1
|
Odugbemi AI, Nyirenda C, Christoffels A, Egieyeh SA. Artificial intelligence in antidiabetic drug discovery: The advances in QSAR and the prediction of α-glucosidase inhibitors. Comput Struct Biotechnol J 2024; 23:2964-2977. [PMID: 39148608 PMCID: PMC11326494 DOI: 10.1016/j.csbj.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024] Open
Abstract
Artificial Intelligence is transforming drug discovery, particularly in the hit identification phase of therapeutic compounds. One tool that has been instrumental in this transformation is Quantitative Structure-Activity Relationship (QSAR) analysis. This computer-aided drug design tool uses machine learning to predict the biological activity of new compounds based on the numerical representation of chemical structures against various biological targets. With diabetes mellitus becoming a significant health challenge in recent times, there is intense research interest in modulating antidiabetic drug targets. α-Glucosidase is an antidiabetic target that has gained attention due to its ability to suppress postprandial hyperglycaemia, a key contributor to diabetic complications. This review explored a detailed approach to developing QSAR models, focusing on strategies for generating input variables (molecular descriptors) and computational approaches ranging from classical machine learning algorithms to modern deep learning algorithms. We also highlighted studies that have used these approaches to develop predictive models for α-glucosidase inhibitors to modulate this critical antidiabetic drug target.
Collapse
Affiliation(s)
- Adeshina I Odugbemi
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, Cape Town 7535, South Africa
- School of Pharmacy, University of the Western Cape, Bellville, Cape Town 7535, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), South Africa
| | - Clement Nyirenda
- Department of Computer Science, University of the Western Cape, Cape Town 7535, South Africa
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, Cape Town 7535, South Africa
- Africa Centres for Disease Control and Prevention, African Union, Addis Ababa, Ethiopia
| | - Samuel A Egieyeh
- School of Pharmacy, University of the Western Cape, Bellville, Cape Town 7535, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), South Africa
| |
Collapse
|
2
|
Fan S, Liu Q, Du Q, Zeng X, Wu Z, Pan D, Tu M. Multiple roles of food-derived bioactive peptides in the management of T2DM and commercial solutions: A review. Int J Biol Macromol 2024; 279:134993. [PMID: 39181375 DOI: 10.1016/j.ijbiomac.2024.134993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Type 2 diabetes mellitus (T2DM), a disease that threatens public health worldwide and can cause a series of irreversible complications, has been a major concern. Although the treatment based on hypoglycemic drugs is effective, its side effects should not be ignored, which has led to an urgent need for developing new hypoglycemic drugs. Bioactive peptides with antidiabetic effects obtained from food proteins have become a research hotspot as they are safer and with higher specificity than traditional hypoglycemic drugs. Here, we reviewed antidiabetic peptides that have the ability to inhibit key enzymes (α-glucosidase, α-amylase, and DPP-IV) in T2DM, the hypoglycemic mechanisms and structure-activity relationships were summarized, some antidiabetic peptides that improve insulin resistance and reverse gut microbiota and their metabolites were overviewed, the bitterness of antidiabetic peptides was predicted in silico, proposed solutions to the current challenges encountered in the development of antidiabetic peptide drugs, and provided an outlook on the future focus of commercial production. It provides a reference for the application of food-derived antidiabetic peptides.
Collapse
Affiliation(s)
- Shuo Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Qirui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China.
| |
Collapse
|
3
|
Di Stefano E, Hüttmann N, Dekker P, Tomassen MMM, Oliviero T, Fogliano V, Udenigwe CC. Solid-state fermentation of green lentils by Lactiplantibacillus plantarum leads to formation of distinct peptides that are absorbable and enhances DPP-IV inhibitory activity in an intestinal Caco-2 cell model. Food Funct 2024. [PMID: 39450545 DOI: 10.1039/d4fo03326d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Food-derived bioactive compounds mimicking the effects of incretin therapies offer promising opportunities for combination therapies with functional foods, where food matrix interactions, gastrointestinal enzyme activity, and in situ bioactivity should be key considerations. In this study, green lentils were solid-state fermented with Lactiplantibacillus plantarum ATCC8014, in vitro digested and exposed to brush border enzymes of a Caco-2 cell monolayer. Intestinal absorption of peptides and DPP-IV inhibitory activity were then investigated. LC-MS/MS profiles showed that peptides mainly originated from parental proteins of the vicilin, convicilin and legumin families. Fermentation led to the formation of more hydrophobic peptides when compared to the unfermented flour and up to 33.6% of them were transported to the basolateral side of a Caco-2 cell monolayer. Peptides with more than 22 amino acids and with a mass greater than 2000 Da were minimally transported. 73 peptides were uniquely identified in the basolateral fraction suggesting that they resulted from the activity of the brush border enzymes. The DPP-IV activity of Caco-2 cells grown as a polarized monolayer was decreased by 37.3% when exposed to in vitro digested 72 h-fermented lentil flour and 10% when exposed to the unfermented one. Inhibition of DPP-IV in the basolateral fluids was improved in a dose-dependent manner and reached 7.9% when 500 mg mL-1 of in vitro digested 72 h fermented lentil flour was used. Glucose absorption and uptake were minimally affected, suggesting that the previously observed hypoglycemic properties of lentils are likely due to activity on DPP-IV rather than on the inhibition of glucose absorption.
Collapse
Affiliation(s)
- Elisa Di Stefano
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.
| | - Nico Hüttmann
- John L. Holmes Mass Spectrometry Facility, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Pieter Dekker
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
| | - Monic M M Tomassen
- Wageningen Food & Biobased Research, PO Box 17, 6700AA, Wageningen, The Netherlands
| | - Teresa Oliviero
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 5E3, Canada
| |
Collapse
|
4
|
Lee S, Jo K, Choi YS, Jung S. Tracking bioactive peptides and their origin proteins during the in vitro digestion of meat and meat products. Food Chem 2024; 454:139845. [PMID: 38820629 DOI: 10.1016/j.foodchem.2024.139845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Existing reviews address bioactive peptides of meat proteins; however, comprehensive reviews summarizing the released sequences and their corresponding parent meat proteins in the digesta are limited. This review explores the bioactive peptides released during the in vitro gastrointestinal (GI) digestion of meat, connecting with parent proteins. The primary bioactivities of meat-derived peptides include angiotensin-converting enzyme (ACE) and dipeptidyl peptidase (DPP)-IV inhibition and antioxidant effects. Myofibrillar, sarcoplasmic, and stromal proteins play a significant role in peptide release during digestion. The release of bioactive peptides varies according to the parent protein and cryptides had short chains, non-toxicity, and great bioavailability and GI absorption scores. Moreover, the structural stability and bioactivities of peptides can be influenced by the digestive properties and amino acid composition of parent proteins. Investigating the properties and origins of bioactive peptides provides insights for enhancing the nutritional quality of meat and understanding its potential health benefits.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
5
|
Barone Lumaga R, Tagliamonte S, De Rosa T, Valentino V, Ercolini D, Vitaglione P. Consumption of a Sourdough-Leavened Croissant Enriched with a Blend of Fibers Influences Fasting Blood Glucose in a Randomized Controlled Trial in Healthy Subjects. J Nutr 2024; 154:2976-2987. [PMID: 39179206 DOI: 10.1016/j.tjnut.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/20/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND An incorrect lifestyle, including diet, is responsible for the worldwide dramatic increase in obesity and type 2 diabetes. Increasing dietary fiber consumption may lead to health benefits, and reformulation of bakery products may be a strategy to globally improve the diet. OBJECTIVES This study aimed to assess the impact of a 2-wk breakfast consumption with a sourdough-leavened croissant containing a blend of dietary fiber from 10 sources (4.8 g/100 g, croissant enriched with dietary fibers [FIBCRO]), compared with a control croissant (dietary fibers 1.3 g/100 g, CONCRO) on daily energy intake, appetite, metabolic variables, and the gut microbiome. METHODS Thirty-two healthy participants were randomly allocated to 2 groups consuming FIBCRO or CONCRO. Participants self-recorded their diet and appetite through 7-d weighted food diaries and visual analog scales every day over the 2 wk. At baseline and after the intervention, fasting blood and urine samples, and fecal samples were collected beside blood pressure, anthropometry, and body composition. Serum glucose, lipids, C-reactive protein, and insulin according to the official methods and serum dipeptidyl peptidase-4 (DPPIV) activity by photometric method were measured. Polyphenols and urolithins in urines were analyzed by Liquid chromatography-tandem mass spectrometry (LC/MS/MS), whereas gut microbiome in feces by shotgun metagenomics. RESULTS FIBCRO consumption improved fasting blood glucose compared with CONCRO (mean changes from baseline -2.0 mg/dL in FIBCRO compared with +3.1 mg/dL in CONCRO, P = 0.022), also reducing serum DPPIV activity by 1.7 IU/L (P = 0.01) and increasing urinary excretion of urolithin A-sulfate by 6.9 ng/mg creatinine (P = 0.04) compared with baseline. No further changes in any of the monitored variables or in the gut microbiome were detected. CONCLUSIONS Results suggested that a 2-wk consumption of a sourdough croissant claimed as "source of dietary fiber" improved fasting glycemia compared with a conventional sourdough croissant in healthy subjects. The reduced serum DPPIV activity and increased bioavailability of urolithin likely contributed to determine that effect independently from gut microbiome changes. This trial was registered at clinicaltrials.gov as NCT04999280.
Collapse
Affiliation(s)
- Roberta Barone Lumaga
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Silvia Tagliamonte
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Vincenzo Valentino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
6
|
Kurimoto M, Yuda N, Tanaka M, Tanaka M, Okochi M. Peptide array screening with anti-GLP-1 monoclonal antibody: Discovery of cysteine-containing DPP-IV inhibitory peptides. J Biosci Bioeng 2024; 138:351-359. [PMID: 39085020 DOI: 10.1016/j.jbiosc.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Inhibition of dipeptidyl peptidase IV (DPP-IV) is an effective pharmacotherapy for the management of type 2 diabetes. Recent findings have suggested that various dietary proteins can serve as precursors to peptides that inhibit DPP-IV. Although several DPP-IV inhibitory peptides derived from food materials have been reported, more effective inhibitory peptides remain to be discovered. This study aimed to identify potent DPP-IV inhibitory peptides that earlier approaches had overlooked by employing a screening method that combined peptide arrays and neutralizing antibodies. Octa-peptides covering the complete amino acid sequences of four casein proteins and two whey proteins were synthesized on arrays via a solid-phase method. These peptides were then reacted with a monoclonal antibody specifically engineered to recognize glucagon-like peptide 1 (GLP-1), a substrate of DPP-IV. The variable region of the anti-GLP-1 monoclonal antibody is utilized to mimic the substrate-binding region of DPP-IV, enabling the antibody to bind to peptides that interact with DPP-IV. Based on this feature, 26 peptides were selected as DPP-IV inhibitory peptide candidates, 11 of which showed strong DPP-IV inhibitory activity. Five of these peptides consistently contained cysteines positioned two to four residues from the N-terminus. Treatment with disulfide formation decreased the DPP-IV inhibitory activity of these cysteine-containing peptides, while the inhibitory activity of α-lactalbumin hydrolysates increased with reducing treatment. These results revealed that the thiol group is important for DPP-IV inhibitory activity. This study provides a useful screen for DPP-IV inhibitory peptides and indicates the importance of reductive cysteine residues within DPP-IV inhibitory peptides.
Collapse
Affiliation(s)
- Masaki Kurimoto
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan; Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Naoki Yuda
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Miyuki Tanaka
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| |
Collapse
|
7
|
Gomes AFT, de Medeiros WF, Medeiros I, Piuvezam G, da Silva-Maia JK, Bezerra IWL, Morais AHDA. In Silico Screening of Therapeutic Targets as a Tool to Optimize the Development of Drugs and Nutraceuticals in the Treatment of Diabetes mellitus: A Systematic Review. Int J Mol Sci 2024; 25:9213. [PMID: 39273161 PMCID: PMC11394750 DOI: 10.3390/ijms25179213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The Target-Based Virtual Screening approach is widely employed in drug development, with docking or molecular dynamics techniques commonly utilized for this purpose. This systematic review (SR) aimed to identify in silico therapeutic targets for treating Diabetes mellitus (DM) and answer the question: What therapeutic targets have been used in in silico analyses for the treatment of DM? The SR was developed following the guidelines of the Preferred Reporting Items Checklist for Systematic Review and Meta-Analysis, in accordance with the protocol registered in PROSPERO (CRD42022353808). Studies that met the PECo strategy (Problem, Exposure, Context) were included using the following databases: Medline (PubMed), Web of Science, Scopus, Embase, ScienceDirect, and Virtual Health Library. A total of 20 articles were included, which not only identified therapeutic targets in silico but also conducted in vivo analyses to validate the obtained results. The therapeutic targets most frequently indicated in in silico studies were GLUT4, DPP-IV, and PPARγ. In conclusion, a diversity of targets for the treatment of DM was verified through both in silico and in vivo reassessment. This contributes to the discovery of potential new allies for the treatment of DM.
Collapse
Affiliation(s)
- Ana Francisca T. Gomes
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.T.G.); (W.F.d.M.); (J.K.d.S.-M.)
| | - Wendjilla F. de Medeiros
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.T.G.); (W.F.d.M.); (J.K.d.S.-M.)
| | - Isaiane Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Grasiela Piuvezam
- Public Health Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Juliana Kelly da Silva-Maia
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.T.G.); (W.F.d.M.); (J.K.d.S.-M.)
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Ingrid Wilza L. Bezerra
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Ana Heloneida de A. Morais
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.T.G.); (W.F.d.M.); (J.K.d.S.-M.)
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| |
Collapse
|
8
|
Nugraha R, Kurniawan F, Abdullah A, Lopata AL, Ruethers T. Antihypertensive and Antidiabetic Drug Candidates from Milkfish ( Chanos chanos)-Identification and Characterization through an Integrated Bioinformatic Approach. Foods 2024; 13:2594. [PMID: 39200521 PMCID: PMC11353658 DOI: 10.3390/foods13162594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Integrated bioinformatics tools have created more efficient and robust methods to overcome in vitro challenges and have been widely utilized for the investigation of food proteins and the generation of peptide sequences. This study aimed to analyze the physicochemical properties and bioactivities of novel peptides derived from hydrolyzed milkfish (Chanos chanos) protein sequences and to discover their potential angiotensin-converting enzyme (ACE)- and dipeptidyl peptidase-4 (DPPIV)-inhibitory activities using machine learning-based tools, including BIOPEP-UWM, PeptideRanker, and the molecular docking software HADDOCK 2.4. Nine and three peptides were predicted to have ACE- and DPPIV-inhibitory activities, respectively. The DPPIV-inhibitory peptides were predicted to inhibit the compound with no known specific mode. Meanwhile, two tetrapeptides (MVWH and PPPS) were predicted to possess a competitive mode of ACE inhibition by directly binding to the tetra-coordinated Zn ion. Among all nine discovered ACE-inhibitory peptides, only the PPPS peptide satisfied the drug-likeness analysis requirements with no violations of the Lipinski rule of five and should be further investigated in vitro.
Collapse
Affiliation(s)
- Roni Nugraha
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Dramaga 16680, Indonesia; (F.K.); (A.A.)
- Tropical Futures Institute, James Cook University, Singapore 387380, Singapore; (A.L.L.); (T.R.)
| | - Fahmi Kurniawan
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Dramaga 16680, Indonesia; (F.K.); (A.A.)
| | - Asadatun Abdullah
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Dramaga 16680, Indonesia; (F.K.); (A.A.)
| | - Andreas L. Lopata
- Tropical Futures Institute, James Cook University, Singapore 387380, Singapore; (A.L.L.); (T.R.)
- Molecular Allergy Research Laboratory, Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD 4811, Australia
| | - Thimo Ruethers
- Tropical Futures Institute, James Cook University, Singapore 387380, Singapore; (A.L.L.); (T.R.)
- Molecular Allergy Research Laboratory, Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD 4811, Australia
| |
Collapse
|
9
|
Mudgil P, Gan CY, Yap PG, Redha AA, Alsaadi RHS, Mohteshamuddin K, Aguilar-Toalá JE, Vidal-Limon AM, Liceaga AM, Maqsood S. Exploring the dipeptidyl peptidase IV inhibitory potential of probiotic-fermented milk: An in vitro and in silico comprehensive investigation into peptides from milk of different farm animals. J Dairy Sci 2024:S0022-0302(24)01060-9. [PMID: 39122154 DOI: 10.3168/jds.2024-25108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
Bioactive peptides produced via enzymatic hydrolysis have been widely investigated for their dipeptidyl peptidase-IV (DPP-IV) inhibitory properties. However, deficit of studies on fermentation as a mean to produce DPP-IV inhibitory peptides prompted us to draw a comparative study on DPP-IV inhibitory peptides generated from cow, camel, goat, and sheep milk using probiotic fermentation. Further, peptide identification, in silico molecular interactions with DPP-IV, and ensemble docking were performed. Results obtained suggested that goat milk consistently exhibited higher hydrolysis than other milk types. Further, Pediococcus pentosaceus (PP-957) emerged as a potent probiotic, with significantly lower DPP-IV-IC50 values 0.17, 0.12, and 0.25 µg/mL protein equivalent in fermented cow, camel, and goat milk, respectively. Overall, peptides (RPPPPVAM, CHNLDELKDTR, and VLSLSQPK) exhibited strong binding affinity with binding energies of -9.31, -9.18 and -8.9 Kcal·mol-1, respectively, suggesting their potential role as DPP-IV inhibitors. Overall, this study, offers valuable information toward antidiabetic benefits of fermented milk products via inhibition of DPP-IV.
Collapse
Affiliation(s)
- Priti Mudgil
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates..
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Pei-Gee Yap
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2 LU, United Kingdom; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QDPP-IVFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Reem H Sultan Alsaadi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Khaja Mohteshamuddin
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - José E Aguilar-Toalá
- Departamento de Ciencias de la Alimentación. División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Lerma. Av. de las Garzas 10. Col. El Panteón, Lerma de Villada 52005, Estado de México, Mexico
| | - Abraham M Vidal-Limon
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico
| | - Andrea M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory. Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47907, USA
| | - Sajid Maqsood
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.; Zayed Centre of Health Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
10
|
Lee S, Jo K, Jeong SKC, Jeon H, Choi YS, Jung S. Characterization of peptides released from frozen-then-aged beef after digestion in an in vitro infant gastrointestinal model. Meat Sci 2024; 212:109468. [PMID: 38428150 DOI: 10.1016/j.meatsci.2024.109468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
This study investigated whether the freezing-then-aging treatment of beef affects protein digestibility and release of potentially bioactive peptides using an in vitro infant digestion model. After 28 days of storage, aged-only (AO) and frozen-then-aged (FA) beef exhibited higher α-amino group contents in the 10% trichloroacetic acid-soluble fraction compared to day 0 (P < 0.05). Following in vitro digestion in the infant model, FA showed higher contents of α-amino groups and smaller proteins (<3 and 1 kDa) than day 0 and AO (P < 0.05). Relative contributions of myofibrillar, sarcoplasmic, and stromal proteins to the bioactive peptides released from AO and FA differed from those of day 0. In addition, FA exhibited a higher proportion of potential bioactive peptide sequences. Overall, freezing-then-aging treatment can enhance the potential health benefits of beef to be used as a protein source for complementary foods.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hayeon Jeon
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
11
|
Luasiri P, Sangsawad P, Pongsetkul J, Paengkoum P, Nakharuthai C, Suwanangul S, Katemala S, Sujinda N, Pinyo J, Chainam J, Khongla C, Sorapukdee S. Exploration of nutritional and bioactive peptide properties in goat meat from various primal cuts during in vitro gastrointestinal digestion and absorption. Anim Biosci 2024; 37:1096-1109. [PMID: 38575133 PMCID: PMC11065958 DOI: 10.5713/ab.23.0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/14/2023] [Accepted: 01/15/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE This research aims to explore the nutritional and bioactive peptide properties of goat meat taken from various primal cuts, including the breast, shoulder, rib, loin, and leg, to produce these bioactive peptides during in vitro gastrointestinal (GI) digestion and absorption. METHODS The goat meat from various primal cuts was obtained from Boer goats with an average carcass weight of 30±2 kg. The meat was collected within 3 h after slaughter and was stored at -80°C until analysis. A comprehensive assessment encompassed various aspects, including the chemical composition, cooking properties, in vitro GI digestion, bioactive characteristics, and the bioavailability of the resulting peptides. RESULTS The findings indicate that the loin muscles contain the highest protein and essential amino acid composition. When the meats were cooked at 70°C for 30 min, they exhibited distinct protein compositions and quantities in the sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile, suggesting they served as different protein substrates during GI digestion. Subsequent in vitro simulated GI digestion revealed that the cooked shoulder and loin underwent the most significant hydrolysis during the intestinal phase, resulting in the strongest angiotensin-converting enzyme (ACE) and dipeptidyl peptidase-IV (DPP-IV) inhibition. Following in vitro GI peptide absorption using a Caco-2 cell monolayer, the GI peptide derived from the cooked loin demonstrated greater bioavailability and a higher degree of ACE and DPP-IV inhibition than the shoulder peptide. CONCLUSION This study highlights the potential of goat meat, particularly cooked loin, as a functional meat source for protein, essential amino acids, and bioactive peptides during GI digestion and absorption. These peptides promise to play a role in preventing and treating metabolic diseases due to their dual inhibitory effects on ACE and DPP-IV.
Collapse
Affiliation(s)
- Pichitpon Luasiri
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000,
Thailand
| | - Papungkorn Sangsawad
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000,
Thailand
| | - Jaksuma Pongsetkul
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000,
Thailand
| | - Pramote Paengkoum
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000,
Thailand
| | - Chatsirin Nakharuthai
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000,
Thailand
| | - Saranya Suwanangul
- Program in Food Science and Technology, Faculty of Engineering and Agro-industry, Maejo University, Chiang Mai 50290,
Thailand
| | - Sasikan Katemala
- Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140,
Thailand
| | - Narathip Sujinda
- Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140,
Thailand
| | - Jukkrapong Pinyo
- Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140,
Thailand
| | - Jarunan Chainam
- Faculty of Agricultural Technology, Valaya Alongkorn Rajabhat University under the Royal Patronage, Pathumthani 13180,
Thailand
| | - Chompoonuch Khongla
- Department of Applied Biology, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000,
Thailand
| | - Supaluk Sorapukdee
- Office of Administrative Interdisciplinary Program on Agricultural Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520,
Thailand
| |
Collapse
|
12
|
Thongtak A, Yutisayanuwat K, Harnkit N, Noikaew T, Chumnanpuen P. Computational Screening for the Dipeptidyl Peptidase-IV Inhibitory Peptides from Putative Hemp Seed Hydrolyzed Peptidome as a Potential Antidiabetic Agent. Int J Mol Sci 2024; 25:5730. [PMID: 38891918 PMCID: PMC11171819 DOI: 10.3390/ijms25115730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Dipeptidyl peptidase-IV (DPPIV) inhibitory peptides are a class of antihyperglycemic drugs used in the treatment of type 2 diabetes mellitus, a metabolic disorder resulting from reduced levels of the incretin hormone GLP-1. Given that DPPIV degrades incretin, a key regulator of blood sugar levels, various antidiabetic medications that inhibit DPPIV, such as vildagliptin, sitagliptin, and linagliptin, are employed. However, the potential side effects of these drugs remain a matter of debate. Therefore, we aimed to investigate food-derived peptides from Cannabis sativa (hemp) seeds. Our developed bioinformatics pipeline was used to identify the putative hydrolyzed peptidome of three highly abundant proteins: albumin, edestin, and vicilin. These proteins were subjected to in silico digestion by different proteases (trypsin, chymotrypsin, and pepsin) and then screened for DPPIV inhibitory peptides using IDPPIV-SCM. To assess potential adverse effects, several prediction tools, namely, TOXINpred, AllerCatPro, and HemoPred, were employed to evaluate toxicity, allergenicity, and hemolytic effects, respectively. COPID was used to determine the amino acid composition. Molecular docking was performed using GalaxyPepDock and HPEPDOCK, 3D visualizations were conducted using the UCSF Chimera program, and MD simulations were carried out with AMBER20 MD software. Based on the predictive outcomes, FNVDTE from edestin and EAQPST from vicilin emerged as promising candidates for DPPIV inhibitors. We anticipate that our findings may pave the way for the development of alternative DPPIV inhibitors.
Collapse
Affiliation(s)
- Arisa Thongtak
- Mahidol Wittayanusorn School, 364 Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand; (A.T.); (K.Y.)
| | - Kulpariya Yutisayanuwat
- Mahidol Wittayanusorn School, 364 Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand; (A.T.); (K.Y.)
| | - Nathaphat Harnkit
- Medicinal Plant Research Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand;
| | - Tipanart Noikaew
- Department of Biology and Health Science, Mahidol Wittayanusorn School, 364 Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand;
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
13
|
Aita SE, Montone CM, Taglioni E, Capriotti AL. Hempseed protein-derived short- and medium-chain peptides and their multifunctional properties. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:275-325. [PMID: 38906589 DOI: 10.1016/bs.afnr.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Nowadays, the growing knowledge about the high nutritional value and potential functionality of hempseeds, the edible fruits of the Cannabis sativa L. plant, has sparked a surge in interest in exploring the worthwhile attributes of hempseed proteins and peptides. This trend aligns with the increasing popularity of hemp-based food, assuming a vital role in the global food chain. This chapter targets the nutritional and chemical composition of hempseed in terms of short- and medium-chain bioactive peptides. The analytical approaches for their characterization and multifunctional properties are summarized in detail. Moreover, the processing, functionality, and application of various hempseed protein products are discussed. In the final part of the chapter-for evaluating their propensity to be transported by intestinal cells-the transepithelial transport of peptides within hempseed protein hydrolysate is highlighted.
Collapse
Affiliation(s)
- Sara Elsa Aita
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | | - Enrico Taglioni
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
14
|
Antony P, Baby B, Jobe A, Vijayan R. Computational Modeling of the Interactions between DPP IV and Hemorphins. Int J Mol Sci 2024; 25:3059. [PMID: 38474306 DOI: 10.3390/ijms25053059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Type 2 diabetes is a chronic metabolic disorder characterized by high blood glucose levels due to either insufficient insulin production or ineffective utilization of insulin by the body. The enzyme dipeptidyl peptidase IV (DPP IV) plays a crucial role in degrading incretins that stimulate insulin secretion. Therefore, the inhibition of DPP IV is an established approach for the treatment of diabetes. Hemorphins are a class of short endogenous bioactive peptides produced by the enzymatic degradation of hemoglobin chains. Numerous in vitro and in vivo physiological effects of hemorphins, including DPP IV inhibiting activity, have been documented in different systems and tissues. However, the underlying molecular binding behavior of these peptides with DPP IV remains unknown. Here, computational approaches such as protein-peptide molecular docking and extensive molecular dynamics (MD) simulations were employed to identify the binding pose and stability of peptides in the active site of DPP IV. Findings indicate that hemorphins lacking the hydrophobic residues LVV and VV at the N terminal region strongly bind to the conserved residues in the active site of DPP IV. Furthermore, interactions with these critical residues were sustained throughout the duration of multiple 500 ns MD simulations. Notably, hemorphin 7 showed higher binding affinity and sustained interactions by binding to S1 and S2 pockets of DPP IV.
Collapse
Affiliation(s)
- Priya Antony
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bincy Baby
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amie Jobe
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
15
|
Arai S, Kurimoto M, Nakada H, Tanaka M, Ochi H, Tanaka M, Okochi M. Screening of novel DPP-IV inhibitory peptides derived from bovine milk proteins using a peptide array platform. J Biosci Bioeng 2024; 137:94-100. [PMID: 38092600 DOI: 10.1016/j.jbiosc.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 02/10/2024]
Abstract
Dipeptidyl peptidase IV (DPP-IV) has become an important target in the prevention and treatment of diabetes. Although many DPP-IV inhibitory peptides have been identified by a general approach involving the repeated fractionation of food protein hydrolysates, the obtained results have been dependent on the content of each peptide and fractionation conditions. In the present study, a peptide array that provides comprehensive assays of peptide sequences was used to identify novel DPP-IV inhibitory peptides derived from bovine milk proteins; these peptides were then compared with those identified using the general approach. While the general approach identified only known peptides that were abundant in the hydrolysate, the peptide array-based approach identified 10 novel DPP-IV inhibitory peptides, all of which had proline at the second residue from the N-terminus. The proper or combined use of these two approaches, which have different advantages, will enable the efficient development of novel bioactive foods and drugs.
Collapse
Affiliation(s)
- Sayuri Arai
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Masaki Kurimoto
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Hajime Nakada
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroshi Ochi
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Miyuki Tanaka
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| |
Collapse
|
16
|
Zhang J, Wu Y, Tang H, Li H, Da S, Ciren D, Peng X, Zhao K. Identification, characterization, and insights into the mechanism of novel dipeptidyl peptidase-IV inhibitory peptides from yak hemoglobin by in silico exploration, molecular docking, and in vitro assessment. Int J Biol Macromol 2024; 259:129191. [PMID: 38184042 DOI: 10.1016/j.ijbiomac.2023.129191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/17/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Dipeptidyl peptidase IV (DPP-IV) inhibitory peptides were screened and identified from yak hemoglobin for the first time by in silico analysis, molecular docking, and in vitro evaluation. Results showed that yak hemoglobin had a high potential to produce DPP-IV inhibitory peptides based on the sequence alignment and bioactive potential evaluation. Furthermore, "pancreatic elastase + stem bromelain" was the optimal combined-enzymatic strategy by simulated proteolysis. Additionally, 25 novel peptides were found from its simulated hydrolysate, among which 10 peptides had high binding affinities with DPP-IV by molecular docking. Most of these peptides were also in silico characterized with favorable physicochemical properties and biological potentials, including relatively low molecular weight, high hydrophobicity, several net charges, good water solubility, nontoxicity, acceptable sensory quality, and good human intestinal absorption. Finally, six novel DPP-IV inhibitory peptides were identified via in vitro assessment, among which EEKA (IC50 = 235.26 μM), DEV (IC50 = 339.45 μM), and HCDKL (IC50 = 632.93 μM) showed the strongest capacities. The hydrogen bonds and electrostatic attractions formed with core residues within the S2 pocket of DPP-IV could be mainly responsible for their inhibition performances. This work provided a time-saving method and broadened application for yak by-products development as sources of functional foods.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China.
| | - Yulong Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China; School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Honggang Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China.
| | - Huanhuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Se Da
- Gonyal Animal Husbandry Technology and Industry Co., Naqu, Tibet 852014, PR China
| | - Dajie Ciren
- Gonyal Animal Husbandry Technology and Industry Co., Naqu, Tibet 852014, PR China
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai, Shandong 264005, PR China
| | - Ke Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China.
| |
Collapse
|
17
|
Agustia FC, Supriyadi, Murdiati A, Indrati R. Formation of dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides from Jack Bean ( Canavalia ensiformis (L.) DC.) sprout in simulated digestion. Food Sci Biotechnol 2024; 33:645-655. [PMID: 38274189 PMCID: PMC10805686 DOI: 10.1007/s10068-023-01343-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 01/27/2024] Open
Abstract
Bean sprouts are potential plant proteins that produce DPP-IV inhibitory peptides. These peptides must be stable and active in the brush border membrane of the small intestine to inhibit DPP-IV. The purpose of this research is to evaluate the DPP-IV inhibitory activity of jack bean sprouts using pepsin-pancreatin during simulated digestion, as well as the absorption of these peptides through the everted gut sac method. The results showed that after 180 min of digestion simulation, the Mw < 1 kDa peptide fraction of jack bean hydrolysate, which germinated for 60 h (HG60), had the highest inhibitory activity. The duodenum absorbs most of the peptides with inhibitory activity of 61.77%, which is slightly lower than activity after digestion (62.19%). These outcomes suggest that the DPP-IV inhibitory activity of HG60 can be maintained after digestion and absorption. Two novel peptides KAVGDPI and QGVVLRP identified after absorption contain crucial amino acids confirming as DPP-IV inhibitor. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01343-9.
Collapse
Affiliation(s)
- Friska Citra Agustia
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia
- Department of Nutrition Science, Faculty of Health Sciences, Universitas Jenderal Soedirman, Purwokerto, 53122 Indonesia
| | - Supriyadi
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia
| | - Agnes Murdiati
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia
| | - Retno Indrati
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia
| |
Collapse
|
18
|
Zhao R, Lu S, Li S, Shen H, Wang Y, Gao Y, Shen X, Wang F, Wu J, Liu W, Chen K, Yao X, Li J. Enzymatic Preparation and Processing Properties of DPP-IV Inhibitory Peptides Derived from Wheat Gluten: Effects of Pretreatment Methods and Protease Types. Foods 2024; 13:216. [PMID: 38254517 PMCID: PMC10814021 DOI: 10.3390/foods13020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The choice of appropriate proteases and pretreatment methods significantly influences the preparation of bioactive peptides. This study aimed to investigate the effects of different pretreatment methods on the hydrolytic performance of diverse proteases during the production of dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides derived from wheat and their foaming and emulsion properties. Dry heating, aqueous heating, and ultrasound treatment were employed as pretreatments for the protein prior to the enzymatic hydrolysis of wheat gluten. FTIR analysis results indicated that all pretreatment methods altered the secondary structure of the protein; however, the effects of dry heating treatment on the secondary structure content were opposite to those of aqueous heating and ultrasound treatment. Nevertheless, all three methods enhanced the protein solubility and surface hydrophobicity. By using pretreated proteins as substrates, five different types of proteases were employed for DPP-IV inhibitory peptide production. The analysis of the DPP-IV inhibitory activity, degree of hydrolysis, and TCA-soluble peptide content revealed that the specific pretreatments had a promoting or inhibiting effect on DPP-IV inhibitory peptide production depending on the protease used. Furthermore, the pretreatment method and the selected type of protease collectively influenced the foaming and emulsifying properties of the prepared peptides.
Collapse
Affiliation(s)
- Rui Zhao
- Key Laboratory of Green and Low-Carbon Processing Technology for Plant-Based Food of China National Light Industry Council, Beijing Technology and Business University, No. 33 Fucheng Road, Beijing 100048, China;
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Beijing Huiyuan Food & Beverage Co., Ltd., Beijing 101305, China; (S.L.); (W.L.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Shuwen Lu
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Shaozhen Li
- Beijing Huiyuan Food & Beverage Co., Ltd., Beijing 101305, China; (S.L.); (W.L.)
| | - Huifang Shen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Yao Wang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Yang Gao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Xinting Shen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Fei Wang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Jiawu Wu
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Wenhui Liu
- Beijing Huiyuan Food & Beverage Co., Ltd., Beijing 101305, China; (S.L.); (W.L.)
| | - Kaixin Chen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Xinmiao Yao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Jian Li
- Key Laboratory of Green and Low-Carbon Processing Technology for Plant-Based Food of China National Light Industry Council, Beijing Technology and Business University, No. 33 Fucheng Road, Beijing 100048, China;
| |
Collapse
|
19
|
Srinivasan K, Altemimi AB, Narayanaswamy R, Vasantha Srinivasan P, Najm MAA, Mahna N. GC-MS, alpha-amylase, and alpha-glucosidase inhibition and molecular docking analysis of selected phytoconstituents of small wild date palm fruit ( Phoenix pusilla). Food Sci Nutr 2023; 11:5304-5317. [PMID: 37701203 PMCID: PMC10494657 DOI: 10.1002/fsn3.3489] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 09/14/2023] Open
Abstract
Phoenix pusilla (Arecaceae), commonly known as "small wild date palm", is regarded as one of the underutilized fruit crops in South India. Methanol extract of P. pusilla ripened fruits (PPRF) was analyzed for in vitro porcine pancreatic alpha-amylase (PPAA) and rat small intestine alpha-glucosidase (RIAG) inhibition activities, and through gas chromatography-mass spectrometry (GC-MS) analysis. The GC-MS analysis showed the presence of 25 phytoconstituents from PPRF which was further assessed on the docking behavior of five targeted enzymes diabetes mellitus (DM) namely (i) human aldose reductase, (ii) protein tyrosine phosphatase 1B, (iii) pancreatic alpha-amylase, (iv) peroxisome proliferator-activated receptor gamma, and (v) dipeptidyl peptidase IV by using the AutoDock Vina method. In addition to this physicochemical, bioactivity score, absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis was performed using the Molinspiration and pkCSM free online servers. Methanolic extract of PPRF showed 50% inhibition concentration (IC50) at 69.86 and 72.60 μg/mL levels against PPAA and RIAG enzymes activities, respectively. Interestingly in the present study, GC-MS analysis showed the presence of 25 phytoconstituents from PPRF. Physicochemical analysis of PPRF has exhibited that 13 ligands have complied well with Lipinski's Rule of Five (RoF). With regard to ADMET analysis, one ligand (9,12-octadecadienoic acid [Z,Z]) has predicated to possess both the hepatotoxicity (HT) and skin sensitization (SS) effect. The docking studies showed that 1-formyl-2,5-dimethoxy-6,9,10-trimethyl-anthracene exhibited the maximum atomic contact energy (ACE) for all the five target enzymes of DM. Thus, the current study suggested that the methanolic extract of PPRF and its phytoconstituents could be considered as potent antidiabetic agents.
Collapse
Affiliation(s)
- Kumaraswamy Srinivasan
- Department of BiochemistrySt. Peter's Institute of Higher Education and Research (SPIHER)ChennaiIndia
| | - Ammar B. Altemimi
- Department of Food Science, College of AgricultureUniversity of BasrahBasrahIraq
- College of MedicineUniversity of Warith Al‐AnbiyaaKarbalaIraq
| | - Radhakrishnan Narayanaswamy
- Department of BiochemistrySaveetha Medical College and Hospital, SIMATS (Deemed to be University)ChennaiIndia
| | | | - Mazin A. A. Najm
- Pharmaceutical Chemistry Department, College of PharmacyAl‐Ayen UniversityThi‐QarIraq
| | - Nasser Mahna
- Department of Horticultural Sciences, Faculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
20
|
Paul S, Majumdar M. Exploring antidiabetic potential of a polyherbal formulation Madhurakshak Activ: An in vitro and in silico study. Fitoterapia 2023; 169:105598. [PMID: 37380135 DOI: 10.1016/j.fitote.2023.105598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Madhurakshak Activ (MA), a commercial polyherbal antidiabetic preparation is known to manage diabetes mellitus (DM) by reducing blood glucose levels. However, lacks systematic mechanistic evaluation for their molecular and cellular mode of actions. In the present study, hydro-alcoholic and aqueous extract of MA were evaluated for their effects on glucose adsorption, diffusion, amylolysis kinetics and transport across the yeast cells using in vitro techniques. Bioactive compounds identified from MA by LC-MS/MS were assessed for their binding potential against DPP-IV and PPARγ via an in silico approach. Our results revealed that the adsorption of glucose increased dose dependently (5 mM -100 mM). Both extracts exhibited linear glucose uptake into the yeast cells (5 mM - 25 mM), whereas glucose diffusion was directly proportional to time (30-180 min). Pharmacokinetic analysis revealed drug-like properties and low toxicity levels for all the selected compounds. Among the tested compounds, 6-hydroxyluteolin (-8.9 against DPP-IV and PPARγ) and glycyrrhetaldehyde (DPP-IV -9.7 and PPARγ -8.5) have exhibited higher binding affinity compared to the positive control. Therefore, the above compounds were further considered for molecular dynamics simulation which showed stability of the docked complexes. Hence, studied mode of actions might produce a concerted role of MA in increasing the rate of glucose absorption and uptake followed by the in silico studies which suggest that the compounds identified from MA may inhibit DPP-IV and PPARγ phosphorylation.
Collapse
Affiliation(s)
- Saptadipa Paul
- School of Science, JAIN (Deemed to be) University, #34, 1st Cross, J C Road, Bangalore 560027, India.
| | - Mala Majumdar
- School of Science, JAIN (Deemed to be) University, #34, 1st Cross, J C Road, Bangalore 560027, India.
| |
Collapse
|
21
|
Cruz-Chamorro I, Santos-Sánchez G, Bollati C, Bartolomei M, Capriotti AL, Cerrato A, Laganà A, Pedroche J, Millán F, Del Carmen Millán-Linares M, Arnoldi A, Carrillo-Vico A, Lammi C. Chemical and biological characterization of the DPP-IV inhibitory activity exerted by lupin (Lupinus angustifolius) peptides: From the bench to the bedside investigation. Food Chem 2023; 426:136458. [PMID: 37329795 DOI: 10.1016/j.foodchem.2023.136458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
Dipeptidyl peptidase IV (DPP-IV) is considered a key target for the diabetes treatment, since it is involved in glucose metabolism. Although lupin protein consumption shown hypoglycemic activity, there is no evidence of its effect on DPP-IV activity. This study demonstrates that a lupin protein hydrolysate (LPH), obtained by hydrolysis with Alcalase, exerts anti-diabetic activity by modulating DPP-IV activity. In fact, LPH decreased DPP-IV activity in a cell-free and cell-based system. Contextually, Caco-2 cells were employed to identify LPH peptides that can be intestinally trans-epithelial transported. Notably, 141 different intestinally transported LPH sequences were identified using nano- and ultra-chromatography coupled to mass spectrometry. Hence, it was demonstrated that LPH modulated the glycemic response and the glucose concentration in mice, by inhibiting the DPP-IV. Finally, a beverage containing 1 g of LPH decreased DPP-IV activity and glucose levels in humans.
Collapse
Affiliation(s)
- Ivan Cruz-Chamorro
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Guillermo Santos-Sánchez
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Anna Laura Capriotti
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Cerrato
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Aldo Laganà
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Justo Pedroche
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - Francisco Millán
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - María Del Carmen Millán-Linares
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain; Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Antonio Carrillo-Vico
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain.
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| |
Collapse
|
22
|
Li J, Bollati C, Aiello G, Bartolomei M, Rivardo F, Boschin G, Arnoldi A, Lammi C. Evaluation of the multifunctional dipeptidyl-peptidase IV and angiotensin converting enzyme inhibitory properties of a casein hydrolysate using cell-free and cell-based assays. Front Nutr 2023; 10:1198258. [PMID: 37284652 PMCID: PMC10240083 DOI: 10.3389/fnut.2023.1198258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
The objective of the study was the evaluation of the potential pleiotropic effect of a commercial casein hydrolysate (CH). After an analysis of the composition, the BIOPEP-UWM database suggested that these peptides contained numerous sequences with potential inhibitory activities on angiotensin converting enzyme (ACE) and dipeptidyl-peptidase IV (DPP-IV). The anti-diabetic and anti-hypertensive effects of these peptides were thus assessed using either cell-free or cell-based assays. In the cell-free system, CH displayed inhibitory properties against DPP-IV (IC50 value equal to 0.38 ± 0.01 mg/mL) and ACE (IC50 value equal to 0.39 ± 0.01 mg/mL). Further, CH reduced the DPP-IV and ACE activities expressed by human intestinal Caco-2 cells by 61.10 ± 1.70% and 76.90 ± 4.47%, respectively, versus untreated cells, after 6 h of treatment at the concentration of 5 mg/mL. This first demonstration of the multifunctional behavior of this material suggests that it may become an anti-diabetic and/or anti-hypertensive ingredient to be included in the formulation of different functional food or nutraceutics.
Collapse
Affiliation(s)
- Jianqiang Li
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Gilda Aiello
- Department of Human Science and Quality of Life Promotion, Telematic University San Raffaele, Rome, Italy
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Giovanna Boschin
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
23
|
Cao H, Di N, Jiang B, Chen J, Zhang T. Purification and characterization of the dipeptidyl peptidase-IV inhibitory peptides from eel (Anguilla rostrata) scraps enzymatic hydrolysate for the treatment of type 2 diabetes mellitus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3714-3724. [PMID: 36661748 DOI: 10.1002/jsfa.12462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a serious threat to human health. Owing to the action of dipeptidyl peptidase-IV (DPP-IV), the half-life of entero-insulin hormone after secretion is extremely short, causing insufficient insulin secretion in diabetic patients. Dipeptidyl peptidase-IV inhibitors can be used as a new treatment for T2DM. In this study, the proteins of eel (Anguilla rostrata) scraps hydrolyzed using Protamex protease (EPHs) were found to have strong DPP-IV inhibitory activity. The study also provided research ideas for the development and utilization of A. rostrata scraps. RESULTS The median inhibition concentration (IC50 ) value of EPHs was 5.455 ± 0.24 mg mL-1 . The peptide fractions with the highest DPP-IV inhibitory activity were sequentially separated by ultrafiltration, gel filtration chromatography (GFC), and reversed-phase high performance liquid chromatography (RP-HPLC) in a continuous hierarchical manner and analyzed using matrix-assisted laser desorption/ionization time-of-flight/ time-of-flight mass spectrometry/mass spectrometry (MALDI-TOF/TOF MS/MS). Three peptides that revealed significant inhibitory activity were screened among the identified sequences, with sequences of Phe-Pro-Arg (IC50 = 62.14 ± 1.47 μM), Tyr-Pro-Pro-Ser-Phe-Ser (IC50 = 102.65 ± 4.57 μM), and Tyr-Pro-Tyr-Pro-Ala-Ser (IC50 = 68.30 ± 3.85 μM). Molecular docking simulations revealed that their inhibitory effect was mainly due to the formation of hydrogen bonds with amino acid residues in the active sites of DPP-IV. Analysis of the inhibition patterns of the synthetic peptides displayed that Phe-Pro-Arg and Tyr-Pro-Pro-Ser-Phe-Ser displayed competitive inhibition, whereas Tyr-Pro-Tyr-Pro-Ala-Ser showed mixed competitive/non-competitive inhibition. CONCLUSIONS The protein hydrolysates isolated from eel scraps are potential functional food ingredients for the treatment of T2DM. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongzhen Cao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Nana Di
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
24
|
Medeiros I, Aguiar AJFC, Fortunato WM, Teixeira AFG, Oliveira e Silva EG, Bezerra IWL, Maia JKDS, Piuvezam G, Morais AHDA. In silico structure-based design of peptides or proteins as therapeutic tools for obesity or diabetes mellitus: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2023; 102:e33514. [PMID: 37058011 PMCID: PMC10101299 DOI: 10.1097/md.0000000000033514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND In silico studies using dynamic simulation or molecular docking have boosted the screening and identification of molecules and/or targets in studies aimed at treating diseases such as obesity and diabetes mellitus, optimizing the development of new drugs. This study aims to describe a systematic review protocol on peptides and proteins evaluated in silico as potential therapeutic agents for obesity or diabetes mellitus. METHODS This protocol followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses Protocols and was registered in the International Prospective Register of Systematic Reviews database (number: CRD42022355540). The databases to be searched will be PubMed, ScienceDirect, Scopus, Web of Science, virtual health library, and EMBASE. It will be included in silico studies that evaluate the simulation by dynamics or molecular docking of proteins or peptides involved in treating obesity or diabetes mellitus. Two independent reviewers will select studies, extract data, and assess methodological quality using the adapted Strengthening the reporting of empirical simulation studies. A narrative synthesis of the included studies will be performed for the systematic reviews. RESULTS This protocol contemplates the production of 2 systematic reviews to be developed focusing on obesity or diabetes mellitus. CONCLUSION The reviews will enable knowledge of peptides and proteins involved in research treating these diseases and will emphasize the importance of in silico studies in this context and for the development of future studies.
Collapse
Affiliation(s)
- Isaiane Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Júlia Felipe Camelo Aguiar
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Wendjilla Medeiros Fortunato
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Francisca Gomes Teixeira
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Ingrid Wilza Leal Bezerra
- Nutrition Department, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Juliana Kelly da Silva Maia
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Nutrition Department, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Grasiela Piuvezam
- Public Health Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Public Health Department, Federal University of Rio Grande do Norte, Natal, RN Brazil
| | - Ana Heloneida de Araújo Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Nutrition Department, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
25
|
Zan R, Zhu L, Wu G, Zhang H. Identification of Novel Peptides with Alcohol Dehydrogenase (ADH) Activating Ability in Chickpea Protein Hydrolysates. Foods 2023; 12:foods12081574. [PMID: 37107370 PMCID: PMC10137677 DOI: 10.3390/foods12081574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Alcohol dehydrogenase (ADH) is one of the main rate-limiting enzymes in alcohol metabolism. Food protein-derived peptides are thought to have ADH activating ability. We verified for the first time that chickpea protein hydrolysates (CPHs) had the ability to activate ADH and identified novel peptides from them. CPHs obtained by hydrolysis with Alcalase for 30 min (CPHs-Pro-30) showed the highest ADH activating ability, and the ADH activation rate could still maintain more than 80% after in vitro simulated gastrointestinal digestion. We have verified four peptides with activation ability to ADH: ILPHF, MFPHLPSF, LMLPHF and FDLPALRF (concentration for 50% of maximal effect (EC50): 1.56 ± 0.07 µM, 1.62 ± 0.23 µM, 1.76 ± 0.03 µM and 9.11 ± 0.11 µM, respectively). Molecular docking showed that the mechanism for activating ADH was due to the formation of a stable complex between the peptide and the active center of ADH through hydrogen bonding. The findings suggest that CPHs and peptides with ADH activating ability may be developed as natural anti-alcoholic ingredients to prevent alcoholic liver disease (ALD).
Collapse
Affiliation(s)
- Rong Zan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
26
|
Karami Z, Butkinaree C, Somsong P, Duangmal K. Assessment of the DPP‐IV inhibitory potential of mung bean and adzuki bean protein hydrolysates using enzymatic hydrolysis process: specificity of peptidases and novel peptides. Int J Food Sci Technol 2023. [DOI: 10.1111/ijfs.16422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
27
|
In Vitro Assessment Methods for Antidiabetic Peptides from Legumes: A Review. Foods 2023; 12:foods12030631. [PMID: 36766167 PMCID: PMC9914741 DOI: 10.3390/foods12030631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Almost 65% of the human protein supply in the world originates from plants, with legumes being one of the highest contributors, comprising between 20 and 40% of the protein supply. Bioactive peptides from various food sources including legumes have been reported to show efficacy in modulating starch digestion and glucose absorption. This paper will provide a comprehensive review on recent in vitro studies that have been performed on leguminous antidiabetic peptides, focusing on the α-amylase inhibitor, α-glucosidase inhibitor, and dipeptidyl peptidase-IV (DPP-IV) inhibitor. Variations in legume cultivars and methods affect the release of peptides. Different methods have been used, such as in sample preparation, including fermentation (t, T), germination (t), and pre-cooking; in protein extraction, alkaline extraction, isoelectric precipitation, phosphate buffer extraction, and water extraction; in protein hydrolysis enzyme types and combination, enzyme substrate ratio, pH, and time; and in enzyme inhibitory assays, positive control type and concentration, inhibitor or peptide concentration, and the unit of inhibitory activity. The categorization of the relative scale of inhibitory activities among legume samples becomes difficult because of these method differences. Peptide sequences in samples were identified by means of HPLC/MS. Software and online tools were used in bioactivity prediction and computational modelling. The identification of the types and locations of chemical interactions between the inhibitor peptides and enzymes and the type of enzyme inhibition were achieved through computational modelling and enzyme kinetic studies.
Collapse
|
28
|
Bernstein HG, Keilhoff G, Dobrowolny H, Steiner J. The many facets of CD26/dipeptidyl peptidase 4 and its inhibitors in disorders of the CNS - a critical overview. Rev Neurosci 2023; 34:1-24. [PMID: 35771831 DOI: 10.1515/revneuro-2022-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/10/2022] [Indexed: 01/11/2023]
Abstract
Dipeptidyl peptidase 4 is a serine protease that cleaves X-proline or X-alanine in the penultimate position. Natural substrates of the enzyme are glucagon-like peptide-1, glucagon inhibiting peptide, glucagon, neuropeptide Y, secretin, substance P, pituitary adenylate cyclase-activating polypeptide, endorphins, endomorphins, brain natriuretic peptide, beta-melanocyte stimulating hormone and amyloid peptides as well as some cytokines and chemokines. The enzyme is involved in the maintenance of blood glucose homeostasis and regulation of the immune system. It is expressed in many organs including the brain. DPP4 activity may be effectively depressed by DPP4 inhibitors. Apart from enzyme activity, DPP4 acts as a cell surface (co)receptor, associates with adeosine deaminase, interacts with extracellular matrix, and controls cell migration and differentiation. This review aims at revealing the impact of DPP4 and DPP4 inhibitors for several brain diseases (virus infections affecting the brain, tumours of the CNS, neurological and psychiatric disorders). Special emphasis is given to a possible involvement of DPP4 expressed in the brain.While prominent contributions of extracerebral DPP4 are evident for a majority of diseases discussed herein; a possible role of "brain" DPP4 is restricted to brain cancers and Alzheimer disease. For a number of diseases (Covid-19 infection, type 2 diabetes, Alzheimer disease, vascular dementia, Parkinson disease, Huntington disease, multiple sclerosis, stroke, and epilepsy), use of DPP4 inhibitors has been shown to have a disease-mitigating effect. However, these beneficial effects should mostly be attributed to the depression of "peripheral" DPP4, since currently used DPP4 inhibitors are not able to pass through the intact blood-brain barrier.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| |
Collapse
|
29
|
Bioactive and Sensory Di- and Tripeptides Generated during Dry-Curing of Pork Meat. Int J Mol Sci 2023; 24:ijms24021574. [PMID: 36675084 PMCID: PMC9866438 DOI: 10.3390/ijms24021574] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Dry-cured pork products, such as dry-cured ham, undergo an extensive proteolysis during manufacturing process which determines the organoleptic properties of the final product. As a result of endogenous pork muscle endo- and exopeptidases, many medium- and short-chain peptides are released from muscle proteins. Many of them have been isolated, identified, and characterized, and some peptides have been reported to exert relevant bioactivity with potential benefit for human health. However, little attention has been given to di- and tripeptides, which are far less known, although they have received increasing attention in recent years due to their high potential relevance in terms of bioactivity and role in taste development. This review gathers the current knowledge about di- and tripeptides, regarding their bioactivity and sensory properties and focusing on their generation during long-term processing such as dry-cured pork meats.
Collapse
|
30
|
Liu W, Wang X, Yang W, Li X, Qi D, Chen H, Liu H, Yu S, Pan Y, Liu Y, Wang G. Identification, Screening, and Comprehensive Evaluation of Novel DPP-IV Inhibitory Peptides from the Tilapia Skin Gelatin Hydrolysate Produced Using Ginger Protease. Biomolecules 2022; 12:biom12121866. [PMID: 36551294 PMCID: PMC9775409 DOI: 10.3390/biom12121866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Inhibition of dipeptidyl peptidase-IV (DPP-IV) is an effective therapy for treating type II diabetes (T2D) that has been widely applied in clinical practice. We aimed to evaluate the DPP-IV inhibitory properties of ginger protease hydrolysate (GPH) and propose a comprehensive approach to screen and evaluate DPP-IV inhibitors. METHODS We evaluated the in vitro inhibitory properties of fish skin gelatin hydrolysates produced by five proteases, namely, neutral protease, alkaline protease, bromelain, papain, and ginger protease, toward DPP-IV. We screened the most potent DPP-IV inhibitory peptide (DIP) using liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with in silico analysis. Next, surface plasmon resonance (SPR) technology was innovatively introduced to explore the interactions between DPP-IV and DIP, as well as the IC50. Furthermore, we performed oral administration of DIP in rats to study its in vivo absorption. RESULTS GPH displayed the highest degree of hydrolysis (20.37%) and DPP-IV inhibitory activity (65.18%). A total of 292 peptides from the GPH were identified using LC-MS/MS combined with de novo sequencing. Gly-Pro-Hyp-Gly-Pro-Pro-Gly-Pro-Gly-Pro (GPXGPPGPGP) was identified as the most potent DPP-IV inhibitory peptide after in silico screening (Peptide Ranker and molecular docking). Then, the in vitro study revealed that GPXGPPGPGP had a high inhibitory effect on DPP-IV (IC50: 1012.3 ± 23.3 μM) and exhibited fast kinetics with rapid binding and dissociation with DPP-IV. In vivo analysis indicated that GPXGPPGPGP was not absorbed intact but partially, in the form of dipeptides and tripeptides. CONCLUSION Overall, the results suggested that GPH would be a natural functional food for treating T2D and provided new ideas for searching and evaluating potential antidiabetic compounds. The obtained GPXGPPGPGP can be structurally optimized for in-depth evaluation in animal and cellular experiments.
Collapse
Affiliation(s)
- Wei Liu
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xinyu Wang
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Wenning Yang
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xueyan Li
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Dongying Qi
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Hongjiao Chen
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Huining Liu
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Shuang Yu
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yanli Pan
- Institute of Information on Traditional Chinese Medicine China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (Y.P.); (Y.L.); (G.W.)
| | - Yang Liu
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
- Correspondence: (Y.P.); (Y.L.); (G.W.)
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd., Beijing 101500, China
- Correspondence: (Y.P.); (Y.L.); (G.W.)
| |
Collapse
|
31
|
Sangsawad P, Katemala S, Pao D, Suwanangul S, Jeencham R, Sutheerawattananonda M. Integrated Evaluation of Dual-Functional DPP-IV and ACE Inhibitory Effects of Peptides Derived from Sericin Hydrolysis and Their Stabilities during In Vitro-Simulated Gastrointestinal and Plasmin Digestions. Foods 2022; 11:foods11233931. [PMID: 36496739 PMCID: PMC9741075 DOI: 10.3390/foods11233931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Sericin, a byproduct of the silk industry, is an underutilized protein derived from the yellow silk cocoon. This research aimed to produce and characterize the bioactive peptides from sericin using various enzymatic hydrolysis methods. Alcalase, papain, neutrase, and protease were tested under their respective digestion conditions. Among the enzymes tested, neutrase-catalyzed sericin into specific peptides with the strongest dipeptidyl peptidase IV (DPP-IV) and angiotensin-converting enzyme (ACE) inhibitory properties. The peptides were subjected to a simulated in vitro gastrointestinal (GI) digestion in order to determine their stability. The GI peptides that were produced by neutrase hydrolysis continued to have the highest DPP-IV and ACE inhibitory activities. The neutrase -digested peptides were then fractionated via ultrafiltration; the peptide fraction with a molecular weight <3 kDa (UF3) inhibited DPP-IV and ACE activities. After being subjected to in vitro blood plasma hydrolysis, the UF3 was slightly degraded but retained its bioactivity. As a result of these findings, sericin peptides can be utilized as novel dietary ingredients that may alleviate some metabolic syndromes via the dual inhibitory properties of DPP-IV and ACE.
Collapse
Affiliation(s)
- Papungkorn Sangsawad
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Correspondence: (P.S.); (M.S.); Tel.: +66-813-542-584 (M.S.)
| | - Sasikan Katemala
- Department of Animal Science (Agricultural Bio-resources and Food), Faculty of Agriculture, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Danou Pao
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Saranya Suwanangul
- Program in Food Science and Technology, Faculty of Engineering and Agro-industry, Maejo University, Chiang Mai 50290, Thailand
| | - Rachasit Jeencham
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Manote Sutheerawattananonda
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Correspondence: (P.S.); (M.S.); Tel.: +66-813-542-584 (M.S.)
| |
Collapse
|
32
|
Advanced enzymatic hydrolysis of food proteins for the production of bioactive peptides. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Darewicz M, Pliszka M, Borawska-Dziadkiewicz J, Minkiewicz P, Iwaniak A. Multi-Bioactivity of Protein Digests and Peptides from Oat ( Avena sativa L.) Kernels in the Prevention of the Cardiometabolic Syndrome. Molecules 2022; 27:molecules27227907. [PMID: 36432008 PMCID: PMC9695537 DOI: 10.3390/molecules27227907] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to characterize the digests and peptides derived from oat kernel proteins in terms of their major enzyme inhibitory activities related to the prevention of cardiometabolic syndrome. It also entailed the characteristics of antioxidant bioactivity of the analyzed material. The study was carried out using coupled in silico and in vitro methods. The additional goal was to investigate whether identified peptides can pervade Caco-2 cells. Based on the results of bioinformatic analysis, it was found that the selected oat proteins may be a potential source of 107 peptides with DPP-IV and/or ACE inhibitory and/or antioxidant activity. The duodenal digest of oat kernels revealed multiple activities. It inhibited the activities of the following enzymes: DPP-IV (IC50 = 0.51 vs. 10.82 mg/mL of the intact protein), α-glucosidase (IC50 = 1.55 vs. 25.20 mg/mL), and ACE (IC50 = 0.82 vs. 34.52 mg/mL). The DPPH• scavenging activity was 35.7% vs. 7.93% that of the intact protein. After in silico digestion of oat proteins, 24 peptides were selected for identification using LC-Q-TOF-MS/MS. Among them, 13 sequences were successfully identified. One of them, i.e., VW peptide, exhibited triple activities, i.e., DPP-IV and ACE inhibitory and DPPH• scavenging activity. The multifunctional peptides: PW, TF, VF, and VW, were identified in the basolateral samples after transport experiments. Both in silico and in vitro analyses demonstrated that oat kernel proteins were the abundant sources of bioactive digests and peptides to be used in a diet for patients suffering from cardiometabolic syndrome.
Collapse
|
34
|
Tenebrio molitor Proteins-Derived DPP-4 Inhibitory Peptides: Preparation, Identification, and Molecular Binding Mechanism. Foods 2022; 11:foods11223626. [PMID: 36429217 PMCID: PMC9689682 DOI: 10.3390/foods11223626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Inhibition of dipeptidyl peptidase-4 (DPP-4) is an effective way to control blood glucose in diabetic patients. Tenebrio (T.) molitor is an edible insect containing abundant protein. T. molitor protein-derived peptides can suppress the DPP-4 activity. However, the amino acid sequence and binding mechanism of these DPP-4 inhibitory peptides remain unclear. This study used the flavourzyme for T. molitor protein hydrolysis, identified the released peptides with DPP-4 inhibitory effect, and investigated the binding interactions of these peptides with DPP-4. The results showed that flavourzyme efficiently hydrolyzed the T. molitor protein, as demonstrated by the high degree of hydrolysis, disappearance of protein bands in SDS-PAGE, and changes to protein structure. The 4-h flavourzyme hydrolysates showed a good inhibitory effect on DPP-4 (IC50 value of 1.64 mg/mL). The fragment of 1000-3000 Da accounted for 10.39% of the total peptides, but showed the strongest inhibitory effect on DPP-4. The peptides LPDQWDWR and APPDGGFWEWGD were identified from this fraction, and their IC50 values against DPP-4 were 0.15 and 1.03 mg/mL, respectively. Molecular docking showed that these two peptides interacted with the DPP-4 active site via hydrogen bonding, hydrophobic interactions, salt bridge formation, π-cation interactions, and π-π stacking. Our findings indicated that T. molitor protein-derived peptides could be used as natural DPP-4 inhibitors.
Collapse
|
35
|
Critical Review for the Production of Antidiabetic Peptides by a Bibliometric Approach. Nutrients 2022; 14:nu14204275. [PMID: 36296965 PMCID: PMC9607871 DOI: 10.3390/nu14204275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
The current bibliometric review evaluated recent papers that researched dietary protein sources to generate antidiabetic bioactive peptides/hydrolysates for the management of diabetes. Scopus and PubMed databases were searched to extract bibliometric data and, after a systematic four-step process was performed to select the articles, 75 papers were included in this review. The countries of origin of the authors who published the most were China (67%); Ireland (59%); and Spain (37%). The journals that published most articles on the subject were Food Chemistry (n = 12); Food & Function (n = 8); and Food Research International (n = 6). The most used keywords were ‘bioactive peptides’ (occurrence 28) and ‘antidiabetic’ (occurrence 10). The most used enzymes were Alcalase® (17%), Trypsin (17%), Pepsin, and Flavourzyme® (15% each). It was found that different sources of protein have been used to generate dipeptidyl peptidase IV (DPP-IV), α-amylase, and α-glucosidase inhibitory peptides. In addition to antidiabetic properties, some articles (n = 30) carried out studies on multifunctional bioactive peptides, and the most cited were reported to have antioxidant and antihypertensive activities (n = 19 and 17, respectively). The present review intended to offer bibliometric data on the most recent research on the production of antidiabetic peptides from dietary proteins to those interested in their obtention to act as hypoglycemic functional ingredients. The studies available in this period, compiled, are not yet enough to point out the best strategies for the production of antidiabetic peptides from food proteins and a more systematic effort in this direction is necessary to allow a future scale-up for the production of these possible functional ingredients.
Collapse
|
36
|
Zhang M, Zhu L, Wu G, Liu T, Qi X, Zhang H. Food-derived dipeptidyl peptidase IV inhibitory peptides: Production, identification, structure-activity relationship, and their potential role in glycemic regulation. Crit Rev Food Sci Nutr 2022; 64:2053-2075. [PMID: 36095057 DOI: 10.1080/10408398.2022.2120454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dipeptidyl Peptidase IV (DPP-IV) inhibitory peptides are attracting increasing attention, owing to their potential role in glycemic regulation by preventing the inactivation of incretins. However, few reviews have summarized the current understanding of DPP-IV inhibitory peptides and their knowledge gaps. This paper reviews the production, identification and structure-activity relationships (SAR) of DPP-IV inhibitory peptides. Importantly, their bioavailability and hypoglycemic effects are critically discussed. Unlike the traditional method to identifying peptides after separation step by step, the bioinformatics approach identifies peptides via virtual screening that is more convenient and efficient. In addition, the bioinformatics approach was also used to investigate the SAR of peptides. Peptides with proline (Pro) or alanine (Ala) residue at the second position of N-terminal are exhibit strong DPP-IV inhibitory activity. Besides, the bioavailability of DPP-IV inhibitory peptides is related to their gastrointestinal stability and cellular permeability, and in vivo studies showed that the glucose homeostasis has been improved by these peptides. Especially, the intestinal transport of DPP-IV inhibitory peptides and cell biological assays used to evaluate their potential role in glycemic regulation are innovatively summarized. For further successful development of DPP-IV inhibitory peptides in glycemic regulation, future study should elucidate their SAR and in vivo hypoglycemic effects .
Collapse
Affiliation(s)
- Mingkai Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tongtong Liu
- Binzhou Zhongyu Food Company Limited, Key Laboratory of Wheat Processing, Ministry of Agriculture and Rural Affairs, National Industry Technical Innovation Center for Wheat Processing, Bohai Advanced Technology Institute, Binzhou, China
| | - Xiguang Qi
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
37
|
Zhang M, Zhu L, Wu G, Liu T, Qi X, Zhang H. Rapid Screening of Novel Dipeptidyl Peptidase-4 Inhibitory Peptides from Pea ( Pisum sativum L.) Protein Using Peptidomics and Molecular Docking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10221-10228. [PMID: 35951551 DOI: 10.1021/acs.jafc.2c03949] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pea protein hydrolysates (PPHs) possess good hypoglycemic effects; however, their dipeptidyl peptidase-4 (DPP-4) inhibitory activity is poorly understood, and none of the DPP-4 inhibitory peptides have been identified from PPHs. This paper aims to rapidly screen these peptides from PPHs by combining peptidomics and molecular docking. In this study, 543 peptides were identified by peptidomics, and four peptides (IPYWTY, IPYWT, LPNYN, and LAFPGSS) with DPP-4 half-maximal inhibitory concentration (IC50) values <100 μM were screened for the first time. Significantly, peptide IPYWTY exhibited the most potent DPP-4 inhibitory activity (IC50 = 11.04 μM) mainly because it formed hydrophobic interactions with the S1 pocket in DPP-4. These results indicated that combining peptidomics and molecular docking is an effective strategy for rapidly screening DPP-4 inhibitory peptides.
Collapse
Affiliation(s)
- Mingkai Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Tongtong Liu
- Binzhou Zhongyu Food Company Limited, Key Laboratory of Wheat Processing, Ministry of Agriculture and Rural Affairs, National Industry Technical Innovation Center for Wheat Processing, Bohai Advanced Technology Institute, Binzhou, 256600, China
| | - Xiguang Qi
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| |
Collapse
|
38
|
Liu C, Guo Z, Yang Y, Hu B, Zhu L, Li M, Gu Z, Xin Y, Sun H, Guan Y, Zhang L. Identification of dipeptidyl peptidase-IV inhibitory peptides from yak bone collagen by in silico and in vitro analysis. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Luhovyy BL, Kathirvel P. Food proteins in the regulation of blood glucose control. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:181-231. [PMID: 36064293 DOI: 10.1016/bs.afnr.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Food proteins, depending on their origin, possess unique characteristics that regulate blood glucose via multiple physiological mechanisms, including the insulinotropic effects of amino acids, the activation of incretins, and slowing gastric emptying rate. The strategies aimed at curbing high blood glucose are important in preventing impaired blood glucose control, including insulin resistance, prediabetes and diabetes. The effect of proteins on blood glucose control can be achieved with high-protein foods short-term, and high-protein diets long-term using foods that are naturally high in protein, such as dairy, meat, soy and pulses, or by formulating high-protein functional food products using protein concentrates and isolates, or blended mixtures of proteins from different sources. Commercial sources of protein powders are represented by proteins and hydrolysates of caseins, whey proteins and their fractions, egg whites, soy, yellow pea and hemp which will be reviewed in this chapter. The effective doses of food protein that are capable of reducing postprandial glycemia start from 7 to 10g and higher per serving; however, the origin of protein, and macronutrient composition of a meal will determine the magnitude and duration of their effect on glycemia. The theoretical and methodological framework to evaluate the effect of foods, including food proteins, on postprandial glycemia for substantiation of health claims on food has been proposed in Canada and is discussed in the context of global efforts to harmonize the international food regulation and labeling.
Collapse
Affiliation(s)
- Bohdan L Luhovyy
- Department of Applied Human Nutrition, Mount Saint Vincent University, Halifax, Nova Scotia, Canada.
| | - Priya Kathirvel
- Department of Applied Human Nutrition, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| |
Collapse
|
40
|
Fleury L, Deracinois B, Dugardin C, Nongonierma AB, FitzGerald RJ, Flahaut C, Cudennec B, Ravallec R. In Vivo and In Vitro Comparison of the DPP-IV Inhibitory Potential of Food Proteins from Different Origins after Gastrointestinal Digestion. Int J Mol Sci 2022; 23:8365. [PMID: 35955493 PMCID: PMC9369239 DOI: 10.3390/ijms23158365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Dipeptidyl-peptidase IV (DPP-IV) plays an essential role in glucose metabolism by inactivating incretins. In this context, food-protein-derived DPP-IV inhibitors are promising glycemic regulators which may act by preventing the onset of type 2 diabetes in personalized nutrition. In this study, the DPP-IV-inhibitory potential of seven proteins from diverse origins was compared for the first time in vitro and in vivo in rat plasma after the intestinal barrier (IB) passage of the indigested proteins. The DPP-IV-inhibitory potentials of bovine hemoglobin, caseins, chicken ovalbumin, fish gelatin, and pea proteins were determined in rat plasma thirty minutes after oral administration. In parallel, these proteins, together with bovine whey and gluten proteins, were digested using the harmonized INFOGEST protocol adapted for proteins. The DPP-IV half-maximal inhibitory concentration (IC50) was determined in situ using Caco-2 cells. The DPP-IV-inhibitory activity was also measured after IB passage using a Caco2/HT29-MTX mixed-cell model. The peptide profiles were analyzed using reversed-phase high-performance liquid chromatography tandem mass spectrometry (RP-HPLC-MS/MS) with MS data bioinformatics management, and the IC50 of the identified peptides was predicted in silico. The in vitro and in vivo DPP-IV-inhibitory activity of the proteins differed according to their origin. Vegetable proteins and hemoglobin yielded the highest DPP-IV-inhibitory activity in vivo. However, no correlation was found between the in vivo and in vitro results. This may be partially explained by the differences between the peptidome analysis and the in silico predictions, as well as the study complexity.
Collapse
Affiliation(s)
- Léa Fleury
- UMR-T 1158, BioEcoAgro, University of Lille, 59650 Lille, France; (L.F.); (B.D.); (C.D.); (C.F.)
| | - Barbara Deracinois
- UMR-T 1158, BioEcoAgro, University of Lille, 59650 Lille, France; (L.F.); (B.D.); (C.D.); (C.F.)
| | - Camille Dugardin
- UMR-T 1158, BioEcoAgro, University of Lille, 59650 Lille, France; (L.F.); (B.D.); (C.D.); (C.F.)
| | - Alice B. Nongonierma
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (A.B.N.); (R.J.F.)
| | - Richard J. FitzGerald
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (A.B.N.); (R.J.F.)
| | - Christophe Flahaut
- UMR-T 1158, BioEcoAgro, University of Lille, 59650 Lille, France; (L.F.); (B.D.); (C.D.); (C.F.)
| | - Benoit Cudennec
- UMR-T 1158, BioEcoAgro, University of Lille, 59650 Lille, France; (L.F.); (B.D.); (C.D.); (C.F.)
| | - Rozenn Ravallec
- UMR-T 1158, BioEcoAgro, University of Lille, 59650 Lille, France; (L.F.); (B.D.); (C.D.); (C.F.)
| |
Collapse
|
41
|
Chiang JH, Hua XY, Yu AHM, Peh EWY, See E, Jeyakumar Henry C. A Review on Buckwheat and Its Hypoglycemic Bioactive Components in Food Systems. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2103706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jie Hong Chiang
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Xin Yi Hua
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ashley Hui Min Yu
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Elaine Wan Yi Peh
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - E’Ein See
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
42
|
Kotsaridis K, Tsakiri D, Sarris PF. Understanding enemy's weapons to an effective prevention: common virulence effects across microbial phytopathogens kingdoms. Crit Rev Microbiol 2022:1-15. [PMID: 35709325 DOI: 10.1080/1040841x.2022.2083939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plant-pathogens interaction is an ongoing confrontation leading to the emergence of new diseases. The majority of the invading microorganisms inject effector proteins into the host cell, to bypass the sophisticated defense system of the host. However, the effectors could also have other specialized functions, which can disrupt various biological pathways of the host cell. Pathogens can enrich their effectors arsenal to increase infection success or expand their host range. This usually is accomplished by the horizontal gene transfer. Nowadays, the development of specialized software that can predict proteins structure, has changed the experimental designing in effectors' function research. Different effectors of distinct plant pathogens tend to fold alike and have the same function and focussed structural studies on microbial effectors can help to uncover their catalytic/functional activities, while the structural similarity can enable cataloguing the great number of pathogens' effectors. In this review, we collectively present phytopathogens' effectors with known enzymatic functions and proteins structure, originated from all the kingdoms of microbial plant pathogens. Presentation of their common domains and motifs is also included. We believe that the in-depth understanding of the enemy's weapons will help the development of new strategies to prevent newly emerging or re-emerging plant pathogens.
Collapse
Affiliation(s)
| | | | - Panagiotis F Sarris
- Department of Biology, University of Crete, Crete, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Crete, Greece.,Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
43
|
Cheng Z, Qiao D, Zhao S, Zhang B, Lin Q, Xie F. Whole grain rice: Updated understanding of starch digestibility and the regulation of glucose and lipid metabolism. Compr Rev Food Sci Food Saf 2022; 21:3244-3273. [PMID: 35686475 DOI: 10.1111/1541-4337.12985] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
Abstract
Nowadays, resulting from disordered glucose and lipid metabolism, metabolic diseases (e.g., hyperglycemia, type 2 diabetes, and obesity) are among the most serious health issues facing humans worldwide. Increasing evidence has confirmed that dietary intervention (with healthy foods) is effective at regulating the metabolic syndrome. Whole grain rice (WGR) rich in dietary fiber and many bioactive compounds (e.g., γ-amino butyric acid, γ-oryzanol, and polyphenols) can not only inhibit starch digestion and prevent rapid increase in the blood glucose level, but also reduce oxidative stress and damage to the liver, thereby regulating glucose and lipid metabolism. The rate of starch digestion is directly related to the blood glucose level in the organism after WGR intake. Therefore, the effects of different factors (e.g., additives, cooking, germination, and physical treatments) on WGR starch digestibility are examined in this review. In addition, the mechanisms from human and animal experiments regarding the correlation between the intake of WGR or its products and the lowered blood glucose and lipid levels and the reduced incidence of diabetes and obesity are discussed. Moreover, information on developing WGR products with the health benefits is provided.
Collapse
Affiliation(s)
- Zihang Cheng
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Dongling Qiao
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, China
| | - Siming Zhao
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Binjia Zhang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
44
|
Lim JY, Chai TT, Lam MQ, Ng WJ, Ee KY. In silico enzymatic hydrolysis of soy sauce cake glycinin G4 to reveal the bioactive peptides as potential food ingredients. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Fujimura Y, Watanabe M, Morikawa-Ichinose T, Fujino K, Yamamoto M, Nishioka S, Inoue C, Ogawa F, Yonekura M, Nakasone A, Kumazoe M, Tachibana H. Metabolic Profiling for Evaluating the Dipeptidyl Peptidase-IV Inhibitory Potency of Diverse Green Tea Cultivars and Determining Bioactivity-Related Ingredients and Combinations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6455-6466. [PMID: 35543229 DOI: 10.1021/acs.jafc.2c01693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
There are numerous cultivars of tea (Camellia sinensis L.), but the differences in their anti-hyperglycemic-related effects are largely unknown. The inhibition of the dipeptidyl peptidase (DPP)-IV enzyme plays an essential role in controlling hyperglycemia in diabetes by blocking the degradation of incretin hormones, which is necessary for insulin secretion. In this study, we examined the DPP-IV inhibitory activity of leaf extracts from diverse Japanese green tea cultivars. The inhibitory rates differed among tea extracts. Metabolic profiling (MP), using liquid chromatography-mass spectrometry, of all cultivars revealed compositional differences among cultivars according to their DPP-IV inhibitory capacity. Epigallocatechin-3-O-(3-O-methyl)gallate, kaempferol-3-O-rutinoside, myricetin-3-O-glucoside/galactoside, and theogallin were newly identified as DPP-IV inhibitors. The bioactivity of a tea extract was potentiated by adding these ingredients in combination. Our results show that MP is a useful approach for evaluating the DPP-IV inhibitory potency of green tea and for determining bioactivity-related ingredients and combinations.
Collapse
Affiliation(s)
- Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Mototsugu Watanabe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Tomomi Morikawa-Ichinose
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Konatsu Fujino
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Mao Yamamoto
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Seita Nishioka
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Chihiro Inoue
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Fumiyo Ogawa
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Madoka Yonekura
- Agriculture and Biotechnology Business Division, Toyota Motor Corporation, Toyota-shi, Aichi 471-8571, Japan
| | - Akari Nakasone
- Agriculture and Biotechnology Business Division, Toyota Motor Corporation, Toyota-shi, Aichi 471-8571, Japan
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
46
|
You H, Zhang Y, Wu T, Li J, Wang L, Yu Z, Liu J, Liu X, Ding L. Identification of dipeptidyl peptidase IV inhibitory peptides from rapeseed proteins. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Cian RE, Albarracín M, Garzón AG, Drago SR. Precooked sorghum flour as proper vehicle of ACE‐I and DPP‐IV inhibitory sorghum peptides. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raúl E. Cian
- Instituto de Tecnología de Alimentos CONICET FIQ ‐ UNL Santa Fe Argentina
| | - Micaela Albarracín
- Instituto de Tecnología de Alimentos CONICET FIQ ‐ UNL Santa Fe Argentina
| | - Antonela G. Garzón
- Instituto de Tecnología de Alimentos CONICET FIQ ‐ UNL Santa Fe Argentina
| | - Silvina R. Drago
- Instituto de Tecnología de Alimentos CONICET FIQ ‐ UNL Santa Fe Argentina
| |
Collapse
|
48
|
Jahandideh F, Bourque SL, Wu J. A comprehensive review on the glucoregulatory properties of food-derived bioactive peptides. Food Chem X 2022; 13:100222. [PMID: 35498998 PMCID: PMC9039931 DOI: 10.1016/j.fochx.2022.100222] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by persistent hyperglycemia, affects millions of people worldwide and is on the rise. Dietary proteins, from a wide range of food sources, are rich in bioactive peptides with antidiabetic properties. Notable examples include AGFAGDDAPR, a black tea-derived peptide, VRIRLLQRFNKRS, a β-conglycinin-derived peptide, and milk-derived peptide VPP, which have shown antidiabetic effects in diabetic rodent models through variety of pathways including improving beta-cells function, suppression of alpha-cells proliferation, inhibiting food intake, increasing portal cholecystokinin concentration, enhancing insulin signaling and glucose uptake, and ameliorating adipose tissue inflammation. Despite the immense research on glucoregulatory properties of bioactive peptides, incorporation of these bioactive peptides in functional foods or nutraceuticals is widely limited due to the existence of several challenges in the field of peptide research and commercialization. Ongoing research in this field, however, is fundamental to pave the road for this purpose.
Collapse
Key Words
- AMPK, AMP-activated protein kinase
- Akt, Protein kinase B
- Bioactive peptides
- C/EBP-α, CCAAT/ enhancer binding protein alpha
- CCK, Cholecystokinin
- CCK-1R, CCK type 1 receptor
- DPP-IV, Dipeptidyl peptidase IV
- Diabetes mellitus
- ERK1/2, Extracellular signal regulated kinase 1/2
- GIP, Glucose-dependent insulinotropic polypeptide
- GLP-1, Glucagon-like peptide 1
- GLUT, Glucose transporter
- Glucose homeostasis
- IRS-1, Insulin receptor substrate-1
- Insulin resistance
- MAPK, Mitogen activated protein kinase
- PI3K, Phosphatidylinositol 3-kinase
- PPARγ, Peroxisome proliferator associated receptor gamma
- Reproductive dysfunction
- TZD, Thiazolidinedione
- cGMP, cyclic guanosine-monophosphate
Collapse
Affiliation(s)
- Forough Jahandideh
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Stephane L Bourque
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jianping Wu
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
49
|
You H, Wu T, Wang W, Li Y, Liu X, Ding L. Preparation and identification of dipeptidyl peptidase IV inhibitory peptides from quinoa protein. Food Res Int 2022; 156:111176. [DOI: 10.1016/j.foodres.2022.111176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
|
50
|
Extraction, Chemical Characterization, In Vitro Antioxidant, and Antidiabetic Activity of Canola (Brassica napus L.) Meal. SEPARATIONS 2022. [DOI: 10.3390/separations9020038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Canola (Brassica napus L.) meal is a by-product after oil extraction from canola seed and is of relatively low value. This meal may have additional value in the biotechnology, food, and pharmaceutical industries if health-promoting useful bioactive compounds can be identified. Hence, seven canola meal extracts (CMEs) were generated using different organic solvents for two genotypes. HPLC and LCMS analyses were employed for the determination of the phenolic and antioxidant activity of meal extracts, including recovery of major biological compounds. When comparing genotype-1 with genotype-2, the latter had higher antioxidant activity in acetone extract (AE). This study also indicated seven major glucosinolates in CMEs in which water (WE) appeared to be the best solvent for the recovery of glucosinolates. Higher quantities of phenolic, glucosinolate, and antioxidant were present in genotype-2 compared with genotype-1. Using HPLC-DAD and LC-MS analysis 47 compounds were detected. We could identify 32 compounds in canola meal extracts: nine glucosinolates and twenty-three phenolic derivatives. Phenolic compounds in canola meal were conjugates and derivatives of hydroxycinnamic acid (sinapic, ferulic, and caffeic acids). Among phenolics, kaempherol as conjugate with sinapic acid was found; sinapine and trans-sinapic acid were the most abundant, as well as major contributors to the antioxidant and free radical scavenging activities of canola meal extracts. Some samples exhibited mild to moderate in-vitro antidiabetic activity in a Dipeptidyl Peptidase-IV inhibition assay.
Collapse
|