1
|
de Souza ÁL, da Silva Campelo M, de Sousa Mesquita G, Nobre AFD, de Freitas Franco VM, Barreto ACH, de Sousa JS, Honório Júnior JER, Brilhante RSN, Ricardo NMPS, de Aguiar Soares S, Ribeiro MENP. Influence of Agaricus blazei Murill polysaccharides on synthesis, stabilization, acute toxicity and antifungal activity of copper (II) oxide nanoparticles. Biometals 2025; 38:231-244. [PMID: 39572476 DOI: 10.1007/s10534-024-00650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/02/2024] [Indexed: 01/03/2025]
Abstract
In general, nanomaterials tend to have better physical, chemical and biological properties than conventional materials. Furthermore, the polysaccharides from Agaricus blazei Murill mushroom have several pharmacological properties, in addition to low cytotoxicity and high biocompatibility. This work sought to merge the properties of CuO nanoparticles and Agaricus blazei Murill polysaccharides through syntheses and coatings with the aim of evaluating their toxicity in adult zebrafish and antifungal activity against C. albicans and C. parapsilosis. The nanoparticles were synthesized using the coprecipitation method and subsequently characterized in terms of their physicochemical properties using spectroscopic and thermoanalytical techniques. Furthermore, their composition was determined by X-Ray Diffraction and their morphology was studied using different microscopic techniques. CuO nanoparticles coated with Agaricus blazei Murill polysaccharides showed smaller particle size. Dispersions of nanoparticles coated with the polysaccharides were found to be more stable than their uncoated counterparts. The nanoparticles also showed antifungal activity against Candida sp. strains, with MIC50 values between 64 and 512 µg mL-1. It was observed that coating the materials with polysaccharides preserved their antifungal properties and reduced acute toxicity against adult zebrafish. Therefore, it is estimated that the CuO nanoparticles coated with Agaricus blazei Murill polysaccharides are innovative nanomaterials with potential for future clinical applications, especially in the topical treatment of candidiasis.
Collapse
Affiliation(s)
- Álamo Lourenço de Souza
- Department of Organic and Inorganic Chemistry, Polymers and Materials Innovation Laboratory, Federal University of Ceara, Pici Campus, Fortaleza, CE, 60440-900, Brazil
| | - Matheus da Silva Campelo
- Department of Organic and Inorganic Chemistry, Polymers and Materials Innovation Laboratory, Federal University of Ceara, Pici Campus, Fortaleza, CE, 60440-900, Brazil
| | - Gabriel de Sousa Mesquita
- Department of Organic and Inorganic Chemistry, Polymers and Materials Innovation Laboratory, Federal University of Ceara, Pici Campus, Fortaleza, CE, 60440-900, Brazil
| | - Augusto Feynman Dias Nobre
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Federal University of Ceará, Porangabuçu Campus, Fortaleza, CE, 60425-540, Brazil
| | | | | | - Jeanlex Soares de Sousa
- Department of Physics, Federal University of Ceara, Pici Campus, Fortaleza, CE, 60455-970, Brazil
| | | | - Raimunda Sâmia Nogueira Brilhante
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Federal University of Ceará, Porangabuçu Campus, Fortaleza, CE, 60425-540, Brazil
| | - Nágila Maria Pontes Silva Ricardo
- Department of Organic and Inorganic Chemistry, Polymers and Materials Innovation Laboratory, Federal University of Ceara, Pici Campus, Fortaleza, CE, 60440-900, Brazil
| | - Sandra de Aguiar Soares
- Department of Organic and Inorganic Chemistry, Polymers and Materials Innovation Laboratory, Federal University of Ceara, Pici Campus, Fortaleza, CE, 60440-900, Brazil.
| | - Maria Elenir Nobre Pinho Ribeiro
- Department of Organic and Inorganic Chemistry, Polymers and Materials Innovation Laboratory, Federal University of Ceara, Pici Campus, Fortaleza, CE, 60440-900, Brazil.
| |
Collapse
|
2
|
Martinaga L, Ludwig R, Rezić I, Andlar M, Pum D, Vrsalović Presečki A. The application of bacteria-derived dehydrogenases and oxidases in the synthesis of gold nanoparticles. Appl Microbiol Biotechnol 2024; 108:62. [PMID: 38183486 DOI: 10.1007/s00253-023-12853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 01/08/2024]
Abstract
In this work the green synthesis of gold nanoparticles (Au-NPs) using the oxidoreductive enzymes Myriococcum thermophilum cellobiose dehydrogenase (Mt CDH), Glomerella cingulata glucose dehydrogenase (Gc GDH), and Aspergillus niger glucose oxidase (An GOX)) as bioreductants was investigated. The influence of reaction conditions on the synthesis of Au-NPs was examined and optimised. The reaction kinetics and the influence of Au ions on the reaction rate were determined. Based on the kinetic study, the mechanism of Au-NP synthesis was proposed. The Au-NPs were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). The surface plasmon resonance (SPR) absorption peaks of the Au-NPs synthesised with Mt CDH and Gc GDH were observed at 535 nm, indicating an average size of around 50 nm. According to the image analysis performed on a TEM micrograph, the Au-NPs synthesized with Gc GDH have a spherical shape with an average size of 2.83 and 6.63 nm after 24 and 48 h of the reaction, respectively. KEY POINTS: • The Au NPs were synthesised by the action of enzymes CDH and GDH. • The synthesis of Au-NPs by CDH is related to the oxidation of cellobiose. • The synthesis of Au-NPs by GDH was not driven by the reaction kinetic.
Collapse
Affiliation(s)
- Lela Martinaga
- Faculty of Textile Technology, University of Zagreb, Prilaz Baruna Filipovića 28a, 10000, Zagreb, Croatia
| | - Roland Ludwig
- University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - Iva Rezić
- Faculty of Textile Technology, University of Zagreb, Prilaz Baruna Filipovića 28a, 10000, Zagreb, Croatia
| | - Martina Andlar
- Krka, d.d, Šmajerska Cesta 6, 8501, Novo Mesto, Slovenia
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva Ulica 6, 10000, Zagreb, Croatia
| | - Dietmar Pum
- University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - Ana Vrsalović Presečki
- University of Zagreb Faculty of Chemical Engineering and Technology, University of Zagreb, Savska Cesta 16/I, 10000, Zagreb, Croatia.
| |
Collapse
|
3
|
Dousari AS, Shakibaie M, Adeli-Sardou M, Forootanfar H. Biosynthesis and Properties of Bismuth Nanoparticles: A Review. Biol Trace Elem Res 2024:10.1007/s12011-024-04437-5. [PMID: 39523243 DOI: 10.1007/s12011-024-04437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Today, nanotechnology is becoming increasingly important among researchers around the world by helping them diagnose and treat various diseases that can threaten human life. Bismuth nanoparticles are among the numerous metal nanoparticles widely used due to their potential therapeutic applications. Variety of studies displayed the high potentials of bismuth nanoparticles in extraordinary antibacterial, antibiofilm, anticancer, and antioxidant effects, and it seems that these potentials can be used to address the challenges in the treatment of many diseases. They are among the metal nanoparticles biosynthesized by the green synthesis method in many studies. The use of green synthesis of nanoparticles has attracted the interest of many investigators because of its environmental friendliness, non-toxicity, and high stability. Microorganisms like bacteria, fungi, yeasts, actinomycetes, viruses, marine algae, and plants have been found to have the inherent potential to create metal nanoparticles intracellularly or extracellularly and are recognized as viable biofactories for the green synthesis of nanoparticles. The goal of this review article was to assess synthesized bismuth nanoparticles based on their green synthesis methods; properties in terms of shape, size, synthesis origin, and structure; and biological applications, including their antibacterial, antibiofilm, antioxidant, and cytotoxic uses.
Collapse
Affiliation(s)
- Amin Sadeghi Dousari
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Shakibaie
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahbobeh Adeli-Sardou
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Ahmed Amin S, Dawood MEA, Mahmoud M, Bassiouny DM, Moustafa MMA, Abd El Ghany K. Innovative synthesis and molecular modeling of actinomycetes-derived silver nanoparticles for biomedical applications. Microb Pathog 2024; 196:106990. [PMID: 39362288 DOI: 10.1016/j.micpath.2024.106990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The rising demand for innovative antimicrobial solutions has shifted focus towards silver nanoparticles (AgNPs), especially those produced through eco-friendly methods. This study introduces a novel approach utilizing actinomycetes strains-Streptomyces albus, Micromonospora maris, and Arthrobacter crystallopoietes-to biosynthesize AgNPs with remarkable antibacterial properties. Through molecular characterization, we identified unique features of these nanoparticles, and computational modeling suggested significant ion-ligand interactions with proteins 6REV and 3K07. Our research highlights the promise of these biogenically synthesized nanoparticles in advancing biomedical applications. Actinomycetes were sourced and screened for their ability to produce metallic nanoparticles, revealing that among 35 samples, only six showed this capability. Notably, Streptomyces albus strain smmdk14 (OR685674), Micromonospora maris strain smmdk13 (OR685672), and Arthrobacter crystallopoietes strain smmdk12 (OR685674) were identified as effective silver nanoparticle producers. The synthesized nanoparticles demonstrated potent antibacterial activity against common pathogens including E. coli, Pseudomonas aeruginosa, Klebsiella spp., Enterococcus faecalis, Staphylococcus aureus, and Acinetobacter spp. The data obtained from color change observation, UV-visible spectrophotometry, Zeta potential, FTIR spectroscopy, and transmission electron microscopy (TEM) characterized AgNPs potentiality. The nanoparticles were spherical, with sizes ranging from 6.46 nm to 24.7 nm. Optimization of production conditions, comparison of antimicrobial effects with antibiotics, evaluation of potential toxicity, and assessment of wound-healing capabilities were also conducted. The biosynthesized AgNPs exhibited superior antibacterial properties compared to traditional antibiotics and significantly accelerated wound healing by approximately 66.4 % in fibroblast cell cultures. Additionally, computational analysis predicted interactions between various metal ions and specific amino acid residues in proteins 6REV and 3K07. Overall, this study demonstrates the successful creation of AgNPs with notable antibacterial and wound-healing properties, underscoring their potential for medical applications.
Collapse
Affiliation(s)
- Safia Ahmed Amin
- Botany and Microbiology Department, Faculty of Science, Cairo University, Egypt.
| | - Mohamed E A Dawood
- Botany and Microbiology Department, Faculty of Science, Cairo University, Egypt.
| | - Mohamed Mahmoud
- Biophysics Department, Faculty of Science, Cairo University, Egypt.
| | - Dina M Bassiouny
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Egypt.
| | - Mahmoud M A Moustafa
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Moshtohor, Benha University, 13736, Egypt.
| | | |
Collapse
|
5
|
Liu Y, Yang Y, E Y, Pang C, Cui D, Li A. Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. CHINESE CHEM LETT 2024; 35:109651. [DOI: 10.1016/j.cclet.2024.109651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Beltrán Pineda ME, Lizarazo Forero LM, Sierra CA. Optimization of AgNPs production from Fusarium oxysporum H39 and its effectiveness as nanopesticides facing Pectobacterium carotovorum. PLANT NANO BIOLOGY 2024; 10:100104. [DOI: 10.1016/j.plana.2024.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Oetiker N, León JJ, Swihart M, Chen K, Pfeifer BA, Dutta A, Pliss A, Kuzmin AN, Pérez-Donoso JM, Prasad PN. Unlocking nature's brilliance: using Antarctic extremophile Shewanella baltica to biosynthesize lanthanide-containing nanoparticles with optical up-conversion. J Nanobiotechnology 2024; 22:637. [PMID: 39420353 PMCID: PMC11488251 DOI: 10.1186/s12951-024-02874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Both lanthanide-containing and fluorine-containing nanomaterials present challenging targets for microbial biosynthesis because these elements are toxic to most bacteria. Here, we overcome these challenges by using an Antarctic Shewanella baltica strain that tolerates these elements and report the first biosynthesis of lanthanide-doped fluoride nanoparticles (NPs) from them. NaYF4 NPs doped with Er3+/Yb3+ are prototypical lanthanide-based upconverting nanoparticles (UCNPs) with upconverted luminescence at visible wavelengths under infrared excitation. However, their synthesis employs high precursor concentrations, organic solvents, and elevated temperatures. Microbial biosynthesis offers a greener alternative but has not been explored for these materials. Here, we harness an extremophile S. baltica strain to biosynthesize UCNPs at room temperature, based upon its high tolerance for fluoride and lanthanide ions and the observation that tolerance of lanthanides increased in the presence of fluoride. Our biosynthesis produces electron-dense nanostructures composed of Na, Y, F, Yb, and Er in the bacterial periplasm, adhered to the outer cell membrane, and dispersed extracellularly, which exhibited up-converted emission under 980 nm excitation. This suggests that extracellular or periplasmic mineralization of lanthanides as fluorides protects the bacteria from lanthanide toxicity. Subsequent heating both enhanced upconverted emission from UCNPs and allowed observation of their crystallinity in transmission electron microscopy (TEM). This work establishes the first biosynthesis of NaYF4:Yb: Er UCNPs, advancing both nanotechnology and biotechnology.
Collapse
Affiliation(s)
- Nia Oetiker
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, USA
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Juan José León
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, USA
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Mark Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Kaiwen Chen
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Avisek Dutta
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Artem Pliss
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Andrey N Kuzmin
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - José Manuel Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Paras N Prasad
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
8
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. A Review on Bioflocculant-Synthesized Copper Nanoparticles: Characterization and Application in Wastewater Treatment. Bioengineering (Basel) 2024; 11:1007. [PMID: 39451384 PMCID: PMC11504074 DOI: 10.3390/bioengineering11101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Copper nanoparticles (CuNPs) are tiny materials with special features such as high electric conductivity, catalytic activity, antimicrobial activity, and optical activity. Published reports demonstrate their utilization in various fields, including biomedical, agricultural, environmental, wastewater treatment, and sensor fields. CuNPs can be produced utilizing traditional procedures; nevertheless, such procedures have restrictions like excessive consumption of energy, low production yields, and the utilization of detrimental substances. Thus, the adoption of environmentally approachable "green" approaches for copper nanoparticle synthesis is gaining popularity. These approaches involve employing plants, bacteria, and fungi. Nonetheless, there is a scarcity of data regarding the application of microbial bioflocculants in the synthesis of copper NPs. Therefore, this review emphasizes copper NP production using microbial flocculants, which offer economic benefits and are sustainable and harmless. The review also provides a characterization of the synthesized copper nanoparticles, employing numerous analytical tools to determine their compositional, morphological, and topographical features. It focuses on scientific advances from January 2015 to December 2023 and emphasizes the use of synthesized copper NPs in wastewater treatment.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| | - Albertus K. Basson
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| | - Zuzingcebo G. Ntombela
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| | - Nkosinathi G. Dlamini
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| | - Rajasekhar V. S. R. Pullabhotla
- Chemistry Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| |
Collapse
|
9
|
Shanmuganathan R, Nguyen ND, Al-Ansari MM. Synthesis of zero valent copper/iron nanoparticles using Piper betle leaves for the removal of pharmaceutical contaminant atorvastatin. ENVIRONMENTAL RESEARCH 2024; 257:119334. [PMID: 38838750 DOI: 10.1016/j.envres.2024.119334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
In this study, bimetallic Cu-Fe nanoparticles were synthesized using the green approach with Piper betle leaves, and the removal efficiency of one of the pharmaceutical compounds, Atorvastatin, was investigated. UV, SEM, FTIR, EDAX, particle size, and zeta potential measurements were used to confirm nanoparticle fabrication. The removal efficiency of Atorvastatin (10 mg/L) by bimetallic Cu-Fe nanoparticles was 67% with a contact time of 30 min at pH 4, the adsorbent dosage of 0.2 g/L, and stirring at 100 rpm. Piper betle bimetallic Cu-Fe nanoparticles have demonstrated excellent stability, reusability, and durability, even after being reused five times. Furthermore, the synthesized bimetallic Cu-Fe nanoparticles demonstrated remarkable antimicrobial properties against gram-negative strains such as Escherichia coli and Klebsiella pneumoniae, gram-positive strains such as Staphylococcus aureus and Bacillus subtilis, and fungi such as Aspergillus niger. In addition, the antioxidant properties of the synthesized bimetallic Cu-Fe nanoparticles were assessed using the DPPH radical scavenging assay. The results indicated that the nanoparticles had good antioxidant activity. Thus, using Piper betle extract to make Cu-Fe nanoparticles made the procedure less expensive, chemical-free, and environmentally friendly, and the synthesized bimetallic Cu-Fe nanoparticles helped remove the pharmaceutical compound Atorvastatin from wastewater.
Collapse
Affiliation(s)
- Rajasree Shanmuganathan
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - N D Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
10
|
León JJ, Oetiker N, Torres N, Bruna N, Oskolkov E, Lei P, Kuzmin AN, Chen K, Andreadis S, Pfeifer BA, Swihart MT, Prasad PN, Pérez-Donoso J. Microbial green synthesis of luminescent terbium sulfide nanoparticles using E. Coli: a rare earth element detoxification mechanism. Microb Cell Fact 2024; 23:248. [PMID: 39267051 PMCID: PMC11391766 DOI: 10.1186/s12934-024-02519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Rare-earth sulfide nanoparticles (NPs) could harness the optical and magnetic features of rare-earth ions for applications in nanotechnology. However, reports of their synthesis are scarce and typically require high temperatures and long synthesis times. RESULTS Here we present a biosynthesis of terbium sulfide (TbS) NPs using microorganisms, identifying conditions that allow Escherichia coli to extracellularly produce TbS NPs in aqueous media at 37 °C by controlling cellular sulfur metabolism to produce a high concentration of sulfide ions. Electron microscopy revealed ultrasmall spherical NPs with a mean diameter of 4.1 ± 1.3 nm. Electron diffraction indicated a high degree of crystallinity, while elemental mapping confirmed colocalization of terbium and sulfur. The NPs exhibit characteristic absorbance and luminescence of terbium, with downshifting quantum yield (QY) reaching 28.3% and an emission lifetime of ~ 2 ms. CONCLUSIONS This high QY and long emission lifetime is unusual in a neat rare-earth compound; it is typically associated with rare-earth ions doped into another crystalline lattice to avoid non-radiative cross relaxation. This suggests a reduced role of nonradiative processes in these terbium-based NPs. This is, to our knowledge, the first report revealing the advantage of biosynthesis over chemical synthesis for Rare Earth Element (REE) based NPs, opening routes to new REE-based nanocrystals.
Collapse
Affiliation(s)
- Juan José León
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, USA
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Nía Oetiker
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, USA
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Nicolás Torres
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Nicolás Bruna
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Evgenii Oskolkov
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Andrey N Kuzmin
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Kaiwen Chen
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Stelios Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Paras N Prasad
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - José Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
11
|
El-Sapagh SH, El-Zawawy NA, Elshobary ME, Alquraishi M, Zabed HM, Nouh HS. Harnessing the power of Neobacillus niacini AUMC-B524 for silver oxide nanoparticle synthesis: optimization, characterization, and bioactivity exploration. Microb Cell Fact 2024; 23:220. [PMID: 39107838 PMCID: PMC11304630 DOI: 10.1186/s12934-024-02484-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Biotechnology provides a cost-effective way to produce nanomaterials such as silver oxide nanoparticles (Ag2ONPs), which have emerged as versatile entities with diverse applications. This study investigated the ability of endophytic bacteria to biosynthesize Ag2ONPs. RESULTS A novel endophytic bacterial strain, Neobacillus niacini AUMC-B524, was isolated from Lycium shawii Roem. & Schult leaves and used to synthesize Ag2ONPS extracellularly. Plackett-Burman design and response surface approach was carried out to optimize the biosynthesis of Ag2ONPs (Bio-Ag2ONPs). Comprehensive characterization techniques, including UV-vis spectral analysis, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, dynamic light scattering analysis, Raman microscopy, and energy dispersive X-ray analysis, confirmed the precise composition of the Ag2ONPS. Bio-Ag2ONPs were effective against multidrug-resistant wound pathogens, with minimum inhibitory concentrations (1-25 µg mL-1). Notably, Bio-Ag2ONPs demonstrated no cytotoxic effects on human skin fibroblasts (HSF) in vitro, while effectively suppressing the proliferation of human epidermoid skin carcinoma (A-431) cells, inducing apoptosis and modulating the key apoptotic genes including Bcl-2 associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), Caspase-3 (Cas-3), and guardian of the genome (P53). CONCLUSIONS These findings highlight the therapeutic potential of Bio-Ag2ONPs synthesized by endophytic N. niacini AUMC-B524, underscoring their antibacterial efficacy, anticancer activity, and biocompatibility, paving the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Shimaa H El-Sapagh
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Nessma A El-Zawawy
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mostafa E Elshobary
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohammed Alquraishi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, 11421, Riyadh, Saudi Arabia
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Hoda S Nouh
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
12
|
Xu F, Li Y, Zhao X, Liu G, Pang B, Liao N, Li H, Shi J. Diversity of fungus-mediated synthesis of gold nanoparticles: properties, mechanisms, challenges, and solving methods. Crit Rev Biotechnol 2024; 44:924-940. [PMID: 37455417 DOI: 10.1080/07388551.2023.2225131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/21/2023] [Indexed: 07/18/2023]
Abstract
Fungi-mediated synthesis of Gold nanoparticles (AuNPs) has advantages in: high efficiency, low energy consumption, no need for extra capping and stabilizing agents, simple operation, and easy isolation and purification. Many fungi have been found to synthesize AuNPs inside cells or outside cells, providing different composition and properties of particles when different fungi species or reaction conditions are used. This is good to produce AuNPs with different properties, but may cause challenges to precisely control the particle shape, size, and activities. Besides, low concentrations of substrate and fungal biomass are needed to synthesize small-size particles, limiting the yield of AuNPs in a large scale. To find clues for the development methods to solve these challenges, the reported mechanisms of the fungi-mediated synthesis of AuNPs were summarized. The mechanisms of intracellular AuNPs synthesis are dependent on gold ions absorption by the fungal cell wall via proteins, polysaccharides, or electric absorption, and the reduction of gold ions via enzymes, proteins, and other cytoplasmic redox mediators in the cytoplasm or cell wall. The extracellular synthesis of AuNPs is mainly due to the metabolites outside fungal cells, including proteins, peptides, enzymes, and phenolic metabolites. These mechanisms cause the great diversity of the produced AuNPs in functional groups, element composition, shapes, sizes, and properties. Many methods have been developed to improve the synthesis efficiency by changing: chloroauric acid concentrations, reaction temperature, pH, fungal mass, and reaction time. However, future studies are still required to precisely control the: shape, size, composition, and properties of fungal AuNPs.
Collapse
Affiliation(s)
- Fengqin Xu
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Yinghui Li
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Xixi Zhao
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Guanwen Liu
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Bing Pang
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Ning Liao
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Huixin Li
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Junling Shi
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
13
|
Hamida RS, AlMotwaa SM, Al-Otaibi WA, Alqhtani HA, Ali MA, Bin-Meferij MM. Apoptotic Induction by Biosynthesized Gold Nanoparticles Using Phormidesmis communis Strain AB_11_10 against Osteosarcoma Cancer. Biomedicines 2024; 12:1570. [PMID: 39062143 PMCID: PMC11274524 DOI: 10.3390/biomedicines12071570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Phormidesmis communis strain AB_11_10 was isolated and identified using microscopy and 16s rRNA sequencing, and its phytochemical constituents were determined using liquid chromatography-quadrupole time-of-flight mass spectrometry. The isolate had a segmented filamentous shape with a blue-green color. Many biomolecules, including organic compounds, amino acids, and fatty acids, were detected. P. communis strain AB_11_10 was used to synthesize gold nanoparticles (Ph-AuNPs) by adjusting the optimum reaction conditions. The concentration, algal/precursor ratio, temperature, reaction time, and pH significantly influenced the synthesis of the Ph-AuNPs. Mixing 1 mL of 0.5 mM of HAuCl4 with 1 mL of algal extract and exposing the mixture to 100 °C for 30 min at pH 5.6 were the optimum conditions for the biosynthesis of Ph-AuNPs at a wavelength of 524.5 nm. The Ph-AuNPs were characterized using TEM, SEM, EDX, and mapping Zeta sizer and FTIR. The Ph-AuNPs had quasi-spherical to triangular shapes with an average diameter of 9.6 ± 4.3 nm. Ph-AuNPs composed of 76.10 ± 3.14% of Au and trace amounts of carbon and oxygen were detected, indicating that the P. communis strain AB_11_10 successfully synthesized Ph-AuNPs. The hydrodynamic diameter of the Ph-AuNPs was 28.5 nm, and their potential charge was -17.7 mV. O-H, N-H, C=C, N-O, C-H, and C-O were coated onto the surfaces of the Ph-AuNPs. These groups correspond to algal phytochemicals, which may have been the main reducing and stabilizing substances during the Ph-AuNP synthesis. The therapeutic activity of the Ph-AuNPs against osteosarcoma cancers was examined in MG-63 and SAOS-2 cell lines, while their biocompatibility was tested against Vero cell lines using a sulforhodamine B assay. The Ph-AuNPs had potent antitumor activity against the MG-63 and SAOS-2 cells, with a low toxicity toward Vero cells. Flow cytometry and cell cycle arrest analyses revealed that the Ph-AuNPs enhanced the apoptotic pathway and arrested the cell cycle in the MG-63 and SAOS-2 cells. P. communis strain AB_11_10 provides a new source to synthesize small, stable, and biocompatible AuNPs that act as apoptotic enhancers in osteosarcoma.
Collapse
Affiliation(s)
| | - Sahar M. AlMotwaa
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Waad A. Al-Otaibi
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Haifa A. Alqhtani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Abdelaal Ali
- Plant Production Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY) New Borg El-Arab, Alexandria 21934, Egypt
| | - Mashael Mohammed Bin-Meferij
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
14
|
Khan SS, Kour D, Kaur T, Sharma A, Kumar S, Kumari S, Ramniwas S, Singh S, Negi R, Sharma B, Devi T, Kumari C, Kour H, Kaur M, Rai AK, Singh S, Rasool S, Yadav AN. Microbial Nanotechnology for Precision Nanobiosynthesis: Innovations, Current Opportunities and Future Perspectives for Industrial Sustainability. Curr Microbiol 2024; 81:251. [PMID: 38954017 DOI: 10.1007/s00284-024-03772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
A new area of biotechnology is nanotechnology. Nanotechnology is an emerging field that aims to develope various substances with nano-dimensions that have utilization in the various sectors of pharmaceuticals, bio prospecting, human activities and biomedical applications. An essential stage in the development of nanotechnology is the creation of nanoparticles. To increase their biological uses, eco-friendly material synthesis processes are becoming increasingly important. Recent years have shown a lot of interest in nanostructured materials due to their beneficial and unique characteristics compared to their polycrystalline counterparts. The fascinating performance of nanomaterials in electronics, optics, and photonics has generated a lot of interest. An eco-friendly approach of creating nanoparticles has emerged in order to get around the drawbacks of conventional techniques. Today, a wide range of nanoparticles have been created by employing various microbes, and their potential in numerous cutting-edge technological fields have been investigated. These particles have well-defined chemical compositions, sizes, and morphologies. The green production of nanoparticles mostly uses plants and microbes. Hence, the use of microbial nanotechnology in agriculture and plant science is the main emphasis of this review. The present review highlights the methods of biological synthesis of nanoparticles available with a major focus on microbially synthesized nanoparticles, parameters and biochemistry involved. Further, it takes into account the genetic engineering and synthetic biology involved in microbial nanobiosynthesis to the construction of microbial nanofactories.
Collapse
Affiliation(s)
- Sofia Sharief Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Anjali Sharma
- Department of Biotechnology and Genetics, Jain University, Bengaluru, 560069, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, 303012, Rajasthan, India
| | - Sanjeev Kumar
- Department of Genetics and Plant Breeding, Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Shilpa Kumari
- Department of Physics, Rayat Bahra University, Mohali, 140105, Punjab, India
| | - Seema Ramniwas
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Shaveta Singh
- Dolphin PG College of Life Sciences, Chunni Kalan, Fatehgarh Sahib, Punjab, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tishu Devi
- Government College for Women, Parade, Jammu, Jammu and Kashmir, India
| | - Chandresh Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Vill-Bhajhol, Solan, 173229, Himachal Pradesh, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Manpreet Kaur
- Department of Physics, IEC University, Baddi, Solan, 174103, Himachal Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Shafaq Rasool
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India.
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia.
| |
Collapse
|
15
|
Mechouche MS, Merouane F, Addad A, Karmazin L, Boukherroub R, Lakhdari N. Enhanced biosynthesis of coated silver nanoparticles using isolated bacteria from heavy metal soils and their photothermal-based antibacterial activity: integrating Response Surface Methodology (RSM) Hybrid Artificial Neural Network (ANN)-Genetic Algorithm (GA) strategies. World J Microbiol Biotechnol 2024; 40:252. [PMID: 38913279 DOI: 10.1007/s11274-024-04048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024]
Abstract
This study explores the biosynthesis of silver nanoparticles (AgNPs) using the Streptomyces tuirus S16 strain, presenting an eco-friendly alternative to mitigate the environmental and health risks of chemical synthesis methods. It focuses on optimizing medium culture conditions, understanding their physicochemical properties, and investigating their potential photothermal-based antibacterial application. The S16 strain was selected from soils contaminated with heavy metals to exploit its ability to produce diverse bioactive compounds. By employing the combination of Response Surface Methodology (RSM) and Artificial Neural Network (ANN)-Genetic Algorithm (GA) strategies, we optimized AgNPs synthesis, achieving an improvement of nearly 2.45 times the initial yield under specific conditions (Bennet's medium supplemented with glycerol [5 g/L] and casamino-acid [3 g/L] at 30 °C for 72 h). A detailed physicochemical characterization was conducted. Notably, the AgNPs were well dispersed, and a carbonaceous coating layer on their surface was confirmed using energy-dispersive X-ray spectroscopy. Furthermore, functional groups were identified using Fourier-transform infrared spectroscopy, which helped enhance the AgNPs' stability and biocompatibility. AgNPs also demonstrated efficient photothermal conversion under light irradiation (0.2 W/cm2), with temperatures increasing to 41.7 °C, after 30 min. In addition, treatment with light irradiation of E. coli K-12 model effectively reduced the concentration of AgNPs from 105 to 52.5 µg/mL, thereby enhancing the efficacy of silver nanoparticles in contact with the E. coli K-12.
Collapse
Affiliation(s)
- Meroua Safa Mechouche
- Biotechnology Laboratory, Higher National School of Biotechnology Taoufik KHAZNADAR, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, 25100, Constantine, Algeria.
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, IEMN - UMR 8520, 59000, Lille, France.
| | - Fateh Merouane
- Biotechnology Laboratory, Higher National School of Biotechnology Taoufik KHAZNADAR, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, 25100, Constantine, Algeria
| | - Ahmed Addad
- UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS - UMR 8207, 59000, Lille, France
| | - Lydia Karmazin
- Institut Chevreul FR2638, Pôle Diffraction Et Diffusion Des Rayons X, Cité Scientifique-Université de Lille, Avenue Paul Langevin, CEDEX, 59652, Villeneuve d'Ascq, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, IEMN - UMR 8520, 59000, Lille, France
| | - Nadjem Lakhdari
- Biotechnology Laboratory, Higher National School of Biotechnology Taoufik KHAZNADAR, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, 25100, Constantine, Algeria
| |
Collapse
|
16
|
Vanlalveni C, Ralte V, Zohmingliana H, Das S, Anal JMH, Lallianrawna S, Rokhum SL. A review of microbes mediated biosynthesis of silver nanoparticles and their enhanced antimicrobial activities. Heliyon 2024; 10:e32333. [PMID: 38947433 PMCID: PMC11214502 DOI: 10.1016/j.heliyon.2024.e32333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024] Open
Abstract
In recent decades, biosynthesis of metal and (or) metal oxide nanoparticles using microbes is accepted as one of the most sustainable, cost-effective, robust, and green processes as it does not encompass the usage of largely hazardous chemicals. Accordingly, numerous simple, inexpensive, and environmentally friendly approaches for the biosynthesis of silver nanoparticles (AgNPs) were reported using microbes avoiding conventional (chemical) methods. This comprehensive review detailed an advance made in recent years in the microbes-mediated biosynthesis of AgNPs and evaluation of their antimicrobial activities covering the literature from 2015-till date. It also aimed at elaborating the possible effect of the different phytochemicals, their concentrations, extraction temperature, extraction solvent, pH, reaction time, reaction temperature, and concentration of precursor on the shape, size, and stability of the synthesized AgNPs. In addition, while trying to understand the antimicrobial activities against targeted pathogenic microbes the probable mechanism of the interaction of produced AgNPs with the cell wall of targeted microbes that led to the cell's reputed and death have also been detailed. Lastly, this review detailed the shape and size-dependent antimicrobial activities of the microbes-mediated AgNPs and their enhanced antimicrobial activities by synergetic interaction with known commercially available antibiotic drugs.
Collapse
Affiliation(s)
- Chhangte Vanlalveni
- Department of Botany, Mizoram University, Tanhril, Aizawl, Mizoram 796001, India
| | - Vanlalhruaii Ralte
- Department of Botany, Pachhunga University College, Aizawl, 796001, Mizoram, India
| | - Hlawncheu Zohmingliana
- Department of Chemistry, National Institute of Technology Silchar, Silchar, 788010, India
| | - Shikhasmita Das
- Department of Chemistry, National Institute of Technology Silchar, Silchar, 788010, India
| | - Jasha Momo H. Anal
- Natural Products and Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Samuel Lallianrawna
- Department of Chemistry, Govt. Zirtiri Residential Science College, Aizawl, 796001, Mizoram, India
| | | |
Collapse
|
17
|
Arshad F, Naikoo GA, Hassan IU, Chava SR, El-Tanani M, Aljabali AA, Tambuwala MM. Bioinspired and Green Synthesis of Silver Nanoparticles for Medical Applications: A Green Perspective. Appl Biochem Biotechnol 2024; 196:3636-3669. [PMID: 37668757 PMCID: PMC11166857 DOI: 10.1007/s12010-023-04719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Silver nanoparticles (AgNPs) possess unmatched chemical, biological, and physical properties that make them unique compounds as antimicrobial, antifungal, antiviral, and anticancer agents. With the increasing drug resistance, AgNPs serve as promising entities for targeted drug therapy against several bacterial, fungal, and viral components. In addition, AgNPs also serve as successful anticancer agents against several cancers, including breast, prostate, and lung cancers. Several works in recent years have been done towards the development of AgNPs by using plant extracts like flowers, leaves, bark, root, stem, and whole plant parts. The green method of AgNP synthesis thus has several advantages over chemical and physical methods, especially the low cost of synthesis, no toxic byproducts, eco-friendly production pathways, can be easily regenerated, and the bio-reducing potential of plant derived nanoparticles. Furthermore, AgNPs are biocompatible and do not harm normally functioning human or host cells. This review provides an exhaustive overview and potential of green synthesized AgNPs that can be used as antimicrobial, antifungal, antiviral, and anticancer agents. After a brief introduction, we discussed the recent studies on the development of AgNPs from different plant extracts, including leaf parts, seeds, flowers, stems, bark, root, and whole plants. In the following section, we highlighted the different therapeutic actions of AgNPs against various bacteria, fungi, viruses, and cancers, including breast, prostate, and lung cancers. We then highlighted the general mechanism of action of AgNPs. The advantages of the green synthesis method over chemical and physical methods were then discussed in the article. Finally, we concluded the review by providing future perspectives on this promising field in nanotechnology.
Collapse
Affiliation(s)
- Fareeha Arshad
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, PC 211, Oman
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, PC 211, Oman.
| | - Israr U Hassan
- College of Engineering, Dhofar University, Salalah, PC 211, Oman
| | | | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
18
|
Ozdal OG. Green synthesis of Ag, Se, and Ag 2Se nanoparticles by Pseudomonas aeruginosa: characterization and their biological and photocatalytic applications. Folia Microbiol (Praha) 2024; 69:625-638. [PMID: 37917276 DOI: 10.1007/s12223-023-01100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Nanoparticles have drawn significant interest in a range of applications, ranging from biomedical to environmental sciences, due to their distinctive physicochemical characteristics. In this study, it was reported that simple biological production of Ag, Se, and bimetallic Ag2Se nanoparticles (NPs) with Pseudomonas aeruginosa is a promising, low-cost, and environmentally friendly method. For the first time in the scientific literature, Ag2Se nanoparticles have been generated via green bacterial biosynthesis. UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and EDX were used to characterize the produced NPs. Biosynthesized NPs were examined for antibacterial, antibiofilm, and photocatalytic properties, and it was determined that the effects of NPs were dose dependent. The biosynthesized AgNPs, SeNPs, and Ag2Se NPs showed anti-microbial activity against Escherichia coli and Staphylococcus aureus. Minimal inhibitory concentrations (MICs) of E. coli and S. aureus were between 150 and 250 µg/mL. The NPs showed antibiofilm activity against E. coli and S. aureus at sub-MIC levels and reduced biofilm formation by at least 80% at a concentration of 200 µg/mL of each NPs. To photocatalyze the breakdown of Congo red, Ag, Se, and Ag2Se NPs were utilized, and their photocatalytic activity was tested at various concentrations and intervals. A minor decrease of photocatalytic degradation was detected throughout the NPs reuse operation (five cycles). Based on the encouraging findings, the synthesized NPs demonstrated antibacterial, antibiofilm, and photocatalytic properties, suggesting that they might be used in pharmaceutical, medical, environmental, and other applications.
Collapse
Affiliation(s)
- Ozlem Gur Ozdal
- Department of Biology, Science Faculty, Ataturk University, 25240, Erzurum, Turkey.
- Koprukoy Anatolian High School, Erzurum, Turkey.
| |
Collapse
|
19
|
Mal S, Chakraborty S, Mahapatra M, Pakeeraiah K, Das S, Paidesetty SK, Roy P. Tackling breast cancer with gold nanoparticles: twinning synthesis and particle engineering with efficacy. NANOSCALE ADVANCES 2024; 6:2766-2812. [PMID: 38817429 PMCID: PMC11134266 DOI: 10.1039/d3na00988b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/10/2024] [Indexed: 06/01/2024]
Abstract
The World Health Organization identifies breast cancer as the most prevalent cancer despite predominantly affecting women. Surgery, hormonal therapy, chemotherapy, and radiation therapy are the current treatment modalities. Site-directed nanotherapeutics, engineered with multidimensional functionality are now the frontrunners in breast cancer diagnosis and treatment. Gold nanoparticles with their unique colloidal, optical, quantum, magnetic, mechanical, and electrical properties have become the most valuable weapon in this arsenal. Their advantages include facile modulation of shape and size, a high degree of reproducibility and stability, biocompatibility, and ease of particle engineering to induce multifunctionality. Additionally, the surface plasmon oscillation and high atomic number of gold provide distinct advantages for tailor-made diagnosis, therapy or theranostic applications in breast cancer such as photothermal therapy, radiotherapy, molecular labeling, imaging, and sensing. Although pre-clinical and clinical data are promising for nano-dimensional gold, their clinical translation is hampered by toxicity signs in major organs like the liver, kidneys and spleen. This has instigated global scientific brainstorming to explore feasible particle synthesis and engineering techniques to simultaneously improve the efficacy and versatility and widen the safety window of gold nanoparticles. The present work marks the first study on gold nanoparticle design and maneuvering techniques, elucidating their impact on the pharmacodynamics character and providing a clear-cut scientific roadmap for their fast-track entry into clinical practice.
Collapse
Affiliation(s)
- Suvadeep Mal
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | | | - Monalisa Mahapatra
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Suvadra Das
- Basic Science and Humanities Department, University of Engineering and Management Action Area III, B/5, Newtown Kolkata West Bengal 700160 India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Partha Roy
- GITAM School of Pharmacy, GITAM (Deemed to be University) Vishakhapatnam 530045 India
| |
Collapse
|
20
|
Petrovic S, Bita B, Barbinta-Patrascu ME. Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives. Int J Mol Sci 2024; 25:5842. [PMID: 38892030 PMCID: PMC11172476 DOI: 10.3390/ijms25115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the "green" design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section.
Collapse
Affiliation(s)
- Sanja Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| |
Collapse
|
21
|
Morgan RN, Aboshanab KM. Green biologically synthesized metal nanoparticles: biological applications, optimizations and future prospects. Future Sci OA 2024; 10:FSO935. [PMID: 38817383 PMCID: PMC11137799 DOI: 10.2144/fsoa-2023-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 06/01/2024] Open
Abstract
In green biological synthesis, metal nanoparticles are produced by plants or microorganisms. Since it is ecologically friendly, economically viable and sustainable, this method is preferable to other traditional ones. For their continuous groundbreaking advancements and myriad physiochemical and biological benefits, nanotechnologies have influenced various aspects of scientific fields. Metal nanoparticles (MNPs) are the field anchor for their outstanding optical, electrical and chemical capabilities that outperform their regular-sized counterparts. This review discusses the most current biosynthesized metal nanoparticles synthesized by various organisms and their biological applications along with the key elements involved in MNP green synthesis. The review is displayed in a manner that will impart assertiveness, help the researchers to open questions, and highlight many points for conducting future research.
Collapse
Affiliation(s)
- Radwa N Morgan
- National Centre for Radiation Research & Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Khaled M Aboshanab
- Microbiology & Immunology Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
22
|
Ahmad S, Ahmad S, Ali S, Esa M, Khan A, Yan H. Recent Advancements and Unexplored Biomedical Applications of Green Synthesized Ag and Au Nanoparticles: A Review. Int J Nanomedicine 2024; 19:3187-3215. [PMID: 38590511 PMCID: PMC10999736 DOI: 10.2147/ijn.s453775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Green synthesis of silver (Ag) and gold (Au) nanoparticles (NPs) has acquired huge popularity owing to their potential applications in various fields. A large number of research articles exist in the literature describing the green synthesis of Ag and Au NPs for biomedical applications. However, these findings are scattered, making it time-consuming for researchers to locate promising advancements in Ag and Au NPs synthesis and their unexplored biomedical applications. Unlike other review articles, this systematic study not only highlights recent advancements in the green synthesis of Ag and Au NPs but also explores their potential unexplored biomedical applications. The article discusses the various synthesis approaches for the green synthesis of Ag and Au NPs highlighting the emerging developments and novel strategies. Then, the article reviews the important biomedical applications of green synthesized Ag and Au NPs by critically evaluating the expected advantages. To expose future research direction in the field, the article describes the unexplored biomedical applications of the NPs. Finally, the articles discuss the challenges and limitations in the green synthesis of Ag and Au NPs and their biomedical applications. This article will serve as a valuable reference for researchers, working on green synthesis of Ag and Au NPs for biomedical applications.
Collapse
Affiliation(s)
- Shahbaz Ahmad
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Muhammad Esa
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - Ajmal Khan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| |
Collapse
|
23
|
Summer M, Ali S, Tahir HM, Abaidullah R, Fiaz U, Mumtaz S, Fiaz H, Hassan A, Mughal TA, Farooq MA. Mode of Action of Biogenic Silver, Zinc, Copper, Titanium and Cobalt Nanoparticles Against Antibiotics Resistant Pathogens. J Inorg Organomet Polym Mater 2024; 34:1417-1451. [DOI: 10.1007/s10904-023-02935-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 08/04/2024]
|
24
|
Mo W, Yao C, Chen H, Nassor AK, Gui F, Hong C, Huang T, Guan X, Xu L, Pan X. Biosynthesis of high antibacterial silver chloride nanoparticles against Ralstonia solanacearum using spent mushroom substrate extract. NANO EXPRESS 2024; 5:015020. [DOI: 10.1088/2632-959x/ad2b81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
In this study, a green and highly efficient method was proposed to synthesize nano-silver chloride (nano-AgCl) using spent mushroom substrate (SMS) extract as a cheap reactant. Nanoparticles were characterized by a series of techniques like x-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), which showed the formation of near-spherical silver chloride nanoparticles with an average size of about 8.30 nm. Notably, the synthesized nano-silver chloride has a more prominent antibacterial effect against Ralstonia solanacearum (EC50 = 5.18 mg L−1) than non-nano-sized silver chloride particles, nano-silver chloride synthesized by chemical method, and commercial pesticides. In-depth, the study of the mechanism revealed that nano-silver chloride could cause cell membrane disruption, DNA damage and intracellular generation of reactive oxygen species (·OH, ·O2− and 1O2), leading to peroxidation damage in Ralstonia solanacearum (R. solanacearum). Moreover, the reaction between nano-silver chloride and bacteria could be driven by intermolecular forces instead of electrostatic interactions. Our study provides a new approach to synthesizing nano-silver chloride as a highly efficient antibacterial agent and broadens the utilization of agricultural waste spent mushroom substrate.
Collapse
|
25
|
Y Ghareeb R, Belal EB, El-Khateeb NMM, Shreef BA. Utilizing bio-synthesis of nanomaterials as biological agents for controlling soil-borne diseases in pepper plants: root-knot nematodes and root rot fungus. BMC PLANT BIOLOGY 2024; 24:110. [PMID: 38355449 PMCID: PMC10868094 DOI: 10.1186/s12870-024-04760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
The utilization of Trichoderma longibrachiatum filtrate as a safe biocontrol method for producing zinc nanoparticles is a promising approach for managing pests and diseases in agricultural crops. The identification of Trichoderma sp. was achieved through PCR amplification and sequencing of 18s as ON203115, while the synthesis of ZnO-NPs was accomplished by employing Trichoderma filtration. The presence of ZnO-NPs was confirmed by observing a color change to dark green, along with the use of visible and UV spectrophotometers, and the formation and chemical structure of ZnO-NPs were examined. Direct exposure to ZnO-NPs exhibited a significant inhibitory effect on the growth of Fusarium oxysporum at 80.73% compared with control. Also, the percent mortality of Meloidogyne incognita second juveniles stage (J2s) results showed 11.82%, 37.63%, 40.86%, and 89.65% after 6, 12, 24, and 72 h, respectively in vitro. Disease resistance was assessed in the greenhouse against M. incognita and F. oxysporum using the drench application of ZnO-NPs. The application of ZnO-NPs significantly reduced the disease severity of F. oxysporum and improved the quality and quantity of sweet pepper yield. In addition, the application of ZnO-NPs to M. incognita resulted in a significant reduction in the number of nematode galls, egg masses per root, eggs/egg mass, and females by 98%, 99%, 99.9%, and 95.5% respectively.Furthermore, it was observed that the application of ZnO-NPs to pepper plants not only inhibited the growth of F. oxysporum and M. incognita, but also promoted the recovery of pepper plants as indicated by improvements in stem length by 106%, root length 102%, fresh weight 112%, root fresh weight 107%, and leaf area 118% compared to healthy control plants. Additionally, real-time PCR application and DD-PCR technique revealed that the application of ZnO-NPs stimulated the secretion of certain enzymes. These findings suggest that the biosynthesized ZnO-NPs possess anti-nematode and antifungal properties, making them effective for protecting plants against M. incognita and F. oxysporum invasion in soil. This study significantly contributes to our understanding of the nematicidal and fungicidal activities of ZnO-NPs in suppressing soil-borne diseases.
Collapse
Affiliation(s)
- Rehab Y Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SARTA, City), Alexandria, Egypt.
| | - Elsayed B Belal
- Agricultural Microbiology, Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafr El-Sheikh, Egypt
| | - Nagwa M M El-Khateeb
- Agricultural Microbiology, Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafr El-Sheikh, Egypt
| | - Basma A Shreef
- Agricultural Microbiology, Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafr El-Sheikh, Egypt
| |
Collapse
|
26
|
Bansal S, Singh A, Poddar D, Thakur S, Jain P. A review on green approaches utilizing phytochemicals in the synthesis of vanadium nano particles and their applications. Prep Biochem Biotechnol 2024; 54:127-149. [PMID: 37530797 DOI: 10.1080/10826068.2023.2214916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
In the modern era, inorganic nanoparticles have received profound attention as they possess boundless applications in various fields. Among these, vanadium-based nanoparticles (VNPs) are highly remarkable due to their inherent physiological and biological properties with many therapeutic and other applications, such as drug delivery systems for diseases like cancer, environmental remediation, energy storage, energy conversion, and photocatalysis. Moreover, physically, and chemically synthesized VNPs are very versatile, however, these synthesis routes cause concern to health and the environment due to the highly savage reaction conditions, using highly toxic and harsh chemicals, which compel the researchers to develop an eco-friendly, greener, and sustainable route for synthesis. In this outlook, to avoid the innumerable limitations, a bio approach is used over chemical and physical methods. This present review emphasis on the role of various biological components in the synthesis, especially Phyto-molecules that acts as capping and reducing agent, and solvent system for the nanoparticles synthesis. Furthermore, the influence of various factors on the biogenic synthesized nanoparticles has also been discussed. Finally, potential applications of as-synthesized VNPs, principally as an antimicrobial agent and their role as a nanomedicine, energy applications as a supercapacitor, and photocatalytic agents, have been discussed.
Collapse
Affiliation(s)
- Smriti Bansal
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Dwarka, New Delhi, India
| | - Ankita Singh
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Dwarka, New Delhi, India
| | - Deepak Poddar
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Dwarka, New Delhi, India
| | - Sanjeeve Thakur
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Dwarka, New Delhi, India
| | - Purnima Jain
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Dwarka, New Delhi, India
| |
Collapse
|
27
|
El-Sayed AIM, El-Sheekh MM, Abo-Neima SE. Mycosynthesis of selenium nanoparticles using Penicillium tardochrysogenum as a therapeutic agent and their combination with infrared irradiation against Ehrlich carcinoma. Sci Rep 2024; 14:2547. [PMID: 38291218 PMCID: PMC10827740 DOI: 10.1038/s41598-024-52982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
Over the past years, the assessment of myco-fabricated selenium nanoparticles (SeNPs) properties, is still in its infancy. Herein, we have highly stable myco-synthesized SeNPs using molecularly identified soil-isolated fungus; Penicillium tardochrysogenum OR059437; (PeSeNPs) were clarified via TEM, EDX, UV-Vis spectrophotometer, FTIR and zeta potential. The therapeutic efficacy profile will be determined, these crystalline PeSeNPs were examined for antioxidant, antimicrobial, MIC, and anticancer potentials, indicating that, PeSeNPs have antioxidant activity of (IC50, 109.11 μg/mL) using DPPH free radical scavenging assay. Also, PeSeNPs possess antimicrobial potential against Penicillium italicum RCMB 001,018 (1) IMI 193,019, Methicillin-Resistant Staphylococcus aureus (MRSA) ATCC 4330 and Porphyromonas gingivalis RCMB 022,001 (1) EMCC 1699; with I.Z. diameters and MIC; 16 ± 0.5 mm and MIC 500 µg/ml, 11.9 ± 0.6 mm, 500 µg/ml and 15.9±0.6 mm, 1000 µg/ml, respectively. Additionally, TEM micrographs were taken for P. italicum treated with PeSeNPs, demonstrating the destruction of hyphal membrane and internal organelles integrity, pores formation, and cell death. PeSeNP alone in vivo and combined with a near-infrared physiotherapy lamp with an energy intensity of 140 mW/cm2 showed a strong therapeutic effect against cancer cells. Thus, PeSeNPs represent anticancer agents and a suitable photothermal option for treating different kinds of cancer cells with lower toxicity and higher efficiency than normal cells. The combination therapy showed a very large and significant reduction in tumor volume, the tumor cells showed large necrosis, shrank, and disappeared. There was also improvement in liver ultrastructure, liver enzymes, and histology, as well as renal function, urea, and creatinine.
Collapse
Affiliation(s)
- Abeer I M El-Sayed
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Sahar E Abo-Neima
- Physics Department, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt
| |
Collapse
|
28
|
Dhir S, Bhatt S, Chauhan M, Garg V, Dutt R, Verma R. An Overview of Metallic Nanoparticles: Classification, Synthesis, Applications, and their Patents. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:415-432. [PMID: 37680162 DOI: 10.2174/1872210517666230901114421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Nanotechnology has gained enormous attention in pharmaceutical research. Nanotechnology is used in the development of nanoparticles with sizes ranging from 1-100 nm, with several extraordinary features. Metallic nanoparticles (MNPs) are used in various areas, such as molecular biology, biosensors, bio imaging, biomedical devices, diagnosis, pharmaceuticals, etc., for their specific applications. METHODOLOGY For this study, we have performed a systematic search and screening of the literature and identified the articles and patents focusing on various physical, chemical, and biological methods for the synthesis of metal nanoparticles and their pharmaceutical applications. RESULTS A total of 174 references have been included in this present review, of which 23 references for recent patents were included. Then, 29 papers were shortlisted to describe the advantages, disadvantages, and physical and chemical methods for their synthesis, and 28 articles were selected to provide the data for biological methods for the formulation of metal NPs from bacteria, algae, fungi, and plants with their extensive synthetic procedures. Moreover, 27 articles outlined various clinical applications of metal NPs due to their antimicrobial and anticancer activities and their use in drug delivery. CONCLUSION Several reviews are available on the synthesis of metal nanoparticles and their pharmaceutical applications. However, this review provides updated research data along with the various methods employed for their development. It also summarizes their various advantages and clinical applications (anticancer, antimicrobial drug delivery, and many others) for various phytoconstituents. The overview of earlier patents by several scientists in the arena of metallic nanoparticle preparation and formulation is also presented. This review will be helpful in increasing the current knowledge and will also inspire to innovation of nanoparticles for the precise and targeted delivery of phytoconstituents for the treatment of several diseases.
Collapse
Affiliation(s)
- Sarika Dhir
- B.S. Anangpuria Institute of Pharmacy, Faridabad, 121004, India
| | - Shailendra Bhatt
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram, 122103, Haryana, India
| | - Mahima Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Rohit Dutt
- Gandhi Memorial National College, Ambala Cantt, 133001, India
| | - Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| |
Collapse
|
29
|
Sharma R, Sharma N, Prashar A, Hansa A, Asgari Lajayer B, Price GW. Unraveling the plethora of toxicological implications of nanoparticles on living organisms and recent insights into different remediation strategies: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167697. [PMID: 37832694 DOI: 10.1016/j.scitotenv.2023.167697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Increased use of nanoscale particles have benefited many industries, including medicine, electronics, and environmental cleaning. These particles provide higher material performance, greater reactivity, and improved drug delivery. However, the main concern is the generation of nanowastes that can spread in different environmental matrices, posing threat to our environment and human health. Nanoparticles (NPs) have the potential to enter the food chain through a variety of pathways, including agriculture, food processing, packaging, and environmental contamination. These particles can negatively impact plant and animal physiology and growth. Due to the assessment of their environmental damage, nanoparticles are the particles of size between 1 and 100 nm that is the recent topic to be discussed. Nanoparticles' absorption, distribution, and toxicity to plants and animals can all be significantly influenced by their size, shape, and surface chemistry. Due to their absorptive capacity and potential to combine with other harmful substances, they can alter the metabolic pathways of living organisms. Nevertheless, despite the continuous research and availability of data, there are still knowledge gaps related to the ecotoxicology, prevalence and workable ways to address the impact of nanoparticles. This review focuses on the impact of nanoparticles on different organisms and the application of advanced techniques to remediate ecosystems using hyperaccumulator plant species. Future considerations are explored around nano-phytoremediation, as an eco-friendly, convenient and cost effective technology that can be applied at field scales.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India.
| | - Nindhia Sharma
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Abhinav Prashar
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Abish Hansa
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | | | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
30
|
Elshaer S, Shaaban MI. Antibiofilm activity of biosynthesized silver and copper nanoparticles using Streptomyces S29. AMB Express 2023; 13:139. [PMID: 38055099 DOI: 10.1186/s13568-023-01647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
Microbial resistance and biofilm formation have been considered as the main problems associated with microbial resistance. Several antimicrobial agents cannot penetrate biofilm layers and cannot eradicate microbial infection. Therefore, the aim of this study is the biological synthesis of silver and copper nanoparticles to assess their activities on bacterial attachment and on the viability of dormant cells within the biofilm matrix. Ag-NPs and Cu-NPs were biosynthesized using Streptomyces isolate S29. The biologically synthesized Ag-NPs and Cu-NPs exhibited brown and blue colors and were detected by UV/Vis spectrophotometry at 476 and 594 nm, respectively. The Ag-NPs showed an average size of 10-20 nm as indicated by TEM, and 25-35 nm for Cu-NPs. Both Ag-NPs and Cu-NPs were monodispersed with a polydispersity index of 0.1-0.546 and zeta potential were - 29.7, and - 33.7 mv, respectively. The biologically synthesized Ag-NPs and Cu-NPs significantly eliminated bacterial attachment and decreased the viable cells in the biofilm matrix as detected by using crystal violet and tri-phenyl tetrazolium chloride assays. Furthermore, Ag-NPs and Cu-NPs significantly eradicated mature biofilms developed by various Gram-negative pathogens, including A. baumannii, K. pneumoniae and P. aeruginosa standard strains and clinical isolates. Data were also confirmed at the molecular level with prominent elimination of biofilm gene expression carO, bssS and pelA in A. baumannii, K. pneumoniae and P. aeruginosa, respectively compared to untreated cells under the same conditions. As indicated, Ag-NPs and Cu-NPs could be used as adjuvant therapy in eradication of antibiotic resistance and biofilm matrix associated with Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Soha Elshaer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mona I Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
31
|
Zúñiga-Miranda J, Guerra J, Mueller A, Mayorga-Ramos A, Carrera-Pacheco SE, Barba-Ostria C, Heredia-Moya J, Guamán LP. Iron Oxide Nanoparticles: Green Synthesis and Their Antimicrobial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2919. [PMID: 37999273 PMCID: PMC10674528 DOI: 10.3390/nano13222919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
The rise of antimicrobial resistance caused by inappropriate use of these agents in various settings has become a global health threat. Nanotechnology offers the potential for the synthesis of nanoparticles (NPs) with antimicrobial activity, such as iron oxide nanoparticles (IONPs). The use of IONPs is a promising way to overcome antimicrobial resistance or pathogenicity because of their ability to interact with several biological molecules and to inhibit microbial growth. In this review, we outline the pivotal findings over the past decade concerning methods for the green synthesis of IONPs using bacteria, fungi, plants, and organic waste. Subsequently, we delve into the primary challenges encountered in green synthesis utilizing diverse organisms and organic materials. Furthermore, we compile the most common methods employed for the characterization of these IONPs. To conclude, we highlight the applications of these IONPs as promising antibacterial, antifungal, antiparasitic, and antiviral agents.
Collapse
Affiliation(s)
- Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Julio Guerra
- Facultad de Ingeniería en Ciencias Aplicadas, Universidad Técnica del Norte, Ibarra 100107, Ecuador;
| | - Alexander Mueller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA;
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| |
Collapse
|
32
|
Daniel AI, Keyster M, Klein A. Biogenic zinc oxide nanoparticles: A viable agricultural tool to control plant pathogenic fungi and its potential effects on soil and plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165483. [PMID: 37442458 DOI: 10.1016/j.scitotenv.2023.165483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Fungal and bacterial pathogens represent some of the greatest challenges facing crop production globally and account for about 20-40 % crop losses annually. This review highlights the use of ZnO NPs as antimicrobial agents and explores their mechanisms of actions against disease causing plant fungal pathogens. The behavior of ZnO NPs in soil and their interactions with the soil components were also highlighted. The review discusses the potential effects of ZnO NPs on plants and their mechanisms of action on plants and how these mechanisms are related to their physicochemical properties. In addition, the reduction of ZnO NPs toxicity through surface modification and coating with silica is also addressed. Soil properties play a significant role in the dispersal, aggregation, stability, bioavailability, and transport of ZnO NPs and their release into the soil. The transport of ZnO NPs into the soil might influence soil components and, as a result, plant physiology. The harmful effects of ZnO NPs on plants and fungi are caused by a variety of processes, the most important of which is the formation of reactive oxygen species, lysosomal instability, DNA damage, and the reduction of oxidative stress by direct penetration/liberation of Zn2+ ions in plant/fungal cells. Based on these highlighted areas, this review concludes that ZnO NPs exhibit its antifungal activity via generations of reactive oxygen species, coupled with the inhibition of various metabolic pathways. Despite the numerous advantages of ZnO NPs, there is need to regulate its uses to minimize the harmful effects that may arise from its applications in the soil and plants.
Collapse
Affiliation(s)
- Augustine Innalegwu Daniel
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa; Department of Biochemistry, Federal University of Technology, P.M.B 65, Minna, Niger State, Nigeria.
| | - Marshall Keyster
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.
| | - Ashwil Klein
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.
| |
Collapse
|
33
|
Yousefzadeh-Valendeh S, Fattahi M, Asghari B, Alizadeh Z. Dandelion flower-fabricated Ag nanoparticles versus synthetic ones with characterization and determination of photocatalytic, antioxidant, antibacterial, and α-glucosidase inhibitory activities. Sci Rep 2023; 13:15444. [PMID: 37723218 PMCID: PMC10507034 DOI: 10.1038/s41598-023-42756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023] Open
Abstract
In the present work, Silver nanoparticles (AgNPs) were fabricated through the dandelion flower hydroalcoholic extract, and their properties were characterized by FTIR, XRD, UV visible, SEM, and EDX. The results demonstrated that the average diameter of the green fabricated AgNPs is 45-55 nm (G-AgNPs). The antioxidant, antimicrobial, antidiabetic, and photocatalytic properties of G-AgNPs were compared with two commercially available different diameter sizes (20 and 80-100 nm) of AgNPs (C-AgNPs1- and C-AgNPs2, respectively). The sample's capacity for antioxidants was evaluated by DPPH free radical scavenging method. The consequences showed that G-AgNPs have higher radical scavenging activity (47.8%) than C-AgNPs2 (39.49%) and C-AgNPs1 (33.91%). To investigate the photocatalytic property, methylene blue dye was used. The results displayed that G-AgNPs is an effective photo-catalyst compared to C-AgNPs2 and C-AgNPs1, which respectively have an inhibition potential of 75.22, 51.94, and 56.65%. Also, the antimicrobial capacity of nanoparticles was assayed against, the gram-negative Escherichia coli and gram-positive Staphylococcus aureus bacteria. The results indicated that G-AgNPs could effectively inhibit the growth of both bacteria, compared to C-AgNPs1 and C-AgNPs2. Finally, G-AgNPs exhibited a considerable α-glucosidase enzyme inhibitory effect (88.37%) in comparison with C-AgNPs1 (61.7%) and C-AgNPs2 (50.5%).
Collapse
Affiliation(s)
| | - Mohammad Fattahi
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Behvar Asghari
- Department of Horticultural Sciences Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Zeinab Alizadeh
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
34
|
Loshchinina EA, Vetchinkina EP, Kupryashina MA. Diversity of Mycogenic Oxide and Chalcogenide Nanoparticles: A Review. Biomimetics (Basel) 2023; 8:224. [PMID: 37366819 DOI: 10.3390/biomimetics8020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Oxide and chalcogenide nanoparticles have great potential for use in biomedicine, engineering, agriculture, environmental protection, and other research fields. The myco-synthesis of nanoparticles with fungal cultures, their metabolites, culture liquids, and mycelial and fruit body extracts is simple, cheap and environmentally friendly. The characteristics of nanoparticles, including their size, shape, homogeneity, stability, physical properties and biological activity, can be tuned by changing the myco-synthesis conditions. This review summarizes the data on the diversity of oxide and chalcogenide nanoparticles produced by various fungal species under different experimental conditions.
Collapse
Affiliation(s)
- Ekaterina A Loshchinina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Elena P Vetchinkina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Maria A Kupryashina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
35
|
Rana A, Pathak S, Lim DK, Kim SK, Srivastava R, Sharma SN, Verma R. Recent Advancements in Plant- and Microbe-Mediated Synthesis of Metal and Metal Oxide Nanomaterials and Their Emerging Antimicrobial Applications. ACS APPLIED NANO MATERIALS 2023; 6:8106-8134. [DOI: 10.1021/acsanm.3c01351] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Archana Rana
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Saurabh Pathak
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, South Korea
| | - Sang-Koog Kim
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
| | - Ritu Srivastava
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Shailesh Narain Sharma
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Rajni Verma
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
36
|
Padmakumar A, Pavani C, Eswar K, Kong L, Yang W, Gopalakrishnan S, Cahill DM, Rengan AK. Bacteria-Premised Nanobiopesticides for the Management of Phytopathogens and Pests. ACS AGRICULTURAL SCIENCE & TECHNOLOGY 2023; 3:370-388. [DOI: 10.1021/acsagscitech.3c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Ananya Padmakumar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
- Deakin University, Institute for Frontier Materials, Geelong, Victoria 3216, Australia
| | - Chowdary Pavani
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Kalyani Eswar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Lingxue Kong
- Deakin University, Institute for Frontier Materials, Geelong, Victoria 3216, Australia
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216 Australia
| | | | - David Miles Cahill
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216 Australia
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| |
Collapse
|
37
|
Malik AQ, Mir TUG, Kumar D, Mir IA, Rashid A, Ayoub M, Shukla S. A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27437-9. [PMID: 37171732 DOI: 10.1007/s11356-023-27437-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Green synthesis of nanoparticles (NPs) using plant materials and microorganisms has evolved as a sustainable alternative to conventional techniques that rely on toxic chemicals. Recently, green-synthesized eco-friendly NPs have attracted interest for their potential use in various biological applications. Several studies have demonstrated that green-synthesized NPs are beneficial in multiple medicinal applications, including cancer treatment, targeted drug delivery, and wound healing. Additionally, due to their photodegradation activity, green-synthesized NPs are a promising tool in environmental remediation. Photodegradation is a process that uses light and a photocatalyst to turn a pollutant into a harmless product. Green NPs have been found efficient in degrading pollutants such as dyes, herbicides, and heavy metals. The use of microbes and flora in green synthesis technology for nanoparticle synthesis is biologically safe, cost-effective, and eco-friendly. Plants and microbes can now use and accumulate inorganic metallic ions in the environment. Various NPs have been synthesized via the bio-reduction of biological entities or their extracts. There are several biological and environmental uses for biologically synthesized metallic NPs, such as photocatalysis, adsorption, and water purification. Since the last decade, the green synthesis of NPs has gained significant interest in the scientific community. Therefore, there is a need for a review that serves as a one-stop resource that points to relevant and recent studies on the green synthesis of NPs and their biological and photocatalytic efficiency. This review focuses on the green fabrication of NPs utilizing diverse biological systems and their applications in biological and photodegradation processes.
Collapse
Affiliation(s)
- Azad Qayoom Malik
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411.
| | - Tahir Ul Gani Mir
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Deepak Kumar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Irtiqa Ashraf Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Adfar Rashid
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Mehnaz Ayoub
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Saurabh Shukla
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| |
Collapse
|
38
|
Raj R, Bhattu M, Verma M, Acevedo R, Duc ND, Singh J. Biogenic silver based nanostructures: Synthesis, mechanistic approach and biological applications. ENVIRONMENTAL RESEARCH 2023; 231:116045. [PMID: 37146935 DOI: 10.1016/j.envres.2023.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
The alarming impact of antibiotic resistance sparked the quest for complementary treatments to overcome the confrontation over resistant pathogens. Metallic nanoparticles, especially silver nanoparticles (Ag NPs) have gained a much attention because of their remarkable biological characteristics. Moreover, their medicinal properties can be enhanced by preparing the composites with other materials. This article delves a comprehensive review of biosynthesis route for Ag NPs and their nanocomposites (NCs) with in-depth mechanism, methods and favorable experimental parameters. Comprehensive biological features Ag NPs such as antibacterial, antiviral, antifungal have been examined, with a focus on their potential uses in biomedicine and diagnostics has also been discussed. Additionally, we have also explored the hitches and potential outcomes of biosynthesis of Ag NPs in biomedical filed.
Collapse
Affiliation(s)
- Riya Raj
- Department of Biochemistry, Bangalore University, Mysore Rd, Jnana Bharathi, Bengaluru, Karnataka, 560056, India
| | - Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Meenakshi Verma
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Roberto Acevedo
- San Sebastián University.Santiago, Campus Bellavista 7, Chile
| | - Nguyen D Duc
- Department of Environmental Energy Engineering, Kyonggi University, South Korea
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| |
Collapse
|
39
|
Hossain N, Mobarak MH, Hossain A, Khan F, Mim JJ, Chowdhury MA. Advances of plant and biomass extracted zirconium nanoparticles in dental implant application. Heliyon 2023; 9:e15973. [PMID: 37215906 PMCID: PMC10192772 DOI: 10.1016/j.heliyon.2023.e15973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Nanoparticles are minimal materials with unique physicochemical features that set them apart from bulk materials of the same composition. These properties make nanoparticles highly desirable for use in commercial and medical research. The primary intention for the development of nanotechnology is to achieve overarching social objectives like bettering our understanding of nature, boosting productivity, improving healthcare, and extending the bounds of sustainable development and human potential. Keeping this as a motivation, Zirconia nanoparticles are becoming the preferred nanostructure for modern biomedical applications. This nanotechnology is exceptionally versatile and has several potential uses in dental research. This review paper concentrated on the various benefits of zirconium nanoparticles in dentistry and how they provide superior strength and flexibility compared to their counterparts. Moreover, the popularity of zirconium nanoparticles is also growing as it has strong biocompatibility potency. Zirconium nanoparticles can be used to develop or address the major difficulty in dentistry. Therefore, this review paper aims to provide a summary of the fundamental research and applications of zirconium nanoparticles in dental implants.
Collapse
Affiliation(s)
- Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Hosne Mobarak
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Amran Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Fardin Khan
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Juhi Jannat Mim
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mohammad Asaduzzaman Chowdhury
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, Gazipur, 1707, Bangladesh
| |
Collapse
|
40
|
Qiao R, Fu C, Forgham H, Javed I, Huang X, Zhu J, Whittaker AK, Davis TP. Magnetic Iron Oxide Nanoparticles for Brain Imaging and Drug Delivery. Adv Drug Deliv Rev 2023; 197:114822. [PMID: 37086918 DOI: 10.1016/j.addr.2023.114822] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/14/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
Central nervous system (CNS) disorders affect as many as 1.5 billion people globally. The limited delivery of most imaging and therapeutic agents into the brain is a major challenge for treatment of CNS disorders. With the advent of nanotechnologies, controlled delivery of drugs with nanoparticles holds great promise in CNS disorders for overcoming the blood-brain barrier (BBB) and improving delivery efficacy. In recent years, magnetic iron oxide nanoparticles (MIONPs) have stood out as a promising theranostic nanoplatform for brain imaging and drug delivery as they possess unique physical properties and biodegradable characteristics. In this review, we summarize the recent advances in MIONP-based platforms as imaging and drug delivery agents for brain diseases. We firstly introduce the methods of synthesis and surface functionalization of MIONPs with emphasis on the inclusion of biocompatible polymers that allow for the addition of tailored physicochemical properties. We then discuss the recent advances in in vivo imaging and drug delivery applications using MIONPs. Finally, we present a perspective on the remaining challenges and possible future directions for MIONP-based brain delivery systems.
Collapse
Affiliation(s)
- Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Thomas P Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
41
|
Rokkarukala S, Cherian T, Ragavendran C, Mohanraju R, Kamaraj C, Almoshari Y, Albariqi A, Sultan MH, Alsalhi A, Mohan S. One-pot green synthesis of gold nanoparticles using Sarcophyton crassocaule, a marine soft coral: Assessing biological potentialities of antibacterial, antioxidant, anti-diabetic and catalytic degradation of toxic organic pollutants. Heliyon 2023; 9:e14668. [PMID: 36994394 PMCID: PMC10040709 DOI: 10.1016/j.heliyon.2023.e14668] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Marine bio-resources are being extensively researched as a priceless supply of substances with therapeutic potential. This work report the first time attempt made towards the green synthesis of gold nanoparticles (AuNPs) using the aqueous extract of marine soft coral (SCE), Sarcophyton crassocaule. The synthesis was conducted under optimized conditions and the visual coloration of reaction mixture changed from yellowish to ruby red at 540 nm. The electron microscopic (TEM, SEM) studies exhibited spherical and oval shaped SCE-AuNPs in the size ranges of 5–50 nm. The organic compounds present in SCE were primarily responsible for the biological reduction of gold ions validated by FT-IR while the zeta potential confirmed the overall stability of SCE-AuNPs. The synthesized SCE-AuNPs exhibited variety of biological efficacies like antibacterial, antioxidant and anti-diabetic in nature. The biosynthesized SCE-AuNPs demonstrated remarkable bactericidal efficacy against clinically significant bacterial pathogens with inhibition zones of mm. Additionally, SCE-AuNPs exhibited greater antioxidant capacity in terms of DPPH: 85 ± 0.32% and RP: 82 ± 0.41%). The ability of enzyme inhibition assays to inhibit α-amylase (68 ± 0.21%) and α-glucosidase (79 ± 0.2%) was quite high. The study also highlighted the spectroscopic analysis of the biosynthesized SCE-AuNPs' catalytic effectiveness of 91% in the reduction processes of the perilous organic dyes, exhibiting pseudo-first order kinetics.
Collapse
Affiliation(s)
- Samson Rokkarukala
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair campus, Brookshabad, Port Blair, Andamans- 744112
| | - Tijo Cherian
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair campus, Brookshabad, Port Blair, Andamans- 744112
- Corresponding author.
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Raju Mohanraju
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair campus, Brookshabad, Port Blair, Andamans- 744112
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Drug Testing Laboratory, Directorate of Research, SRM Institute Science and Technology, Kattankulathur - 603 203, Tamil Nadu, India
| | - Yosif Almoshari
- Department of pharmaceutics, College of pharmacy, Jazan University,P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Ahmed Albariqi
- Department of pharmaceutics, College of pharmacy, Jazan University,P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Muhammad H. Sultan
- Department of pharmaceutics, College of pharmacy, Jazan University,P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Abdullah Alsalhi
- Department of pharmaceutics, College of pharmacy, Jazan University,P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical science, Saveetha University, Chennai, India
- Corresponding author. .
| |
Collapse
|
42
|
Facile biosynthesis of CaO nanoparticles using extract of Tulbaghia violacea and evaluation of their antibacterial and cytotoxicity activity. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
43
|
Waghchaure RH, Adole VA. Biosynthesis of metal and metal oxide nanoparticles using various parts of plants for antibacterial, antifungal and anticancer activity: A review. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
44
|
Mejía-Méndez JL, López-Mena ER, Sánchez-Arreola E. Activities against Lung Cancer of Biosynthesized Silver Nanoparticles: A Review. Biomedicines 2023; 11:389. [PMID: 36830926 PMCID: PMC9953519 DOI: 10.3390/biomedicines11020389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Nanomedicine is an interdisciplinary field where nanostructured objects are applied to treat or diagnose disease. Nanoparticles (NPs) are a special class of materials at nanometric scale that can be prepared from lipids, polymers, or noble metals through bottom-up approaches. Biological synthesis is a reliable, sustainable, and non-toxic bottom-up method that uses phytochemicals, microorganisms, and enzymes to induce the reduction of metal ions into NPs. Silver (Ag) NPs exhibit potent therapeutic properties that can be exploited to overcome the limitations of current treatment modalities for human health issues such as lung cancer (LC). Here, we review the preparation of AgNPs using biological synthesis and their application against LC using in vitro and in vivo models. An overview of the staging, diagnosis, genetic mutations, and treatment of LC, as well as its main subtypes, is presented. A summary of the reaction mechanisms of AgNPs using microbial cell cultures, plant extracts, phytochemicals, and amino acids is included. The use of capping agents in the biosynthesis of AgNPs with anticancer activity is also detailed. The history and biological activities of metal-based nanostructures synthesized with gold, copper, palladium, and platinum are considered. The possible anticancer mechanisms of AgNPs against LC models are covered. Our perspective about the future of AgNPs in LC treatment and nanomedicine is added.
Collapse
Affiliation(s)
- Jorge L. Mejía-Méndez
- Laboratorio de Investigación Fitoquímica, Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| | - Edgar R. López-Mena
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico
| | - Eugenio Sánchez-Arreola
- Laboratorio de Investigación Fitoquímica, Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| |
Collapse
|
45
|
Hermosilla E, Díaz M, Vera J, Contreras MJ, Leal K, Salazar R, Barrientos L, Tortella G, Rubilar O. Synthesis of Antimicrobial Chitosan-Silver Nanoparticles Mediated by Reusable Chitosan Fungal Beads. Int J Mol Sci 2023; 24:ijms24032318. [PMID: 36768640 PMCID: PMC9916930 DOI: 10.3390/ijms24032318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Nanoparticles, especially silver nanoparticles (Ag NPs), have gained significant attention in recent years as potential alternatives to traditional antibiotics for treating infectious diseases due to their ability to inhibit the growth of microorganisms effectively. Ag NPs can be synthesized using fungi extract, but the method is not practical for large-scale production due to time and biomass limitations. In this study, we explore the use of chitosan to encapsulate the mycelia of the white-rot fungus Stereum hirsutum and form chitosan fungal beads for use in multiple extractions and nanoparticle synthesis. The resulting nanoparticles were characterized using various techniques, including UV-vis spectrophotometry, transmission electron microscopy, dynamic light scattering, and X-ray diffraction analysis. The analysis revealed that the synthesized nanoparticles were composed of chitosan-silver nanoparticles (CS-Ag NPs) with a size of 25 nm. The chitosan fungal beads were reused in three extractions and nanoparticle synthesis before they lost their ability to produce CS-Ag NPs. The CS-Ag NPs showed potent antimicrobial activity against phytopathogenic and human pathogenic microorganisms, including Pseudomonas syringae, Escherichia coli, Staphylococcus aureus, and Candida albicans, with minimum inhibitory concentrations of 1.5, 1.6, 3.1, and 4 µg/mL, respectively. The antimicrobial activity of CS-Ag NPs was from 2- to 40-fold higher than Ag NPs synthesized using an aqueous extract of unencapsulated fungal biomass. The CS-Ag NPs were most effective at a pH of five regarding the antimicrobial activity. These results suggest that the chitosan fungal beads may be a promising alternative for the sustainable and cost-effective synthesis of CS-Ag NPs with improved antimicrobial activity.
Collapse
Affiliation(s)
- Edward Hermosilla
- Chemical Engineering Department, Universidad de La Frontera, Temuco 4811230, Chile
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence: (E.H.); (O.R.)
| | - Marcela Díaz
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Joelis Vera
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Programa de Doctorado en Ciencias de la Ingeniería, Universidad de La Frontera, Temuco 4811230, Chile
| | - María José Contreras
- Extreme Environments Biotechnology Lab, Center of Excellence in Translational Medicine, Universidad de La Frontera, Av. Alemania 0458, Temuco 4811230, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Center of Excellence in Traslational Medicine (CEMT), Universidad de La Frontera, Av. Alemania 0458, Temuco 4811230, Chile
| | - Karla Leal
- Extreme Environments Biotechnology Lab, Center of Excellence in Translational Medicine, Universidad de La Frontera, Av. Alemania 0458, Temuco 4811230, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Center of Excellence in Traslational Medicine (CEMT), Universidad de La Frontera, Av. Alemania 0458, Temuco 4811230, Chile
| | - Rodrigo Salazar
- Extreme Environments Biotechnology Lab, Center of Excellence in Translational Medicine, Universidad de La Frontera, Av. Alemania 0458, Temuco 4811230, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Center of Excellence in Traslational Medicine (CEMT), Universidad de La Frontera, Av. Alemania 0458, Temuco 4811230, Chile
| | - Leticia Barrientos
- Extreme Environments Biotechnology Lab, Center of Excellence in Translational Medicine, Universidad de La Frontera, Av. Alemania 0458, Temuco 4811230, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Center of Excellence in Traslational Medicine (CEMT), Universidad de La Frontera, Av. Alemania 0458, Temuco 4811230, Chile
| | - Gonzalo Tortella
- Chemical Engineering Department, Universidad de La Frontera, Temuco 4811230, Chile
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Olga Rubilar
- Chemical Engineering Department, Universidad de La Frontera, Temuco 4811230, Chile
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence: (E.H.); (O.R.)
| |
Collapse
|
46
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
47
|
Zafar M, Iqbal T, Afsheen S, Iqbal A, Shoukat A. An overview of green synthesis of zinc oxide nanoparticle by using various natural entities. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2165681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Maria Zafar
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Tahir Iqbal
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Sumera Afsheen
- Department of Zoology, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Amina Iqbal
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Aleena Shoukat
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| |
Collapse
|
48
|
Bioremediation of Hazardous Wastes Using Green Synthesis of Nanoparticles. Processes (Basel) 2023. [DOI: 10.3390/pr11010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Advanced agronomic methods, urbanisation, and industrial expansion contaminate air, water and soil, globally. Agricultural and industrial activities threaten living biota, causing biodiversity loss and serious diseases. Strategies such as bioremediation and physiochemical remediation have not been effectively beneficial at treating pollutants. Metal-based nanoparticles (NPs) such as copper, zinc, silver, gold, etc., in various nanoformulations and nanocomposites are used more and more as they effectively resist the uptake of toxic compounds via plants by facilitating their immobilisation. According to studies, bio-based NP synthesis is a recent and agroecologically friendly approach for remediating environmental waste, which is effective against carcinogens, heavy metal contamination, treating marine water polluted with excessive concentrations of phosphorus, nitrogen and harmful algae, and hazardous dye- and pesticide-contaminated water. Biogenic resources such as bacteria, fungi, algae and plants are extensively used for the biosynthesis of NPs, particularly metallic NPs. Strategies involving green synthesis of NPs are nontoxic and could be employed for commercial scale production. Here, the focus is on the green synthesis of NPs for reduction of hazardous wastes to help with the clean-up process.
Collapse
|
49
|
Kulkarni D, Sherkar R, Shirsathe C, Sonwane R, Varpe N, Shelke S, More MP, Pardeshi SR, Dhaneshwar G, Junnuthula V, Dyawanapelly S. Biofabrication of nanoparticles: sources, synthesis, and biomedical applications. Front Bioeng Biotechnol 2023; 11:1159193. [PMID: 37200842 PMCID: PMC10185809 DOI: 10.3389/fbioe.2023.1159193] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023] Open
Abstract
Nanotechnology is an emerging applied science delivering crucial human interventions. Biogenic nanoparticles produced from natural sources have received attraction in recent times due to their positive attributes in both health and the environment. It is possible to produce nanoparticles using various microorganisms, plants, and marine sources. The bioreduction mechanism is generally employed for intra/extracellular synthesis of biogenic nanoparticles. Various biogenic sources have tremendous bioreduction potential, and capping agents impart stability. The obtained nanoparticles are typically characterized by conventional physical and chemical analysis techniques. Various process parameters, such as sources, ions, and temperature incubation periods, affect the production process. Unit operations such as filtration, purification, and drying play a role in the scale-up setup. Biogenic nanoparticles have extensive biomedical and healthcare applications. In this review, we summarized various sources, synthetic processes, and biomedical applications of metal nanoparticles produced by biogenic synthesis. We highlighted some of the patented inventions and their applications. The applications range from drug delivery to biosensing in various therapeutics and diagnostics. Although biogenic nanoparticles appear to be superior to their counterparts, the molecular mechanism degradation pathways, kinetics, and biodistribution are often missing in the published literature, and scientists should focus more on these aspects to move them from the bench side to clinics.
Collapse
Affiliation(s)
- Deepak Kulkarni
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
- *Correspondence: Vijayabhaskarreddy Junnuthula, , ;Deepak Kulkarni, ; Sathish Dyawanapelly,
| | - Rushikesh Sherkar
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Chaitali Shirsathe
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Rushikesh Sonwane
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Nikita Varpe
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Santosh Shelke
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Mahesh P. More
- Department of Pharmaceutics, Dr Rajendra Gode College of Pharmacy, Malkapur, Buldana, India
| | - Sagar R. Pardeshi
- Department of Pharmaceutics, St John Institute of Pharmacy and Research, Palghar, India
| | | | - Vijayabhaskarreddy Junnuthula
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- *Correspondence: Vijayabhaskarreddy Junnuthula, , ;Deepak Kulkarni, ; Sathish Dyawanapelly,
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
- *Correspondence: Vijayabhaskarreddy Junnuthula, , ;Deepak Kulkarni, ; Sathish Dyawanapelly,
| |
Collapse
|
50
|
Kushwaha R, Kumar S, Das A, Sukriti, Verma ML. Silver nanoparticle-based nanocomposite hydrogels for biomedical applications. FUNCTIONAL NANOCOMPOSITE HYDROGELS 2023:241-265. [DOI: 10.1016/b978-0-323-99638-9.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|