1
|
Rabbani Z, Khan MU, Anwar A, Hassan AU, Alhokbany N. Synergistic charge-transfer dynamics of novel D-D-A-π-A framework containing indoline-benzo[d][1,2,3]thiadiazole based push-pull sensitizers: from structural engineering to performance metrics in photovoltaic solar cells. J Mol Model 2024; 30:338. [PMID: 39287837 DOI: 10.1007/s00894-024-06140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
CONTEXT Dye-sensitized solar cells (DSSCs) present a convincing substitute for conventional silicon-based solar cells because of their possible lower manufacturing costs and versatile uses. Electron injection and dye regeneration processes are important in meeting the need for photosensitizers with improved efficiency and stability. Aimed at enhancing the performance and efficiency of DSSCs, this study focuses on the structural engineering to performance metrics of novel indoline-benzo[d][1,2,3]thiadiazole based push-pull sensitizers (LHZ1 to LHZ9) with D-D-A-π-A framework. The current study provides insights into the photovoltaic and optoelectronic properties of the investigated dyes, which are significantly influenced by the modification of auxiliary donors (D), internal acceptors with thiophene as a spacer, and cyanoacrylic acid (A) as the terminal acceptor. These modifications enhance rapid charge transfer among the dyes, highlighting the critical role of dye-semiconductor interactions. METHODS The suitability of developed sensitizers for DSSCs applications is confirmed by executing quantum methods like NBO, TDM, FMO, DOS, Eb, ΔGreg, ΔGinject, VRP, and ICT parameters qCT (e-), DCT ( A ∘ ), H index ( A ∘ ), ∆( A ∘ ), t index ( A ∘ ), and μCT (D). All of the investigated dyes have HOMO levels lower than the electrode I-/I3-'s redox potential (-4.8 eV) and LUMO values that are appropriately higher than the conduction band of TiO2 (-4.0 eV). The novel dyes showed a closing of the energy gap (2.38-1.84 eV). The LHZ7 and LHZ8 molecules with the lowest Eg (1.97 eV and 1.84 eV) demonstrated the highest absorption (up to 746 nm > 402 nm for LHZ), which was caused by the insertion effect of varied donors and internal acceptors. Almost all photosensitizers appeared with remarkable properties, i.e., red-shifted absorption maxima (746 nm), lowest Ex (1.66 eV), Eb (0.02 eV), and highest values of LHE (0.958). The TDM analysis revealed high charge density on HOMO of donor and LUMO of acceptors in designed dyes. DOS analysis revealed that the donor parts of the molecules delocalized the highest occupied molecular orbitals of dye particles. The electronic properties predicted by the NBO analysis showed that donor groups donate high and faster transfer of charge, and internal acceptor groups rapidly accept them. The electron injection (ΔGinject) and dye regeneration (ΔGreg) analysis of photosensitizers attached with TiO2 proved efficient charge transfer properties from the donor of newly designed dyes onto the conduction band of TiO2. This study, also supported by the thermodynamic stability of dyes with negative values of Gibbs free energy, revealed that the performance of the designed dyes is augmented by modifying the donor and internal acceptors of the reference photosensitizer for effective application in the experimental community. All of the dyes are suitable for DSSCs based on the calculated parameters. Still, the LHZ9 dye proved proficient in applying dye-sensitized solar cells due to its remarkable properties, i.e., lowest gap and red-shifted absorption maxima.
Collapse
Affiliation(s)
- Zobia Rabbani
- Department of Chemistry, University of Okara, Okara, 56300, Pakistan
| | | | - Abida Anwar
- Department of Chemistry, University of Okara, Okara, 56300, Pakistan
| | - Abrar Ul Hassan
- Lunan Research Institute, Beijing Institute of Technology, 888 Zhengtai Road, Tengzhou, 277599, China
| | - Norah Alhokbany
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Kosarev IV, Kistanov AA. Carrier transport in bulk and two-dimensional Zn 2(V,Nb,Ta)N 3 ternary nitrides. NANOSCALE 2024; 16:10030-10037. [PMID: 38711346 DOI: 10.1039/d4nr01292e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Density functional theory-based simulations are applied to study the electronic structures, carrier masses, carrier mobility and carrier relaxation times in bulk and two-dimensional (2D) Zn2(V,Nb,Ta)N3 ternary nitrides. Bulk Zn2(V,Nb,Ta)N3 possess moderate band gap sizes of 2.17 eV, 3.11 eV, and 3.40 eV, respectively. Two-dimensional Zn2(V,Nb,Ta)N3 have slightly higher band gap sizes of 2.77 eV, 3.33 eV, and 3.23 eV, respectively. Carrier mass, carrier mobility and carrier relaxation time are found to be anisotropic in all the studied structures. Bulk and 2D samples show an order of magnitude higher electron mobility compared to hole mobility. The highest electron mobility in bulk Zn2NbN3 and Zn2TaN3 is about ∼103 cm2 V-1 s-1. Importantly, for 2D Zn2NbN3, an abnormally high electron mobility of 1.67 × 104 cm2 V-1 s-1 is observed, which is not inferior to the highest known electron mobility values in 2D materials. Such a high electron mobility in 2D Zn2NbN3 can be attributed to a strong delocalization of the conduction band minimum, which is responsible for electron transport. Therefore, this work opens up new materials for high performance nanodevices, such as tandem solar cells and field-effect transistors. This study also provides deep physical insights into the nature of carrier transport mechanisms in bulk and 2D Zn2(V,Nb,Ta)N3 ternary nitrides.
Collapse
Affiliation(s)
- Igor V Kosarev
- The Laboratory of Metals and Alloys Under Extreme Impacts, Ufa University of Science and Technology, Ufa 450076, Russia.
| | - Andrey A Kistanov
- The Laboratory of Metals and Alloys Under Extreme Impacts, Ufa University of Science and Technology, Ufa 450076, Russia.
| |
Collapse
|
3
|
Bilal M, Syed NN, Jamil Y, Tariq A, Khan HR. Powering the future: Exploring self-charging cardiac implantable electronic devices and the Qi revolution. Pacing Clin Electrophysiol 2024; 47:542-550. [PMID: 38407386 DOI: 10.1111/pace.14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
The incidence and prevalence of cardiovascular diseases (CVD) have risen over the last few decades worldwide, resulting in a cost burden to healthcare systems and increasingly complex procedures. Among many strategies for treating heart diseases, treating arrhythmias using cardiac implantable electronic devices (CIEDs) has been shown to improve quality of life and reduce the incidence of sudden cardiac death. The battery-powered CIEDs have the inherent challenge of regular battery replacements depending upon energy usage for their programmed tasks. Nanogenerator-based energy harvesters have been extensively studied, developed, and optimized continuously in recent years to overcome this challenge owing to their merits of self-powering abilities and good biocompatibility. Although these nanogenerators and others currently used in energy harvesters, such as biofuel cells (BFCs) exhibit an infinite spectrum of uses for this novel technology, their demerits should not be dismissed. Despite the emergence of Qi wireless power transfer (WPT) has revolutionized the technological world, its application in CIEDs has yet to be studied well. This review outlines the working principles and applications of currently employed energy harvesters to provide a preliminary exploration of CIEDs based on Qi WPT, which may be a promising technology for the next generation of functionalized CIEDs.
Collapse
Affiliation(s)
- Maham Bilal
- Dow University of Health Sciences, Karachi, Pakistan
| | | | - Yumna Jamil
- Dow University of Health Sciences, Karachi, Pakistan
| | - Areesha Tariq
- Dow University of Health Sciences, Karachi, Pakistan
| | - Habib Rehman Khan
- Division of Cardiology, London Health Sciences, Schulich Medical School, Western University, London, Ontario, Canada
| |
Collapse
|
4
|
Zambrano-Angulo M, Cárdenas-Jirón G. Toward the search for new photosensitizers for DSSCs: theoretical study of both substituted Zn(II) and Si(IV) phthalocyanines. Phys Chem Chem Phys 2024; 26:6164-6179. [PMID: 38300136 DOI: 10.1039/d3cp04417c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
We report a density functional theory (DFT) study performed for a set of 66 compounds based on zinc(II) and silicon(IV) phthalocyanines (Pcs) with potential applications in dye-sensitized solar cells (DSSCs). The effect of the metal center (Zn, Si), periplanar and axial substituents, and anchor groups like anhydrous, carboxyl, and catechol on the electronic, optical, photovoltaics, and adsorption properties is investigated. Using the TD-DFT methodology and M06 and CAM-B3LYP functionals, we calculated the absorption spectra on optimized structures and in the solution phase but not on structures relaxed in the solvent. We obtained a strong Q band and a weak Soret band in the UV-Vis region, which are attributed to the transitions of type π-π* as described by the Gouterman orbitals. Q bands calculated show absorption up to 667 nm for ZnPcs and up to 769 nm for SiPcs, suggesting an essential role of the metal atom. The systems have a bathochromic effect in the order of secondary amine > primary amine > hydroxyl > amide > ester. We also found that the anhydrous and carboxyl groups favor absorption at longer wavelengths than the catechol group. The ZnPc systems show a slightly larger electron injection ΔGinj (∼1.1 eV) than SiPcs (∼0.9 eV), with similar values for the three anchor groups. The interaction energies (Eint) between ZnPcs/SiPcs and TiO2 in molecular and periodic configuration and corrected by the counterpoise method indicate that SiPcs predict more negative values than ZnPcs. The anchor group effect is relevant; the carboxyl moiety leads to stronger interactions than the anhydrous moiety. The strategies used could help to identify new photosensitizers for DSSCs.
Collapse
Affiliation(s)
- Michael Zambrano-Angulo
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), Santiago, Chile.
| | - Gloria Cárdenas-Jirón
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), Santiago, Chile.
| |
Collapse
|
5
|
Ali I, Islam MR, Yin J, Eichhorn SJ, Chen J, Karim N, Afroj S. Advances in Smart Photovoltaic Textiles. ACS NANO 2024; 18:3871-3915. [PMID: 38261716 PMCID: PMC10851667 DOI: 10.1021/acsnano.3c10033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Energy harvesting textiles have emerged as a promising solution to sustainably power wearable electronics. Textile-based solar cells (SCs) interconnected with on-body electronics have emerged to meet such needs. These technologies are lightweight, flexible, and easy to transport while leveraging the abundant natural sunlight in an eco-friendly way. In this Review, we comprehensively explore the working mechanisms, diverse types, and advanced fabrication strategies of photovoltaic textiles. Furthermore, we provide a detailed analysis of the recent progress made in various types of photovoltaic textiles, emphasizing their electrochemical performance. The focal point of this review centers on smart photovoltaic textiles for wearable electronic applications. Finally, we offer insights and perspectives on potential solutions to overcome the existing limitations of textile-based photovoltaics to promote their industrial commercialization.
Collapse
Affiliation(s)
- Iftikhar Ali
- Centre
for Print Research (CFPR), The University
of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| | - Md Rashedul Islam
- Centre
for Print Research (CFPR), The University
of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| | - Junyi Yin
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Stephen J. Eichhorn
- Bristol
Composites Institute, School of Civil, Aerospace, and Design Engineering, The University of Bristol, University Walk, Bristol BS8 1TR, U.K.
| | - Jun Chen
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Nazmul Karim
- Centre
for Print Research (CFPR), The University
of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
- Nottingham
School of Art and Design, Nottingham Trent
University, Shakespeare Street, Nottingham NG1 4GG, U.K.
| | - Shaila Afroj
- Centre
for Print Research (CFPR), The University
of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| |
Collapse
|
6
|
Marus M, Mukha Y, Wong HT, Chan TL, Smirnov A, Hubarevich A, Hu H. Tsuchime-like Aluminum Film to Enhance Absorption in Ultra-Thin Photovoltaic Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2650. [PMID: 37836291 PMCID: PMC10574175 DOI: 10.3390/nano13192650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Ultra-thin solar cells enable materials to be saved, reduce deposition time, and promote carrier collection from materials with short diffusion lengths. However, light absorption efficiency in ultra-thin solar panels remains a limiting factor. Most methods to increase light absorption in ultra-thin solar cells are either technically challenging or costly, given the thinness of the functional layers involved. We propose a cost-efficient and lithography-free solution to enhance light absorption in ultra-thin solar cells-a Tsuchime-like self-forming nanocrater (T-NC) aluminum (Al) film. T-NC Al film can be produced by the electrochemical anodization of Al, followed by etching the nanoporous alumina. Theoretical studies show that T-NC film can increase the average absorbance by 80.3%, depending on the active layer's thickness. The wavelength range of increased absorption varies with the active layer thickness, with the peak of absolute absorbance increase moving from 620 nm to 950 nm as the active layer thickness increases from 500 nm to 10 µm. We have also shown that the absorbance increase is retained regardless of the active layer material. Therefore, T-NC Al film significantly boosts absorbance in ultra-thin solar cells without requiring expensive lithography, and regardless of the active layer material.
Collapse
Affiliation(s)
- Mikita Marus
- Centre for Advances in Reliability and Safety (CAiRS), Unit 1212–1213, 12/F, Building 19W, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China; (M.M.); (H.-T.W.); (T.-L.C.)
- Laboratory for Information Display and Processing Units, Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki, 220013 Minsk, Belarus; (Y.M.); (A.S.)
| | - Yauhen Mukha
- Laboratory for Information Display and Processing Units, Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki, 220013 Minsk, Belarus; (Y.M.); (A.S.)
| | - Him-Ting Wong
- Centre for Advances in Reliability and Safety (CAiRS), Unit 1212–1213, 12/F, Building 19W, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China; (M.M.); (H.-T.W.); (T.-L.C.)
| | - Tak-Lam Chan
- Centre for Advances in Reliability and Safety (CAiRS), Unit 1212–1213, 12/F, Building 19W, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China; (M.M.); (H.-T.W.); (T.-L.C.)
| | - Aliaksandr Smirnov
- Laboratory for Information Display and Processing Units, Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki, 220013 Minsk, Belarus; (Y.M.); (A.S.)
| | - Aliaksandr Hubarevich
- Laboratory for Information Display and Processing Units, Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki, 220013 Minsk, Belarus; (Y.M.); (A.S.)
| | - Haibo Hu
- Centre for Advances in Reliability and Safety (CAiRS), Unit 1212–1213, 12/F, Building 19W, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China; (M.M.); (H.-T.W.); (T.-L.C.)
- Department of Electrical and Electronic Engineering, Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
7
|
Livshits MY, Wolford NJ, Banh JK, MacInnes MM, Greer SM, Vellore Winfred JSR, Hanson K, Gompa TP, Stein BW. Exploring Differences in Lanthanide Excited State Reactivity Using a Simple Example: The Photophysics of La and Ce Thenoyltrifluoroacetone Complexes. Inorg Chem 2023; 62:13712-13721. [PMID: 37573578 DOI: 10.1021/acs.inorgchem.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A series of four lanthanide thenoyltrifluoroacetone (TTA) complexes consisting of two f0 (La3+ and Ce4+) and two f1 (Ce3+) complexes was examined using steady-state and time-resolved spectroscopic techniques. The wide range of spectroscopic techniques presented herein have enabled us to discern the nature of the excited states (charge transfer, CT vs ligand localized, LL) as well as construct a Jablonski diagram for detailing the excited state reactivity within the series of molecules. The wavelength and excitation power dependence for these series of complexes are the first direct verification for the presence of simultaneous competing, noninteracting CT and LL excited states. Additionally, a computational framework is described that can be used to support spectroscopic assignments as a guide for future studies. Finally, the relationship between the obtained photophysics and possible photochemical separation mechanisms is described.
Collapse
Affiliation(s)
- Maksim Y Livshits
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Nikki J Wolford
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Jenny K Banh
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Molly M MacInnes
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Samuel M Greer
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - J S R Vellore Winfred
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Kenneth Hanson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Thaige P Gompa
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Benjamin W Stein
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
8
|
Díez-Pascual AM. Polymers and Nanotechnology for Industry 4.0. Polymers (Basel) 2023; 15:3556. [PMID: 37688184 PMCID: PMC10489732 DOI: 10.3390/polym15173556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The term "polymer" derives from the Greek words "πολύς" meaning "many, much" and "μέρος" meaning "part", and was proposed in 1833 by Jöns Jacob Berzelius, albeit with a different definition from the current IUPAC definition [...].
Collapse
Affiliation(s)
- Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra, Madrid-Barcelona Km. 33.6, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
9
|
Atia DM, Hassan AA, El-Madany HT, Eliwa AY, Zahran MB. Degradation and energy performance evaluation of mono-crystalline photovoltaic modules in Egypt. Sci Rep 2023; 13:13066. [PMID: 37567898 PMCID: PMC10421953 DOI: 10.1038/s41598-023-40168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023] Open
Abstract
Degradation reduces the capability of solar photovoltaic (PV) production over time. Studies on PV module degradation are typically based on time-consuming and labor-intensive accelerated or field experiments. Understanding the modes and methodologies of degradation is critical to certifying PV module lifetimes of 25 years. Both technological and environmental conditions affect the PV module degradation rate. This paper investigates the degradation of 24 mono-crystalline silicon PV modules mounted on the rooftop of Egypt's electronics research institute (ERI) after 25 years of outdoor operation. Degradation rates were determined using the module's performance ratio, temperature losses, and energy yield. Visual inspection, I-V characteristic measurement, and degradation rate have all been calculated as part of the PV evaluation process. The results demonstrate that the modules' maximum power ([Formula: see text]) has decreased in an average manner by 23.3% over time. The degradation rates of short-circuit current ([Formula: see text]) and maximum current ([Formula: see text]) are 12.16% and 7.2%, respectively. The open-circuit voltage ([Formula: see text]), maximum voltage ([Formula: see text]), and fill factor ([Formula: see text]) degradation rates are 2.28%, 12.16%, and 15.3%, respectively. The overall performance ratio obtained for the PV system is 85.9%. After a long time of operation in outdoor conditions, the single diode model's five parameters are used for parameter identification of each module to study the effect of aging on PV module performance.
Collapse
Affiliation(s)
- Doaa M Atia
- Electronics Research Institute, Cairo, Egypt
| | | | | | | | | |
Collapse
|
10
|
Schön JC. Structure prediction in low dimensions: concepts, issues and examples. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220246. [PMID: 37211034 PMCID: PMC10200350 DOI: 10.1098/rsta.2022.0246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/06/2023] [Indexed: 05/23/2023]
Abstract
Structure prediction of stable and metastable polymorphs of chemical systems in low dimensions has become an important field, since materials that are patterned on the nano-scale are of increasing importance in modern technological applications. While many techniques for the prediction of crystalline structures in three dimensions or of small clusters of atoms have been developed over the past three decades, dealing with low-dimensional systems-ideal one-dimensional and two-dimensional systems, quasi-one-dimensional and quasi-two-dimensional systems, as well as low-dimensional composite systems-poses its own challenges that need to be addressed when developing a systematic methodology for the determination of low-dimensional polymorphs that are suitable for practical applications. Quite generally, the search algorithms that had been developed for three-dimensional systems need to be adjusted when being applied to low-dimensional systems with their own specific constraints; in particular, the embedding of the (quasi-)one-dimensional/two-dimensional system in three dimensions and the influence of stabilizing substrates need to be taken into account, both on a technical and a conceptual level. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
Affiliation(s)
- J. Christian Schön
- Department of Nanoscience, Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany
| |
Collapse
|
11
|
Kolwas K. Optimization of Coherent Dynamics of Localized Surface Plasmons in Gold and Silver Nanospheres; Large Size Effects. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1801. [PMID: 36902918 PMCID: PMC10004181 DOI: 10.3390/ma16051801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Noble metal nanoparticles have attracted attention in recent years due to a number of their exciting applications in plasmonic applications, e.g., in sensing, high-gain antennas, structural colour printing, solar energy management, nanoscale lasing, and biomedicines. The report embraces the electromagnetic description of inherent properties of spherical nanoparticles, which enable resonant excitation of Localized Surface Plasmons (defined as collective excitations of free electrons), and the complementary model in which plasmonic nanoparticles are treated as quantum quasi-particles with discrete electronic energy levels. A quantum picture including plasmon damping processes due to the irreversible coupling to the environment enables us to distinguish between the dephasing of coherent electron motion and the decay of populations of electronic states. Using the link between classical EM and the quantum picture, the explicit dependence of the population and coherence damping rates as a function of NP size is given. Contrary to the usual expectations, such dependence for Au and Ag NPs is not a monotonically growing function, which provides a new perspective for tailoring plasmonic properties in larger-sized nanoparticles, which are still hardly available experimentally. The practical tools for comparing the plasmonic performance of gold and silver nanoparticles of the same radii in an extensive range of sizes are also given.
Collapse
Affiliation(s)
- Krystyna Kolwas
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
12
|
Quantitative Analysis of Solar Photovoltaic Panel Performance with Size-Varied Dust Pollutants Deposition Using Different Machine Learning Approaches. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227853. [PMID: 36431951 PMCID: PMC9693094 DOI: 10.3390/molecules27227853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022]
Abstract
In this paper, the impact of dust deposition on solar photovoltaic (PV) panels was examined, using experimental and machine learning (ML) approaches for different sizes of dust pollutants. The experimental investigation was performed using five different sizes of dust pollutants with a deposition density of 33.48 g/m2 on the panel surface. It has been noted that the zero-resistance current of the PV panel is reduced by up to 49.01% due to the presence of small-size particles and 15.68% for large-size (ranging from 600 µ to 850 µ). In addition, a significant reduction of nearly 40% in sunlight penetration into the PV panel surface was observed due to the deposition of a smaller size of dust pollutants compared to the larger size. Subsequently, different ML regression models, namely support vector machine (SVMR), multiple linear (MLR) and Gaussian (GR), were considered and compared to predict the output power of solar PV panels under the varied size of dust deposition. The outcomes of the ML approach showed that the SVMR algorithms provide optimal performance with MAE, MSE and R2 values of 0.1589, 0.0328 and 0.9919, respectively; while GR had the worst performance. The predicted output power values are in good agreement with the experimental values, showing that the proposed ML approaches are suitable for predicting the output power in any harsh and dusty environment.
Collapse
|
13
|
Awada C. Plasmonic Enhanced SERS in Ag/TiO 2 Nanostructured Film: An Experimental and Theoretical Study. MICROMACHINES 2022; 13:mi13101595. [PMID: 36295948 PMCID: PMC9610157 DOI: 10.3390/mi13101595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 05/30/2023]
Abstract
In this work, we present a new study on the electromagnetic (EM) enhancement properties generated by Ag/TiO2 toward the finger print of methylene blue (MB) molecules deposited on the surface of Ag nanostructures. SERS intensity generated by MB molecules reflects the interaction between the local electric field and their bonds. A power-dependent SERS study in order to reveal the magnitude effect of a local electric field on the vibration behavior of molecular bonds of MB was performed. A theoretical study using finite element (COMSOL Multiphysics) was performed in order to understand the effect of interparticle distance of Ag nanoparticles on the enhancement properties.
Collapse
Affiliation(s)
- Chawki Awada
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
14
|
Sahu SK, Kopalakrishnaswami AS, Natarajan SK. Historical overview of power generation in solar parabolic dish collector system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64404-64446. [PMID: 35857163 DOI: 10.1007/s11356-022-21984-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Solar energy is a promising form of energy that has the potential to meet all of the world's energy needs. Only half of the sun's energy reaches the earth's surface, even though it is more enough for meeting the world's energy need. Though there is a great deal of solar energy utilization technologies available, solar parabolic dish collector system got researchers focus because of its higher thermal energy conversion efficiency and its unique advantages. Several researchers have been enlightening new and emerging technologies in several countries. Hence, the authors would like to emphasize the progress in this while exercising an extensive review of different solar concentrating techniques using solar parabolic dish collector in order to produce heat and electrical power using direct and indirect energy conversion devices with wide range of applications. Their design advancement and progress applications in recent years particularly in related field are discussed too.
Collapse
Affiliation(s)
- Susant Kumar Sahu
- Vignan's Institute of Information Technology, Visakhapatnam, Andhra Pradesh, 530049, India
| | - Arjun Singh Kopalakrishnaswami
- Solar Energy Laboratory, Department of Mechanical Engineering, National Institute of Technology Puducherry, Karaikal, Union Territory of Puducherry, 609 609, India
| | - Sendhil Kumar Natarajan
- Solar Energy Laboratory, Department of Mechanical Engineering, National Institute of Technology Puducherry, Karaikal, Union Territory of Puducherry, 609 609, India.
| |
Collapse
|
15
|
Moorthy VM, Srivastava VM. Device Modeling of Organic Photovoltaic Cells with Traditional and Inverted Cells Using s-SWCNT:C 60 as Active Layer. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162844. [PMID: 36014708 PMCID: PMC9412363 DOI: 10.3390/nano12162844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 05/09/2023]
Abstract
This research work presents a thorough analysis of Traditional Organic Solar Cell (TOSC) and novel designed Inverted OSC (IOSC) using Bulk Hetero-Junction (BHJ) structure. Herein, 2D photovoltaic device models were used to observe the results of the semiconducting Single Wall Carbon Nanotube (s-SWCNT):C60-based organic photovoltaic. This work has improved the BHJ photodiodes by varying the active layer thickness. The analysis has been performed at various active layer thicknesses from 50 to 300 nm using the active material s-SWCNT:C60. An analysis with various parameters to determine the most effective parameters for organic photovoltaic performance has been conducted. As a result, it has been established that IOSC has the maximum efficiency of 10.4%, which is higher than the efficiency of TOSC (9.5%). In addition, the active layer with the highest efficacy has been recorded using this material for both TOSC and IOSC Nano Photodiodes (NPDs). Furthermore, the diode structure and geometrical parameters have been optimized and compared to maximize the performance of photodiodes.
Collapse
|
16
|
Sibhatu AK, Alene Asres G, Yimam A, Teshome T. Two-dimensional MXO/MoX 2 (M = Hf, Ti and X = S, Se) van der Waals heterostructure: a promising photovoltaic material. RSC Adv 2022; 12:21270-21279. [PMID: 35975064 PMCID: PMC9344374 DOI: 10.1039/d2ra03204j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/17/2022] [Indexed: 01/01/2023] Open
Abstract
Nanoscale materials with multifunctional properties are necessary for the quick development of high-performance devices for a wide range of applications, hence theoretical research into new two-dimensional (2D) materials is encouraged. 2D materials have a distinct crystalline structure that leads to intriguing occurrences. Stacking diverse two-dimensional (2D) materials has shown to be an efficient way for producing high-performance semiconductor materials. We explored a 2D nanomaterial family, an MXO/MoX2 heterostructure (M = Hf, Ti and X = S, Se), for their various applications using first-principles calculations. We discovered that all of the heterostructure materials utilized are direct band gap semiconductors with band gaps ranging from 1.0 to 2.0 eV, with the exception of hexagonal HfSeO/MoSe2, which has a band gap of 0.525 eV. The influence of strain on the band gap of this HfSeO/MoSe2 material was investigated. In the visible range, we obtained promising optical responses with a high-power conversion efficiency. With fill factors of 0.5, MXO/MoX2 photovoltaic cells showed great PCE of up to 17.8%. The tunable electronic characteristics of these two-dimensional materials would aid in the development of energy conversion devices. According to our findings, the 2D Janus heterostructure of MXO/MoX2 (M = Hf, Ti and X = S, Se) material is an excellent choice for photovoltaic solar cells. Nanoscale materials with multifunctional properties are necessary for the quick development of high-performance devices for a wide range of applications, hence theoretical research into new two-dimensional (2D) materials is encouraged.![]()
Collapse
Affiliation(s)
- Aman Kassaye Sibhatu
- Department of Chemical Engineering, School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University Addis Ababa Ethiopia +251 911950214.,Department of Chemical Engineering, College Biological and Chemical Engineering, Addis Ababa Science and Technology University P. O. Box 16417 Addis Ababa Ethiopia
| | - Georgies Alene Asres
- Center for Materials Engineering, Addis Ababa Institute of Technology, School of Multi-disciplinary Engineering Addis Ababa 1000 Ethiopia
| | - Abubeker Yimam
- Department of Chemical Engineering, School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University Addis Ababa Ethiopia +251 911950214
| | - Tamiru Teshome
- Department of Physics, College of Natural and Social Science, Addis Ababa Science and Technology University P. O. Box 16417 Addis Ababa Ethiopia +251 966 253 809
| |
Collapse
|
17
|
A Theoretical Evaluation of the Efficiencies of Metal-Free 1,3,4-Oxadiazole Dye-Sensitized Solar Cells: Insights from Electron–Hole Separation Distance Analysis. ENERGIES 2022. [DOI: 10.3390/en15134913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Herein, some novel metal-free 1,3,4-oxadiazole compounds O1–O7 were evaluated for their photovoltaic properties using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations to determine if they can serve as metal-free organic dyes in the use of dye-sensitized solar cells (DSSCs). To understand the trends in the relative efficiencies of the investigated compounds as dyes in DSSCs, their electron contributions, hole contributions, and electron–hole overlaps for each respective atom and fragment within the molecule were analyzed with a particular focus on the electron densities on the anchoring segments. As transition density matrices (TDM) provide details about the departure of each electron from its corresponding hole during excitations, which results in charge transfer (CT), the charge separation distance (Δr) between the electron and its corresponding hole was studied, in addition to the degree of electron–hole overlap (Λ). The latter, single-point excitation energy of each electron, the percentage electron contribution to the anchoring segments of each compound, the incident-photon-conversion-efficiency (IPCE), charge recombination, light harvesting efficiency (LHE), electron injection (Φinj), and charge collection efficiency (ncollect) were then compared to Δr to determine whether the expected relationships hold. Moreover, parameters such as diffusion constant (Dπ) and electron lifetime (t), amongst others, were also used to describe electron excitation processes. Since IPCE is the key parameter in determining the efficiency, O3 was found to be the best dye due to its highest value.
Collapse
|
18
|
Inorganic-Nanoparticle Modified Polymers. Polymers (Basel) 2022; 14:polym14101979. [PMID: 35631862 PMCID: PMC9144568 DOI: 10.3390/polym14101979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
|
19
|
Velasco Davoise L, Peña Capilla R, Díez-Pascual AM. Assessment of the Refractive Index and Extinction Coefficient of Graphene-Poly(3-hexylthiophene) Nanocomposites. Polymers (Basel) 2022; 14:polym14091828. [PMID: 35566999 PMCID: PMC9103999 DOI: 10.3390/polym14091828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Poly(3-hexylthiophene) (P3HT) is one of the most attractive polymeric donor materials used in organic solar cells because of its high electrical conductivity and solubility in various solvents. However, its carrier mobility is low when compared to that of inorganic semiconductors; hence, the incorporation of appropriate nanomaterials to improve its electrical mobility and optical properties are pursued. In this work, a review of the changes in electrical conductivity, bandgap, hole collection properties and carrier mobility of P3HT when adding graphene (G) is presented. The main aim is to assess how the addition of different G contents influences the optical constants: refractive index (n) and extinction coefficient (k). The values of n and k as a function of the wavelength for six P3HT/G nanocomposites with G loadings in the range of 0.1-5 wt% have been fitted to two different models, Forouhi Bloomer and Cauchy, showing very good agreement between the experimental and the theoretical values. Furthermore, a rule of mixtures was successfully applied to calculate n using mass fraction instead of volume fraction, with errors lower than 6% for all the nanocomposites studied.
Collapse
Affiliation(s)
- Lara Velasco Davoise
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain;
| | - Rafael Peña Capilla
- Universidad de Alcalá, Departamento de Teoría de la Señal y Comunicaciones, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain;
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain;
- Correspondence:
| |
Collapse
|
20
|
Salhi B. The Photovoltaic Cell Based on CIGS: Principles and Technologies. MATERIALS 2022; 15:ma15051908. [PMID: 35269139 PMCID: PMC8911708 DOI: 10.3390/ma15051908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/22/2022] [Indexed: 01/09/2023]
Abstract
Semiconductors used in the manufacture of solar cells are the subject of extensive research. Currently, silicon is the most commonly used material for photovoltaic cells, representing more than 80% of the global production. However, due to its very energy-intensive and costly production method, other materials appear to be preferable over silicon, including the chalcopyrite-structured semiconductors of the CIS-based family (Cu(In, Ga, Al) (Se, S)2). Indeed, these compounds have bandwidths between 1 eV (CuInSe2) and 3 eV (CuAlS2), allowing them to absorb most solar radiation. Moreover, these materials are currently the ones that make it possible to achieve the highest photovoltaic conversion efficiencies from thin-film devices, particularly Cu(In, Ga)Se2, which is considered the most efficient among all drifts based on CIS. In this review, we focus on the CIGS-based solar cells by exploring the different layers and showing the recent progress and challenges.
Collapse
Affiliation(s)
- Billel Salhi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
21
|
Recent Issues and Configuration Factors in Perovskite-Silicon Tandem Solar Cells towards Large Scaling Production. NANOMATERIALS 2021; 11:nano11123186. [PMID: 34947535 PMCID: PMC8708322 DOI: 10.3390/nano11123186] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022]
Abstract
The unprecedented development of perovskite-silicon (PSC-Si) tandem solar cells in the last five years has been hindered by several challenges towards industrialization, which require further research. The combination of the low cost of perovskite and legacy silicon solar cells serve as primary drivers for PSC-Si tandem solar cell improvement. For the perovskite top-cell, the utmost concern reported in the literature is perovskite instability. Hence, proposed physical loss mechanisms for intrinsic and extrinsic instability as triggering mechanisms for hysteresis, ion segregation, and trap states, along with the latest proposed mitigation strategies in terms of stability engineering, are discussed. The silicon bottom cell, being a mature technology, is currently facing bottleneck challenges to achieve power conversion efficiencies (PCE) greater than 26.7%, which requires more understanding in the context of light management and passivation technologies. Finally, for large-scale industrialization of the PSC-Si tandem solar cell, the promising silicon wafer thinning, and large-scale film deposition technologies could cause a shift and align with a more affordable and flexible roll-to-roll PSC-Si technology. Therefore, this review aims to provide deliberate guidance on critical fundamental issues and configuration factors in current PSC-Si tandem technologies towards large-scale industrialization. to meet the 2031 PSC-Si Tandem road maps market target.
Collapse
|
22
|
Díez-Pascual AM. Development of Graphene-Based Polymeric Nanocomposites: A Brief Overview. Polymers (Basel) 2021; 13:2978. [PMID: 34503017 PMCID: PMC8433988 DOI: 10.3390/polym13172978] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022] Open
Abstract
Graphene (G) and its derivatives, such as graphene oxide (GO) and reduced GO (rGO), have outstanding electrical, mechanical, thermal, optical, and electrochemical properties, owed to their 2D structure and large specific surface area. Further, their combination with polymers leads to novel nanocomposites with enhanced structural and functional properties due to synergistic effects. Such nanocomposites are becoming increasingly useful in a wide variety of fields ranging from biomedicine to the electronics and energy storage applications. In this review, a brief introduction on the aforementioned G derivatives is presented, and different strategies to develop polymeric nanocomposites are described. Several functionalization methods including covalent and non-covalent approaches to increase their interaction with polymers are summarized, and selected examples are provided. Further, applications of this type of nanocomposites in the field of energy are discussed, including lithium-ion batteries, supercapacitors, transparent conductive electrodes, counter electrodes of dye-sensitized solar cells, and active layers of organic solar cells. Finally, the challenges and future outlook for G-based polymeric nanocomposites are discussed.
Collapse
Affiliation(s)
- Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
23
|
Shah SAA, Sayyad MH, Khan K, Sun J, Guo Z. Application of MXenes in Perovskite Solar Cells: A Short Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2151. [PMID: 34443979 PMCID: PMC8401012 DOI: 10.3390/nano11082151] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/21/2021] [Indexed: 12/16/2022]
Abstract
Application of MXene materials in perovskite solar cells (PSCs) has attracted considerable attention owing to their supreme electrical conductivity, excellent carrier mobility, adjustable surface functional groups, excellent transparency and superior mechanical properties. This article reviews the progress made so far in using Ti3C2Tx MXene materials in the building blocks of perovskite solar cells such as electrodes, hole transport layer (HTL), electron transport layer (ETL) and perovskite photoactive layer. Moreover, we provide an outlook on the exciting opportunities this recently developed field offers, and the challenges faced in effectively incorporating MXene materials in the building blocks of PSCs for better operational stability and enhanced performance.
Collapse
Affiliation(s)
- Syed Afaq Ali Shah
- School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan 523808, China; (S.A.A.S.); (K.K.); (J.S.)
| | - Muhammad Hassan Sayyad
- Advanced Photovoltaic Research Labs (APRL), Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, District Swabi, Khyber Pakhtunkhwa 23640, Pakistan;
| | - Karim Khan
- School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan 523808, China; (S.A.A.S.); (K.K.); (J.S.)
| | - Jinghua Sun
- School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan 523808, China; (S.A.A.S.); (K.K.); (J.S.)
| | - Zhongyi Guo
- School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan 523808, China; (S.A.A.S.); (K.K.); (J.S.)
- School of Computer and Information, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
24
|
Novel Control Strategy for Enhancing Microgrid Operation Connected to Photovoltaic Generation and Energy Storage Systems. ELECTRONICS 2021. [DOI: 10.3390/electronics10111261] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, the penetration of energy storage systems and photovoltaics has been significantly expanded worldwide. In this regard, this paper presents the enhanced operation and control of DC microgrid systems, which are based on photovoltaic modules, battery storage systems, and DC load. DC–DC and DC–AC converters are coordinated and controlled to achieve DC voltage stability in the microgrid. To achieve such an ambitious target, the system is widely operated in two different modes: stand-alone and grid-connected modes. The novel control strategy enables maximum power generation from the photovoltaic system across different techniques for operating the microgrid. Six different cases are simulated and analyzed using the MATLAB/Simulink platform while varying irradiance levels and consequently varying photovoltaic generation. The proposed system achieves voltage and power stability at different load demands. It is illustrated that the grid-tied mode of operation regulated by voltage source converter control offers more stability than the islanded mode. In general, the proposed battery converter control introduces a stable operation and regulated DC voltage but with few voltage spikes. The merit of the integrated DC microgrid with batteries is to attain further flexibility and reliability through balancing power demand and generation. The simulation results also show the system can operate properly in normal or abnormal cases, thanks to the proposed control strategy, which can regulate the voltage stability of the DC bus in the microgrid with energy storage systems and photovoltaics.
Collapse
|
25
|
Periyasamy K, Sakthivel P, Vennila P, Anbarasan P, Venkatesh G, Sheena Mary Y. Novel D-π-A phenothiazine and dibenzofuran organic dyes with simple structures for efficient dye-sensitized solar cells. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113269] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Socol M, Preda N. Hybrid Nanocomposite Thin Films for Photovoltaic Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1117. [PMID: 33925952 PMCID: PMC8145415 DOI: 10.3390/nano11051117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Continuing growth in global energy consumption and the growing concerns regarding climate change and environmental pollution are the strongest drivers of renewable energy deployment. Solar energy is the most abundant and cleanest renewable energy source available. Nowadays, photovoltaic technologies can be regarded as viable pathways to provide sustainable energy generation, the achievement attained in designing nanomaterials with tunable properties and the progress made in the production processes having a major impact in their development. Solar cells involving hybrid nanocomposite layers have, lately, received extensive research attention due to the possibility to combine the advantages derived from the properties of both components: flexibility and processability from the organic part and stability and optoelectronics features from the inorganic part. Thus, this review provides a synopsis on hybrid solar cells developed in the last decade which involve composite layers deposited by spin-coating, the most used deposition method, and matrix-assisted pulsed laser evaporation, a relatively new deposition technique. The overview is focused on the hybrid nanocomposite films that can use conducting polymers and metal phthalocyanines as p-type materials, fullerene derivatives and non-fullerene compounds as n-type materials, and semiconductor nanostructures based on metal oxide, chalcogenides, and silicon. A survey regarding the influence of various factors on the hybrid solar cell efficiency is given in order to identify new strategies for enhancing the device performance in the upcoming years.
Collapse
|
27
|
Investigation of Vacuum Annealing Temperature Effects on the Microstructure Properties of DC-PECVD Grown Diamond Nanoparticles. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01836-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Samokhvalov A. Understanding the structure, bonding and reactions of nanocrystalline semiconductors: a novel high-resolution instrumental method of solid-state synchronous luminescence spectroscopy. Phys Chem Chem Phys 2021; 23:7022-7036. [PMID: 33876074 DOI: 10.1039/d0cp06709a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This Perspective Article describes the recent advancements in studies of nanocrystalline metal oxides using a novel ultra-high resolution method, solid-state synchronous luminescence spectroscopy (SS-SLS). Semiconductors notably include titanium dioxide and these studies shed light on the detailed electronic structure, composition, and their reactions. First, we critically discuss the limitations of the major existing non-spectroscopic and spectroscopic methods of characterization of electronic structure of nanocrystalline semiconductors and insulators. Second, we describe the foundations and the setup of SS-SLS as an enhanced-resolution, facile, non-contact, non-destructive, and highly capable method of studies of nanomaterials. Third, the following insights are featured which are obtained by SS-SLS, but are not available by other methods: (a) detection of traps of electric charge (specific mid-gap states); (b) discrimination between "surface" and "bulk" sites; (c) in situ studies of composite nanomaterials and mechanisms of reactions, (d) the derivative SS-SLS for accurate determination of energies of absorption and emission. The specific advantages of SS-SLS versus other methods and in direct comparison with "conventional" photoluminescence spectroscopy are highlighted. Finally, new opportunities and challenges of SS-SLS are presented. SS-SLS is an advanced spectroscopic method with significant potential to aid academia and industry in studies of chemo-sensing, photocatalysis, optoelectronic materials, applied surface science, development of instrumental analysis, and studies of mechanisms of surface and "bulk" chemical reactions.
Collapse
Affiliation(s)
- Alexander Samokhvalov
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA.
| |
Collapse
|
29
|
Engineering of TiO2 or ZnO—Graphene Oxide Nanoheterojunctions for Hybrid Solar Cells Devices. PHOTONICS 2021. [DOI: 10.3390/photonics8030075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is currently of huge importance to find alternatives to fossil fuels to produce clean energy and to ensure the energy demands of modern society. In the present work, two types of hybrid solar cell devices were developed and characterized. The photoactive layers of the hybrid heterojunctions comprise poly (allylamine chloride) (PAH) and graphene oxide (GO) and TiO2 or ZnO films, which were deposited using the layer-by-layer technique and DC-reactive magnetron sputtering, respectively, onto fluorine-doped tin oxide (FTO)-coated glass substrates. Scanning electron microscopy evidenced a homogeneous inorganic layer, the surface morphology of which was dependent on the number of organic bilayers. The electrical characterization pointed out that FTO/(PAH/GO)50/TiO2/Al, FTO/(PAH/GO)30/ZnO/Al, and FTO/(PAH/GO)50/ZnO/Al architectures were the only ones to exhibit a diode behavior, and the last one experienced a decrease in current in a low-humidity environment. The (PAH/GO)20 impedance spectroscopy study further revealed the typical impedance of a parallel RC circuit for a dry environment, whereas in a humid environment, it approached the impedance of a series of three parallel RC circuits, indicating that water and oxygen contribute to other conduction processes. Finally, the achieved devices should be encapsulated to work successfully as solar cells.
Collapse
|
30
|
Evaluation Methodology of a Smart Clothing Biomechanical Energy Harvesting System for Mountain Rescuers. SENSORS 2021; 21:s21030905. [PMID: 33572818 PMCID: PMC7866252 DOI: 10.3390/s21030905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/27/2022]
Abstract
The article presents a methodology developed for the evaluation of biomechanical energy harvesting systems that permits avoiding long-duration outdoor tests while providing realistic input signals and preserving uniform conditions across repeated tests. It consists of two stages: transducer output signal recording and power conversion and storage system measurements. The proposed approach was applied to assess the usefulness of a commercial electromagnetic transducer for supplying a Global Positioning System (GPS) receiver used as an active component of a smart clothing dedicated for mountain rescuers. Electrical power yield measurements have been presented together with ergonomic tests results. They all involved diverse physical activities performed by mountain rescuers that simulated their true operations, but were conducted in a training room for the sake of standardization. By providing reliable data on the transducer’s performance under realistic use conditions, the proposed evaluation procedure revealed that the true energy yield was much smaller not only with respect to the manufacturer’s assertions, but also substantially lower than what was expected based on an independent review which used unrealistic and non-uniform excitations. On the other hand, ergonomics ratings given by potential end users were very high, which demonstrates that the evaluated transducer can still be useful for supplying active cloth components with a lower power demand. The study also revealed that transducer location and orientation strongly affect its performance, which must be taken into account at the first stage of the evaluation procedure. Moreover, physical activity type and conditions (such as motion speed and ground tilt) influence the output power and should be carefully considered when composing a typical case scenario for the second stage.
Collapse
|
31
|
Bahgaat NK, Abdel Salam N, Roshdy MM, Sakr SAE. Design of Solar System for LTE Networks. RESEARCH ANTHOLOGY ON CLEAN ENERGY MANAGEMENT AND SOLUTIONS 2021:416-432. [DOI: 10.4018/978-1-7998-9152-9.ch018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Rapid growth in mobile networks and the increase of the number of cellular base stations requires more energy sources, but the traditional sources of energy cause pollution and environmental problems. Therefore, modern facilities tend to use renewable energy sources instead of traditional sources. One renewable source is the photovoltaic panel, which made from semiconductor materials which absorb sunlight to generate electricity. This article discusses the importance of using solar panels to produce energy for mobile stations and also a solution to some environmental problems such as pollution. This article provides a design for a solar-power plant to feed the mobile station. Also, in this article is a prediction of all loads, the power consumed, the number of solar panels used, and solar batteries can be used to store electrical energy. Finally, an estimation of the costs of all components will be presented. Good discussion and conclusion will be presented about the results obtained. The results obtained are promising. In addition, a future plan is described to complete this important study.
Collapse
Affiliation(s)
- Naglaa Kamel Bahgaat
- Electrical Communication Department, Faculty of Engineering, Canadian International College (CIC), Giza, Egypt
| | - Nariman Abdel Salam
- Electrical Communication Department, Faculty of Engineering, Canadian International College (CIC), Giza, Egypt
| | - Monika Mady Roshdy
- Electrical Communication Department, Faculty of Engineering, Canadian International College (CIC), Giza, Egypt
| | - Sandy Abd Elrasheed Sakr
- Electrical Communication Department, Faculty of Engineering, Canadian International College (CIC), Giza, Egypt
| |
Collapse
|
32
|
Lagopati N, Evangelou K, Falaras P, Tsilibary EPC, Vasileiou PVS, Havaki S, Angelopoulou A, Pavlatou EA, Gorgoulis VG. Nanomedicine: Photo-activated nanostructured titanium dioxide, as a promising anticancer agent. Pharmacol Ther 2020; 222:107795. [PMID: 33358928 DOI: 10.1016/j.pharmthera.2020.107795] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022]
Abstract
The multivariate condition of cancer disease has been approached in various ways, by the scientific community. Recent studies focus on individualized treatments, minimizing the undesirable consequences of the conventional methods, but the development of an alternative effective therapeutic scheme remains to be held. Nanomedicine could provide a solution, filling this gap, exploiting the unique properties of innovative nanostructured materials. Nanostructured titanium dioxide (TiO2) has a variety of applications of daily routine and of advanced technology. Due to its biocompatibility, it has also a great number of biomedical applications. It is now clear that photo-excited TiO2 nanoparticles, induce generation of pairs of electrons and holes which react with water and oxygen to yield reactive oxygen species (ROS) that have been proven to damage cancer cells, triggering controlled cellular processes. The aim of this review is to provide insights into the field of nanomedicine and particularly into the wide context of TiO2-NP-mediated anticancer effect, shedding light on the achievements of nanotechnology and proposing this nanostructured material as a promising anticancer photosensitizer.
Collapse
Affiliation(s)
- Nefeli Lagopati
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, GR 11527 Athens, Greece; Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9, Iroon Polytechniou str., GR 15780 Zografou, Athens, Greece.
| | - Konstantinos Evangelou
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, GR 11527 Athens, Greece.
| | - Polycarpos Falaras
- Institute of Nanoscience and Nanotechnology, Laboratory of Nanotechnology Processes for Solar Energy Conversion and Environmental Protection, National Centre for Scientific Research "Demokritos", Patriarchou Gregoriou E & 27 Neapoleos Str., GR 15341 Agia Paraskevi, Athens, Greece.
| | | | - Panagiotis V S Vasileiou
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, GR 11527 Athens, Greece
| | - Sofia Havaki
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, GR 11527 Athens, Greece.
| | - Andriani Angelopoulou
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, GR 11527 Athens, Greece
| | - Evangelia A Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9, Iroon Polytechniou str., GR 15780 Zografou, Athens, Greece.
| | - Vassilis G Gorgoulis
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, GR 11527 Athens, Greece; Biomedical Research Foundation Academy of Athens, Athens, Greece; Faculty of Biology, Medicine and Health Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
33
|
Abstract
This study aims to provide photovoltaic module selection with better performance in the shading condition for improving production efficiency and reducing photovoltaic system investment cost through the symmetry concept, combining both solar energy mathematical and engineering principles. The study builds a symmetrical photovoltaic model and uses the series-parallel circuit theory, piecewise function and Matlab simulation. The voltage and current output characteristics of commercial photovoltaic modules made of different materials and structures are analyzed and their shading effects are evaluated. The results show that for each photovoltaic module, the output power is directly proportional to the irradiance. The output voltage of the photovoltaic module slightly increases and the output current greatly decreases from no shading to shading. The rate of output power reduction varies for each photovoltaic module type when the irradiance changes. The thin film modules show a lower output power reduction rate than crystalline photovoltaic modules from no shading to shading and they have good adaptability to shading. The use of thin film photovoltaic modules is recommended when the shading condition cannot be avoided.
Collapse
|
34
|
Manamela L, Fru JN, Kyesmen PI, Diale M, Nombona N. Electrically Enhanced Transition Metal Dichalcogenides as Charge Transport Layers in Metallophthalocyanine-Based Solar Cells. Front Chem 2020; 8:612418. [PMID: 33344424 PMCID: PMC7746773 DOI: 10.3389/fchem.2020.612418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
Transitional metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS2) have found application in photovoltaic cells as a charge transporting layer due to their high carrier mobility, chemical stability, and flexibility. In this research, a photovoltaic device was fabricated consisting of copper phthalocyanine (CuPc) as the active layer, exfoliated and Au-doped MoS2, which are n-type and p-type as electron and hole transport layers, respectively. XRD studies showed prominent peaks at (002) and other weak reflections at (100), (103), (006), and (105) planes corresponding to those of bulky MoS2. The only maintained reflection at (002) was weakened for the exfoliated MoS2 compared to the bulk, which confirmed that the material was highly exfoliated. Additional peaks at (111) and (200) planes were observed for the Au doped MoS2. The interlayer spacing (d002) was calculated to be 0.62 nm for the trigonal prismatic MoS2 with the space group P6m2. Raman spectroscopy showed that theE 2 1 g (393 cm-1) and A1g (409 cm-1) peaks for exfoliated MoS2 are closer to each other compared to their bulk counterparts (378 and 408 cm-1, respectively) hence confirming exfoliation. Raman spectroscopy also confirmed doping of MoS2 by Au as the Au-S peak was observed at 320 cm-1. Exfoliation was further confirmed by SEM as when moving from bulky to exfoliated MoS2, a single nanosheet was observed. Doping was further proven by EDS, which detected Au in the sample suggesting the yield of a p-type Au-MoS2. The fabricated device had the architecture: Glass/FTO/Au-MoS2/CuPc/MoS2/Au. A quadratic relationship between I-V was observed suggesting little rectification from the device. Illuminated I-V characterization verified that the device was sensitive and absorbed visible light. Upon illumination, the device was able to absorb photons to create electron-hole pairs and it was evident that semipermeable junctions were formed between Au-MoS2/CuPc and CuPc/MoS2 as holes and electrons were extracted and separated at respective junctions generating current from light. This study indicates that the exfoliated and Au-MoS2 could be employed as an electron transporting layer (ETL) and hole transporting layer (HTL), respectively in fabricating photovoltaic devices.
Collapse
Affiliation(s)
- Lebogang Manamela
- Department of Chemistry, University of Pretoria, Pretoria, South Africa
| | - Juvet N. Fru
- Department of Physics, University of Pretoria, Pretoria, South Africa
| | - Pannan I. Kyesmen
- Department of Physics, University of Pretoria, Pretoria, South Africa
| | - Mmantsae Diale
- Department of Physics, University of Pretoria, Pretoria, South Africa
| | - Nolwazi Nombona
- Department of Chemistry, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
35
|
R. Murad A, Iraqi A, Aziz SB, Hi H, N. Abdullah S, Brza MA, Abdulwahid RT. Influence of Fluorine Substitution on the Optical, Thermal, Electrochemical and Structural Properties of Carbazole-Benzothiadiazole Dicarboxylic Imide Alternate Copolymers. Polymers (Basel) 2020; 12:E2910. [PMID: 33291677 PMCID: PMC7761964 DOI: 10.3390/polym12122910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
In this work four novel donor-acceptor copolymers, PCDTBTDI-DMO, PCDTBTDI-8, P2F-CDTBTDI-DMO and P2F-CDTBTDI-8, were designed and synthesised via Suzuki polymerisation. The first two copolymers consist of 2,7-carbazole flanked by thienyl moieties as the electron donor unit and benzothiadiazole dicarboxylic imide (BTDI) as electron acceptor units. In the structures of P2F-CDTBTDI-DMO and P2F-CDTBTDI-8 copolymers, two fluorine atoms were incorporated at 3,6-positions of 2,7-carbazole to investigate the impact of fluorine upon the optoelectronic, structural and thermal properties of the resulting polymers. P2F-CDTBTDI-8 possesses the highest number average molecular weight (Mn = 24,200 g mol-1) among all the polymers synthesised. PCDTBTDI-DMO and PCDTBTDI-8 show identical optical band gaps of 1.76 eV. However, the optical band gaps of fluorinated copolymers are slightly higher than non-fluorinated counterparts. All polymers have deep-lying highest occupied molecular orbital (HOMO) levels. Changing the alkyl chain substituents on BTDI moieties from linear n-octyl to branched 3,7-dimethyloctyl groups as well as substituting the two hydrogen atoms at 3,6-positions of carbazole unit by fluorine atoms has negligible impact on the HOMO levels of the polymers. Similarly, the lowest unoccupied molecular orbital (LUMO) energy levels are almost comparable for all polymers. Thermogravimetric analysis (TGA) has shown that all polymers have good thermal stability and also confirmed that the fluorinated copolymers have higher thermal stability relative to those non-fluorinated analogues. Powder X-ray diffraction (XRD) studies proved that all polymers have an amorphous nature in the solid state.
Collapse
Affiliation(s)
- Ary R. Murad
- Department of Pharmaceutical Chemistry, College of Medical and Applied Sciences, Charmo University, Chamchamal, Sulaimani 46023, Iraq;
| | - Ahmed Iraqi
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK; (A.I.); (H.H.)
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.)
- Department of Civil engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Iraq
| | - Hunan Hi
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK; (A.I.); (H.H.)
| | - Sozan N. Abdullah
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq;
| | - M. A. Brza
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.)
| | - Rebar T. Abdulwahid
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.)
- Department of Physics, College of Education, Old Campus, University of Sulaimani, Kurdistan Regional Government, Sulaimani 46001, Iraq
| |
Collapse
|
36
|
Benderskii VA, Kim IP. Photovoltaic Effect in Phthalocyanine-Based Organic Solar Cells: 2. Trapping of Molecular Excitons by Impurities. HIGH ENERGY CHEMISTRY 2020. [DOI: 10.1134/s0018143920060028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Abo Ghazala M, Othman HA, Sharaf El-Deen LM, Nawwar MA, Kashyout AEHB. Fabrication of Nanocrystalline Silicon Thin Films Utilized for Optoelectronic Devices Prepared by Thermal Vacuum Evaporation. ACS OMEGA 2020; 5:27633-27644. [PMID: 33134727 PMCID: PMC7594337 DOI: 10.1021/acsomega.0c04206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Metal-induced crystallization of amorphous silicon is a promising technique for developing high-quality and cheap optoelectronic devices. Many attempts tried to enhance the crystal growth of polycrystalline silicon via aluminum-induced crystallization at different annealing times and temperatures. In this research, thin films of aluminum/silicon (Al/Si) and aluminum/silicon/tin (Al/Si/Sn) layers were fabricated using the thermal evaporation technique with a designed wire tungsten boat. MIC of a:Si was detected at annealing temperature of 500 °C using X-ray diffraction, Raman spectroscopy, and field emission scanning electron microscopy. The crystallinity of the films is enhanced by increasing the annealing time. In the three-layer thin films, MIC occurs because of the existence of both Al and Sn metals forming highly oriented (111) silicon. Nanocrystalline silicon with dimensions ranged from 5 to 300 nm is produced depending on the structure and time duration. Low surface reflection and the variation of the optical energy gap were detected using UV-vis spectroscopy. Higher conductivities of Al/Si/Sn films than Al/Si films were observed because of the presence of both metals. Highly rectifying ideal diode manufactured from Al/Si/Sn on the FTO layer annealed for 24 h indicates that this device has a great opportunity for the optoelectronic device applications.
Collapse
Affiliation(s)
- Magdy
S. Abo Ghazala
- Physics
Department, Faculty of Science, Menoufia
University, Shebin
El-Kom, Menoufia 32511, Egypt
| | - Hosam A. Othman
- Physics
Department, Faculty of Science, Menoufia
University, Shebin
El-Kom, Menoufia 32511, Egypt
| | - Lobna M. Sharaf El-Deen
- Physics
Department, Faculty of Science, Menoufia
University, Shebin
El-Kom, Menoufia 32511, Egypt
| | - Mohamed A. Nawwar
- Physics
Department, Faculty of Science, Menoufia
University, Shebin
El-Kom, Menoufia 32511, Egypt
| | - Abd El-hady B. Kashyout
- Electronic
Materials Department, Advanced Technology and New Materials Research
Institute, City of Scientific Research and
Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| |
Collapse
|
38
|
Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies. ENERGIES 2020. [DOI: 10.3390/en13215602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are two innovative classes of porous coordination polymers. MOFs are three-dimensional materials made up of secondary building blocks comprised of metal ions/clusters and organic ligands whereas COFs are 2D or 3D highly porous organic solids made up by light elements (i.e., H, B, C, N, O). Both MOFs and COFs, being highly conjugated scaffolds, are very promising as photoactive materials for applications in photocatalysis and artificial photosynthesis because of their tunable electronic properties, high surface area, remarkable light and thermal stability, easy and relative low-cost synthesis, and structural versatility. These properties make them perfectly suitable for photovoltaic application: throughout this review, we summarize recent advances in the employment of both MOFs and COFs in emerging photovoltaics, namely dye-sensitized solar cells (DSSCs) organic photovoltaic (OPV) and perovskite solar cells (PSCs). MOFs are successfully implemented in DSSCs as photoanodic material or solid-state sensitizers and in PSCs mainly as hole or electron transporting materials. An innovative paradigm, in which the porous conductive polymer acts as standing-alone sensitized photoanode, is exploited too. Conversely, COFs are mostly implemented as photoactive material or as hole transporting material in PSCs.
Collapse
|
39
|
Abstract
Climate change and global warming have triggered a global increase in the use of renewable energy for various purposes. In recent years, the photovoltaic (PV)-system has become one of the most popular renewable energy technologies that captures solar energy for different applications. Despite its popularity, its adoption is still facing enormous challenges, especially in developing countries. Experience from research and practice has revealed that installed PV-systems significantly underperform. This has been one of the major barriers to PV-system adoption, yet it has received very little attention. The poor performance of installed PV-systems means they do not generate the required electric energy output they have been designed to produce. Performance assessment parameters such as performance yields and performance ratio (PR) help to provide mathematical accounts of the expected energy output of PV-systems. Many reasons have been advanced for the disparity in the performance of PV-systems. This study aims to analyze the factors that affect the performance of installed PV-systems, such as geographical location, solar irradiance, dust, and shading. Other factors such as multiplicity of PV-system components in the market and the complexity of the permutations of these components, their types, efficiencies, and their different performance indicators are poorly understood, thus making it difficult to optimize the efficiency of the system as a whole. Furthermore, mathematical computations are presented to prove that the different design methods often used for the design of PV-systems lead to results with significant differences due to different assumptions often made early on. The methods for the design of PV-systems are critically appraised. There is a paucity of literature about the different methods of designing PV-systems, their disparities, and the outcomes of each method. The rationale behind this review is to analyze the variations in designs and offer far-reaching recommendations for future studies so that researchers can come up with more standardized design approaches.
Collapse
|
40
|
Nikitin KS, Polenov YV, Kazak AV, Egorova EV, Usol’tseva NV. Interaction of N,N'-Di(4-chlorophenyl)diimide 1,1'-Binaphtyl-4,4',5,5',8,8'-hexacarboxylic Acid with Thiourea Dioxide in Solution and Thin Film. CRYSTALLOGR REP+ 2020. [DOI: 10.1134/s1063774520050156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Nguyen Van M, Mai OLT, Pham Do C, Lam Thi H, Pham Manh C, Nguyen Manh H, Pham Thi D, Do Danh B. Fe-Doped g-C 3N 4: High-Performance Photocatalysts in Rhodamine B Decomposition. Polymers (Basel) 2020; 12:E1963. [PMID: 32872559 PMCID: PMC7564836 DOI: 10.3390/polym12091963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 11/17/2022] Open
Abstract
Herein, Fe-doped C3N4 high-performance photocatalysts, synthesized by a facile and cost effective heat stirring method, were investigated systematically using powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area measurement, X-ray photoelectron (XPS), UV-Vis diffusion reflectance (DRS) and photoluminescence (PL) spectroscopy. The results showed that Fe ions incorporated into a g-C3N4 nanosheet in both +3 and +2 oxidation states and in interstitial configuration. Absorption edge shifted slightly toward the red light along with an increase of absorbance in the wavelength range of 430-570 nm. Specific surface area increased with the incorporation of Fe into g-C3N4 lattice, reaching the highest value at the sample doped with 7 mol% Fe (FeCN7). A sharp decrease in PL intensity with increasing Fe content is an indirect evidence showing that electron-hole pair recombination rate decreased. Interestingly, Fe-doped g-C3N4 nanosheets present a superior photocatalytic activity compared to pure g-C3N4 in decomposing RhB solution. FeCN7 sample exhibits the highest photocatalytic efficiency, decomposing almost completely RhB 10 ppm solution after 30 min of xenon lamp illumination with a reaction rate approximately ten times greater than that of pure g-C3N4 nanosheet. This is in an agreement with the BET measurement and photoluminescence result which shows that FeCN7 possesses the largest specific surface area and low electron-hole recombination rate. The mechanism of photocatalytic enhancement is mainly explained through the charge transfer processes related to Fe2+/Fe3+ impurity in g-C3N4 crystal lattice.
Collapse
Affiliation(s)
- Minh Nguyen Van
- Center for Nano Science and Technology, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi 100000, Vietnam; (M.N.V.); (C.P.M.)
- Department of Physics, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi 100000, Vietnam; (C.P.D.); (B.D.D.)
| | - Oanh Le Thi Mai
- Center for Nano Science and Technology, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi 100000, Vietnam; (M.N.V.); (C.P.M.)
- Department of Physics, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi 100000, Vietnam; (C.P.D.); (B.D.D.)
| | - Chung Pham Do
- Department of Physics, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi 100000, Vietnam; (C.P.D.); (B.D.D.)
| | - Hang Lam Thi
- Faculty of Basic Sciences, Hanoi University of Natural Resources and Environment, 41A Phu Dien Road, North Tu Liem, Hanoi 100000, Vietnam;
| | - Cuong Pham Manh
- Center for Nano Science and Technology, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi 100000, Vietnam; (M.N.V.); (C.P.M.)
- Nguyen Trai Specialized Senior High School, Haiduong 03000, Vietnam
| | - Hung Nguyen Manh
- Department of Physics, Hanoi University of Mining and Geology, Duc Thang ward, North Tu Liem District, Hanoi 100000, Vietnam;
| | - Duyen Pham Thi
- Military Science Academy, 322 Le Trong Tan street, Dinh Cong, Hoang Mai, Hanoi 100000, Vietnam;
| | - Bich Do Danh
- Department of Physics, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi 100000, Vietnam; (C.P.D.); (B.D.D.)
| |
Collapse
|
42
|
Abstract
Renewable energy (RE) has become a focal point of interest as an alternative source of energy to the traditional fossil fuel and other energy sources due to the fact that it is more environmentally friendly, abundant and economically feasible. Many countries aggressively promote feed-in tariff schemes and solar photovoltaic (PV) systems have become one of the fastest growing RE sources that can be integrated into the grid distribution network. This paper reviews the recent development of grid-connected PV (GPV) generation systems comprising of several sub-components such as PV modules, DC-DC converter, maximum power point tracking (MPPT) technique, and an inverter. In addition, various grid synchronization and islanding detection methods are elaborated. The future key challenges to build a smart and efficient GPV generation system were also presented.
Collapse
|
43
|
Saes BWH, Wienk MM, Janssen RAJ. Photochromic organic solar cells based on diarylethenes. RSC Adv 2020; 10:30176-30185. [PMID: 35518260 PMCID: PMC9056290 DOI: 10.1039/d0ra04508j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/11/2020] [Indexed: 12/02/2022] Open
Abstract
Photovoltaic devices that switch color depending on illumination conditions may find application in future smart window applications. Here a photochromic diarylethene molecule is used as sensitizer in a ternary bulk heterojunction blend, employing poly(4-butylphenyldiphenylamine) (poly-TPD) and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) for the transport of holes and electrons, respectively. Sandwiched between two electrodes, the blend creates a photochromic photovoltaic device that changes color, light absorption, and photon-to-electron conversion efficiency in the visible spectral range after having been illuminated with UV light.
Collapse
Affiliation(s)
- Bart W H Saes
- Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Martijn M Wienk
- Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - René A J Janssen
- Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
- Dutch Institute for Fundamental Energy Research De Zaale 20 5612 AJ Eindhoven The Netherlands
| |
Collapse
|
44
|
Abstract
The rapid efficiency enhancement of perovskite solar cells (PSCs) make it a promising photovoltaic (PV) research, which has now drawn attention from industries and government organizations to invest for further development of PSC technology. PSC technology continuously develops into new and improved results. However, stability, toxicity, cost, material production and fabrication become the significant factors, which limits the expansion of PSCs. PSCs integration into a building in the form of building-integrated photovoltaic (BIPV) is one of the most holistic approaches to exploit it as a next-generation PV technology. Integration of high efficiency and semi-transparent PSC in BIPV is still not a well-established area. The purpose of this review is to get an overview of the relative scope of PSCs integration in the BIPV sector. This review demonstrates the benevolence of PSCs by stimulating energy conversion and its perspective and gradual evolution in terms of photovoltaic applications to address the challenge of increasing energy demand and their environmental impacts for BIPV adaptation. Understanding the critical impact regarding the materials and devices established portfolio for PSC integration BIPV are also discussed. In addition to highlighting the apparent advantages of using PSCs in terms of their demand, perspective and the limitations, challenges, new strategies of modification and relative scopes are also addressed in this review.
Collapse
|
45
|
Bahgaat NK, Abdel Salam N, Roshdy MM, Sakr SAE. Design of Solar System for LTE Networks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SUSTAINABILITY AND GREEN TECHNOLOGIES 2020; 11:1-15. [DOI: 10.4018/ijesgt.2020070101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Rapid growth in mobile networks and the increase of the number of cellular base stations requires more energy sources, but the traditional sources of energy cause pollution and environmental problems. Therefore, modern facilities tend to use renewable energy sources instead of traditional sources. One renewable source is the photovoltaic panel, which made from semiconductor materials which absorb sunlight to generate electricity. This article discusses the importance of using solar panels to produce energy for mobile stations and also a solution to some environmental problems such as pollution. This article provides a design for a solar-power plant to feed the mobile station. Also, in this article is a prediction of all loads, the power consumed, the number of solar panels used, and solar batteries can be used to store electrical energy. Finally, an estimation of the costs of all components will be presented. Good discussion and conclusion will be presented about the results obtained. The results obtained are promising. In addition, a future plan is described to complete this important study.
Collapse
Affiliation(s)
- Naglaa Kamel Bahgaat
- Electrical Communication Department, Faculty of Engineering, Canadian International College (CIC), Giza, Egypt
| | - Nariman Abdel Salam
- Electrical Communication Department, Faculty of Engineering, Canadian International College (CIC), Giza, Egypt
| | - Monika Mady Roshdy
- Electrical Communication Department, Faculty of Engineering, Canadian International College (CIC), Giza, Egypt
| | - Sandy Abd Elrasheed Sakr
- Electrical Communication Department, Faculty of Engineering, Canadian International College (CIC), Giza, Egypt
| |
Collapse
|
46
|
Roy A, Bhandari S, Ghosh A, Sundaram S, Mallick TK. Incorporating Solution-Processed Mesoporous WO3 as an Interfacial Cathode Buffer Layer for Photovoltaic Applications. J Phys Chem A 2020; 124:5709-5719. [DOI: 10.1021/acs.jpca.0c02912] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Anurag Roy
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9FE, U.K
| | - Shubhranshu Bhandari
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9FE, U.K
| | - Aritra Ghosh
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9FE, U.K
| | - Senthilarasu Sundaram
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9FE, U.K
| | - Tapas K. Mallick
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9FE, U.K
| |
Collapse
|
47
|
Parisi ML, Dessì A, Zani L, Maranghi S, Mohammadpourasl S, Calamante M, Mordini A, Basosi R, Reginato G, Sinicropi A. Combined LCA and Green Metrics Approach for the Sustainability Assessment of an Organic Dye Synthesis on Lab Scale. Front Chem 2020; 8:214. [PMID: 32296679 PMCID: PMC7136579 DOI: 10.3389/fchem.2020.00214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/09/2020] [Indexed: 11/30/2022] Open
Abstract
New generation photovoltaic devices have attracted much attention in the last decades since they can be efficiently manufactured employing abundant raw materials and with less-energy intensive processes. In this context, the use of powerful environmental assessment is pivotal to support the fine-tuning of solar cells fabrication and hit the target of manufacturing effective sustainable technological devices. In this work, a mass-based green metrics and life cycle assessment combined approach is applied to analyze the environmental performances of an innovative synthetic protocol for the preparation of organic dye TTZ5, which has been successfully proposed as sensitizer for manufacturing dye sensitized solar cells. The new synthetic strategy, which is based on the C-H activation process, has been compared with the previously reported synthesis employing classic Suzuki-Miyaura cross-coupling chemistry. Results highlight the contribution of direct energy consumption and purification operations in organic syntheses at lab scale. Furthermore, they demonstrate the usefulness of the environmental multifaceted analytic tool and the power of life cycle assessment to overcome the intrinsic less comprehensive nature of green metrics for the evaluation of organic synthetic protocols.
Collapse
Affiliation(s)
- Maria Laura Parisi
- R2ES Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.,Center for Colloid and Surface Science-CSGI, Florence, Italy.,National Research Council, Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), Florence, Italy
| | - Alessio Dessì
- National Research Council, Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), Florence, Italy
| | - Lorenzo Zani
- National Research Council, Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), Florence, Italy
| | - Simone Maranghi
- R2ES Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.,Center for Colloid and Surface Science-CSGI, Florence, Italy
| | - Sanaz Mohammadpourasl
- R2ES Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.,Center for Colloid and Surface Science-CSGI, Florence, Italy.,Department of Chemistry "U. Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Massimo Calamante
- National Research Council, Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), Florence, Italy.,Department of Chemistry "U. Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Alessandro Mordini
- National Research Council, Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), Florence, Italy.,Department of Chemistry "U. Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Riccardo Basosi
- R2ES Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.,Center for Colloid and Surface Science-CSGI, Florence, Italy.,National Research Council, Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), Florence, Italy
| | - Gianna Reginato
- National Research Council, Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), Florence, Italy
| | - Adalgisa Sinicropi
- R2ES Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.,Center for Colloid and Surface Science-CSGI, Florence, Italy.,National Research Council, Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), Florence, Italy
| |
Collapse
|
48
|
Socol M, Preda N, Costas A, Borca B, Popescu-Pelin G, Mihailescu A, Socol G, Stanculescu A. Thin Films Based on Cobalt Phthalocyanine:C60 Fullerene:ZnO Hybrid Nanocomposite Obtained by Laser Evaporation. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E468. [PMID: 32150846 PMCID: PMC7153592 DOI: 10.3390/nano10030468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Matrix-assisted pulsed laser evaporation (MAPLE) was used to deposit hybrid nanocomposite thin films based on cobalt phthalocyanine (CoPc), C60 fullerene and ZnO nanoparticles. The inorganic nanoparticles, with a size of about 20 nm, having the structural and optical properties characteristic of ZnO, were chemically synthesized by a simple precipitation method. Furthermore, ZnO nanoparticles were dispersed in a dimethyl sulfoxide solution in which CoPc and C60 had been dissolved, ready for the freezing MAPLE target. The effect of the concentration of ZnO nanoparticles on the structural, morphological, optical and electrical properties of the CoPc:C60:ZnO hybrid nanocomposite layers deposited by MAPLE was evaluated. The infrared spectra of the hybrid nanocomposite films confirm that the CoPc and C60 preserve their chemical structure during the laser deposition process. The CoPc optical signature is recognized in the ultraviolet-visible (UV-Vis) spectra of the obtained layers, these being dominated by the absorption bands associated to this organic compound while the ZnO optical fingerprint is identified in the photoluminescence spectra of the prepared layers, these disclosing the emission bands linked to this inorganic semiconductor. The hybrid nanocomposite layers exhibit globular morphology, which is typical for the thin films deposited by MAPLE. Current-voltage (J-V) characteristics of the structures developed on CoPc:C60:ZnO layers reveal that the addition of an appropriate amount of ZnO nanoparticles in the CoPc:C60 mixture leads to a more efficient charge transfer between the organic and inorganic components. Due to their photovoltaic effect, structures featuring such hybrid nanocomposite thin films deposited by MAPLE can have potential applications in the field of photovoltaic devices.
Collapse
Affiliation(s)
- Marcela Socol
- National Institute of Materials Physics, 077125 Magurele, Romania; (A.C.); (B.B.); (A.S.)
| | - Nicoleta Preda
- National Institute of Materials Physics, 077125 Magurele, Romania; (A.C.); (B.B.); (A.S.)
| | - Andreea Costas
- National Institute of Materials Physics, 077125 Magurele, Romania; (A.C.); (B.B.); (A.S.)
| | - Bogdana Borca
- National Institute of Materials Physics, 077125 Magurele, Romania; (A.C.); (B.B.); (A.S.)
| | - Gianina Popescu-Pelin
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (G.P.-P.); (A.M.); (G.S.)
| | - Andreea Mihailescu
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (G.P.-P.); (A.M.); (G.S.)
| | - Gabriel Socol
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (G.P.-P.); (A.M.); (G.S.)
| | - Anca Stanculescu
- National Institute of Materials Physics, 077125 Magurele, Romania; (A.C.); (B.B.); (A.S.)
| |
Collapse
|
49
|
|
50
|
Nguyen TM, Bark CW. Synthesis of Cobalt-Doped TiO 2 Based on Metal-Organic Frameworks as an Effective Electron Transport Material in Perovskite Solar Cells. ACS OMEGA 2020; 5:2280-2286. [PMID: 32064389 PMCID: PMC7016924 DOI: 10.1021/acsomega.9b03507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/21/2020] [Indexed: 05/27/2023]
Abstract
In this study, Co-doped TiO2 was prepared successfully using a solvothermal method with trimesic acid (H3BTC) as an organic framework to form the Co-doped Ti metal-organic framework (Co-doped Ti-MOF). By thermally decomposing the Co-doped Ti-MOF in air, the framework template was removed, and porous Co-doped TiO2 was obtained. The crystal structure of the material was analyzed using X-ray diffraction. The morphology was examined using scanning electron microscopy (SEM) and focused ion beam SEM. The large specific surface area was determined to be 135.95 m2 g-1 using Brunauer-Emmett-Teller theory. Fourier transform infrared spectroscopy verified the presence of Ti-O-Ti and Co-O vibrations in the as-prepared sample. Furthermore, the results of UV-vis spectroscopy showed that doping with Co remarkably improved the absorption ability of Ti-MOF toward the visible-light region with a band gap energy of 2.38 eV (λ = 502 nm). Steady-state photoluminescence and electrochemical impedance spectroscopy were conducted to illustrate the improvement of electron transfer in the doped material further. The optimum power conversion efficiency of solar cells using 1 wt % Co-doped TiO2 as an electron transport layer was found to be 15.75%, while that of solar cells using commercial dyesol TiO2 is only 14.42%.
Collapse
Affiliation(s)
- Thi My
Huyen Nguyen
- Department of Electrical
Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| | - Chung Wung Bark
- Department of Electrical
Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| |
Collapse
|