1
|
Wang R, Wei H, Shi Y, Wang C, Yu Z, Zhang Y, Lai Y, Chen J, Wang G, Tian W. Self-generating electricity system driven by aqueous humor flow and trabecular meshwork contraction motion activated BCKa for glaucoma intraocular pressure treatment. MATERIALS HORIZONS 2024. [PMID: 39449290 DOI: 10.1039/d4mh01004c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Primary open-angle glaucoma (POAG) is the most common form of glaucoma and the leading cause of irreversible vision loss and blindness worldwide. Intraocular pressure (IOP) is the only modifiable risk factor, and prompt treatment to lower IOP can effectively slow the rate of vision loss due to glaucoma. Trabecular meshwork (TM) cells can maintain IOP homeostasis by correcting and adjusting the resistance to aqueous humor outflow in response to sustained pressure changes. TM cells' function is reduced, and membrane ion channels are impaired in POAG. The dysfunction of Large conductance Ca2+-activated K+ (BKCa) plays a central role in the pathogenesis of POAG. In this work, we targeted MXene nanoparticles (MXene-RGD) with piezoelectric response to TM cells in a 3D model of glaucoma in vitro as well as in the rabbit Transient Ocular Hypertension (OHT) Model in vivo. MXene-RGD gives the TM electromechanical transfer properties, while the self-enhancing and self-generated electricity properties of the TM are determined by the aqueous humor flow rate and the size of the deformation of the TM. MXene-RGD is nontoxic, as illustrated by a cell toxicity study and histological examination. In a 3D in vitro model of high-pressure glaucoma, whole-cell patch-clamp confirmed that piezoelectric stimulation turns on BKCa, which reduces the volume of the cell. MXene-RGD was injected into the anterior chamber with minimal trauma, i.e., anterior chamber injection, and specifically targeted to TM cells. The OHT model in vivo confirmed the potential IOP-lowering ability of MXene-RGD. We evaluated the ion channels involved in the reduction of IOP by MXene-RGD by pre-treatment with a BKCa channel blocker (iberiotoxin, IbTX) and a voltage-gated Ca2+channel blocker (nifedipine). Quantitative qPCR analysis showed that MXene-RGD inhibited the upregulation of mRNA expression levels of the myofibroblast marker α-smooth muscle actin (α-SMA) and the inflammatory response marker interleukin-6 (IL-6) induced by IOP. Histology confirmed that MXene-RGD attenuated IOP-induced proliferation and collagen production in the TM. Taken together, we present for the first time a minimally invasive surgical approach for targeting TM cells for POAG by utilizing piezoresponse nanomaterials to target BKCa to repair or awaken the ability of TM cells to regulate IOP homeostasis on their own.
Collapse
Affiliation(s)
- Ruiqi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Haiying Wei
- The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang Province, P. R. China
| | - Yuying Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Cao Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Zhenqiang Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Yijian Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Yifan Lai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Jingwei Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Guangfu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| |
Collapse
|
2
|
Kilbile JT, Sapkal SB, Renzi G, D'Agostino I, Boudjelal M, Tamboli Y, Cutarella L, Mori M, Sgambellone S, Villano S, Marri S, Lucarini L, Carradori S, Carta F, Supuran CT. Lasamide Containing Sulfonylpiperazines as Effective Agents for the Management of Glaucoma Associated Symptoms. ChemMedChem 2024:e202400601. [PMID: 39319579 DOI: 10.1002/cmdc.202400601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
A series of 2,4-dichloro-5-{[4-(phenylsulfonyl)piperazin-1-yl]carbonyl}benzenesulfonamides were designed and synthesized through amidation of Lasamide 1 with substituted piperazines. The newly obtained compounds demonstrated remarkable inhibition potency and selectivity for the human (h) expressed Carbonic Anhydrase (CA; EC 4.2.1.1) II isoform. Selected compounds 7 and 9 were investigated in an in vivo model of glaucoma and showed relevant performances, with the latter being able to last the effect up to 4 hours. The results herein reported are in sustainment of Lasamide derivatives as a new class of compounds potentially exploitable for the management of uncontrolled intra ocular pressure (IOP).
Collapse
Affiliation(s)
- Jaydeo T Kilbile
- Department of Chemistry, School of Basic and Applied Sciences, MGM University, Chhatrapati Sambhajinagar, 431003, MS, India
| | - Suryakant B Sapkal
- Department of Chemistry, School of Basic and Applied Sciences, MGM University, Chhatrapati Sambhajinagar, 431003, MS, India
| | - Gioele Renzi
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Ilaria D'Agostino
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
| | - Mohamed Boudjelal
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, 14811, Saudi Arabia
| | - Yasinalli Tamboli
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, 14811, Saudi Arabia
| | - Luigi Cutarella
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Silvia Sgambellone
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, 50139, Florence, Italy
| | - Serafina Villano
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, 50139, Florence, Italy
| | - Silvia Marri
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, 50139, Florence, Italy
| | - Laura Lucarini
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, 50139, Florence, Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
3
|
Sgambellone S, Khanfar MA, Marri S, Villano S, Nardini P, Frank A, Reiner-Link D, Stark H, Lucarini L. Histamine H 3 receptor antagonist/nitric oxide donors as novel promising therapeutic hybrid-tools for glaucoma and retinal neuroprotection. Biomed Pharmacother 2024; 180:117454. [PMID: 39321511 DOI: 10.1016/j.biopha.2024.117454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
Glaucoma is a degenerative optic neuropathy in which the degeneration of optic nerve and blindness occur. The main cause is a malfunction of ciliary processes (protrusions of the ciliary bodies) resulting in increased intraocular pressure (IOP). Ocular hypertension (OHT) causes ischemic events leading to retinal ganglion cell (RGC) depletion and blindness. Histaminergic and nitrergic systems are involved in the regulation of IOP. Therefore, we developed novel hybrid compounds that target histamine H3 receptor (H3R) with nitric oxide (NO) releasing features (ST-1989 and ST-2130). After H3R binding was proven in vitro, we investigated their effects in two OHT models in New Zealand White rabbits. Compound ST-1989 showed the highest NO elevation, together with antioxidative and anti-inflammatory features partly superior to the co-administered H3R antagonist (ciproxifan) and NO donor (molsidomine). This hybrid compound demonstrated IOP reduction in both OHT models induced by intravitreal injection of hypertonic saline and carbomer into the anterior chamber of the eye, respectively. Ocular perfusion and photoreceptor neuroprotection were evaluated in a model of ischemia/reperfusion (I/R) of the ophthalmic artery induced by repeated sub-tenon injections of endothelin-1 (ET-1), twice a week for six weeks. Compound ST-1989 counteracts retinal degeneration reducing ophthalmic artery resistance index and increasing photoreceptor responses, thus rescuing RGCs. Our results indicate that compound ST-1989 is a promising molecule with long-lasting hypotensive effects and good effectiveness in reducing inflammation, oxidative stress, and RGCs apoptosis. In conclusion, these hybrid compounds could be a novel strategy to combat glaucomatous blindness and RGC depletion for ocular diseases involving retinal damage.
Collapse
Affiliation(s)
- Silvia Sgambellone
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Mohammad A Khanfar
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; College of Pharmacy, Alfaisal University, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia
| | - Silvia Marri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Serafina Villano
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Reiner-Link
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Laura Lucarini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.
| |
Collapse
|
4
|
Shi S, Zheng Y, Goulding J, Marri S, Lucarini L, Konecny B, Sgambellone S, Villano S, Bosma R, Wijtmans M, Briddon SJ, Zarzycka BA, Vischer HF, Leurs R. A high-affinity, cis-on photoswitchable beta blocker to optically control β 2-adrenergic receptors in vitro and in vivo. Biochem Pharmacol 2024; 226:116396. [PMID: 38942089 DOI: 10.1016/j.bcp.2024.116396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
This study introduces (S)-Opto-prop-2, a second-generation photoswitchable ligand designed for precise modulation of β2-adrenoceptor (β2AR). Synthesised by incorporating an azobenzene moiety with propranolol, (S)-Opto-prop-2 exhibited a high PSScis (photostationary state for cis isomer) percentage (∼90 %) and a favourable half-life (>10 days), facilitating diverse bioassay measurements. In vitro, the cis-isomer displayed substantially higher β2AR binding affinity than the trans-isomer (1000-fold), making (S)-Opto-prop-2 one of the best photoswitchable GPCR (G protein-coupled receptor) ligands reported so far. Molecular docking of (S)-Opto-prop-2 in the X-ray structure of propranolol-bound β2AR followed by site-directed mutagenesis studies, identified D1133.32, N3127.39 and F2896.51 as crucial residues that contribute to ligand-receptor interactions at the molecular level. In vivo efficacy was assessed using a rabbit ocular hypertension model, revealing that the cis isomer mimicked propranolol's effects in reducing intraocular pressure, while the trans isomer was inactive. Dynamic optical modulation of β2AR by (S)-Opto-prop-2 was demonstrated in two different cAMP bioassays and using live-cell confocal imaging, indicating reversible and dynamic control of β2AR activity using the new photopharmacology tool. In conclusion, (S)-Opto-prop-2 emerges as a promising photoswitchable ligand for precise and reversible β2AR modulation with light. The new tool shows superior cis-on binding affinity, one of the largest reported differences in affinity (1000-fold) between its two configurations, in vivo efficacy, and dynamic modulation. This study contributes valuable insights into the evolving field of photopharmacology, offering a potential avenue for targeted therapy in β2AR-associated pathologies.
Collapse
Affiliation(s)
- Shuang Shi
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands
| | - Yang Zheng
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands
| | - Joëlle Goulding
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K; Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Silvia Marri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, 50139, Italy
| | - Laura Lucarini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, 50139, Italy
| | - Benjamin Konecny
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands
| | - Silvia Sgambellone
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, 50139, Italy
| | - Serafina Villano
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, 50139, Italy
| | - Reggie Bosma
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands
| | - Maikel Wijtmans
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands
| | - Stephen J Briddon
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K; Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Barbara A Zarzycka
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands
| | - Henry F Vischer
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Angeli A, Chelli I, Lucarini L, Sgambellone S, Marri S, Villano S, Ferraroni M, De Luca V, Capasso C, Carta F, Supuran CT. Novel Carbonic Anhydrase Inhibitors with Dual-Tail Core Sulfonamide Show Potent and Lasting Effects for Glaucoma Therapy. J Med Chem 2024; 67:3066-3089. [PMID: 38266245 DOI: 10.1021/acs.jmedchem.3c02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Glaucoma, a leading cause of irreversible vision loss worldwide, is characterized by elevated intraocular pressure (IOP), a well-established risk factor across all its forms. We present the design and synthesis of 39 novel carbonic anhydrase inhibitors by a dual-tailed approach, strategically crafted to interact with distinct hydrophobic and hydrophilic pockets of CA active sites. The series was investigated against the CA isoforms implicated in glaucoma (hCA II, hCA IV, and hCA XII), and the X-ray crystal structures of compounds 25a, 25f, and 26a with CA II, along with 14b in complex with a hCA XII mimic, were determined. Selected compounds (14a, 25a, and 26a) underwent evaluation for their ability to reduce IOP in rabbits with ocular hypertension. Derivative 26a showed significant potency and sustained IOP-lowering effects, surpassing the efficacy of the drugs dorzolamide and bimatoprost. This positions compound 26a as a promising candidate for the development of a novel anti-glaucoma medication.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Irene Chelli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Laura Lucarini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50139 Florence, Italy
| | - Silvia Sgambellone
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50139 Florence, Italy
| | - Silvia Marri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50139 Florence, Italy
| | - Serafina Villano
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50139 Florence, Italy
| | - Marta Ferraroni
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Florence, Italy
| | - Viviana De Luca
- Istituto di Bioscienze e Biorisorse, CNR, 80131 Naples, Italy
| | | | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| |
Collapse
|
6
|
Takematsu E, Massidda M, Howe G, Goldman J, Felli P, Mei L, Callahan G, Sligar AD, Smalling R, Baker AB. Transmembrane stem factor nanodiscs enhanced revascularization in a hind limb ischemia model in diabetic, hyperlipidemic rabbits. Sci Rep 2024; 14:2352. [PMID: 38287067 PMCID: PMC10825164 DOI: 10.1038/s41598-024-52888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia.
Collapse
Affiliation(s)
- Eri Takematsu
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
- School of Medicine, Surgery, Stanford University, Stanford, CA, USA
| | - Miles Massidda
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Gretchen Howe
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX, USA
| | - Julia Goldman
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX, USA
- Center for Laboratory Animal Medicine and Care, UT Health Science Center at Houston, Houston, TX, USA
| | - Patricia Felli
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX, USA
- Center for Laboratory Animal Medicine and Care, UT Health Science Center at Houston, Houston, TX, USA
| | - Lei Mei
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Gregory Callahan
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Andrew D Sligar
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Richard Smalling
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX, USA
- Memorial Hermann Heart and Vascular Institute, Houston, TX, USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA.
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
- The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA.
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
7
|
Li Q, Feng P, Lin S, Xu Z, Zhao J, Chen Z, Luo Z, Tao Y, Chen S, Wang P. Crocetin confers neuroprotection and is anti-inflammatory in rats with induced glaucoma. Mol Biol Rep 2023; 50:1321-1331. [PMID: 36456771 DOI: 10.1007/s11033-022-08102-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Crocetin is a bioactive ingredient in saffron, derived from the Crocus sativus stigmas of the Iridaceae family. As a chemically carotenoid derivative, crocetin exhibites effects like anti-inflammatory, antioxidant, neuroprotective, etc. However, the protective effect of crocetin on glaucoma and its mechanism remains unclear. The current study assesed the neuroprotective and anti-inflammatory effects of crocetin on retinal neurons in glaucoma rats which were induced by 0.3% carbomer injection into the anterior chamber. METHODS AND RESULTS The pathological structures on the retina and optic nerve were observed and examined by H&E staining and transmission electron microscopy. Immunohistochemical staining was used to detect the expression of TNF-α, IL-1β, and IL-6 of the retina and the expression of a brain-derived neurotrophic factor (BDNF) in the primary visual cortex (PVC). Western blot was carried out to detect the expression of PI3K, Akt, and NF-κB in the retina. It was found that crocetin ameliorated the pathological changes of the retina and ON and reduced the number of apoptotic retinal ganglion cells. Immunohistochemical staining showed that crocetin could decrease the contents of TNF-α, IL-1β, and IL-6 and increase the contents of BDNF. Western blot showed that crocetin was found to suppress the expression of PI3K, Akt, and NF-κB. CONCLUSION The results obtained in this study have indicated that crocetin showes neuroprotective effects on retinal ganglion cells in glaucoma rats and inhibits retinal dysfunction. Meanwhile, crocetin exerted an anti-inflammatory effect to protect the retina by inhibiting the expression of the PI3K/Akt/NF-κB signaling pathway. This work provides substantial evidence that crocetin may be a potential drug for the treatment of glaucoma.
Collapse
Affiliation(s)
- Qiaoqiao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Peishi Feng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Susu Lin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Zijin Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
- College of Pharmacy, Jiangxi Medical College, 334000, Shangrao, Jiangxi, People's Republic of China
| | - Jiajing Zhao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Zirui Luo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, Zhejiang, People's Republic of China.
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China.
| |
Collapse
|
8
|
Wang J, Li M, Geng Z, Khattak S, Ji X, Wu D, Dang Y. Role of Oxidative Stress in Retinal Disease and the Early Intervention Strategies: A Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7836828. [PMID: 36275903 PMCID: PMC9586758 DOI: 10.1155/2022/7836828] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 02/05/2023]
Abstract
The retina, owing to its cellular anatomy and physical location, is susceptible to generating reactive oxygen species (ROS), which are associated with several major retinal diseases. When ROS exceeds the body's natural antioxidants, the retina is in a state of oxidative stress, which is recognized as the pathogenesis of retinal diseases. The early stage of the pathogenic process is an adaptive change in which oxidative stress and endogenous defense mechanisms occur. If no treatment is applied, the retinal diseases will progress to the pathological stage with neuronal and vascular dysfunction or damage and even blindness. This review summarizes the role of oxidative stress in several common retinal diseases, including retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy, glaucoma, and retinopathy of prematurity. In addition, we discuss the early intervention strategies for these diseases. An outline is provided to identify potential intervention targets for further research. Early intervention for retinal diseases is necessary and urgent and may offer hope to improve patients' quality of life through functional vision.
Collapse
Affiliation(s)
- Jun Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Mengling Li
- College of Acu-Moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ziyue Geng
- School of Clinical Medicine, Henan University, Kaifeng, Henan, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Xinying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Dongdong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Yalong Dang
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Sanmenxia Central Hospital, Sanmenxia, Henan, China
| |
Collapse
|
9
|
Yang Y, Wu J, Lu W, Dai Y, Zhang Y, Sun X. Olaparib, a PARP-1 inhibitor, protects retinal cells from ocular hypertension-associated oxidative damage. Front Cell Dev Biol 2022; 10:925835. [PMID: 36092711 PMCID: PMC9459396 DOI: 10.3389/fcell.2022.925835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Glaucoma is the most common cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) and relative hypoxia in the retina stimulate the production of reactive oxygen species (ROS), which, in turn, puts the retina and optic nerve under chronic oxidative stress. Emerging evidence has shown that oxidative stress can trigger PARP-1 overactivation, mitochondrial-associated endoplasmic reticulum membrane (MAM) dysregulation, and NLRP3 activation. Oxidative damage can trigger inflammasome activation, and NLRP3 is the only inflammasome associated with MAM dysregulation. In addition, multiple transcription factors are located on the MAM. This study aimed to investigate the protective effects and underlying mechanisms of a PARP-1 inhibitor (olaparib) against chronic ocular hypertension-associated retinal cell damage. We also mimicked hypoxic stimulation of a retinal precursor cell line by exposing the cells to 0.2% O2in vitro. We discovered that chronic ocular hypertension (COH) induces oxidative damage and MAM dysregulation in the retinal ganglion cells (RGCs). The protein levels of cleaved-PARP and NLRP3 were upregulated in the retinas of the COH rats. Olaparib, a PARP-1 inhibitor, alleviated COH-induced RGC loss, retinal morphological alterations, and photopic negative response amplitude reduction. Olaparib also relieved hypoxic stimulation-induced loss of cell viability and MAM dysregulation. Additionally, some indicators of mitochondrial performance, such as reactive oxygen species accumulation, mitochondrial Ca2+ influx, and mitochondrial membrane potential collapse, decreased after olaparib treatment. Olaparib attenuated the hypoxia-induced upregulation of NLRP3 protein levels as well as the phosphorylation of ERK1/2 and histone H2A.X. These results suggest that olaparib protects RGCs from chronic intraocular pressure elevation in vivo and alleviates the abnormal MAM dysregulation and mitochondrial dysfunction caused by hypoxia in vitro. This protection may be achieved by inhibiting PARP-1 overactivation, NLRP3 upregulation, and phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Yuting Yang
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jihong Wu
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Wei Lu
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiqin Dai
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Youjia Zhang
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Xinghuai Sun,
| |
Collapse
|
10
|
New Insight in Histamine Functions. Biomolecules 2022; 12:biom12050609. [PMID: 35625537 PMCID: PMC9139164 DOI: 10.3390/biom12050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/10/2022] Open
|
11
|
Chiaramonte N, Angeli A, Sgambellone S, Bonardi A, Nocentini A, Bartolucci G, Braconi L, Dei S, Lucarini L, Teodori E, Gratteri P, Wünsch B, Supuran CT, Romanelli MN. 2-(2-Hydroxyethyl)piperazine derivatives as potent human carbonic anhydrase inhibitors: Synthesis, enzyme inhibition, computational studies and antiglaucoma activity. Eur J Med Chem 2022; 228:114026. [PMID: 34920169 DOI: 10.1016/j.ejmech.2021.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 11/26/2022]
Abstract
Targeting Carbonic Anhydrases (CAs) represents a strategy to treat several diseases, from glaucoma to cancer. To widen the structure-activity relationships (SARs) of our series of piperazines endowed with potent human carbonic anhydrase (hCA) inhibition, a new series of chiral piperazines carrying a (2-hydroxyethyl) group was prepared. The Zn-binding function, the 4-sulfamoylbenzoyl moiety, was connected to one piperazine N-atom, while the other nitrogen was decorated with alkyl substituents. In analogy to the approach used for the synthesis of the previously reported series, the preparation of the new compounds started with (R)- and (S)-aspartic acid. A partial racemization occurred during the synthesis. In order to overcome this problem, other chemical strategies were investigated. The inhibitory activity of the new polar derivatives against four hCAs isoforms I, II, IV and IX using a stopped flow CO2 hydrase assay was determined. Some compounds showed potency in the nanomolar range and a preference for inhibiting hCA IX.
Collapse
Affiliation(s)
- Niccolò Chiaramonte
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Andrea Angeli
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Silvia Sgambellone
- University of Florence, Department NEUROFARBA, Section of Pharmacology and Toxicology, Viale Pieraccini 6, 50100, Florence, Italy
| | - Alessandro Bonardi
- University of Florence, Department NEUROFARBA - Section of Pharmaceutical and Nutraceutical Sciences; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, via Ugo Schiff 6, I-50019, Sesto Fiorentino, Italy
| | - Alessio Nocentini
- University of Florence, Department NEUROFARBA - Section of Pharmaceutical and Nutraceutical Sciences; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, via Ugo Schiff 6, I-50019, Sesto Fiorentino, Italy
| | - Gianluca Bartolucci
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Laura Braconi
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Silvia Dei
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Laura Lucarini
- University of Florence, Department NEUROFARBA, Section of Pharmacology and Toxicology, Viale Pieraccini 6, 50100, Florence, Italy
| | - Elisabetta Teodori
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Paola Gratteri
- University of Florence, Department NEUROFARBA - Section of Pharmaceutical and Nutraceutical Sciences; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, via Ugo Schiff 6, I-50019, Sesto Fiorentino, Italy
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms University Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Claudiu T Supuran
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy.
| | - Maria Novella Romanelli
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
12
|
Vannozzi G, Vullo D, Angeli A, Ferraroni M, Combs J, Lomelino C, Andring J, Mckenna R, Bartolucci G, Pallecchi M, Lucarini L, Sgambellone S, Masini E, Carta F, Supuran CT. One-Pot Procedure for the Synthesis of Asymmetric Substituted Ureido Benzene Sulfonamides as Effective Inhibitors of Carbonic Anhydrase Enzymes. J Med Chem 2022; 65:824-837. [PMID: 34958217 DOI: 10.1021/acs.jmedchem.1c01906] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We report a one-pot procedure for the synthesis of asymmetrical ureido-containing benzenesulfonamides based on in situ generation of the corresponding isocyanatobenezenesulfonamide species, which were trapped with the appropriate amines. A library of new compounds was generated and evaluated in vitro for their inhibition properties against a representative panel of the human (h) metalloenzymes carbonic anhydrases (EC 4.2.1.1), and the best performing compounds on the isozyme II (i.e., 7c, 9c, 11g, and 12c) were screened for their ability to reduce the intraocular pressure in glaucomatous rabbits. In addition, the binding modes of 7c, 11f, and 11g were assessed by means of X-ray crystallography.
Collapse
Affiliation(s)
- Gioele Vannozzi
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Daniela Vullo
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Marta Ferraroni
- Dipartimento di Chimica " Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Jacob Combs
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Carrie Lomelino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Jacob Andring
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Robert Mckenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Gianluca Bartolucci
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Marco Pallecchi
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Laura Lucarini
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy
| | - Silvia Sgambellone
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy
| | - Emanuela Masini
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
13
|
Gowtham L, Halder N, Angmo D, Singh SB, Jayasundar R, Dada T, Velpandian T. Elevated histamine levels in aqueous humor of patients with glaucoma. Mol Vis 2021; 27:564-573. [PMID: 34531647 PMCID: PMC8421060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 09/01/2021] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Neurotransmitters (NTs) are the key mediators of essential ocular functions, such as processing the visual functions of the retina, maintaining homeostasis of aqueous humor, and regulating ocular blood flow. This study aims to determine variations in the levels of L-glutamate and γ-aminobutyric acid (GABA), histaminergic, adrenergic, cholinergic, and serotonergic NTs in patients with primary glaucoma versus patients with cataract. METHODS This case-control study involved three age-matched groups of patients with primary open angle glaucoma (POAG, n = 14), primary angle closure glaucoma (PACG, n = 21), and cataract (control, n = 19). Patients' aqueous humor and plasma were collected, snap frozen at -80 °C, and subjected to ultrasensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis for quantification of NTs. RESULTS Baseline intraocular pressure and the cup-to-disc ratio were found to be statistically significantly elevated in the POAG and PACG groups compared to the cataract control group. In aqueous humor, histamine was found to be statistically significantly elevated (5-fold, p<0.0001), whereas 1-methyl histamine was statistically significantly decreased (p<0.05) in POAG compared to the control group. A statistically significant increase in L-glutamate and GABA was observed among both patient groups with glaucoma compared to the cataract control group. Adrenaline was found to be elevated only in the PACG group (2.7-fold, p<0.05). No statistically significant difference was observed among the plasma NT levels between the groups. CONCLUSIONS This study demonstrated the prominent role of the histaminergic system apart from autonomic mechanisms in the progression of glaucoma. Elevated L-glutamate and GABA could be due to retinal ganglionic cell death. Further studies are required to evaluate the effects of histamine on Müller cell dysfunction.
Collapse
Affiliation(s)
- Lakshminarayanan Gowtham
- Ocular Pharmacology and Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Nabanita Halder
- Ocular Pharmacology and Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Dewang Angmo
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | | | - Rama Jayasundar
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India
| | - Tanuj Dada
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Thirumurthy Velpandian
- Ocular Pharmacology and Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Sgambellone S, Lucarini L, Lanzi C, Masini E. Novel Insight of Histamine and Its Receptor Ligands in Glaucoma and Retina Neuroprotection. Biomolecules 2021; 11:1186. [PMID: 34439851 PMCID: PMC8392511 DOI: 10.3390/biom11081186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023] Open
Abstract
Glaucoma is a multifactorial neuropathy characterized by increased intraocular pressure (IOP), and it is the second leading cause of blindness worldwide after cataracts. Glaucoma combines a group of optic neuropathies characterized by the progressive degeneration of retinal ganglionic cells (RGCs). Increased IOP and short-term IOP fluctuation are two of the most critical risk factors in glaucoma progression. Histamine is a well-characterized neuromodulator that follows a circadian rhythm, regulates IOP and modulates retinal circuits and vision. This review summarizes findings from animal models on the role of histamine and its receptors in the eye, focusing on the effects of histamine H3 receptor antagonists for the future treatment of glaucomatous patients.
Collapse
Affiliation(s)
- Silvia Sgambellone
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (S.S.); (E.M.)
| | - Laura Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (S.S.); (E.M.)
| | - Cecilia Lanzi
- Toxicology Unit, Emergency Department, Careggi University Hospital, 50139 Florence, Italy;
| | - Emanuela Masini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (S.S.); (E.M.)
| |
Collapse
|
15
|
Yang C, Huang X, Li X, Yang C, Zhang T, Wu Q, liu D, Lin H, Chen W, Hu N, Xie X. Wearable and Implantable Intraocular Pressure Biosensors: Recent Progress and Future Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002971. [PMID: 33747725 PMCID: PMC7967055 DOI: 10.1002/advs.202002971] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/24/2020] [Indexed: 05/09/2023]
Abstract
Biosensors worn on or implanted in eyes have been garnering substantial attention since being proven to be an effective means to acquire critical biomarkers for monitoring the states of ophthalmic disease, diabetes. Among these disorders, glaucoma, the second leading cause of blindness globally, usually results in irreversible blindness. Continuous intraocular pressure (IOP) monitoring is considered as an effective measure, which provides a comprehensive view of IOP changes that is beyond reach for the "snapshots" measurements by clinical tonometry. However, to satisfy the applications in ophthalmology, the development of IOP sensors are required to be prepared with biocompatible, miniature, transparent, wireless and battery-free features, which are still challenging with many current fabrication processes. In this work, the recent advances in this field are reviewed by categorizing these devices into wearable and implantable IOP sensors. The materials and structures exploited for engineering these IOP devices are presented. Additionally, their working principle, performance, and the potential risk that materials and device architectures may pose to ocular tissue are discussed. This review should be valuable for preferable structure design, device fabrication, performance optimization, and reducing potential risk of these devices. It is significant for the development of future practical IOP sensors.
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
- School of Biomedical EngineeringSun Yat‐Sen UniversityGuangzhou510006China
| | - Chengduan Yang
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
| | - Tao Zhang
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
- School of Biomedical EngineeringSun Yat‐Sen UniversityGuangzhou510006China
| | - Qianni Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhou510060China
| | - Dong liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhou510060China
| | - Haotian Lin
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhou510060China
| | - Weirong Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhou510060China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhou510060China
| |
Collapse
|
16
|
Bonardi A, Nocentini A, Bua S, Combs J, Lomelino C, Andring J, Lucarini L, Sgambellone S, Masini E, McKenna R, Gratteri P, Supuran CT. Sulfonamide Inhibitors of Human Carbonic Anhydrases Designed through a Three-Tails Approach: Improving Ligand/Isoform Matching and Selectivity of Action. J Med Chem 2020; 63:7422-7444. [PMID: 32519851 PMCID: PMC8008423 DOI: 10.1021/acs.jmedchem.0c00733] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
The “tail
approach” has become a milestone in human
carbonic anhydrase inhibitor (hCAI) design for various therapeutics,
including antiglaucoma agents. Besides the classical hydrophobic/hydrophilic
division of hCAs active site, several subpockets have been identified
at the middle/outer active sites rim, which could be targeted to increase
the CAI isoform selectivity. This postulate is explored here by three-tailed
benzenesulfonamide CAIs (TTI) to fully exploit such amino
acid differences among hCAs. In this proof-of-concept study, an extensive
structure–activity relationship (SAR) study was carried out
with 32 such benzenesulfonamides differing in tails combination that
were assayed for hCAs I, II, IV, and XII inhibition. A structural
study was undertaken by X-ray crystallography and in silico tools to assess the ligand/target interaction mode. The most active
and selective inhibitors against isoforms implicated in glaucoma were
assessed in a rabbit model of the disease achieving an intraocular
pressure-lowering action comparable to the clinically used dorzolamide.
Collapse
Affiliation(s)
- Alessandro Bonardi
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence Italy.,Department NEUROFARBA - Pharmaceutical and nutraceutical section; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence Italy.,Department NEUROFARBA - Pharmaceutical and nutraceutical section; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Silvia Bua
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence Italy
| | - Jacob Combs
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, Florida 32610, United States
| | - Carrie Lomelino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, Florida 32610, United States
| | - Jacob Andring
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, Florida 32610, United States
| | - Laura Lucarini
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, viale Gaetano Pieraccini 6, 50139 Firenze, Florence, Italy
| | - Silvia Sgambellone
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, viale Gaetano Pieraccini 6, 50139 Firenze, Florence, Italy
| | - Emanuela Masini
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, viale Gaetano Pieraccini 6, 50139 Firenze, Florence, Italy
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, Florida 32610, United States
| | - Paola Gratteri
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence Italy.,Department NEUROFARBA - Pharmaceutical and nutraceutical section; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence Italy
| |
Collapse
|
17
|
Foutch BK, Sandberg KA, Bennett ES, Naeger LL. Effects of Oral Antihistamines on Tear Volume, Tear Stability, and Intraocular Pressure. Vision (Basel) 2020; 4:vision4020032. [PMID: 32575705 PMCID: PMC7355746 DOI: 10.3390/vision4020032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 11/21/2022] Open
Abstract
The goal of this study was to investigate the effects of two commonly used oral antihistamines—diphenhydramine and loratadine—on tear volume, tear breakup time, and intraocular pressure. Placebo, diphenhydramine, and loratadine were administered for one week to 33 subjects experimentally blind to the treatment given. All the subjects received all three treatments over a period of six weeks. The outcome measures were the change in phenol red thread test (PRT), the tear breakup time (TBUT), and the intraocular pressure (IOP) of both eyes evaluated by experimentally masked observers. Neither of the mean changes in TBUT or IOP depended on the treatment given, but there was a significant monocular decrease in tear volume from diphenhydramine use. While we used an adequate treatment washout period of seven days, our investigation was limited by the short treatment times and inclusion of only young healthy patients. Overall, however, these results suggest that systemic diphenhydramine use should be limited to increase the effectiveness of conventional therapies. Clinicians should have fewer reservations about recommending the use of loratadine concurrent with dry eye treatments.
Collapse
Affiliation(s)
- Brian K. Foutch
- Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, TX 78229, USA;
- Correspondence: ; Tel.: +1-210-930-8162
| | - Kyle A. Sandberg
- Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, TX 78229, USA;
| | - Edward S. Bennett
- College of Optometry, University of Missouri-St Louis, St. Louis, MO 63121, USA; (E.S.B.); (L.L.N.)
| | - Leonard L. Naeger
- College of Optometry, University of Missouri-St Louis, St. Louis, MO 63121, USA; (E.S.B.); (L.L.N.)
- St. Louis College of Pharmacy, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Ghamari N, Zarei O, Arias-Montaño JA, Reiner D, Dastmalchi S, Stark H, Hamzeh-Mivehroud M. Histamine H 3 receptor antagonists/inverse agonists: Where do they go? Pharmacol Ther 2019; 200:69-84. [PMID: 31028835 DOI: 10.1016/j.pharmthera.2019.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/19/2019] [Indexed: 12/16/2022]
Abstract
Since the discovery of the histamine H3 receptor in 1983, tremendous advances in the pharmacological aspects of H3 receptor antagonists/inverse agonists have been accomplished in preclinical studies. At present, there are several drug candidates that reached clinical trial studies for various indications. However, entrance of these candidates to the pharmaceutical market is not free from challenges, and a variety of difficulties is engaged with their developmental process. In this review, the potential role of H3 receptors in the pathophysiology of various central nervous system, metabolic and allergic diseases is discussed. Thereafter, the current status for H3 receptor antagonists/inverse agonists in ongoing clinical trial studies is reviewed and obstacles in developing these agents are emphasized.
Collapse
Affiliation(s)
- Nakisa Ghamari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Zarei
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Neurosciences Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, Zacatenco, 07360 Ciudad de México, México
| | - David Reiner
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Holger Stark
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|