1
|
Chakraborty A, Bayry J, Mukherjee S. Helminth-derived biomolecules as potential therapeutics against ulcerative colitis. Immunotherapy 2024; 16:635-640. [PMID: 38888436 PMCID: PMC11404699 DOI: 10.1080/1750743x.2024.2360382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Affiliation(s)
- Ankita Chakraborty
- Integrative Biochemistry & Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Jagadeesh Bayry
- Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678623, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| |
Collapse
|
2
|
Novel Intravenous Immunoglobulin Therapy for the Prevention and Treatment of Candida auris and Candida albicans Disseminated Candidiasis. mSphere 2023; 8:e0058422. [PMID: 36688668 PMCID: PMC9942587 DOI: 10.1128/msphere.00584-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Disseminated candidiasis is a life-threatening disease and remains the most common bloodstream infection in hospitalized patients in the United States. Despite the availability of modern antifungal therapy, the crude mortality rate in the last decade has remained unacceptably high. Novel approaches are urgently needed to supplement or replace current antifungal therapies. In our study, we show that human intravenous immunoglobulin (IVIG) can provide protection against Candida auris and Candida albicans disseminated infections in A/J and C57BL/6 mouse models. The protective efficacy of IVIG is evidenced by the prolonged survival of mice with invasive candidiasis that were treated with human IVIG alone or in combination with amphotericin B. Our previous studies have led to the identification of a panel of Candida cell surface peptide and glycan epitopes, which are targeted by protective mouse monoclonal antibodies (mAbs) against invasive candidiasis. Of interest, the peptide- and glycan-specific IgGs could be detected in all 18 human IVIG samples. In particular, the specific IVIG lots with the highest protective peptide- and glycan-related IgGs provided the best protection. The combination of IVIG and amphotericin B had enhanced efficacy in protection compared to monotherapy against both multidrug-resistant (MDR) C. auris and C. albicans, with evidence of significantly prolonged survival and lower fungal burdens in targeted organs. This study provides evidence that the protective effects of IVIG were associated with the protective antibodies found in normal human donor sera against pathogenic Candida, and IVIG can be a novel therapy or adjunctive therapy with modern antifungal drugs against disseminated candidiasis. IMPORTANCE Since current antifungal treatments are ineffective in the immunocompromised population and no vaccine is available for humans, hope remains that antibody preparations selected for specific fungal antigens may make it possible to reduce the incidence and mortality of invasive candidiasis. Intravenous immunoglobulin (IVIG) has long been approved as a standard treatment for patients with immunodeficiency disorders who are also susceptible to fungal infection. IVIG has been widely used as prophylaxis or supplemental treatment for sepsis and septic shock; however, this form of adjunctive therapy lacks convincing data to establish its efficacy. In this study, 18 samples from commercial IVIG preparations were screened and evaluated by enzyme-linked immunosorbent assays (ELISAs); Candida peptide- and glycan-specific IgGs were detected with various titers among all IVIG lots. Importantly, significantly reduced organ fungal burdens and mortality were demonstrated in IVIG-treated mouse models of invasive candidiasis. IVIG lots with higher titers of Candida-specific IgGs provided better protection. These findings are important in (i) selecting Candida-specific IVIG therapy that may overcome several shortcomings of conventional IVIG therapy by targeting specific antigens responsible for disease pathogenesis, (ii) enhancing protective efficacy, and (iii) validating data from our previous studies and those of others showing that antibodies combined with conventional antifungal drugs provided enhanced resistance to disease. To our knowledge, this study is the first to demonstrate that human IVIG samples contain protective IgGs targeting Candida cell surface antigens and can be a novel therapy or adjunctive therapy with modern antifungal drugs against disseminated candidiasis.
Collapse
|
3
|
Lu Y, Li Z, Peng X. Regulatory effects of oral microbe on intestinal microbiota and the illness. Front Cell Infect Microbiol 2023; 13:1093967. [PMID: 36816583 PMCID: PMC9928999 DOI: 10.3389/fcimb.2023.1093967] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Over the past decade, the association between oral health, intestinal microbiota, and systemic diseases has been further validated. Some oral microbial species have been isolated from pathological intestine mucosa or feces and identified as biomarkers for intestinal diseases. A small proportion of oral microbiome passes through or colonizes the lower gastrointestinal tract, even in healthy individuals. Opportunistic pathogens from the oral cavity may expand and participate in the occurrence and progression of intestinal diseases when the anatomical barrier is disrupted. These disruptors interact with the intestinal microbiota, disturbing indigenous microorganisms, and mucosal barriers through direct colonization, blood circulation, or derived metabolite pathways. While interacting with the host's immune system, oral-derived pathogens stimulate inflammation responses and guide the transition of the intestinal microenvironment from a healthy state to a pre-disease state. Therefore, the oral-gut microbiome axis sheds light on new clinical therapy options, and gastrointestinal tract ecology balance necessitates simultaneous consideration of both oral and gut microbiomes. This review summarizes possible routes of oral microbes entering the intestine and the effects of certain oral bacteria on intestinal microbiota and the host's immune responses.
Collapse
|
4
|
Elkhatib WF, Abdelkareem SS, Khalaf WS, Shahin MI, Elfadil D, Alhazmi A, El-Batal AI, El-Sayyad GS. Narrative review on century of respiratory pandemics from Spanish flu to COVID-19 and impact of nanotechnology on COVID-19 diagnosis and immune system boosting. Virol J 2022; 19:167. [PMID: 36280866 PMCID: PMC9589879 DOI: 10.1186/s12985-022-01902-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
The rise of the highly lethal severe acute respiratory syndrome-2 (SARS-2) as corona virus 2019 (COVID-19) reminded us of the history of other pandemics that happened in the last century (Spanish flu) and stayed in the current century, which include Severe-Acute-Respiratory-Syndrome (SARS), Middle-East-Respiratory-Syndrome (MERS), Corona Virus 2019 (COVID-19). We review in this report the newest findings and data on the origin of pandemic respiratory viral diseases, reservoirs, and transmission modes. We analyzed viral adaption needed for host switch and determinants of pathogenicity, causative factors of pandemic viruses, and symptoms and clinical manifestations. After that, we concluded the host factors associated with pandemics morbidity and mortality (immune responses and immunopathology, ages, and effect of pandemics on pregnancy). Additionally, we focused on the burdens of COVID-19, non-pharmaceutical interventions (quarantine, mass gatherings, facemasks, and hygiene), and medical interventions (antiviral therapies and vaccines). Finally, we investigated the nanotechnology between COVID-19 analysis and immune system boosting (Nanoparticles (NPs), antimicrobial NPs as antivirals and immune cytokines). This review presents insights about using nanomaterials to treat COVID-19, improve the bioavailability of the abused drugs, diminish their toxicity, and improve their performance.
Collapse
Affiliation(s)
- Walid F Elkhatib
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo, 11566, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
| | - Shereen S Abdelkareem
- Department of Alumni, School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, Egypt
| | - Wafaa S Khalaf
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11751, Egypt
| | - Mona I Shahin
- Zoology Department, Faculty of Tymaa, Tabuk University, Tymaa, 71491, Kingdom of Saudi Arabia
| | - Dounia Elfadil
- Biology and Chemistry Department, Hassan II University of Casablanca, Casablanca, Morocco
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Ahmed I El-Batal
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
5
|
Oleic Acid and Palmitic Acid from Bacteroides thetaiotaomicron and Lactobacillus johnsonii Exhibit Anti-Inflammatory and Antifungal Properties. Microorganisms 2022; 10:microorganisms10091803. [PMID: 36144406 PMCID: PMC9504516 DOI: 10.3390/microorganisms10091803] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
A decrease in populations of Bacteroides thetaiotaomicron and Lactobacillus johnsonii is observed during the development of colitis and fungal overgrowth, while restoration of these populations reduces inflammatory parameters and fungal overgrowth in mice. This study investigated the effect of two fatty acids from B. thetaiotaomicron and L. johnsonii on macrophages and Caco-2 cells, as well as their impact on the inflammatory immune response and on Candida glabrata overgrowth in a murine model of dextran sulfate sodium (DSS)-induced colitis. Oleic acid (OA) and palmitic acid (PA) from L. johnsonii and B. thetaiotaomicron were detected during their interaction with epithelial cells from colon samples. OA alone or OA combined with PA (FAs) reduced the expression of proinflammatory mediators in intestinal epithelial Caco-2 cells challenged with DSS. OA alone or FAs increased FFAR1, FFAR2, AMPK, and IL-10 expression in macrophages. Additionally, OA alone or FAs decreased COX-2, TNFα, IL-6, and IL-12 expression in LPS-stimulated macrophages. In the DSS murine model, oral administration of FAs reduced inflammatory parameters, decreased Escherichia coli and Enterococcus faecalis populations, and eliminated C. glabrata from the gut. Overall, these findings provide evidence that OA combined with PA exhibits anti-inflammatory and antifungal properties.
Collapse
|
6
|
Shan D, Zheng J, Klimowicz A, Panzenbeck M, Liu Z, Feng D. Deep learning for discovering pathological continuum of crypts and evaluating therapeutic effects: An implication for in vivo preclinical study. PLoS One 2021; 16:e0252429. [PMID: 34125849 PMCID: PMC8202954 DOI: 10.1371/journal.pone.0252429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/16/2021] [Indexed: 11/21/2022] Open
Abstract
Applying deep learning to the field of preclinical in vivo studies is a new and exciting prospect with the potential to unlock decades worth of underutilized data. As a proof of concept, we performed a feasibility study on a colitis model treated with Sulfasalazine, a drug used in therapeutic care of inflammatory bowel disease. We aimed to evaluate the colonic mucosa improvement associated with the recovery response of the crypts, a complex histologic structure reflecting tissue homeostasis and repair in response to inflammation. Our approach requires robust image segmentation of objects of interest from whole slide images, a composite low dimensional representation of the typical or novel morphological variants of the segmented objects, and exploration of image features of significance towards biology and treatment efficacy. Both interpretable features (eg. counts, area, distance and angle) as well as statistical texture features calculated using Gray Level Co-Occurance Matrices (GLCMs), are shown to have significance in analysis. Ultimately, this analytic framework of supervised image segmentation, unsupervised learning, and feature analysis can be generally applied to preclinical data. We hope our report will inspire more efforts to utilize deep learning in preclinical in vivo studies and ultimately make the field more innovative and efficient.
Collapse
Affiliation(s)
- Dechao Shan
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, United States of America
| | - Jie Zheng
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, United States of America
| | - Alexander Klimowicz
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, United States of America
| | - Mark Panzenbeck
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, United States of America
| | - Zheng Liu
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, United States of America
| | - Di Feng
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, United States of America
| |
Collapse
|
7
|
Intravenous Immunoglobulin for Treatment of Patients with COVID-19: A Case-control Study. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2021. [DOI: 10.5812/archcid.108068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: It seems that the risk of developing complications associated with coronavirus disease 2019 (COVID-19) is higher among individuals with weakened immune systems. Objectives: Therefore, this study was carried out to determine the effectiveness of intravenous immunoglobulin (IVIG) for the treatment of patients not entering the intubation phase compared to those entering the intubation phase. Methods: This descriptive case-control study was performed on 26 patients with COVID-19 referring to Imam Reza hospital in Mashhad, Iran, in March 2020. For subjects with COVID-19 not responding to the standard three-drug protocol (i.e., ribavirin, hydroxychloroquine, and lopinavir/ritonavir), three doses of IVIG (0.4 g/kg/day) were added to the protocol. The patients were divided into two groups of subjects not entering the intubation phase and those entering the intubation phase and compared in terms of different variables. Results: The comparison of laboratory findings showed a significant difference before and after receiving IVIG regarding oxygen saturation (P < 0.005), white blood cell (P = 0.001), hemoglobin level (P = 0.0002), lymphocyte count (P = 0.03), and C-reactive protein (P = 0.001). In general, 53.8% and 46.2% of the patients were discharged and expired, respectively. All the subjects not entering the intubation phase were recovered; nevertheless, only one case entering the intubation phase was recovered, and 92.3% of the patients expired. A significant difference was observed between the patients not entering the intubation phase and those entering the intubation phase in terms of mortality (χ2 = 22.28; P < 0.005). Conclusions: In summary, the obtained results of the current study confirmed the therapeutic effects of IVIG on patients with COVID-19. Moreover, better treatment results, shorter hospital stay, and lower mortality rates were observed among COVID-19 patients who did not enter the intubation phase in comparison with those entering the intubation phase.
Collapse
|
8
|
Ma K, Chen M, Liu J, Ge Y, Wang T, Wu D, Yan G, Wang C, Shao J. Sodium houttuyfonate attenuates dextran sulfate sodium associated colitis precolonized with Candida albicans through inducing β-glucan exposure. J Leukoc Biol 2021; 110:927-937. [PMID: 33682190 DOI: 10.1002/jlb.4ab0221-324rrrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel disease (IBD) including Crohn's disease and ulcerative colitis is a chronic intestinal disease most likely associated with gut dysbiosis. Candida related mycobiota has been demonstrated to play a role in IBD progression. Traditional Chinese herbal medicines (TCHMs) with antifungal activity have a potential in prevention and treatment of fungi-related IBD. Sodium houttuyfonate (SH) is a promising anti-Candida TCHMs. In this study, a dextran sulfate sodium induced colitis model with Candida albicans precolonization is established. SH gavage can significantly decrease the fungal burdens in feces and colon tissues, reduce disease activity index score, elongate colon length, and attenuate colonic damages. Moreover, SH markedly inhibits the levels of anti-Saccharomyces cerevisiae antibodies, β-glucan, and proinflammatory cytokine (IL-1β, IL-6, IL-8, TNF-α), and increases anti-inflammatory factor IL-10 level in serum and colon tissue. Further experiments demonstrate that SH could induce β-glucan exposure, priming intestinal macrophages to get rid of colonized C. albicans through the collaboration of Dectin-1 and TLR2/4. With the decreased fungal burden, the protein levels of Dectin-1, TLR2, TLR4, and NF-κBp65 are fallen back, indicating the primed macrophages calm down and the colitis is alleviated. Collectively, these results manifest that SH can attenuate C. albicans associated colitis via β-glucan exposure, deepening our understanding of TCHMs in the prevention and treatment of fungi associated IBD.
Collapse
Affiliation(s)
- Kelong Ma
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Xinzhan District, Hefei, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Shushan District, Hefei, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei, China
| | - Mengli Chen
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Xinzhan District, Hefei, Anhui, China
| | - Juanjuan Liu
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Xinzhan District, Hefei, Anhui, China
| | - Yuzhu Ge
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Xinzhan District, Hefei, Anhui, China
| | - Tianming Wang
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Xinzhan District, Hefei, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Shushan District, Hefei, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei, China
| | - Daqiang Wu
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Xinzhan District, Hefei, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Shushan District, Hefei, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei, China
| | - Guiming Yan
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Xinzhan District, Hefei, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Shushan District, Hefei, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei, China
| | - Changzhong Wang
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Xinzhan District, Hefei, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Shushan District, Hefei, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei, China
| | - Jing Shao
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Xinzhan District, Hefei, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Shushan District, Hefei, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei, China
| |
Collapse
|
9
|
Richard SA, Kampo S, Sackey M, Hechavarria ME, Buunaaim ADB, Kuugbee ED, Anabah TW. Elucidating the Pivotal Role of Immune Players in the Management of COVID-19: Focus on Mesenchymal Stem Cells and Inflammation. Curr Stem Cell Res Ther 2021; 16:189-198. [PMID: 32628591 DOI: 10.2174/1574888x15666200705213751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023]
Abstract
The world is currently engulfed with a viral disease with no cure. Thus, far, millions of people are infected with the virus across the length and breadth of the world, with thousands losing their lives each passing day. The WHO in February 2020 classified the virus as a coronavirus and the name Coronavirus-19 (CoV-19) was offered to the virus. The disease caused by the virus was termed coronavirus disease-19 (COVID-19). The pathogenesis of COVID-19 is associated with elevation of several immune players as well as inflammatory factors which contribute to cytokine storms. Currently, the detection of CoV-19 RNA is through reverse transcriptase-polymerase chain reaction (RTPCR). Mesenchymal stem cells (MSCs) are capable of suppressing several kinds of cytokines via the paracrine secretion system. Therefore, MSCs therapy could be game changer in the treatment of the current COVID-19 pandemic. Moreover, intravenous IG may be capable of suppressing the high expression of IL-6 by the CoV-19 resulting in lessen disease burden. Anti-inflammatory medications like, corticosteroids, tocilizumab, glycyrrhetinic acid, as well as etoposide may be very advantageous in decreasing the COVID-19 burden because their mode of action targets the cytokine storms initiated by the CoV-19. It is important to indicate that, these medications do not target the virus itself. Therefore, potent CoV-19 anti-viral medications are needed to completely cure patients with COVID-19. Furthermore, a vaccine is urgently needed to stop the spread of the virus. This review, therefore, elucidates the immune players in the management of COVID-19; focusing principally on MSCs and inflammatory mediators.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Medicine, Princefield University, P. O. Box MA128, Ho, Ghana
| | - Sylvanus Kampo
- Department of Anesthesia and Critical care, School of Medicine, University of Health and Allied Sciences, Ho, Ghana
| | - Marian Sackey
- Department of Pharmacy, Ho Teaching Hospital, P.O. Box MA-374, Ho, Ghana
| | | | - Alexis D B Buunaaim
- Department of Surgery, School of Medicine and Health Science, University for Development Studies, Tamale, Ghana
| | - Eugene Dogkotenge Kuugbee
- Department of Clinical Microbiology, School of Medicine and Health Science, University for Development Studies, Tamale, Ghana
| | | |
Collapse
|
10
|
Xie B, Zhang J, Li Y, Yuan S, Shang Y. COVID-19: Imbalanced Immune Responses and Potential Immunotherapies. Front Immunol 2021; 11:607583. [PMID: 33584679 PMCID: PMC7878382 DOI: 10.3389/fimmu.2020.607583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
The ongoing pandemic coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is rapidly spreading and has resulted in grievous morbidity and mortality worldwide. Despite the high infectiousness of SARS-CoV-2, the majority of infected individuals are asymptomatic or have mild symptoms and could eventually recover as a result of their balanced immune function. On the contrary, immuno-compromised patients are prone to progress into severe or critical types underpinned by the entanglement of an overexuberant proinflammatory response and injured immune function. Therefore, well-coordinated innate and adaptive immune systems are pivotal to viral eradication and tissue repair. An in-depth understanding of the immunological processes underlying COVID-19 could facilitate rapidly identifying and choosing optimal immunotherapy for patients with severe SARS-CoV-2 infection. In this review, based on current immunological evidence, we describe potential immune mechanisms and discuss promising immunotherapies for COVID-19, including IL-6R blockades, convalescent plasma, intravenous gamma globulin, thymosin alpha1, corticosteroids, and type-I interferon, and recent advances in the development of COVID-19 vaccines.
Collapse
Affiliation(s)
- Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwen Li
- Hayward Genetics Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
dos Anjos F, Simões JLB, Assmann CE, Carvalho FB, Bagatini MD. Potential Therapeutic Role of Purinergic Receptors in Cardiovascular Disease Mediated by SARS-CoV-2. J Immunol Res 2020; 2020:8632048. [PMID: 33299899 PMCID: PMC7709498 DOI: 10.1155/2020/8632048] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Novel coronavirus disease 2019 (COVID-19) causes pulmonary and cardiovascular disorders and has become a worldwide emergency. Myocardial injury can be caused by direct or indirect damage, particularly mediated by a cytokine storm, a disordered immune response that can cause myocarditis, abnormal coagulation, arrhythmia, acute coronary syndrome, and myocardial infarction. The present review focuses on the mechanisms of this viral infection, cardiac biomarkers, consequences, and the possible therapeutic role of purinergic and adenosinergic signalling systems. In particular, we focus on the interaction of the extracellular nucleotide adenosine triphosphate (ATP) with its receptors P2X1, P2X4, P2X7, P2Y1, and P2Y2 and of adenosine (Ado) with A2A and A3 receptors, as well as their roles in host immune responses. We suggest that receptors of purinergic signalling could be ideal candidates for pharmacological targeting to protect against myocardial injury caused by a cytokine storm in COVID-19, in order to reduce systemic inflammatory damage to cells and tissues, preventing the progression of the disease by modulating the immune response and improving patient quality of life.
Collapse
Affiliation(s)
- Fernanda dos Anjos
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
12
|
Ge Y, Pan M, Zhang C, Wang C, Ma K, Yan G, Wang T, Wu D, Shao J. Paeonol alleviates dextran sodium sulfate induced colitis involving Candida albicans-associated dysbiosis. Med Mycol 2020; 59:335-344. [PMID: 32598443 DOI: 10.1093/mmy/myaa053] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/21/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD), which consists of ulcerative colitis (UC) and Crohn's disease (CD), is a chronic inflammatory disorder of the gastrointestinal tract. Occurrence and development of UC have been associated with multiple potential causative factors, which include fungal dysbiosis. Growing evidence reveals that Candida albicans-associated dysbiosis is correlated with clinical deterioration in UC. Paeonol (PAE) is a commonly used traditional medicine with multiple reported properties including effective alleviation of UC. In this study, a murine UC model was established by colonizing mice with additional C. albicans via gavage prior to dextran sodium sulfate (DSS) administration. Effects of PAE treatment were also assessed at initiation and in preestablished C. albicans-associated colitis. The results showed that C. albicans supplementation could aggravate disease activity index (DAI), compromise mucosal integrity, exacerbate fecal and tissue fungal burdens, increase serum β-glucan and anti-Saccharomyces cerevisiae antibody (ASCA) levels, promote serum and colonic tissue pro-inflammatory cytokine secretion (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8) and decrease the anti-inflammatory cytokine IL-10 level. It also stimulated Dectin-1, TLR2 and TLR4 as well as expression of their downstream effector NF-κB in colonic tissue. After PAE treatment, the adverse impacts of C. albicans on colitis were relieved, via decreased receptor-associated local and systemic inflammation. Our study suggests that PAE should be a candidate for treatment of fungal dysbiosis-associated UC and may act through the Dectin-1/NF-κB pathway in collaboration with TLR2 and TLR4. LAY SUMMARY Candida albicans is believed to be an important stimulator in ulcerative colitice (UC) development. Suppressing the growth of intestinal C. albicans can be contributory to the amelioration of UC. Paeonol (PAE) is a commonly used traditional medicine with multiple biological functions. In this study, we observed that PAE could alleviate symptoms in mice UC model accompanying with burden reduction of C. albicans. Therefore, we suppose that PAE can be a candidate in the treatment of C. albicans-associated UC.
Collapse
Affiliation(s)
- Yuzhu Ge
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China
| | - Min Pan
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China
| | - Chuanfeng Zhang
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China
| | - Changzhong Wang
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Kelong Ma
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Guiming Yan
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Tianming Wang
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Daqiang Wu
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Jing Shao
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
13
|
Jawhara S. Could Intravenous Immunoglobulin Collected from Recovered Coronavirus Patients Protect against COVID-19 and Strengthen the Immune System of New Patients? Int J Mol Sci 2020; 21:E2272. [PMID: 32218340 PMCID: PMC7178250 DOI: 10.3390/ijms21072272] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
The emergence of the novel coronavirus in Wuhan, China, which causes severe respiratory tract infections in humans (COVID-19), has become a global health concern. Most coronaviruses infect animals but can evolve into strains that cross the species barrier and infect humans. At the present, there is no single specific vaccine or efficient antiviral therapy against COVID-19. Recently, we showed that intravenous immunoglobulin (IVIg) treatment reduces inflammation of intestinal epithelial cells and eliminates overgrowth of the opportunistic human fungal pathogen Candida albicans in the murine gut. Immunotherapy with IVIg could be employed to neutralize COVID-19. However, the efficacy of IVIg would be better if the immune IgG antibodies were collected from patients who have recovered from COVID-19 in the same city, or the surrounding area, in order to increase the chance of neutralizing the virus. These immune IgG antibodies will be specific against COVID-19 by boosting the immune response in newly infected patients. Different procedures may be used to remove or inactivate any possible pathogens from the plasma of recovered coronavirus patient derived immune IgG, including solvent/detergent, 60 °C heat-treatment, and nanofiltration. Overall, immunotherapy with immune IgG antibodies combined with antiviral drugs may be an alternative treatment against COVID-19 until stronger options such as vaccines are available.
Collapse
Affiliation(s)
- Samir Jawhara
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, F-59000 Lille, France
- University of Lille, F-59000 Lille, France
| |
Collapse
|
14
|
Could Intravenous Immunoglobulin Collected from Recovered Coronavirus Patients Protect against COVID-19 and Strengthen the Immune System of New Patients? Int J Mol Sci 2020. [PMID: 32218340 DOI: 10.3390/ijms21072272.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The emergence of the novel coronavirus in Wuhan, China, which causes severe respiratory tract infections in humans (COVID-19), has become a global health concern. Most coronaviruses infect animals but can evolve into strains that cross the species barrier and infect humans. At the present, there is no single specific vaccine or efficient antiviral therapy against COVID-19. Recently, we showed that intravenous immunoglobulin (IVIg) treatment reduces inflammation of intestinal epithelial cells and eliminates overgrowth of the opportunistic human fungal pathogen Candida albicans in the murine gut. Immunotherapy with IVIg could be employed to neutralize COVID-19. However, the efficacy of IVIg would be better if the immune IgG antibodies were collected from patients who have recovered from COVID-19 in the same city, or the surrounding area, in order to increase the chance of neutralizing the virus. These immune IgG antibodies will be specific against COVID-19 by boosting the immune response in newly infected patients. Different procedures may be used to remove or inactivate any possible pathogens from the plasma of recovered coronavirus patient derived immune IgG, including solvent/detergent, 60 °C heat-treatment, and nanofiltration. Overall, immunotherapy with immune IgG antibodies combined with antiviral drugs may be an alternative treatment against COVID-19 until stronger options such as vaccines are available.
Collapse
|
15
|
Amedei A, Barceló-Coblijn G. Editorial of Special Issue "The Interplay of Microbiome and Immune Response in Health and Diseases". Int J Mol Sci 2019; 20:ijms20153708. [PMID: 31362374 PMCID: PMC6695677 DOI: 10.3390/ijms20153708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134 Florence, Italy.
| | - Gwendolyn Barceló-Coblijn
- Lipids in Human Pathology, Health Research Institute of the Balearic Islands (IdISBa, Institut d'Investigació Sanitària Illes Balears), 07120 Palma, Balearic Islands, Spain
| |
Collapse
|