - Valerie Odero-Marah
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore MD 21251, United States
| |
Collapse
|
4
|
Dave N, Iqbal A, Patel M, Kant T, Yadav VK, Sahoo DK, Patel A. Deciphering the key pathway for triterpenoid biosynthesis in Azadirachta indica A. Juss.: a comprehensive review of omics studies in nature's pharmacy. FRONTIERS IN PLANT SCIENCE 2023; 14:1256091. [PMID: 38023910 PMCID: PMC10664250 DOI: 10.3389/fpls.2023.1256091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Since ancient times, Azadirachta indica, or Neem, has been a well-known species of plant that produces a broad range of bioactive terpenoid chemicals that are involved in a variety of biological functions. Understanding the molecular mechanisms that are responsible for the biosynthesis and control of terpenoid synthesis is majorly dependent on successfully identifying the genes that are involved in their production. This review provides an overview of the recent developments concerning the identification of genes in A. indica that are responsible for the production of terpenoids. Numerous candidate genes encoding enzymes that are involved in the terpenoid biosynthesis pathway have been found through the use of transcriptomic and genomic techniques. These candidate genes include those that are responsible for the precursor synthesis, cyclization, and modification of terpenoid molecules. In addition, cutting-edge omics technologies, such as metabolomics and proteomics, have helped to shed light on the intricate regulatory networks that govern terpenoid biosynthesis. These networks are responsible for the production of terpenoids. The identification and characterization of genes involved in terpenoid biosynthesis in A. indica presents potential opportunities for genetic engineering and metabolic engineering strategies targeted at boosting terpenoid production as well as discovering novel bioactive chemicals.
Collapse
Affiliation(s)
- Nitish Dave
- Genetics and Tree Improvement Division, Arid Forest Research Institute, Jodhpur, India
| | - Atif Iqbal
- Genetics and Tree Improvement Division, Arid Forest Research Institute, Jodhpur, India
| | - Margi Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Tarun Kant
- Genetics and Tree Improvement Division, Arid Forest Research Institute, Jodhpur, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Genetics and Tree Improvement Division, Arid Forest Research Institute, Jodhpur, India
| |
Collapse
|
5
|
Liang C, Zhang C, Zhuo Y, Gong B, Xu W, Zhang G. 1,5,6-Trimethoxy-2,7-dihydroxyphenanthrene from Dendrobium officinale Exhibited Antitumor Activities for HeLa Cells. Int J Mol Sci 2023; 24:15375. [PMID: 37895055 PMCID: PMC10607032 DOI: 10.3390/ijms242015375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Natural products are irreplaceable reservoirs for cancer treatments. In this study, 12 phenanthrene compounds were extracted and isolated from Dendrobium officinale. Each chemical structure was identified using comprehensive NMR analysis. All compounds were evaluated for their cytotoxic activities against five tumor cell lines, i.e., HeLa, MCF-7, SK-N-AS, Capan-2 and Hep G2. Compound 5, 1,5,6-trimethoxy-2,7-dihydroxyphenanthrene, displayed the most significant cytotoxic effect against HeLa and Hep G2 cells, with an IC50 of 0.42 and 0.20 μM. For Hela cells, further experiments demonstrated that compound 5 could obviously inhibit cell migration, block cell cycle in the G0/G1 phase and induce apoptosis. Expression measurements for p53 indicated that knock down of p53 by siRNA could mitigate the apoptosis induced by compound 5. Therefore, the compound 5 is a potential candidate drug for HeLa cells in cervical cancer.
Collapse
Affiliation(s)
- Chong Liang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (C.L.); (Y.Z.); (B.G.)
| | - Chonglun Zhang
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China;
| | - Yinlin Zhuo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (C.L.); (Y.Z.); (B.G.)
| | - Baocheng Gong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (C.L.); (Y.Z.); (B.G.)
| | - Weizhuo Xu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Guogang Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (C.L.); (Y.Z.); (B.G.)
| |
Collapse
|
6
|
Yasmin R, Gogoi S, Bora J, Chakraborty A, Dey S, Ghaziri G, Bhattacharjee S, Singh LH. Novel Insight into the Cellular and Molecular Signalling Pathways on Cancer Preventing Effects of Hibiscus sabdariffa: A Review. J Cancer Prev 2023; 28:77-92. [PMID: 37830114 PMCID: PMC10564632 DOI: 10.15430/jcp.2023.28.3.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 10/14/2023] Open
Abstract
A category of diseases known as cancer includes abnormal cell development and the ability to infiltrate or spread to other regions of the body, making them a major cause of mortality worldwide. Chemotherapy, radiation, the use of cytotoxic medicines, and surgery are the mainstays of cancer treatment today. Plants or products produced from them hold promise as a source of anti-cancer medications that have fewer adverse effects. Due to the presence of numerous phytochemicals that have been isolated from various parts of the Hibiscus sabdariffa (HS) plant, including anthocyanin, flavonoids, saponins, tannins, polyphenols, organic acids, caffeic acids, citric acids, protocatechuic acid, and others, extracts of this plant have been reported to have anti-cancer effects. These compounds have been shown to reduce cancer cell proliferation, induce apoptosis, and cause cell cycle arrest. They also increase the expression levels of the cell cycle inhibitors (p53, p21, and p27) and the pro-apoptotic proteins (BAD, Bax, caspase 3, caspase 7, caspase 8, and caspase 9). This review highlights various intracellular signalling pathways involved in cancer preventive potential of HS.
Collapse
Affiliation(s)
- Raihana Yasmin
- Department of Zoology, Royal Global University, Guwahati, India
| | - Sangeeta Gogoi
- Department of Zoology, Royal Global University, Guwahati, India
| | - Jumi Bora
- Department of Zoology, Royal Global University, Guwahati, India
| | - Arijit Chakraborty
- Department of Sports Physiology and Nutrition, National Sports University, Imphal, India
| | - Susmita Dey
- Department of Zoology, Royal Global University, Guwahati, India
| | - Ghazal Ghaziri
- Department of Cell and Molecular Biology, Kharazmi University, Tehran, Iran
| | - Surajit Bhattacharjee
- Department of Biological Sciences, Dr. BR Ambedkar English Model School, Agartala, India
| | | |
Collapse
|
7
|
Sudhakaran G, Velayutham M, Aljarba NH, Al-Hazani TM, Arokiyaraj S, Guru A, Arockiaraj J. Nimbin (N1) and analog N3 from the neem seeds suppress the migration of osteosarcoma MG-63 cells and arrest the cells in a quiescent state mediated via activation of the caspase-modulated apoptotic pathway. Mol Biol Rep 2023; 50:7357-7369. [PMID: 37450077 DOI: 10.1007/s11033-023-08627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Natural products are considered effective sources for new therapeutic research and development. The numerous therapeutic properties of natural substances in traditional medicine compel us to investigate the anti-cancer properties of Nimbin (N1) and its semi-natural analog Nimbic acid (N3) from Azadirachta indica against MG-63 Osteosarcoma cells. MATERIALS AND METHODS The therapeutic efficacy of N1 and N3 were screened for their toxicity and cytotoxic activity using L6 myotubes, zebrafish larvae and MG-63 osteosarcoma cells. The mitochondrial membrane potential was evaluated using the Rhodamine 123 stain. Further, the nuclear and cellular damage was distinguished using Hoechst and Acridine orange/EtBr stain. The mechanism of cell cycle progression, cellular proliferation and caspase cascade activation was screened using scratch assay, flow cytometry, and mRNA expression analysis. RESULTS The Nimbin and analogue N3 were found to be non-toxic to normal L6 cells (Rat skeletal muscles), exhibited cytotoxicity in MG-63 cells, and were exposed to be an active inhibitor of cell proliferation and migration. Analogs N1 and N3 induced negative mitochondrial membrane potential when stained with Rhodamine 123, leading to nuclear damage and apoptosis stimulation using AO/EtBr and Hoechst. Further, N1 and N3 induced cell cycle arrest in G0/G1 phase in flow cytometry using PI staining and induced apoptosis by activating the caspase cascade and upregulated Caspase 3 and caspase 9. CONCLUSION The study demonstrated cytotoxic activity against MG-63 osteosarcoma cells while being non-toxic to normal L6 cells. These compounds inhibited cell proliferation and migration, induced mitochondrial dysfunction, nuclear damage, and apoptosis stimulation. Furthermore, N1 and N3 caused cell cycle arrest and activated the caspase cascade, ultimately leading to apoptosis. These findings indicate that N1 and N3 hold promise as potential candidates used alone or combined with existing drugs for further investigation and development as anti-cancer agents.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulatur, 603203, Tamil Nadu, India
| | - Manikandan Velayutham
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Nada H Aljarba
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Tahani Mohamad Al-Hazani
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box 83, Al-Kharj, 11940, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006, South Korea
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, 600 077, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulatur, 603203, Tamil Nadu, India.
| |
Collapse
|
8
|
Ouerfelli M, Metón I, Codina-Torrella I, Almajano MP. Antibacterial and Antiproliferative Activities of Azadirachta indica Leaf Extract and Its Effect on Oil-in-Water Food Emulsion Stability. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227772. [PMID: 36431873 PMCID: PMC9698279 DOI: 10.3390/molecules27227772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
The present study aims to identify and quantify the phenolic compounds of Azadirachta indica leaf extract using HPLC-MS and to evaluate the antioxidant, antibacterial (against different Gram-positive and negative bacteria) and in vitro anti-proliferative activities of this extract (against breast, human liver and cervix adenocarcinoma-derived cells). The application of this extract as a natural antioxidant for food preservation was also tested on oil-in-water food emulsions for the first time in the present work in order to determine the use of Azadirachta indica leaves as a natural additive to preserve the food against lipid oxidation and rancidity. The results obtained revealed that 50%-aqueous ethanol leaf extract showed the best extraction yield (25.14%), which was characterized by a high content in phenolic compounds and strong antioxidant activity. Moreover, this leaf extract inhibited the growth of the bacterial strains tested (Staphylococcus aureus, Escherichia coli, Salmonella paratyphi and Micrococcus luteus) and showed better anti-proliferative activity against breast and cervix adenocarcinoma-derived cells than human liver cancer cells after 48 h of treatment. Additionally, Azadirachta indica leaf extract showed almost similar effects as gallic acid solutions (0.25% and 0.5%) in preserving the oxidation of oil-in-water food emulsions and prevented the formation of secondary oxidation products (malondialdehyde) as well. The results obtained suggested that extracts of Azadirachta indica leaves are a potential source of antioxidant and antibacterial compounds and pointed to the potential of these natural extracts as therapeutic agents.
Collapse
Affiliation(s)
- Manel Ouerfelli
- Chemical Engineering Department, Escola Tècnica Superior d’Enginyeria Industrial de Barcelona (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
- Biology Department, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Isidoro Metón
- Biochemistry and Physiology Departament, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Idoia Codina-Torrella
- Agri-Food Engineering and Biotechnology Department, Escola d’Enginyeria Agroalimentària i de Biosistemes de Bacelona (EEABB), Universitat Politècnica de Catalunya, Esteve Terrades, 8, 08860 Castelldefels, Spain
| | - María Pilar Almajano
- Chemical Engineering Department, Escola Tècnica Superior d’Enginyeria Industrial de Barcelona (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-016-686
| |
Collapse
|
9
|
Blend of neem oil based polyesteramide as magnetic nanofiber mat for efficient cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Aarthy M, Muthuramalingam P, Ramesh M, Singh SK. Unraveling the multi-targeted curative potential of bioactive molecules against cervical cancer through integrated omics and systems pharmacology approach. Sci Rep 2022; 12:14245. [PMID: 35989375 PMCID: PMC9393168 DOI: 10.1038/s41598-022-18358-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2022] Open
Abstract
Molecular level understanding on the role of viral infections causing cervical cancer is highly essential for therapeutic development. In these instances, systems pharmacology along with multi omics approach helps in unraveling the multi-targeted mechanisms of novel biologically active compounds to combat cervical cancer. The immuno-transcriptomic dataset of healthy and infected cervical cancer patients was retrieved from the array express. Further, the phytocompounds from medicinal plants were collected from the literature. Network Analyst 3.0 has been used to identify the immune genes around 384 which are differentially expressed and responsible for cervical cancer. Among the 87 compounds reported in plants for treating cervical cancer, only 79 compounds were targeting the identified immune genes of cervical cancer. The significant genes responsible for the domination in cervical cancer are identified in this study. The virogenomic signatures observed from cervical cancer caused by E7 oncoproteins serve as the potential therapeutic targets whereas, the identified compounds can act as anti-HPV drug deliveries. In future, the exploratory rationale of the acquired results will be useful in optimizing small molecules which can be a viable drug candidate.
Collapse
|
11
|
Khan A, Ali S, Murad W, Hayat K, Siraj S, Jawad M, Khan RA, Uddin J, Al-Harrasi A, Khan A. Phytochemical and pharmacological uses of medicinal plants to treat cancer: A case study from Khyber Pakhtunkhwa, North Pakistan. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114437. [PMID: 34391861 DOI: 10.1016/j.jep.2021.114437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cancer is the top death causing disease in the world, due to its occurrence through various mechanism and form. Medicinal plants have been extensively used for the purifications and isolations of phytochemicals for the treatment and prevention of cancer. OBJECTIVES Consequently, this research was designed to document the traditional practices of anti-cancer plants and its phytochemical essay across the districts of KP, Pakistan. MATERIALS AND METHODS Semi-structured interviews were conducted in 24 districts from the informants mostly the traditional herbalists (key informants). The information were compared with the publish data using various authentic search engines including, google, researchgate, google scholar and NCBI. RESULTS One hundred and fifty-four (154) anti-cancer plants were recognized belonging to 69 families among all, Lamiaceae (13 sp.), Asteraceae (12 sp.) and Solanaceae (9 sp.) were the preferred families. The local inhabitants in the area typically prepare ethnomedicinal recipes from leaves (33.70%) and whole plants (23.37%) in the form of decoction and powder (24.67%), respectively. Herbs stayed the most preferred life form (61.68%) followed by shrub (21.4%). Similarly, breast (29.22%) and lung cancer (14.83%) was the common disease type. Literature study also authorize that, the medicinal plants of the research area were rich in phytochemical like quercetin, coumarine, kaempferol, apigenin, colchicine, alliin, rutin, lupeol, allicin, berbarine, lutolin, vanilic acid, urocilic acid and solamargine have revealed significant activates concerning the cancer diseases, that replicating the efficacy of these plants as medicines. CONCLUSION The Khyber Pakhtunkhwa is rural area and the local inhabitants have very strong traditional knowledge about the medicinal plants for different diseases like cancer. The medicinal plants for significant ranked disorder might be pharmacologically and phtyochemicaly explored to demonstrate their efficacy. Moreover, the local flora especially medicinal plants facing overgrazing, overexploitation and inappropriate way of collection, however, proper management strategies like reforestation, controlled grazing, proper permission from concerned department and rangeland strategies among others may be assumed to enhance the proper usage of medicinal plants.
Collapse
Affiliation(s)
- Asif Khan
- Department of Botany, Garden Campus Abdul Wali Khan University, Mardan, Pakistan
| | - Sajid Ali
- Department of Botany, Garden Campus Abdul Wali Khan University, Mardan, Pakistan
| | - Waheed Murad
- Department of Botany, Garden Campus Abdul Wali Khan University, Mardan, Pakistan.
| | - Khizar Hayat
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, China
| | - Shumaila Siraj
- Department of Botany, Garden Campus Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Jawad
- Center of Geographical Information System, University of Punjab, Pakistan
| | | | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman.
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman.
| |
Collapse
|
12
|
Saha P, Bhowmick J, Saha A. Formulation and organoleptic evaluation of Poly Herbal Cream of Punica, Neem, Carrot & Jamun as Active Ingredients. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.03.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Assuming that herbal preparation is better with fewer side effects than synthetics, natural treatments are more effective than allopathy in terms of side effects for better human body healing. Herbal products have a growing demand in the world market, and the plants have been reported in the literature as having various pharmacological activities such as anti-microbial, anti-oxidant, anti-inflammatory activity, anti-cancer, anti-diabetic. The purpose of this study was to develop anti-aging poly-herbal cream by mixing the extract of Punica leaf, Neem Oil, Jamun powder, Carrot powder as the main ingredient, and then creams were developed based on the anti-oxidant ability of herbal extracts and performed their evaluation study. Punica granatam leaves were shade dried and extracted using the Soxhlet method with different solvents such as n-hexane, benzene, and alcohol. Fine extract powder was collected and removed distilled water thoroughly. The cream was formulated into different concentrations, namely F1, F2, F3, and F4. Similar types of research with similar components have been reported, but in this experiment, the formulation is different, and this work is kept cost-efficient and straightforward; it's an attempt to reduce few components and prepare cream and evaluate its potential. According to The International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use ICH guidelines, the cream was stable during stability studies, and F3 turned out to be a better formulation than the other three.
Collapse
Affiliation(s)
- Puja Saha
- Corresponding author Assistant Professor, Department of Pharmaceutics, School of Pharmacy, Seacom Skills University, Bolpur, Birbhum – 731235, WB
| | | | - Anupam Saha
- Graduated M.Pharm, Pharmacology, NSHM College Of Pharmaceutical Technology, NSHM Knowledge Campus, B.L. Rd, Kolkata - 700053, WB
| |
Collapse
|
13
|
Sun J, Ren J, Hu X, Hou Y, Yang Y. Therapeutic effects of Chinese herbal medicines and their extracts on diabetes. Biomed Pharmacother 2021; 142:111977. [PMID: 34364042 DOI: 10.1016/j.biopha.2021.111977] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
With the improvement of people's living standards and changes in the environment, the incidence of diabetes has increased rapidly. It has gradually become one of the main diseases threatening the health and life of modern people, bringing a great burden to the society. Although the existing treatment methods can effectively control the symptoms of diabetes and delay its progression, they have not brought satisfactory improvement in the quality of life and treatment of patients. Traditional Chinese herbal medicines and their extracts combine thousands of years of experience and the scientific basis provided by modern experimental research, which is expected to bring a qualitative leap in the clinical management of diabetes. Therefore, this article systematically reviews studies on the effects of Chinese herbal medicine and its extracts on diabetes and its complications, and aims to bring new ideas and options for the clinical treatment of diabetes.
Collapse
Affiliation(s)
- Jie Sun
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Jiangong Ren
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Xuejian Hu
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Yuanhua Hou
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Yan Yang
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China.
| |
Collapse
|
14
|
Wang W, Min L, Qiu X, Wu X, Liu C, Ma J, Zhang D, Zhu L. Biological Function of Long Non-coding RNA (LncRNA) Xist. Front Cell Dev Biol 2021; 9:645647. [PMID: 34178980 PMCID: PMC8222981 DOI: 10.3389/fcell.2021.645647] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression in a variety of ways at epigenetic, chromatin remodeling, transcriptional, and translational levels. Accumulating evidence suggests that lncRNA X-inactive specific transcript (lncRNA Xist) serves as an important regulator of cell growth and development. Despites its original roles in X-chromosome dosage compensation, lncRNA Xist also participates in the development of tumor and other human diseases by functioning as a competing endogenous RNA (ceRNA). In this review, we comprehensively summarized recent progress in understanding the cellular functions of lncRNA Xist in mammalian cells and discussed current knowledge regarding the ceRNA network of lncRNA Xist in various diseases. Long non-coding RNAs (lncRNAs) are transcripts that are more than 200 nt in length and without an apparent protein-coding capacity (Furlan and Rougeulle, 2016; Maduro et al., 2016). These RNAs are believed to be transcribed by the approximately 98-99% non-coding regions of the human genome (Derrien et al., 2012; Fu, 2014; Montalbano et al., 2017; Slack and Chinnaiyan, 2019), as well as a large variety of genomic regions, such as exonic, tronic, and intergenic regions. Hence, lncRNAs are also divided into eight categories: Intergenic lncRNAs, Intronic lncRNAs, Enhancer lncRNAs, Promoter lncRNAs, Natural antisense/sense lncRNAs, Small nucleolar RNA-ended lncRNAs (sno-lncRNAs), Bidirectional lncRNAs, and non-poly(A) lncRNAs (Ma et al., 2013; Devaux et al., 2015; St Laurent et al., 2015; Chen, 2016; Quinn and Chang, 2016; Richard and Eichhorn, 2018; Connerty et al., 2020). A range of evidence has suggested that lncRNAs function as key regulators in crucial cellular functions, including proliferation, differentiation, apoptosis, migration, and invasion, by regulating the expression level of target genes via epigenomic, transcriptional, or post-transcriptional approaches (Cao et al., 2018). Moreover, lncRNAs detected in body fluids were also believed to serve as potential biomarkers for the diagnosis, prognosis, and monitoring of disease progression, and act as novel and potential drug targets for therapeutic exploitation in human disease (Jiang W. et al., 2018; Zhou et al., 2019a). Long non-coding RNA X-inactive specific transcript (lncRNA Xist) are a set of 15,000-20,000 nt sequences localized in the X chromosome inactivation center (XIC) of chromosome Xq13.2 (Brown et al., 1992; Debrand et al., 1998; Kay, 1998; Lee et al., 2013; da Rocha and Heard, 2017; Yang Z. et al., 2018; Brockdorff, 2019). Previous studies have indicated that lncRNA Xist regulate X chromosome inactivation (XCI), resulting in the inheritable silencing of one of the X-chromosomes during female cell development. Also, it serves a vital regulatory function in the whole spectrum of human disease (notably cancer) and can be used as a novel diagnostic and prognostic biomarker and as a potential therapeutic target for human disease in the clinic (Liu et al., 2018b; Deng et al., 2019; Dinescu et al., 2019; Mutzel and Schulz, 2020; Patrat et al., 2020; Wang et al., 2020a). In particular, lncRNA Xist have been demonstrated to be involved in the development of multiple types of tumors including brain tumor, Leukemia, lung cancer, breast cancer, and liver cancer, with the prominent examples outlined in Table 1. It was also believed that lncRNA Xist (Chaligne and Heard, 2014; Yang Z. et al., 2018) contributed to other diseases, such as pulmonary fibrosis, inflammation, neuropathic pain, cardiomyocyte hypertrophy, and osteoarthritis chondrocytes, and more specific details can be found in Table 2. This review summarizes the current knowledge on the regulatory mechanisms of lncRNA Xist on both chromosome dosage compensation and pathogenesis (especially cancer) processes, with a focus on the regulatory network of lncRNA Xist in human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dongyi Zhang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
15
|
Irais CM, Claudia BR, David PE, Ashutosh S, Rubén GG, Agustina RM, Del Carmen VMM, Mario-Alberto RG, Luis-Benjamín SG. Leaf and Fruit Methanolic Extracts of Azadirachta indica Exhibit Antifertility Activity on Rats' Sperm Quality and Testicular Histology. Curr Pharm Biotechnol 2021; 22:400-407. [PMID: 32744965 DOI: 10.2174/1389201021666200730145621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/02/2020] [Accepted: 06/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The world's population is still growing, having an impact on the environment and the economic growth of developing countries; so that, there is a particular interest in the development of new fertility control methods, focused on male contraception. OBJECTIVE The objective of this study was to evaluate the effect of methanolic extracts of leaf and fruit of Azadirachta indica on sperm quality and testicular histology of Long Evans rats. METHODS Antifertility effects of a methanolic leaf and fruit extracts of A. indica on 24 male rats were investigated. The animals were randomly divided into two control groups and four treatment groups (n=4). Doses of the leaf and fruit extract were given at concentrations of 100 and 200 μg mL-1. RESULTS A significant decrease in the viability of sperm cells was observed. The leaf extract at a concentration of 200 μg mL-1 inhibited cell viability compared to the negative control (p< 0.001). The percentage of abnormal cells in leaf extract was shown in 100 and 200 μg mL-1, the conditions at which a higher percentage of morphological irregularities of observed (15% and 16% respectively). The results show that there was cellular detachment in the seminiferous epithelium in the experimental groups treated with methanolic extracts. Sperm death was observed without decreasing the number of sperm. CONCLUSION The methanolic extracts of Azadirachta indica have a modulating effect on the spermatogenesis of experimental rats through sperm morphological alterations.
Collapse
Affiliation(s)
- Castillo-Maldonado Irais
- Department of Biochemistry, Biomedical Research Centre, Faculty of Medicine, Universidad Autonoma de Coahuila Unidad Torreon, Torreon, Mexico
| | - Borjón-Ríos Claudia
- Department of Biochemistry, Biomedical Research Centre, Faculty of Medicine, Universidad Autonoma de Coahuila Unidad Torreon, Torreon, Mexico
| | - Pedroza-Escobar David
- Department of Biochemistry, Biomedical Research Centre, Faculty of Medicine, Universidad Autonoma de Coahuila Unidad Torreon, Torreon, Mexico
| | - Sharma Ashutosh
- Department of Bioengineering, School of Engineering and Sciences, Tecnologico de Monterrey, Centre of Bioengineering, Campus Queretaro, Queretaro, Mexico
| | - García-Garza Rubén
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Coahuila Unidad Torreon, Torreon, Mexico
| | - Ramírez-Moreno Agustina
- Faculty of Biological Sciences, Universidad Autonoma de Coahuila Unidad Torreon, Torreon, Mexico
| | | | - Rivera-Guillén Mario-Alberto
- Department of Biochemistry, Biomedical Research Centre, Faculty of Medicine, Universidad Autonoma de Coahuila Unidad Torreon, Torreon, Mexico
| | - Serrano-Gallardo Luis-Benjamín
- Department of Biochemistry, Biomedical Research Centre, Faculty of Medicine, Universidad Autonoma de Coahuila Unidad Torreon, Torreon, Mexico
| |
Collapse
|
16
|
Alhazmi HA, Najmi A, Javed SA, Sultana S, Al Bratty M, Makeen HA, Meraya AM, Ahsan W, Mohan S, Taha MME, Khalid A. Medicinal Plants and Isolated Molecules Demonstrating Immunomodulation Activity as Potential Alternative Therapies for Viral Diseases Including COVID-19. Front Immunol 2021; 12:637553. [PMID: 34054806 PMCID: PMC8155592 DOI: 10.3389/fimmu.2021.637553] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Plants have been extensively studied since ancient times and numerous important chemical constituents with tremendous therapeutic potential are identified. Attacks of microorganisms including viruses and bacteria can be counteracted with an efficient immune system and therefore, stimulation of body's defense mechanism against infections has been proven to be an effective approach. Polysaccharides, terpenoids, flavonoids, alkaloids, glycosides, and lactones are the important phytochemicals, reported to be primarily responsible for immunomodulation activity of the plants. These phytochemicals may act as lead molecules for the development of safe and effective immunomodulators as potential remedies for the prevention and cure of viral diseases. Natural products are known to primarily modulate the immune system in nonspecific ways. A number of plant-based principles have been identified and isolated with potential immunomodulation activity which justify their use in traditional folklore medicine and can form the basis of further specified research. The aim of the current review is to describe and highlight the immunomodulation potential of certain plants along with their bioactive chemical constituents. Relevant literatures of recent years were searched from commonly employed scientific databases on the basis of their ethnopharmacological use. Most of the plants displaying considerable immunomodulation activity are summarized along with their possible mechanisms. These discussions shall hopefully elicit the attention of researchers and encourage further studies on these plant-based immunomodulation products as potential therapy for the management of infectious diseases, including viral ones such as COVID-19.
Collapse
Affiliation(s)
- Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Sadique A. Javed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Shahnaz Sultana
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A. Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M. Meraya
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Manal M. E. Taha
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
17
|
Ahammad F, Alam R, Mahmud R, Akhter S, Talukder EK, Tonmoy AM, Fahim S, Al-Ghamdi K, Samad A, Qadri I. Pharmacoinformatics and molecular dynamics simulation-based phytochemical screening of neem plant (Azadiractha indica) against human cancer by targeting MCM7 protein. Brief Bioinform 2021; 22:6217720. [PMID: 33834183 DOI: 10.1093/bib/bbab098] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
Minichromosome maintenance complex component 7 (MCM7) belongs to the minichromosome maintenance family that is important for the initiation of eukaryotic DNA replication. Overexpression of the MCM7 protein is relative to cellular proliferation and responsible for aggressive malignancy in various cancers. Mechanistically, inhibition of MCM7 significantly reduces the cellular proliferation associated with cancer. To date, no effective small molecular candidate has been identified that can block the progression of cancer induced by the MCM7 protein. Therefore, the study has been designed to identify small molecular-like natural drug candidates against aggressive malignancy associated with various cancers by targeting MCM7 protein. To identify potential compounds against the targeted protein a comprehensive in silico drug design including molecular docking, ADME (Absorption, Distribution, Metabolism and Excretion), toxicity, and molecular dynamics (MD) simulation approaches has been applied. Seventy phytochemicals isolated from the neem tree (Azadiractha indica) were retrieved and screened against MCM7 protein by using the molecular docking simulation method, where the top four compounds have been chosen for further evaluation based on their binding affinities. Analysis of ADME and toxicity properties reveals the efficacy and safety of the selected four compounds. To validate the stability of the protein-ligand complex structure MD simulations approach has also been performed to the protein-ligand complex structure, which confirmed the stability of the selected three compounds including CAS ID:105377-74-0, CID:12308716 and CID:10505484 to the binding site of the protein. In the study, a comprehensive data screening process has performed based on the docking, ADMET properties, and MD simulation approaches, which found a good value of the selected four compounds against the targeted MCM7 protein and indicates as a promising and effective human anticancer agent.
Collapse
Affiliation(s)
- Foysal Ahammad
- Department of Biological Science, Faculty of science, King Abdul-Aziz University, Jeddah-21589, Saudi Arabia.,Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore-7408, Bangladesh.,Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University and Science and Technology University, Jashore-7408, Bangladesh
| | - Rahat Alam
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore-7408, Bangladesh.,Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University and Science and Technology University, Jashore-7408, Bangladesh
| | - Rasel Mahmud
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
| | - Shahina Akhter
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore-7408, Bangladesh.,Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC) Block # D, Floor # 11, Foy's Lake, Khulshi, Chittagong 4202, Bangladesh
| | - Enamul Kabir Talukder
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore-7408, Bangladesh.,Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University and Science and Technology University, Jashore-7408, Bangladesh
| | - Al Mahmud Tonmoy
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore-7408, Bangladesh.,Department of Zoology, Institute of Dhaka College, University of Dhaka, Dhaka-1000, Bangladesh
| | - Salman Fahim
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore-7408, Bangladesh.,Bachelor of medicine and Bachelor of Surgery (MBBS), CARe Medical College, 2, 1-A Iqbal Road, Dhaka-1207, Bangladesh
| | - Khalid Al-Ghamdi
- Department of Biological Science, Faculty of science, King Abdul-Aziz University, Jeddah-21589, Saudi Arabia
| | - Abdus Samad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore-7408, Bangladesh.,Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University and Science and Technology University, Jashore-7408, Bangladesh
| | - Ishtiaq Qadri
- Department of Biological Science, Faculty of science, King Abdul-Aziz University, Jeddah-21589, Saudi Arabia
| |
Collapse
|
18
|
Moga MA, Dima L, Balan A, Blidaru A, Dimienescu OG, Podasca C, Toma S. Are Bioactive Molecules from Seaweeds a Novel and Challenging Option for the Prevention of HPV Infection and Cervical Cancer Therapy?-A Review. Int J Mol Sci 2021; 22:E629. [PMID: 33435168 PMCID: PMC7826946 DOI: 10.3390/ijms22020629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer represents one of the leading causes of cancer-related death in women all over the world. The infection with human papilloma virus (HPV) is one of the major risk factors for the development of premalignant lesions, which will progress to cervical cancer. Seaweeds are marine organisms with increased contents of bioactive compounds, which are described as potential anti-HPV and anti-cervical cancer agents. Our study aims to bring together all the results of the previous studies, conducted in order to highlight the potency of bioactive molecules from seaweeds, as anti-HPV and anti-cervical agents. This paper is a review of the English literature published between January 2010 and August 2020. We performed a systematic study in the Google Academic and PubMed databases using the key words "HPV infection", "anticancer", "seaweeds", "cervical cancer" and "carcinogenesis process", aiming to evaluate the effects of different bioactive molecules from marine algae on cervical cancer cell lines and on HPV-infected cells. Only original studies were considered for our research. None of the papers was excluded due to language usage or affiliation. Recent discoveries pointed out that sulfated polysaccharides, such as dextran sulfate heparan or cellulose sulfate, blocked the ability of HPV to infect cells, and inhibited the carcinogenesis process. Carrageenans inhibited the virions of HPV from binding the cellular wall. Fucoidan induced the growth inhibition of HeLa cervical cells in vitro. Heterofucans exhibited antiproliferative effects on cancer cell lines. Terpenoids from brown algae are also promising agents with anti-cervical cancer activity. Considering all the results of the previous studies, we observed that great amounts of bioactive molecules from seaweeds could treat both unapparent HPV infection and clinical visible disease. Furthermore, these molecules were very efficient in the treatment of invasive cervical carcinomas. In these conditions, we consider seaweeds extracts as a novel and challenging therapeutic strategy, and we hope that our study paves the way for further clinical trials in the field.
Collapse
Affiliation(s)
- Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (M.A.M.); (O.G.D.); (C.P.)
| | - Lorena Dima
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, University Transilvania of Brasov, 500019 Brasov, Romania; (L.D.); (S.T.)
| | - Andreea Balan
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (M.A.M.); (O.G.D.); (C.P.)
| | - Alexandru Blidaru
- Department of Surgical Oncology, Oncological Institute “Al. Trestioneanu” of Bucharest, University of Medicine and Pharmacy Carol Davila Bucharest, 020021 Bucharest, Romania
| | - Oana Gabriela Dimienescu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (M.A.M.); (O.G.D.); (C.P.)
| | - Cezar Podasca
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (M.A.M.); (O.G.D.); (C.P.)
| | - Sebastian Toma
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, University Transilvania of Brasov, 500019 Brasov, Romania; (L.D.); (S.T.)
| |
Collapse
|
19
|
Increase hemoglobin level in severe malarial anemia while controlling parasitemia: A mathematical model. Math Biosci 2020; 326:108374. [PMID: 32416085 DOI: 10.1016/j.mbs.2020.108374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 11/23/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine produced by immune cells; it can play a protective or deleterious role in response to pathogens. The intracellular malaria parasite secretes a similar protein, PMIF. The present paper is concerned with severe malarial anemia (SMA), where MIF suppresses the recruitment of red blood cells (RBCs) from the spleen and the bone marrow. This suppression results in a decrease of the hemoglobin (Hb) in the blood to a dangerous level. Indeed, SMA is responsible for the majority of death-related malaria cases. Artesunate is the first line of treatment of SMA; it accelerates the death of infected RBCs (iRBCs), thereby decreasing parasitemia. However, artesunate does not increase the level of Hb, and, in some cases, post-artesunate hemolytic anemia requires blood transfusion. In order to avoid this situation, we explore combining artesunate with another drug so that the Hb level is increased to healthy levels while parasitemia is still controlled. In this paper we show, by a mathematical model, that increasing the Hb levels while controlling parasitemia in malarial anemia can be done with the experimental drug Epoxyazadiradione (Epoxy) in combination with artesunate. Epoxy acts as MIF inhibitor and thus has the potential to increase the Hb level. Simulations of the model show that the two drugs compliment each other: while artesunate is primarily responsible for decreasing parasitemia, Epoxy is primarily responsible for increasing the hemoglobin level.
Collapse
|
20
|
Aribi N, Denis B, Kilani-Morakchi S, Joly D. [Azadirachtin, a natural pesticide with multiple effects]. Med Sci (Paris) 2020; 36:44-49. [PMID: 32014097 DOI: 10.1051/medsci/2019268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
There are many studies devoted to the negative impact of conventional pesticides that effectively control pests, but cause widespread environmental pollution. As a result, interest is growing in pesticides of a natural origin with a lower environmental impact. Among them, azadirachtin, sold under various formulations (neem oil, Neem-Azal, Bioneem, etc.), is still the most widely recommended molecule in agricultural ecosystems. Azadirachtin has also been used in traditional medicine for centuries, and studies published over the past few years have tended to support its therapeutic use. Yet the argument that azadirachtin is harmless to the environment has been offset by its notable collateral and controversial effects on non-target organisms. The present paper summarizes the work already done in this field.
Collapse
Affiliation(s)
- Nadia Aribi
- Laboratoire de Biologie Animale Appliquée. Faculté des Sciences. Université Badji Mokhtar Annaba. BP12, 23000, Annaba, Algérie
| | - Béatrice Denis
- Laboratoire Évolution, Génomes, Comportement, Écologie, UMR 9191, CNRS, IRD, Université Paris-Sud et Université Paris-Saclay, avenue de la Terrasse, F-91198 Gif-sur-Yvette, France
| | - Samira Kilani-Morakchi
- Laboratoire de Biologie Animale Appliquée. Faculté des Sciences. Université Badji Mokhtar Annaba. BP12, 23000, Annaba, Algérie
| | - Dominique Joly
- Laboratoire Évolution, Génomes, Comportement, Écologie, UMR 9191, CNRS, IRD, Université Paris-Sud et Université Paris-Saclay, avenue de la Terrasse, F-91198 Gif-sur-Yvette, France
| |
Collapse
|
21
|
Jeba Malar T, Antonyswamy J, Vijayaraghavan P, Ock Kim Y, Al-Ghamdi AA, Elshikh MS, Hatamleh AA, Al-Dosary MA, Na SW, Kim HJ. In-vitro phytochemical and pharmacological bio-efficacy studies on Azadirachta indica A. Juss and Melia azedarach Linn for anticancer activity. Saudi J Biol Sci 2020; 27:682-688. [PMID: 32210688 PMCID: PMC6997857 DOI: 10.1016/j.sjbs.2019.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
In this study, phyto-constituents, anti-bacterial and anticancer activity of Azadirachta indica A. Juss and Melia azedarach Linn was analyzed. High Performance Liquid Chromatography (HPLC) and Thin Layer Chromatography (TLC) fingerprint profile of methanol extract of A. indica and M. azedarach was carried out. The present findings showed the presence of phytochemicals such as, steroids, alkaloids, phenols, flavonoids, saponins, tannins, anthraquinone and aminoacids in A. indica and M. azedarach extracts. HPLC profiling of methanolic extract of A. indica and M. azaderach revealed eleven and ten fractions of compounds were visualized in the form of peak. In TLC methanolic extract of A. indica was separated by eight distinct phenolic and three steroidal bands and M. azaderach showed sixteen distinct phenolic and three different steroidal bands. In antibacterial activity, Among the various extracts 50 µg/ml methanolic extracts of A. indica showed high activity against K. pneumoniae (14 mm) and M. azedarach showed high activity against S. aureus (15 mm). The results suggest that the crude methanolic extracts of A. indica and M. azedarach possess significant phytochemical properties compared to other extracts and hence the phytochemicals of M. azedarach and A. indica can be exploited for plant based anticancer and antimicrobial agents in the near future.
Collapse
Affiliation(s)
- T.R.J. Jeba Malar
- Centre for Plant Biotechnology, Department of Botany, St. Xavier’s College (Autonomous), Palayamkottai 627 002, Tamil Nadu, India
- Department of Nutrition and Dietetics, Muslim Arts College, Thiruvithancode 629174, Tamil Nadu, India
| | - J. Antonyswamy
- Centre for Plant Biotechnology, Department of Botany, St. Xavier’s College (Autonomous), Palayamkottai 627 002, Tamil Nadu, India
| | - Ponnuswamy Vijayaraghavan
- Bioprocessing Engineering Division, Smykon Biotech Pvt. LtD, Nagercoil, Kanyakumari District, Tamil Nadu, India
| | - Young Ock Kim
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, 99 Daehak-Ro, Yuseung-Gu, Daejeon 34134, Republic of Korea
| | - Abdullah A. Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S. Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashraf A. Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Monerah A. Al-Dosary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sae Won Na
- The Comfort Animal Hospital, Sungbuk-gu, Soonginro-50, Seoul, Republic of Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
22
|
Braga TM, Rocha L, Chung TY, Oliveira RF, Pinho C, Oliveira AI, Morgado J, Cruz A. Biological Activities of Gedunin-A Limonoid from the Meliaceae Family. Molecules 2020; 25:E493. [PMID: 31979346 PMCID: PMC7037920 DOI: 10.3390/molecules25030493] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Gedunin is an important limonoid present in several genera of the Meliaceae family, mainly in seeds. Several biological activities have been attributed to gedunin, including antibacterial, insecticidal, antimalarial, antiallergic, anti-inflammatory, anticancer, and neuroprotective effects. The discovery of gedunin as a heat shock protein (Hsp) inhibitor represented a very important landmark for its application as a biological therapeutic agent. The current study is a critical literature review based on the several biological activities so far described for gedunin, its therapeutic effect on some human diseases, and future directions of research for this natural compound.
Collapse
Affiliation(s)
- Teresa M. Braga
- Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (L.R.); (T.Y.C.); (R.F.O.); (C.P.); (A.I.O.)
| | - Lídia Rocha
- Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (L.R.); (T.Y.C.); (R.F.O.); (C.P.); (A.I.O.)
| | - Tsz Yan Chung
- Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (L.R.); (T.Y.C.); (R.F.O.); (C.P.); (A.I.O.)
| | - Rita F. Oliveira
- Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (L.R.); (T.Y.C.); (R.F.O.); (C.P.); (A.I.O.)
| | - Cláudia Pinho
- Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (L.R.); (T.Y.C.); (R.F.O.); (C.P.); (A.I.O.)
| | - Ana I. Oliveira
- Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (L.R.); (T.Y.C.); (R.F.O.); (C.P.); (A.I.O.)
| | - Joaquim Morgado
- Bio4Life4You, 4460-170 Porto, Portugal;
- World Neem Organization, Mumbai 400101, India
| | - Agostinho Cruz
- Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (L.R.); (T.Y.C.); (R.F.O.); (C.P.); (A.I.O.)
| |
Collapse
|
23
|
Pachava S, Chandu VC, Yaddanapalli SC, Dasari AB, Assaf HM. Comparing Caries Experience between Azadirachta indica Chewing Stick Users and Toothbrush Users among 35-44-Year-Old Rural Population of Southern India. J Int Soc Prev Community Dent 2019; 9:417-422. [PMID: 31516877 PMCID: PMC6714418 DOI: 10.4103/jispcd.jispcd_428_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/29/2019] [Indexed: 11/04/2022] Open
Abstract
Objectives To compare the caries experience between Azadirachta indica chewing stick users and toothbrush users among 35-44-year-old rural population in Southern India. Materials and Methods This ex post facto research was conducted in the rural parts of two sub-administrative areas of a district in the Southern Indian state of Andhra Pradesh. The sample size for the study was determined to be 400, with 200 subjects in each group. Subjects following indigenous oral hygiene methods were identified using an interviewer-administered questionnaire. After obtaining 200 subjects using A. indica chewing sticks, age, gender, and socioeconomic status matched controls using toothbrush were identified. American Dental Association type III examination was carried out to record caries experience (decayed missing filled teeth (DMFT) Index) after obtaining informed consent and thus obtained data were subjected to statistical analysis using the Statistical Package for the Social Sciences (SPSS) software, version 20. Results It was observed that the caries experience was more in toothbrush users compared to subjects following indigenous methods (DMFT, 4.38 ± 1.93 vs. 3.54 ± 1.02). Similar results were obtained when the decay component of DMFT index was exclusively compared. No significant difference in the plaque scores and the mean number of filled, missing teeth was observed between the two groups. Conclusion Though conclusive results cannot be drawn from this study about the positive influence of indigenous methods on caries experience, the results emphasize the cardinal need to more thoroughly understand the potential benefits of indigenous methods before dismissing them as retrogressive approaches.
Collapse
Affiliation(s)
- Srinivas Pachava
- Department of Public Health Dentistry, Sibar Institute of Dental Sciences, Guntur, Andhra Pradesh, India
| | - Viswa C Chandu
- Department of Public Health Dentistry, Sibar Institute of Dental Sciences, Guntur, Andhra Pradesh, India
| | - Suresh C Yaddanapalli
- Department of Public Health Dentistry, Sibar Institute of Dental Sciences, Guntur, Andhra Pradesh, India
| | - Ankineedu B Dasari
- Department of Advanced Education in General Dentistry(AEGD), School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hussein M Assaf
- Department of Advanced Education in General Dentistry(AEGD), School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
24
|
Shin SS, Hwang B, Muhammad K, Gho Y, Song JH, Kim WJ, Kim G, Moon SK. Nimbolide Represses the Proliferation, Migration, and Invasion of Bladder Carcinoma Cells via Chk2-Mediated G2/M Phase Cell Cycle Arrest, Altered Signaling Pathways, and Reduced Transcription Factors-Associated MMP-9 Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:3753587. [PMID: 31391858 PMCID: PMC6662486 DOI: 10.1155/2019/3753587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/02/2019] [Accepted: 06/26/2019] [Indexed: 12/31/2022]
Abstract
Nimbolide, an active chemical constituent of Azadirachta indica, reportedly has several physiological effects. Here, we assessed novel anticancer effects of nimbolide against bladder cancer EJ and 5637 cells. Nimbolide treatment inhibited the proliferation of both bladder cancer cell lines with an IC50 value of 3 μM. Treatment of cells with nimbolide induced G2/M phase cell cycle arrest via both Chk2-Cdc25C-Cdc2/cyclin B1-Wee1 pathway and Chk2-p21WAF1-Cdc2/cyclin B1-Wee1 pathway. Nimbolide increased JNK phosphorylation and decreased p38MAPK and AKT phosphorylation. Additionally, nimbolide impeded both wound healing migration and invasion abilities by suppressing matrix metalloproteinase-9 (MMP-9) activity. Finally, nimbolide repressed the binding activity of NF-κB, Sp-1, and AP-1 motifs, which are key transcription factors for MMP-9 activity regulation. Overall, our study indicates that nimbolide is a potential chemotherapeutic agent for bladder cancer.
Collapse
Affiliation(s)
- Seung-Shick Shin
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Republic of Korea
| | - Byungdoo Hwang
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Kashif Muhammad
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Yujeong Gho
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Jun-Hui Song
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Gonhyung Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|