1
|
Mughal KS, Ikram M, Uddin Z, Rashid A, Rashid U, Khan M, Zehra N, Mughal US, Shah N, Amirzada I. Syringic acid improves cyclophosphamide-induced immunosuppression in a mouse model. Biochem Biophys Res Commun 2024; 734:150777. [PMID: 39383831 DOI: 10.1016/j.bbrc.2024.150777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Syringic acid (SA), a naturally occurring phenolic substance present in many edible plants and fruits, has been shown to have potential in immunoenhancement applications. In this study, we investigated the immunomodulatory effects of SA in mitigating cyclophosphamide (CYP)-induced immunosuppression in BALB/c mice using doxycycline as a positive control. SA administration prevented immune organ atrophy and morphological changes in the thymus, spleen, and bone marrow induced by CYP treatment in mice while also showing a dose-dependent enhancement of thymus and spleen indices compared to mice treated with CYP alone. Furthermore, SA improved thymocyte and splenocyte proliferation and exhibited significant antioxidant activity by reducing the elevated levels of malondialdehyde induced by CYP treatment. SA treatment effectively restored white blood cell (WBC) and lymphocyte counts to normal levels in CYP-treated animals, and the protective effects of CYP on immunological tissues were confirmed through histopathological examination. Moreover, SA treatment upregulated the expression of IL-6, IL-7, IL-15, and FoxN1. Finally, molecular docking studies revealed that binding energy values predicted minor inhibition potential toward IL-6, IL-7, FoxN1, IL-15, STAT3, STAT5, and JAK3. Overall, our findings suggest that SA treatment has the potential to reduce CYP-induced immunosuppression and may have applications as an immunologic adjuvant or functional food additive in chemotherapy.
Collapse
Affiliation(s)
- Khoula Sharif Mughal
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ikram
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan.
| | - Zia Uddin
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Amna Rashid
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Momina Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Naseem Zehra
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Umair Sharif Mughal
- Department of Medicine, Ayub Teaching Hospital, Abbottabad, 22040, Khyber Pakhtunkhwa, Pakistan
| | - Nabi Shah
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Imran Amirzada
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
2
|
Ciumărnean L, Sârb OF, Drăghici NC, Sălăgean O, Milaciu MV, Orășan OH, Vlad CV, Vlad IM, Alexescu T, Para I, Țărmure SF, Hirișcău EI, Dogaru GB. Obesity Control and Supplementary Nutraceuticals as Cofactors of Brain Plasticity in Multiple Sclerosis Populations. Int J Mol Sci 2024; 25:10909. [PMID: 39456690 PMCID: PMC11507128 DOI: 10.3390/ijms252010909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammation, demyelination, and neurodegeneration within the central nervous system. Brain plasticity, the brain's ability to adapt its structure and function, plays a crucial role in mitigating MS's impact. This paper explores the potential benefits of lifestyle changes and nutraceuticals on brain plasticity in the MS population. Lifestyle modifications, including physical activity and dietary adjustments, can enhance brain plasticity by upregulating neurotrophic factors, promoting synaptogenesis, and reducing oxidative stress. Nutraceuticals, such as vitamin D, omega-3 fatty acids, and antioxidants like alpha lipoic acid, have shown promise in supporting brain health through anti-inflammatory and neuroprotective mechanisms. Regular physical activity has been linked to increased levels of brain-derived neurotrophic factor and improved cognitive function. Dietary interventions, including caloric restriction and the intake of polyphenols, can also positively influence brain plasticity. Integrating these lifestyle changes and nutraceuticals into the management of MS can provide a complementary approach to traditional therapies, potentially improving neurological outcomes and enhancing the quality of life for the MS population.
Collapse
Affiliation(s)
- Lorena Ciumărnean
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Oliviu-Florențiu Sârb
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
| | - Nicu-Cătălin Drăghici
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
- “IMOGEN” Institute, Centre of Advanced Research Studies, Emergency Clinical County Hospital Cluj, 400347 Cluj-Napoca, Romania
| | - Octavia Sălăgean
- Department of Nursing, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.S.); (E.-I.H.)
| | - Mircea-Vasile Milaciu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Olga-Hilda Orășan
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Călin-Vasile Vlad
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Irina-Maria Vlad
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
| | - Teodora Alexescu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Ioana Para
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Simina-Felicia Țărmure
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Elisabeta-Ioana Hirișcău
- Department of Nursing, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.S.); (E.-I.H.)
| | - Gabriela-Bombonica Dogaru
- Department of Medical Rehabilitation, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Leti Maggio E, Zucca C, Grande M, Carrano R, Infante A, Bei R, Lucarini V, De Maio F, Focaccetti C, Palumbo C, Marini S, Ferretti E, Cifaldi L, Masuelli L, Benvenuto M, Bei R. Polyphenols Regulate the Activity of Endocrine-Disrupting Chemicals, Having Both Positive and Negative Effects. J Xenobiot 2024; 14:1378-1405. [PMID: 39449418 PMCID: PMC11503411 DOI: 10.3390/jox14040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are chemical substances that can interfere with any hormone action. They are categorized according to origin and use, such as industrial chemicals like polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs), plastics like bisphenol A (BPA), plasticizers like phthalates, pesticides like dichlorodiphenyltrichloroethane (DDT), fungicides like vinclozolin, and pharmaceuticals like diethylstilbestrol (DES). Natural EDCs, such as phytoestrogens, are present in the diet of both humans and animals. Polyphenols are a large group of natural compounds derived from plants and are found in beverages and food. They are grouped based on their chemical structure into flavonoids and nonflavonoids and are reported to have many beneficial effects on health, including, but not limited to, anticancer, antioxidant, and anti-inflammatory effects. Moreover, polyphenols have both pro- and antioxidant characteristics, and due to their antioxidant and anti-inflammatory potential, they presumably have a protective effect against damage induced by EDCs. However, polyphenols may act as EDCs. In this review, we report that polyphenols regulate the activity of EDCs, having both positive and negative effects. Hence, a better understanding of the associations between EDCs and polyphenols will allow the establishment of improved approaches to protect human health from EDCs.
Collapse
Affiliation(s)
- Eleonora Leti Maggio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Carlotta Zucca
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Martina Grande
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Antonio Infante
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Riccardo Bei
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Valeria Lucarini
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Fernando De Maio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| |
Collapse
|
4
|
Zhang Z, Chen Z, Que Z, Fang Z, Zhu H, Tian J. Chinese Medicines and Natural Medicine as Immunotherapeutic Agents for Gastric Cancer: Recent Advances. Cancer Rep (Hoboken) 2024; 7:e2134. [PMID: 39233637 PMCID: PMC11375283 DOI: 10.1002/cnr2.2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/06/2024] [Accepted: 06/30/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUD According to the 2020 statistics from the World Health Organization's International Agency for Research on Cancer (IARC), it is projected that there will be over 1 million new cases of gastric cancer (GC) patients worldwide in 2020, resulting in approximately 770 000 deaths. Gastric cancer ranks fifth in terms of incidence rate and forth in death rate among malignant tumors. Despite advancements in early diagnostic techniques, the incidence of GC has exhibited a marginal decline; nevertheless, the mortality rate remains elevated for advanced inoperable patients with no currently available efficacious treatment options. RECENT FINDING Chinese medicine (CM) has emerged as an efficacious treatment for GC, gradually gaining acceptance and widespread usage in China. It exhibits distinctive advantages in the prevention and treatment of metastasis. CM and natural medicine possess the ability to elicit antitumor effects by augmenting immune cell population, enhancing immune cell activity, and improving the tumor immune microenvironment. CMs and natural remedies encompass a diverse range of types, characterized by multiple targets, pathways, and extensive pharmacological effects. Consequently, they have become a prominent research area among oncologists worldwide. Numerous studies have demonstrated that CM and natural medicine can directly or indirectly enhance innate immune system components (including macrophages, natural killer cells, and myeloid suppressor cells), adaptive immune system elements (such as T lymphocytes and regulatory T cells), relevant cytokines (e.g., IL-2, IL-4, IL-10, TNF-α), and PD-1/PD-L1 axis regulation, thereby bolstering the cytotoxicity of immune cells against tumor cells. CONCLUSIONS This ultimately leads to an improved tumor immune microenvironment facilitating superior antitumor efficacy. This paper critically examines the role of CM and natural medicine in regulating immunotherapy for GC, aiming to establish a new theoretical framework for the clinical treatment and prevention of gastric cancer within the realm of CM.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Ziqi Chen
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zujun Que
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Zhihong Fang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huirong Zhu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhui Tian
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
- Clinical Oncology Center, Shanghai Municipal Hospital of TCM, Shanghai University of TCM, Shanghai, China
| |
Collapse
|
5
|
Ruan B, Zheng Z, Kayitmazer AB, Ahmad A, Ramzan N, Rafique MS, Wang J, Xu Y. Polymeric pH-Responsive Metal-Supramolecular Nanoparticles for Synergistic Chemo-Photothermal Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39075714 DOI: 10.1021/acs.langmuir.4c01208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Stimuli-responsive drug delivery carriers, particularly those exhibiting pH sensitivity, have attracted significant scholarly interest due to their promising potential in anticancer therapeutic applications. This phenomenon can primarily be ascribed to the inherently acidic nature of tumor microenvironments. However, pH-responsive carriers frequently require the incorporation of functional groups or materials sensitive to pH changes. Given the pH-sensitive characteristics of metal coordination with natural small-molecule drugs, organometallic supramolecules present a facile and effective strategy for integrating pH-responsive behavior into these systems. Meanwhile, utilizing the natural compound luteolin in conjunction with iron ions (Fe3+) through the advanced engineering technique of flash nanoprecipitation (FNP) results in the synthesis of stable, highly loaded nanoparticles (NPs) exhibiting a supramolecular photothermal effect. Our experimental findings substantiate that the photothermal effect persists over time, even after the pH-responsive release phase has ended. Consequently, these polymeric pH-responsive metallic supramolecular nanoparticles integrate chemotherapy and photothermal therapy, creating a synergistic approach to cancer treatment. This bifunctional platform, which exhibits both pH-responsive and photothermal properties, presents a highly promising avenue for biomedical applications, particularly in the area of tumor therapies. Its dual function offers a potentially efficacious approach to tumor treatment.
Collapse
Affiliation(s)
- Bowen Ruan
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhiyuan Zheng
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | | | - Ayyaz Ahmad
- Department of Chemical Engineering, Muhammad Nawaz Sharif University of Engineering and Technology, Multan 60600, Pakistan
| | - Naveed Ramzan
- Faculty of Chemical, Metallurgical, and Polymer Engineering, University of Engineering and Technology, Lahore 54000, Pakistan
| | | | - Jie Wang
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yisheng Xu
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
6
|
Aryal D, Joshi S, Thapa NK, Chaudhary P, Basaula S, Joshi U, Bhandari D, Rogers HM, Bhattarai S, Sharma KR, Regmi BP, Parajuli N. Dietary phenolic compounds as promising therapeutic agents for diabetes and its complications: A comprehensive review. Food Sci Nutr 2024; 12:3025-3045. [PMID: 38726403 PMCID: PMC11077226 DOI: 10.1002/fsn3.3983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 05/12/2024] Open
Abstract
In the middle of an ever-changing landscape of diabetes care, precision medicine, and lifestyle therapies are becoming increasingly important. Dietary polyphenols are like hidden allies found in our everyday meals. These biomolecules, found commonly in fruits, vegetables, and various plant-based sources, hold revolutionary potential within their molecular structure in the way we approach diabetes and its intimidating consequences. There are currently numerous types of diabetes medications, but they are not appropriate for all patients due to limitations in dosages, side effects, drug resistance, a lack of efficacy, and ethnicity. Currently, there has been increased interest in practicing herbal remedies to manage diabetes and its related complications. This article aims to summarize the potential of dietary polyphenols as a foundation in the treatment of diabetes and its associated consequences. We found that most polyphenols inhibit enzymes linked to diabetes. This review outlines the potential benefits of selected molecules, including kaempferol, catechins, rosmarinic acid, apigenin, chlorogenic acid, and caffeic acid, in managing diabetes mellitus as these compounds have exhibited promising results in in vitro, in vivo, in silico, and some preclinical trials study. This encompassing exploration reveals the multifaceted impact of polyphenols not only in mitigating diabetes but also in addressing associated conditions like inflammation, obesity, and even cancer. Their mechanisms involve antioxidant functions, immune modulation, and proinflammatory enzyme regulation. Furthermore, these molecules exhibit anti-tumor activities, influence cellular pathways, and activate AMPK pathways, offering a less toxic, cost-effective, and sustainable approach to addressing diabetes and its complications.
Collapse
Affiliation(s)
- Dipa Aryal
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Soniya Joshi
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Nabin Kumar Thapa
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Pratiksha Chaudhary
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Sirjana Basaula
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Usha Joshi
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Damodar Bhandari
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Hannah M. Rogers
- Department of ChemistryFlorida Agricultural and Mechanical UniversityTallahasseeFloridaUSA
| | | | - Khaga Raj Sharma
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Bishnu P. Regmi
- Department of ChemistryFlorida Agricultural and Mechanical UniversityTallahasseeFloridaUSA
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| |
Collapse
|
7
|
Di Fusco SA, Spinelli A, Castello L, Marino G, Maraschi I, Gulizia MM, Gabrielli D, Colivicchi F. Do Pathophysiologic Mechanisms Linking Unhealthy Lifestyle to Cardiovascular Disease and Cancer Imply Shared Preventive Measures? - A Critical Narrative Review. Circ J 2024; 88:189-197. [PMID: 34544961 DOI: 10.1253/circj.cj-21-0459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Growing evidence has shown a bidirectional link between the cardiologic and oncologic fields. Several investigations support the role of unhealthy behaviors as pathogenic factors of both cardiovascular disease and cancer. We report epidemiological and research findings on the pathophysiological mechanisms linking unhealthy lifestyle to cardiovascular disease and cancer. For each unhealthy behavior, we also discuss the role of preventive measures able to affect both cardiovascular disease and cancer occurrence and progression.
Collapse
Affiliation(s)
| | | | - Lorenzo Castello
- Clinical and Rehabilitation Cardiology Unit, San Filippo Neri Hospital
| | - Gaetano Marino
- Clinical and Rehabilitation Cardiology Unit, San Filippo Neri Hospital
| | - Ilaria Maraschi
- Clinical and Rehabilitation Cardiology Unit, San Filippo Neri Hospital
| | | | | | - Furio Colivicchi
- Clinical and Rehabilitation Cardiology Unit, San Filippo Neri Hospital
| |
Collapse
|
8
|
Wang R, Wang Y, Fang L, Xie Y, Yang S, Liu S, Fang Y, Zhang Y. Efficacy and safety of traditional Chinese medicine in the treatment of menopause-like syndrome for breast cancer survivors: a systematic review and meta-analysis. BMC Cancer 2024; 24:42. [PMID: 38191442 PMCID: PMC10773128 DOI: 10.1186/s12885-023-11789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND In recent years, breast cancer (BC) incidence and mortality have been the highest in females. Menopause-like syndrome (MLS), arising from hypoestrogenism caused by endocrine therapy, significantly affects the quality of life for females. Traditional Chinese Medicine (TCM) has advantages in ameliorating MLS, but the efficacy of TCM in patients with BC has not been systematically evaluated. METHODS A comprehensive search was performed on PubMed, Web of Science, Embase, Ovid, Cochrane Library, China National Knowledge Infrastructure, Wanfang database, Chinese Scientific Journals Database, and Clinical Trial Registry from inception to September 4, 2023. The Cochrane Risk of Bias assessment tool was used for the quality evaluation of the randomized controlled trials (RCTs). Review Manager 5.4 software was used for statistical analysis, and the Grading of Recommendations Assessment, Development, and Evaluation was used for quality evaluation of the synthesized evidence. RESULTS This review included 42 studies involving 3112 female patients with BC. The results showed that the TCM group was better at decreasing the Kupperman Menopausal Index (KMI) scores (standardized MD, SMD = - 1.84, 95% confidence interval, CI [- 2.21--1.46], Z = 9.63, P < 0.00001). Regarding the main symptoms of MLS, the TCM groups could significantly decrease the scores of hot flashes and night sweats (SMD = - 0.68, 95% CI [- 1.1--0.27], Z = 3.24, P = 0.001), paraesthesia (SMD = - 0.48, 95% CI [- 0.74--0.21], Z = 3.53, P = 0.0004), osteoarthralgia (SMD = - 0.41, 95% CI [- 0.6-0.21], Z = 4.09, P < 0.0001), anxiety (MD = - 0.85, 95% CI [- 1.13, - 0.58], Z = 6.08, P < 0.00001) and insomnia (MD = - 0.61, 95% CI [- 0.8, - 0.43], Z = 6.51, P < 0.00001). TCM can effectively improve the symptoms of MLS in patients with BC. Moreover, TCM could improve the objective response rate (ORR) by 50% (RR = 1.5, 95% CI [1.37-1.64], Z = 9.01, P < 0.00001). Follicle-stimulating hormone (FSH) and oestradiol (E2) had no significant difference compared with the control group (p = 0.81 and p = 0.87), and luteinizing hormone (LH) in the TCM group decreased significantly (MD = - 0.99, 95% CI [- 1.38, - 0.5], Z = 5.01, P < 0.00001). This means that the use of TCM does not negatively affect endocrine therapy and may even have a synergistic effect. The incidence of adverse events (AEs) was lower in the TCM groups than in the control groups. CONCLUSIONS The meta-analysis stated that TCM could better improve the MLS of patients, alleviate related symptoms, and did not increase adverse drug reactions in BC survivors. This review brings more attention to MLS, and the present findings shed light on the potential applications of TCM in the treatment of MLS in BC survivors.
Collapse
Affiliation(s)
- Runxi Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liyuan Fang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Xie
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Shuhan Yang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Suying Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhang Fang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Ying Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Focaccetti C, Palumbo C, Benvenuto M, Carrano R, Melaiu O, Nardozi D, Angiolini V, Lucarini V, Kërpi B, Masuelli L, Cifaldi L, Bei R. The Combination of Bioavailable Concentrations of Curcumin and Resveratrol Shapes Immune Responses While Retaining the Ability to Reduce Cancer Cell Survival. Int J Mol Sci 2023; 25:232. [PMID: 38203402 PMCID: PMC10779126 DOI: 10.3390/ijms25010232] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The polyphenols Curcumin (CUR) and Resveratrol (RES) are widely described for their antitumoral effects. However, their low bioavailability is a drawback for their use in therapy. The aim of this study was to explore whether CUR and RES, used at a bioavailable concentration, could modulate immune responses while retaining antitumor activity and to determine whether CUR and RES effects on the immune responses of peripheral blood mononuclear cells (PBMCs) and tumor growth inhibition could be improved by their combination. We demonstrate that the low-dose combination of CUR and RES reduced the survival of cancer cell lines but had no effect on the viability of PBMCs. Although following CUR + RES treatment T lymphocytes showed an enhanced activated state, RES counteracted the increased IFN-γ expression induced by CUR in T cells and the polyphenol combination increased IL-10 production by T regulatory cells. On the other hand, the combined treatment enhanced NK cell activity through the up- and downregulation of activating and inhibitory receptors and increased CD68 expression levels on monocytes/macrophages. Overall, our results indicate that the combination of CUR and RES at low doses differentially shapes immune cells while retaining antitumor activity, support the use of this polyphenol combinations in anticancer therapy and suggest its possible application as adjuvant for NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (C.P.); (M.B.); (R.C.); (O.M.); (D.N.); (L.C.)
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (C.P.); (M.B.); (R.C.); (O.M.); (D.N.); (L.C.)
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (C.P.); (M.B.); (R.C.); (O.M.); (D.N.); (L.C.)
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (C.P.); (M.B.); (R.C.); (O.M.); (D.N.); (L.C.)
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (C.P.); (M.B.); (R.C.); (O.M.); (D.N.); (L.C.)
| | - Daniela Nardozi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (C.P.); (M.B.); (R.C.); (O.M.); (D.N.); (L.C.)
| | - Valentina Angiolini
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (V.A.); (V.L.); (L.M.)
| | - Valeria Lucarini
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (V.A.); (V.L.); (L.M.)
| | - Bora Kërpi
- Department of Biomedicine, Catholic University ‘Our Lady of Good Counsel’, 1000 Tirana, Albania;
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (V.A.); (V.L.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (C.P.); (M.B.); (R.C.); (O.M.); (D.N.); (L.C.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (C.P.); (M.B.); (R.C.); (O.M.); (D.N.); (L.C.)
- Faculty of Medicine and Surgery, Catholic University ‘Our Lady of Good Counsel’, 1000 Tirana, Albania
| |
Collapse
|
10
|
Liang J, Nie Z, Zhao Y, Qin S, Nian F, Tang D. Effects of Jujube Powder on Growth Performance, Blood Biochemical Indices, and Intestinal Microbiota of Broiler. Animals (Basel) 2023; 13:3398. [PMID: 37958153 PMCID: PMC10647580 DOI: 10.3390/ani13213398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
In total, 576 Cobb broilers were randomized into 6 treatment groups, with 8 replicates in each treatment group and 12 broilers in each replicate. Each treatment group was fed six different experimental diets containing 0%, 2%, 4%, 6%, 8%, and 10% jujube powder. The group receiving 0% jujube powder was considered the blank control group. The experimental period was 42 days and was divided into two periods: starter (0-21 days) and finisher (22-42 days). Compared with the control group, the addition of 8% jujube powder significantly improved the ADG of broilers (p < 0.05), and 8% and 10% jujube powder significantly improved the total tract apparent digestibility of organic matter in broilers (p < 0.05). Adding 10% jujube powder significantly improved the apparent metabolic energy of broilers (p < 0.05). Compared with the control group, 4-10% jujube powder significantly increased IgA, IgG, IgM, and sCD4 levels (p < 0.05) and T-AOC and SOD contents, and it reduced the MDA content in the serum of broilers (p < 0.05). In addition, the relative abundance of Firmicutes, Bacteroidetes, Lactobacillus, and Romboutsia significantly increased in the broiler ileum, whereas that of Proteobacteria and Enterobacter decreased significantly (p < 0.05) when 8% jujube powder was added to the diet. The relative abundance of Proteobacteria, Bacteroides, and Faecalibacterium in the cecum increased significantly (p < 0.05), whereas that of Bacteroidetes decreased significantly (p < 0.05).
Collapse
Affiliation(s)
- Jing Liang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (Z.N.); (Y.Z.); (S.Q.)
| | - Zejian Nie
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (Z.N.); (Y.Z.); (S.Q.)
| | - Yapeng Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (Z.N.); (Y.Z.); (S.Q.)
| | - Shizhen Qin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (Z.N.); (Y.Z.); (S.Q.)
| | - Fang Nian
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Defu Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (Z.N.); (Y.Z.); (S.Q.)
| |
Collapse
|
11
|
Fernandes A, Rodrigues PM, Pintado M, Tavaria FK. A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154824. [PMID: 37119762 DOI: 10.1016/j.phymed.2023.154824] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Every day the skin is constantly exposed to several harmful factors that induce oxidative stress. When the cells are incapable to maintain the balance between antioxidant defenses and reactive oxygen species, the skin no longer can keep its integrity and homeostasis. Chronic inflammation, premature skin aging, tissue damage, and immunosuppression are possible consequences induced by sustained exposure to environmental and endogenous reactive oxygen species. Skin immune and non-immune cells together with the microbiome are essential to efficiently trigger skin immune responses to stress. For this reason, an ever-increasing demand for novel molecules capable of modulating immune functions in the skin has risen the level of their development, particularly in the field of natural product-derived molecules. PURPOSE In this review, we explore different classes of molecules that showed evidence in modulate skin immune responses, as well as their target receptors and signaling pathways. Moreover, we describe the role of polyphenols, polysaccharides, fatty acids, peptides, and probiotics as possible treatments for skin conditions, including wound healing, infection, inflammation, allergies, and premature skin aging. METHODS Literature was searched, analyzed, and collected using databases, including PubMed, Science Direct, and Google Scholar. The search terms used included "Skin", "wound healing", "natural products", "skin microbiome", "immunomodulation", "anti-inflammatory", "antioxidant", "infection", "UV radiation", "polyphenols", "polysaccharides", "fatty acids", "plant oils", "peptides", "antimicrobial peptides", "probiotics", "atopic dermatitis", "psoriasis", "auto-immunity", "dry skin", "aging", etc., and several combinations of these keywords. RESULTS Natural products offer different solutions as possible treatments for several skin conditions. Significant antioxidant and anti-inflammatory activities were reported, followed by the ability to modulate immune functions in the skin. Several membrane-bound immune receptors in the skin recognize diverse types of natural-derived molecules, promoting different immune responses that can improve skin conditions. CONCLUSION Despite the increasing progress in drug discovery, several limiting factors need future clarification. Understanding the safety, biological activities, and precise mechanisms of action is a priority as well as the characterization of the active compounds responsible for that. This review provides directions for future studies in the development of new molecules with important pharmaceutical and cosmeceutical value.
Collapse
Affiliation(s)
- A Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - P M Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - F K Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
12
|
Lyubitelev A, Studitsky V. Inhibition of Cancer Development by Natural Plant Polyphenols: Molecular Mechanisms. Int J Mol Sci 2023; 24:10663. [PMID: 37445850 PMCID: PMC10341686 DOI: 10.3390/ijms241310663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Malignant tumors remain one of the main sources of morbidity and mortality around the world. A chemotherapeutic approach to cancer treatment poses a multitude of challenges, primarily due to the low selectivity and genotoxicity of the majority of chemotherapeutic drugs currently used in the clinical practice, often leading to treatment-induced tumors formation. Highly selective antitumor drugs can largely resolve this issue, but their high selectivity leads to significant drawbacks due to the intrinsic tumor heterogeneity. In contrast, plant polyphenols can simultaneously affect many processes that are involved in the acquiring and maintaining of hallmark properties of malignant cells, and their toxic dose is typically much higher than the therapeutic one. In the present work we describe the mechanisms of the action of polyphenols on cancer cells, including their effects on genetic and epigenetic instability, tumor-promoting inflammation, and altered microbiota.
Collapse
Affiliation(s)
| | - Vasily Studitsky
- Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
13
|
Bei R, Masuelli L. Novel Therapeutic Targets for Tumor Microenvironment in Cancer. Int J Mol Sci 2023; 24:ijms24087240. [PMID: 37108403 PMCID: PMC10138760 DOI: 10.3390/ijms24087240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The various immune effector cells that infiltrate the tumor microenvironment (TME) play a key role in directing the outcome of tumor growth [...].
Collapse
Affiliation(s)
- Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", 00161 Rome, Italy
| |
Collapse
|
14
|
Benvenuto M, Bei R. The Effect of Dietary Factors on Cancer. Int J Mol Sci 2023; 24:ijms24076802. [PMID: 37047775 PMCID: PMC10095496 DOI: 10.3390/ijms24076802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The effects of dietary factors on cancer have been widely studied for several decades [...]
Collapse
Affiliation(s)
- Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
15
|
Yang C, Zhu X, Liu W, Huang J, Xie Z, Yang F, Zhang L, Wei Y. Dietary Dried Jujube Fruit Powder (DJFP) Supplementation Improves Growth Performance, Antioxidant Stability, and Meat Composition in Broilers. Foods 2023; 12:foods12071463. [PMID: 37048283 PMCID: PMC10093937 DOI: 10.3390/foods12071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Nowadays, broiler production is faced with great challenges due to intensive culture modes, and chickens are more susceptible to oxidative stress. Consequently, synthetic antioxidants have been used to reduce this process, but their use has shown potential health risks. Thus, the use of natural ingredients has been suggested as a strategy to prevent oxidative stress. This study investigated how dietary dried jujube fruit powder (DJFP) supplementation influences the growth performance, antioxidant stability, meat composition, and nutritional quality of Cobb broilers. A total of 360 unsexed broilers (1-day-old) were randomly assigned to treatments that varied in DJFP levels: a basal diet without DJFP (control) and diets supplemented with 50 g/kg DJFP (P1), 100 g/kg DJFP (P2), and 150 g/kg DJFP (P3), with 9 replicates per treatment (90 broilers/treatment or 10 broilers/replicate). The results demonstrated improvement in the growth performance of broilers in terms of body weight (BW), body weight gain (WG), average daily body weight gain (ADG), average daily feed intake (ADFI), and feed conversion ratio (FCR) following dietary DJFP supplementation. In addition, the antioxidant stabilities in the DJFP-treated broilers were improved and inhibited the production of lipid oxidation products compared with the control, with those in the P2 group showing the most marked effect. Moreover, dietary DJFP supplementation significantly increased (p < 0.05) the activity of antioxidant enzymes in broilers. Furthermore, the breast meat of the broilers displayed an increased protein content with a simultaneous reduction in the fat content after DJFP treatment (p < 0.05). Essential amino acid levels were higher in the DJFP-supplemented groups (p < 0.05). The sum of saturated fatty acids was lower, and that of monounsaturated fatty acids (MUFAs) and the polyunsaturated fatty acid/saturated fatty acid ratio (PUFA/SFA) were higher in the DJFP-supplemented groups (p < 0.05). Together, these results indicate that up to 100 g/kg of dietary DJFP supplementation can enhance the growth performance and antioxidant capacity, meat composition, and amino acid and fatty acid composition in broiler breast meat. In conclusion, dietary DJFP supplementation is a healthy alternative to the use of synthetic antioxidants in broiler production, especially in regions rich in jujube resources.
Collapse
Affiliation(s)
- Chao Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xijin Zhu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenyu Liu
- Animal Husbandry, Pasture and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Jie Huang
- Animal Husbandry, Pasture and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Zhijun Xie
- Animal Husbandry, Pasture and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Farong Yang
- Animal Husbandry, Pasture and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuming Wei
- Animal Husbandry, Pasture and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| |
Collapse
|
16
|
Jiménez MC, Prieto K, Lasso P, Gutiérrez M, Rodriguez-Pardo V, Fiorentino S, Barreto A. Plant extract from Caesalpinia spinosa inhibits cancer-associated fibroblast-like cells generation and function in a tumor microenvironment model. Heliyon 2023; 9:e14148. [PMID: 36923867 PMCID: PMC10009686 DOI: 10.1016/j.heliyon.2023.e14148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Interactions in the tumor microenvironment (TME) between tumor cells and stromal cells such as cancer-associated fibroblasts (CAF) favor increased survival, progression, and transformation of cancer cells by activating mechanisms of invasion and metastasis. The design of new therapies to modulate or eliminate the CAF phenotype or functionality has been the subject of recent research including natural product-based therapies. We have previously described the generation of a standardized extract rich in polyphenols obtained from the Caesalpinia spinosa plant (P2Et), which present antitumor activities in breast cancer and melanoma models through activities that modulate the metabolism of tumor cells or induce the development of the immune response. In this work, a model of CAF generation was initially developed from the exposure of 3T3 fibroblasts to the cytokine TGFβ1. CAF-like cells generated in this way exhibited changes in the expression of Caveolin-1 and α-SMA, and alterations in glucose metabolism and redox status, typical of CAFs isolated from tumor tissues. Then, P2Et was shown to counteract in vitro-induced CAF-like cell generation, preventing caveolin-1 loss and attenuating changes in glucose uptake and redox profile. This protective effect of P2Et translates into a decrease in the functional ability of CAFs to support colony formation and migration of 4T1 murine breast cancer tumor cells. In addition to the functional interference, the P2Et extract also decreased the expression of genes associated with the epithelial-mesenchymal transition (EMT) and functional activities related to the modulation of the cancer stem cells (CSC) population. This work is an in vitro approach to evaluate natural extracts' effect on the interaction between CAF and tumor cells in the tumor microenvironment; thus, these results open the chance to design a more profound and mechanistic analysis to explore the molecular mechanisms of P2Et multimolecular activity and extent this analysis to an in vivo perspective. In summary, we present here a standardized polymolecular natural extract that has the potential to act in the TME by interfering with CAF generation and functionality.
Collapse
Affiliation(s)
- Maria Camila Jiménez
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Karol Prieto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Melisa Gutiérrez
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Viviana Rodriguez-Pardo
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| |
Collapse
|
17
|
He M, Gu W, Gao Y, Liu Y, Liu J, Li Z. Molecular subtypes and a prognostic model for hepatocellular carcinoma based on immune- and immunogenic cell death-related lncRNAs. Front Immunol 2022; 13:1043827. [PMID: 36479122 PMCID: PMC9720162 DOI: 10.3389/fimmu.2022.1043827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Background Accumulating evidence shows that immunogenic cell death (ICD) enhances immunotherapy effectiveness. In this study, we aimed to develop a prognostic model combining ICD, immunity, and long non-coding RNA biomarkers for predicting hepatocellular carcinoma (HCC) outcomes. Methods Immune- and immunogenic cell death-related lncRNAs (IICDLs) were identified from The Cancer Genome Atlas and Ensembl databases. IICDLs were extracted based on the results of differential expression and univariate Cox analyses and used to generate molecular subtypes using ConsensusClusterPlus. We created a prognostic signature based on IICDLs and a nomogram based on risk scores. Clinical characteristics, immune landscapes, immune checkpoint blocking (ICB) responses, stemness, and chemotherapy responses were also analyzed for different molecular subtypes and risk groups. Result A total of 81 IICDLs were identified, 20 of which were significantly associated with overall survival (OS) in patients with HCC. Cluster analysis divided patients with HCC into two distinct molecular subtypes (C1 and C2), with patients in C1 having a shorter survival time than those in C2. Four IICDLs (TMEM220-AS1, LINC02362, LINC01554, and LINC02499) were selected to develop a prognostic model that was an independent prognostic factor of HCC outcomes. C1 and the high-risk group had worse OS (hazard ratio > 1.5, p < 0.01), higher T stage (p < 0.05), higher clinical stage (p < 0.05), higher pathological grade (p < 0.05), low immune cell infiltration (CD4+ T cells, B cells, macrophages, neutrophils, and myeloid dendritic cells), low immune checkpoint gene expression, poor response to ICB therapy, and high stemness. Different molecular subtypes and risk groups showed significantly different responses to several chemotherapy drugs, such as doxorubicin (p < 0.001), 5-fluorouracil (p < 0.001), gemcitabine (p < 0.001), and sorafenib (p < 0.01). Conclusion Our study identified molecular subtypes and a prognostic signature based on IICDLs that could help predict the clinical prognosis and treatment response in patients with HCC.
Collapse
Affiliation(s)
- Mingang He
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenchao Gu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Yang Gao
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ying Liu
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Liu
- Cancer Center, Shandong Public Health Clinical Center, Public Health Clinical Center Affiliated to Shandong University, Jinan, China,*Correspondence: Jie Liu, ; Zengjun Li,
| | - Zengjun Li
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Jie Liu, ; Zengjun Li,
| |
Collapse
|
18
|
Izuegbuna OO. Polyphenols: Chemoprevention and therapeutic potentials in hematological malignancies. Front Nutr 2022; 9:1008893. [PMID: 36386899 PMCID: PMC9643866 DOI: 10.3389/fnut.2022.1008893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2024] Open
Abstract
Polyphenols are one of the largest plant-derived natural product and they play an important role in plants' defense as well as in human health and disease. A number of them are pleiotropic molecules and have been shown to regulate signaling pathways, immune response and cell growth and proliferation which all play a role in cancer development. Hematological malignancies on the other hand, are cancers of the blood. While current therapies are efficacious, they are usually expensive and with unwanted side effects. Thus, the search for newer less toxic agents. Polyphenols have been reported to possess antineoplastic properties which include cell cycle arrest, and apoptosis via multiple mechanisms. They also have immunomodulatory activities where they enhance T cell activation and suppress regulatory T cells. They carry out these actions through such pathways as PI3K/Akt/mTOR and the kynurenine. They can also reverse cancer resistance to chemotherapy agents. In this review, i look at some of the molecular mechanism of action of polyphenols and their potential roles as therapeutic agents in hematological malignancies. Here i discuss their anti-proliferative and anti-neoplastic activities especially their abilities modulate signaling pathways as well as immune response in hematological malignancies. I also looked at clinical studies done mainly in the last 10-15 years on various polyphenol combination and how they enhance synergism. I recommend that further preclinical and clinical studies be carried out to ensure safety and efficacy before polyphenol therapies be officially moved to the clinics.
Collapse
Affiliation(s)
- Ogochukwu O. Izuegbuna
- Department of Haematology, Ladoke Akintola University of Technology (LAUTECH) Teaching Hospital, Ogbomoso, Nigeria
| |
Collapse
|
19
|
Li M, Zheng Y, Zhao J, Liu M, Shu X, Li Q, Wang Y, Zhou Y. Polyphenol Mechanisms against Gastric Cancer and Their Interactions with Gut Microbiota: A Review. Curr Oncol 2022; 29:5247-5261. [PMID: 35892986 PMCID: PMC9332243 DOI: 10.3390/curroncol29080417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022] Open
Abstract
The lack of new drugs and resistance to existing drugs are serious problems in gastric cancer(GC) treatment. The research found polyphenols possess anti-Helicobacter pylori(Hp) and antitumor activities and may be used in the research and development of drugs for cancer prevention and treatment. However, polyphenols are affected by their chemical structures and physical properties, which leads to relatively low bioavailability and bioactivity in vivo. The intestinal flora can improve the absorption, utilization, and biological activity of polyphenols, whereas polyphenol compounds can increase the richness of the intestinal flora, reduce the activity of carcinogenic bacteria, stabilize the proportion of core flora, and maintain homeostasis of the intestinal microenvironment. Our review summarizes the gastrointestinal flora-mediated mechanisms of polyphenol against GC.
Collapse
Affiliation(s)
- Matu Li
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, China; (M.L.); (J.Z.); (M.L.)
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jinyu Zhao
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, China; (M.L.); (J.Z.); (M.L.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Meimei Liu
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, China; (M.L.); (J.Z.); (M.L.)
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiaochuang Shu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qiang Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
20
|
Rogovskii V. Polyphenols as the Potential Disease-modifying Therapy in Cancer. Anticancer Agents Med Chem 2022; 22:2385-2392. [PMID: 35105297 DOI: 10.2174/1871520622666220201105204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Disease-modifying therapy in cancer can be defined as long-term treatment that has a beneficial outcome on the course of cancer, affecting the underlying pathophysiology. The anticancer potential of polyphenols is widely studied. However, there is a significant gap between experimental data obtained in vitro and in vivo and the current polyphenol role in cancer therapy. OBJECTIVE In this article, the reason for this inconsistency is discussed, which might be in the design of polyphenols clinical trials. The approach of long-term polyphenol disease-modifying therapy in cancer is encouraged. CONCLUSION As the physiologic concentrations of polyphenols are not sufficient for reaching the cytotoxic levels, the immune-modulatory effects and effects on cancer intrinsic signal transduction pathways should be considered in polyphenol clinical trials design. Such effects apparently can not cause the rapid regression of the disease. However, more likely, they can modulate the course of the disease, leading to favorable changes in the patient's condition in case of long-term treatment that can be considered to be cancer disease modification.
Collapse
Affiliation(s)
- Vladimir Rogovskii
- Department of molecular pharmacology and radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
21
|
Anisman H, Kusnecov AW. Dietary components associated with being overweight, having obesity, and cancer. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Shrestha R, Mohankumar K, Martin G, Hailemariam A, Lee SO, Jin UH, Burghardt R, Safe S. Flavonoids kaempferol and quercetin are nuclear receptor 4A1 (NR4A1, Nur77) ligands and inhibit rhabdomyosarcoma cell and tumor growth. J Exp Clin Cancer Res 2021; 40:392. [PMID: 34906197 PMCID: PMC8670039 DOI: 10.1186/s13046-021-02199-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Flavonoids exhibit both chemopreventive and chemotherapeutic activity for multiple tumor types, however, their mechanisms of action are not well defined. Based on some of their functional and gene modifying activities as anticancer agents, we hypothesized that kaempferol and quercetin were nuclear receptor 4A1 (NR4A1, Nur77) ligands and confirmed that both compounds directly bound NR4A1 with KD values of 3.1 and 0.93 μM, respectively. METHODS The activities of kaempferol and quercetin were determined in direct binding to NR4A1 protein and in NR4A1-dependent transactivation assays in Rh30 and Rh41 rhabdomyosarcoma (RMS) cells. Flavonoid-dependent effects as inhibitors of cell growth, survival and invasion were determined in XTT and Boyden chamber assays respectively and changes in protein levels were determined by western blots. Tumor growth inhibition studies were carried out in athymic nude mice bearing Rh30 cells as xenografts. RESULTS Kaempferol and quercetin bind NR4A1 protein and inhibit NR4A1-dependent transactivation in RMS cells. NR4A1 also regulates RMS cell growth, survival, mTOR signaling and invasion. The pro-oncogenic PAX3-FOXO1 and G9a genes are also regulated by NR4A1 and, these pathways and genes are all inhibited by kaempferol and quercetin. Moreover, at a dose of 50 mg/kg/d kaempferol and quercetin inhibited tumor growth in an athymic nude mouse xenograft model bearing Rh30 cells. CONCLUSION These results demonstrate the clinical potential for repurposing kaempferol and quercetin for clinical applications as precision medicine for treating RMS patients that express NR4A1 in order to increase the efficacy and decrease dosages of currently used cytotoxic drugs.
Collapse
Affiliation(s)
- Rupesh Shrestha
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Greg Martin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Amanuel Hailemariam
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Syng-Ook Lee
- Department of Food Science and Technology, Keimyung University, Daegu, 42601, Republic of Korea
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Robert Burghardt
- Department of Veterinary Integrated Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA.
| |
Collapse
|
23
|
Benvenuto M, Focaccetti C, Ciuffa S, Fazi S, Bei A, Miele MT, Albonici L, Cifaldi L, Masuelli L, Bei R. Polyphenols affect the humoral response in cancer, infectious and allergic diseases and autoimmunity by modulating the activity of T H1 and T H2 cells. Curr Opin Pharmacol 2021; 60:315-330. [PMID: 34520942 DOI: 10.1016/j.coph.2021.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/25/2022]
Abstract
Polyphenols are a wide class of natural substances, pleiotropic molecules capable of modulating several processes, involved in the humoral and cellular immune response. The activation, differentiation of B cells, and production of antibodies to protein antigens by plasma cells depend on T helper (TH) CD4+ cells and secreted cytokines. Cancer, infectious, allergic, and autoimmune diseases are characterized by an imbalance of TH1/TH2 immunity and abnormal activation of the humoral response. Accordingly, polyphenols modulate the TH1/TH2 ratio, the secretion of multiple cytokines, the levels of antibodies, and therefore could contribute to recovering the state of health in these diseases. In this review, we summarize the current knowledge on the effects of polyphenols in modulating the humoral response in cancer, infectious and allergic diseases and in autoimmunity by affecting the activity of TH1 and TH2 cells.
Collapse
Affiliation(s)
- Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy; Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Sara Fazi
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Arianna Bei
- Medical School, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
24
|
Dietary Polyphenols: Promising Adjuvants for Colorectal Cancer Therapies. Cancers (Basel) 2021; 13:cancers13184499. [PMID: 34572726 PMCID: PMC8465098 DOI: 10.3390/cancers13184499] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Colorectal cancer is a leading cause of death worldwide. Despite the development of novel surgical and therapeutic strategies, 50% of patients relapse after treatment. Therapy failure, due to low efficacy, adverse effects and drug resistance, is thus a major concern. The idea of combining standard therapy with non-toxic bioactive natural compounds is a recent topic in cancer research and aims to increase the efficacy of current antitumor therapies while reducing drug toxicity and adverse effects. In recent years, several studies have explored the capacity of polyphenols, dietary bioactive compounds enriched in fruit and vegetables, to act as adjuvants to improve colorectal cancer therapy. In the present review, we discuss these studies, highlighting the mechanisms underlying the adjuvant effect, and bring out the potential of this novel therapeutic approach as well as the critical issues related to clinical application. Abstract Colorectal cancer (CRC) is a major cancer type and a leading cause of death worldwide. Despite advances in therapeutic management, the current medical treatments are not sufficient to control metastatic disease. Treatment-related adverse effects and drug resistance strongly contribute to therapy failure and tumor recurrence. Combination therapy, involving cytotoxic treatments and non-toxic natural compounds, is arousing great interest as a promising more effective and safer alternative. Polyphenols, a heterogeneous group of bioactive dietary compounds mainly found in fruit and vegetables, have received great attention for their capacity to modulate various molecular pathways active in cancer cells and to affect host anticancer response. This review provides a summary of the most recent (i.e., since 2016) preclinical and clinical studies using polyphenols as adjuvants for CRC therapies. These studies highlight the beneficial effects of dietary polyphenols in combination with cytotoxic drugs or irradiation on both therapy outcome and drug resistance. Despite substantial preclinical evidence, data from a few pilot clinical trials are available to date with promising but still inconclusive results. Larger randomized controlled studies and polyphenol formulations with improved bioavailability are needed to translate the research progress into clinical applications and definitively prove the added value of these molecules in CRC management.
Collapse
|
25
|
Huarte E, Serra G, Monteagudo-Mera A, Spencer J, Cid C, de Peña MP. Raw and Sous-Vide-Cooked Red Cardoon Stalks ( Cynara cardunculus L. var. altilis DC): (Poly)phenol Bioaccessibility, Anti-inflammatory Activity in the Gastrointestinal Tract, and Prebiotic Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9270-9286. [PMID: 34347467 PMCID: PMC8389834 DOI: 10.1021/acs.jafc.1c03014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 05/27/2023]
Abstract
The in vitro anti-inflammatory and prebiotic activity and the content and profile of bioaccessible (poly)phenols and catabolites of raw and sous-vide-cooked red cardoon (Cynara cardunculus L. var. altilis DC) were investigated during gastrointestinal (GI) digestion. Raw cardoon after in vitro GI digestion had 0.7% bioaccessible (poly)phenols, which protected against lipopolysaccharide-induced inflammation by counteracting IL-8, IL-6, TNF-α, and IL-10 secretions in differentiated Caco-2 cells. Contrarily, GI-digested sous vide cardoon showed higher (poly)phenol bioaccessibility (59.8%) and exerted proinflammatory effects in Caco-2 cells. (Poly)phenols were highly metabolized during the first 8 h of in vitro fermentation, and nine catabolites were produced during 48 h of fermentation. Colonic-fermented raw and sous-vide-cooked cardoon did not show anti-inflammatory activity in HT-29 cells but presented potential prebiotic activity, comparable to the commercial prebiotic FOS, by stimulating health-promoting bacteria such as Bifidobacterium spp. and Lactobacillus/Enterococcus spp. and by increasing the production of total SCFAs, especially acetate.
Collapse
Affiliation(s)
- Estíbaliz Huarte
- Departamento
de Ciencias de la Alimentación y Fisiología, Facultad
de Farmacia y Nutrición, Universidad
de Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain
| | - Gessica Serra
- Department
of Food and Nutritional Sciences, University
of Reading, Whiteknights, P.O. Box 226, RG6 6AP Reading, U.K.
| | - Andrea Monteagudo-Mera
- Department
of Food and Nutritional Sciences, University
of Reading, Whiteknights, P.O. Box 226, RG6 6AP Reading, U.K.
| | - Jeremy Spencer
- Department
of Food and Nutritional Sciences, University
of Reading, Whiteknights, P.O. Box 226, RG6 6AP Reading, U.K.
| | - Concepción Cid
- Departamento
de Ciencias de la Alimentación y Fisiología, Facultad
de Farmacia y Nutrición, Universidad
de Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA,
Navarra Institute for Health Research, C/ Irunlarrea 1, 31008 Pamplona, Spain
| | - María-Paz de Peña
- Departamento
de Ciencias de la Alimentación y Fisiología, Facultad
de Farmacia y Nutrición, Universidad
de Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA,
Navarra Institute for Health Research, C/ Irunlarrea 1, 31008 Pamplona, Spain
| |
Collapse
|
26
|
Dias AS, Helguero L, Almeida CR, Duarte IF. Natural Compounds as Metabolic Modulators of the Tumor Microenvironment. Molecules 2021; 26:molecules26123494. [PMID: 34201298 PMCID: PMC8228554 DOI: 10.3390/molecules26123494] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) is a heterogenous assemblage of malignant and non-malignant cells, including infiltrating immune cells and other stromal cells, together with extracellular matrix and a variety of soluble factors. This complex and dynamic milieu strongly affects tumor differentiation, progression, immune evasion, and response to therapy, thus being an important therapeutic target. The phenotypic and functional features of the various cell types present in the TME are largely dependent on their ability to adopt different metabolic programs. Hence, modulating the metabolism of the cells in the TME, and their metabolic crosstalk, has emerged as a promising strategy in the context of anticancer therapies. Natural compounds offer an attractive tool in this respect as their multiple biological activities can potentially be harnessed to ‘(re)-educate’ TME cells towards antitumoral roles. The present review discusses how natural compounds shape the metabolism of stromal cells in the TME and how this may impact tumor development and progression.
Collapse
Affiliation(s)
- Ana S. Dias
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Medical Sciences, iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (L.H.); (C.R.A.)
| | - Luisa Helguero
- Department of Medical Sciences, iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (L.H.); (C.R.A.)
| | - Catarina R. Almeida
- Department of Medical Sciences, iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (L.H.); (C.R.A.)
| | - Iola F. Duarte
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Correspondence: ; Tel.: +351-234-401-418
| |
Collapse
|
27
|
Fernandez-Gonzalez P, Mas-Sanchez A, Garriga P. Polyphenols and Visual Health: Potential Effects on Degenerative Retinal Diseases. Molecules 2021; 26:3407. [PMID: 34199888 PMCID: PMC8200069 DOI: 10.3390/molecules26113407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/26/2022] Open
Abstract
Dietary polyphenols are a group of natural compounds that have been proposed to have beneficial effects on human health. They were first known for their antioxidant properties, but several studies over the years have shown that these compounds can exert protective effects against chronic diseases. Nonetheless, the mechanisms underlying these potential benefits are still uncertain and contradictory effects have been reported. In this review, we analyze the potential effects of polyphenol compounds on some visual diseases, with a special focus on retinal degenerative diseases. Current effective therapies for the treatment of such retinal diseases are lacking and new strategies need to be developed. For this reason, there is currently a renewed interest in finding novel ligands (or known ligands with previously unexpected features) that could bind to retinal photoreceptors and modulate their molecular properties. Some polyphenols, especially flavonoids (e.g., quercetin and tannic acid), could attenuate light-induced receptor damage and promote visual health benefits. Recent evidence suggests that certain flavonoids could help stabilize the correctly folded conformation of the visual photoreceptor protein rhodopsin and offset the deleterious effect of retinitis pigmentosa mutations. In this regard, certain polyphenols, like the flavonoids mentioned before, have been shown to improve the stability, expression, regeneration and folding of rhodopsin mutants in experimental in vitro studies. Moreover, these compounds appear to improve the integration of the receptor into the cell membrane while acting against oxidative stress at the same time. We anticipate that polyphenol compounds can be used to target visual photoreceptor proteins, such as rhodopsin, in a way that has only been recently proposed and that these can be used in novel approaches for the treatment of retinal degenerative diseases like retinitis pigmentosa; however, studies in this field are limited and further research is needed in order to properly characterize the effects of these compounds on retinal degenerative diseases through the proposed mechanisms.
Collapse
Affiliation(s)
| | | | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, 08222 Terrassa, Spain; (P.F.-G.); (A.M.-S.)
| |
Collapse
|
28
|
Grape Pomace Ingestion by Dry Cows Does Not Affect the Colostrum Nutrient and Fatty Acid Composition. Animals (Basel) 2021; 11:ani11061633. [PMID: 34073000 PMCID: PMC8227017 DOI: 10.3390/ani11061633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The introduction of alternative feedstuff such as grape pomace into the diets of dry cows could decrease the cereal needs in ruminant feeding systems and could modify the composition of colostrum. Grape pomace is a by-product of the wine industry. It contains polyphenols and fatty acids, which have the potential to improve the animal product quality. The nutritional quality of colostrum and the quality of colostral fat is affected by dry cow nutrition in the late stages of pregnancy. This study determined the potential of grape pomace feeding to increase colostral protein, which, according to the literature, is connected with the concentration of immunoglobulin G, better passive immunisation, and the health of calves. The addition of grape pomace was determined to have no effect on colostral nutrient and fatty acid concentrations. Thus, grape pomace can be used as a nutrient source for dry cows. Abstract The utilisation of different by-products from the food industry as nutrient sources for farm animals is both possible and beneficial. Grape pomace is a by-product that contains polyphenols and fatty acids, both of which have the potential to improve the nutritional quality of cow colostrum. This study aimed to explore how the addition of grape pomace to the diet of dry cows affects the concentration of nutrients and fatty acids of colostrum. Sixteen Slovak spotted cows in late pregnancy were used in this study. From the seventh day before expected calving to the day of calving, cows in the grape pomace group received a diet supplemented with dried grape pomace, at 0.116 kg/cow/day. Colostrum samples were analysed for basal nutrients and fatty acid concentrations. Between the control and experimental groups, the nutrient and fatty acid concentrations of all the colostrum samples did not show significant differences. The nutrient levels in the colostrum from both groups of cows were typical, as related to the time from calving. The addition of the grape pomace into the diet of dry cows had no effect on nutrient concentrations and the fatty acid composition of the colostrum. The somatic cell score of the colostrum sampled at the 12th hour after calving (4.2 versus 2.6) was positively affected by grape pomace addition. The results of this study revealed that grape pomace (fed in an amount of 0.116 kg/cow/day) had no positive or negative effect on the base nutrients and fatty acids of cow colostrum, and, therefore, grape pomace can be used as a nutrient source for dry cows in small amounts.
Collapse
|
29
|
Rahman MA, Hannan MA, Dash R, Rahman MDH, Islam R, Uddin MJ, Sohag AAM, Rahman MH, Rhim H. Phytochemicals as a Complement to Cancer Chemotherapy: Pharmacological Modulation of the Autophagy-Apoptosis Pathway. Front Pharmacol 2021; 12:639628. [PMID: 34025409 PMCID: PMC8138161 DOI: 10.3389/fphar.2021.639628] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Bioactive plant derived compounds are important for a wide range of therapeutic applications, and some display promising anticancer properties. Further evidence suggests that phytochemicals modulate autophagy and apoptosis, the two crucial cellular pathways involved in the underlying pathobiology of cancer development and regulation. Pharmacological targeting of autophagy and apoptosis signaling using phytochemicals therefore offers a promising strategy that is complementary to conventional cancer chemotherapy. In this review, we sought to highlight the molecular basis of the autophagic-apoptotic pathway to understand its implication in the pathobiology of cancer, and explore this fundamental cellular process as a druggable anticancer target. We also aimed to present recent advances and address the limitations faced in the therapeutic development of phytochemical-based anticancer drugs.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md. Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - MD. Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Rokibul Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon-si, South Korea
| | - Md Jamal Uddin
- ABEx Bio-Research Center, Dhaka, Bangladesh
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Seoul, South Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea
| |
Collapse
|
30
|
Lin CY, Kao SH, Hung LC, Chien HJ, Wang WH, Chang YW, Chen YH. Lipopolysaccharide-Induced Nitric Oxide and Prostaglandin E2 Production Is Inhibited by Tellimagrandin II in Mouse and Human Macrophages. Life (Basel) 2021; 11:life11050411. [PMID: 33946374 PMCID: PMC8146495 DOI: 10.3390/life11050411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/21/2022] Open
Abstract
Sepsis develops from a serious microbial infection that causes the immune system to go into overdrive. The major microorganisms that induce sepsis are Gram-negative bacteria with lipopolysaccharide (LPS) in their cell walls. Nitric oxide (NO) and cyclooxygenase-2 (COX-2) are the key factors involved in the LPS-induced pro-inflammatory process. This study aimed to evaluate the effects of polyphenol Tellimagrandin II (TGII) on anti-inflammatory activity and its underlying basic mechanism in murine macrophage cell line RAW 264.7 and human monocyte-derived macrophages. Macrophages with more than 90% cell viability were found in the cytotoxicity assay under 50 μM TGII. Pre- or post-treatment with TGII significantly reduced LPS-induced inducible nitric oxide synthase (NOS2) protein and mRNA expression, reducing LPS-induced COX-2 protein. Downstream of NOS2 and COX-2, NO and prostaglandin E2 (PGE2) were significantly inhibited by TGII. Upstream of NOS2 and COX-2, phospho-p65, c-fos and phospho-c-jun were also reduced after pre-treatment with TGII. Mitogen-activated protein kinases (MAPKs) are also critical to nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) stimulation, and phospho-p38 expression was found to have been blocked by TGII. TGII efficiently reduces LPS-induced NO production and its upstream regulatory factors, suggesting that TGII may be a potential therapeutic agent for sepsis and other inflammatory diseases.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-Y.L.); (H.-J.C.); (W.-H.W.)
- School of Medicine, Graduate Institute of Medicine, College of Medicine, Center for Tropical Medicine and Infectious Diseases Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-H.K.); (L.-C.H.); (Y.-W.C.)
- Department of Surgical Sciences, Uppsala University, 751 23 Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Shih-Han Kao
- School of Medicine, Graduate Institute of Medicine, College of Medicine, Center for Tropical Medicine and Infectious Diseases Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-H.K.); (L.-C.H.); (Y.-W.C.)
| | - Ling-Chien Hung
- School of Medicine, Graduate Institute of Medicine, College of Medicine, Center for Tropical Medicine and Infectious Diseases Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-H.K.); (L.-C.H.); (Y.-W.C.)
| | - Hsin-Ju Chien
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-Y.L.); (H.-J.C.); (W.-H.W.)
| | - Wen-Hung Wang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-Y.L.); (H.-J.C.); (W.-H.W.)
- School of Medicine, Graduate Institute of Medicine, College of Medicine, Center for Tropical Medicine and Infectious Diseases Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-H.K.); (L.-C.H.); (Y.-W.C.)
| | - Yu-Wei Chang
- School of Medicine, Graduate Institute of Medicine, College of Medicine, Center for Tropical Medicine and Infectious Diseases Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-H.K.); (L.-C.H.); (Y.-W.C.)
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-Y.L.); (H.-J.C.); (W.-H.W.)
- School of Medicine, Graduate Institute of Medicine, College of Medicine, Center for Tropical Medicine and Infectious Diseases Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-H.K.); (L.-C.H.); (Y.-W.C.)
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 5677); Fax: +886-7-322-8547
| |
Collapse
|
31
|
Resveratrol induces PD-L1 expression through snail-driven activation of Wnt pathway in lung cancer cells. J Cancer Res Clin Oncol 2021; 147:1101-1113. [PMID: 33471184 PMCID: PMC7954741 DOI: 10.1007/s00432-021-03510-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Purpose Recent clinical trials with agents targeting immune checkpoint pathway have emerged as an important therapeutic approach for a broad range of cancer types. Resveratrol has been shown to possess cancer preventive and therapeutic effects and has potential to be chemotherapeutic agent/adjuvant. Here, we assessed the effect of resveratrol on immune checkpoint pathways. Methods The expression patterns of Wnt components and PD-L1 were examined by Western blot, Chromatin immunoprecipitation (ChIP) was used for analysis of DNA–protein interaction, the promoter activity was determined by luciferase reporter assay, apoptosis was analyzed by flow cytometry and the ability of the resveratrol to modulate T cell function was assessed in a co-culture system. Results Although the dose-, and cell-type dependent effects of resveratrol on PD-L1 expression have been reported, we show here that resveratrol dose-dependently upregulates PD-L1 expression at the range of pharmacologic-achievable concentrations in lung cancer cells and that is essential for suppression of T-cell-mediated immune response. We also found that Wnt pathway is critical for mediating resveratrol-induced PD-L1 upregulation. Mechanistically, resveratrol activates SirT1 deacetylase to deacetylate and stabilize transcriptional factor Snail. Snail in turn inhibits transcription of Axin2, which leads in disassembly of destruction complex and enhanced binding of β-catenin/TCF to PD-L1 promoter. Conclusion We conclude that resveratrol is capable to suppress anti-tumor immunity by controlling mainly PD-L1 expression. This finding will extend the understanding of resveratrol in regulation of tumor immunity and is relevant to the debate on resveratrol supplements for lung cancer patients.
Collapse
|
32
|
Safe S, Jayaraman A, Chapkin RS, Howard M, Mohankumar K, Shrestha R. Flavonoids: structure-function and mechanisms of action and opportunities for drug development. Toxicol Res 2021; 37:147-162. [PMID: 33868973 DOI: 10.1007/s43188-020-00080-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are polyphenolic phytochemicals produced in fruits, nuts and vegetables and dietary consumption of these structurally diverse compounds is associated with multiple health benefits including increased lifespan, decreased cardiovascular problems and low rates of metabolic diseases. Preclinical studies with individual flavonoids demonstrate that these compounds exhibit anti-inflammatory and anticancer activities and they enhance the immune system. Their effectiveness in both chemoprevention and chemotherapy is associated with their targeting of multiple genes/pathways including nuclear receptors, the aryl hydrocarbon receptor (AhR), kinases, receptor tyrosine kinases and G protein-coupled receptors. However, despite the remarkable preclinical activities of flavonoids, their clinical applications have been limited and this is due, in part, to problems in drug delivery and poor bioavailability and these problems are being addressed. Further improvements that will expand clinical applications of flavonoids include mechanism-based precision medicine approaches which will identify critical mechanisms of action of individual flavonoids with optimal activities that can be used in combination therapies.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466 USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843 USA
| | - Marcell Howard
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466 USA
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466 USA
| | - Rupesh Shrestha
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
33
|
Wei T, Ji X, Xue J, Gao Y, Zhu X, Xiao G. Cyanidin-3-O-glucoside represses tumor growth and invasion in vivo by suppressing autophagy via inhibition of the JNK signaling pathways. Food Funct 2020; 12:387-396. [PMID: 33326533 DOI: 10.1039/d0fo02107e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Black bean seed coat extract (BBSCE) contains a high amount of bioactive compounds which can reduce the risk of cancers, but the underlying mechanism remains poorly understood in vivo. Here using a Drosophila model of a malignant tumor, wherein the activated oncogene Raf (RafGOF) cooperates with loss-of-function mutations in the conserved tumor suppressor scribble (scrib-/-), we investigated the antitumor mechanism of BBSCE and its main active component cyanidin-3-O-glucoside (C3G) in vivo. The results showed that supplementation of either BBSCE or C3G inhibited the tumor growth and invasion of RafGOFscrib-/- and extended their survival in a dose dependent manner. Strikingly, the activation of both autonomous and non-autonomous autophagy in tumor flies was significantly reduced by C3G treatment. A further study indicated that C3G exhibited an antitumor effect in vivo by blocking autophagy both in tumor cells and in its microenvironment by inhibiting the JNK pathway. Interestingly, the efficacy of chloroquine (CQ, an autophagy inhibitor used as an antitumor agent) combined with C3G is much better than either C3G or CQ treatment alone. C3G may be combined with CQ to treat cancers and to provide a theoretical basis for functional food or natural medicine development.
Collapse
Affiliation(s)
- Tian Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Xiaowen Ji
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Jinsong Xue
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Yan Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Xiaomei Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Guiran Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
34
|
Belitsky G, Fetisov T, Kirsanov K, Lesovaya E, Vlasova O, Yakubovskaya M. Therapy-related acute myeloid leukemia and its prevention. AMERICAN JOURNAL OF BLOOD RESEARCH 2020; 10:416-433. [PMID: 33489451 PMCID: PMC7811901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Secondary tumors, including therapy-related acute myeloid leukemia (t-AML), represent one of the most undesirable side effects of chemotherapy, which arise several years after primary cancer treatment. This review aims to analyze the current data on molecular pathogenesis of t-AML revealing potential criteria for predicting predisposition to the disease. Another objective is to analyze the information on promising approaches for t-AML prevention. METHODS We analyzed studies regarding t-AML and possible approaches for cancer prevention of drug-induced tumors. Publications in the databases, such as SciVerse Scopus (948), PubMed (1837) and Web of Science (935) were used. Among 92 the most important publications cited in the review, 79 were published during the last decade. RESULTS The review provides the information concerning t-AML pathogenesis, molecular markers of primary cancer patients with high risk of t-AML. The role of the bone marrow niche in clonal hematopoiesis and t-AML pathogenesis is discussed. Current approaches for t-AML prevention both at the stage of therapy and at the latent period are described. Inhibition effects of polyphenols on cell proliferation and on the appearance of hemopoetic clones of indeterminate potential are proposed for t-AML prevention. CONCLUSION The problem of the t-AML, a cancer induced by genotoxic chemotherapeutic drugs, is considered from the point of view of the fundamental mechanisms of chemical carcinogenesis, highlighting initiation and promotion stages. It enables to reveal the possible markers for the group of patients with high risk for t-AML and to demonstrate perspectives for the use of plant polyphenols for t-AML prevention.
Collapse
Affiliation(s)
- Gennady Belitsky
- Department of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, Ministry of Health of Russian FederationMoscow 115478, Russia
| | - Timur Fetisov
- Department of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, Ministry of Health of Russian FederationMoscow 115478, Russia
| | - Kirill Kirsanov
- Department of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, Ministry of Health of Russian FederationMoscow 115478, Russia
- Faculty of Basic Therapy, Peoples’ Friendship University of RussiaMoscow 117198, Russia
| | - Ekaterina Lesovaya
- Department of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, Ministry of Health of Russian FederationMoscow 115478, Russia
- Division of Oncology, Pavlov Ryazan State Medical UniversityRyazan 390026, Russia
| | - Olga Vlasova
- Department of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, Ministry of Health of Russian FederationMoscow 115478, Russia
| | - Marianna Yakubovskaya
- Department of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, Ministry of Health of Russian FederationMoscow 115478, Russia
| |
Collapse
|
35
|
Natural Phenolic Acid, Product of the Honey Bee, for the Control of Oxidative Stress, Peritoneal Angiogenesis, and Tumor Growth in Mice. Molecules 2020; 25:molecules25235583. [PMID: 33261130 PMCID: PMC7730286 DOI: 10.3390/molecules25235583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 01/24/2023] Open
Abstract
Tumor-associated macrophages (TAM) are key regulators of the link between inflammation and cancer, and the interplay between TAM and tumor cells represents a promising target of future therapeutic approaches. We investigated the effect of gallic acid (GA) and caffeic acid (CA) as strong antioxidant and anti-inflammatory agents on tumor growth, angiogenesis, macrophage polarization, and oxidative stress on the angiogenic model caused by the intraperitoneal (ip) inoculation of Ehrlich ascites tumor (EAT) cells (2.5 × 106) in Swiss albino mouse. Treatment with GA or CA at a dose of 40 mg/kg and 80 mg/kg ip was started in exponential tumor growth phase on days 5, 7, 9, and 11. On day 13, the ascites volume and the total number and differential count of the cells present in the peritoneal cavity, the functional activity of macrophages, and the antioxidant and anti-angiogenic parameters were determined. The results show that phenolic acids inhibit the processes of angiogenesis and tumor growth, leading to the increased survival of EAT-bearing mice, through the protection of the tumoricidal efficacy of M1 macrophages and inhibition of proangiogenic factors, particularly VEGF, metalloproteinases -2 and -9, and cyclooxygenase-2 activity.
Collapse
|
36
|
Lasso P, Gomez-Cadena A, Urueña C, Donda A, Martinez-Usatorre A, Romero P, Barreto A, Fiorentino S. An Immunomodulatory Gallotanin-Rich Fraction From Caesalpinia spinosa Enhances the Therapeutic Effect of Anti-PD-L1 in Melanoma. Front Immunol 2020; 11:584959. [PMID: 33312174 PMCID: PMC7708328 DOI: 10.3389/fimmu.2020.584959] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022] Open
Abstract
PD-1/PD-L1 pathway plays a role in inhibiting immune response. Therapeutic antibodies aimed at blocking the PD-1/PD-L1 interaction have entered clinical development and have been approved for a variety of cancers. However, the clinical benefits are reduced to a group of patients. The research in combined therapies, which allow for a greater response, is strongly encouraging. We previously characterized a polyphenol-rich extract from Caesalpinia spinosa (P2Et) with antitumor activity in both melanoma and breast carcinoma, as well as immunomodulatory activity. We hypothesize that the combined treatment with P2Et and anti-PD-L1 can improve the antitumor response through an additive antitumor effect. We investigated the antitumor and immunomodulatory activity of P2Et and anti-PD-L1 combined therapy in B16-F10 melanoma and 4T1 breast carcinoma. We analyzed tumor growth, hematologic parameters, T cell counts, cytokine expression, and T cell cytotoxicity. In the melanoma model, combined P2Et and anti-PD-L1 therapy has the following effects: decrease in tumor size; increase in the number of activated CD4+ and CD8+ T cells; decrease in the number of suppressor myeloid cells; increase in PD-L1 expression; decrease in the frequency of CD8+ T cell expressing PD-1; improvement in the cytotoxic activity of T cells; and increase in the IFN γ secretion. In the breast cancer model, P2Et and PD-L1 alone or in combination show antitumor effect with no clear additive effect. This study shows that combined therapy of P2Et and anti-PD-L1 can improve antitumor response in a melanoma model by activating the immune response and neutralizing immunosuppressive mechanisms.
Collapse
Affiliation(s)
- Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alejandra Gomez-Cadena
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá, Colombia.,University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alena Donda
- University of Lausanne, Department of Fundamental Oncology, Lausanne, Switzerland
| | - Amaia Martinez-Usatorre
- Swiss Federal Institute of Technology Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Pedro Romero
- University of Lausanne, Department of Fundamental Oncology, Lausanne, Switzerland
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
37
|
Prieto K, Lozano MP, Urueña C, Alméciga-Díaz CJ, Fiorentino S, Barreto A. The delay in cell death caused by the induction of autophagy by P2Et extract is essential for the generation of immunogenic signals in melanoma cells. Apoptosis 2020; 25:875-888. [PMID: 33156457 DOI: 10.1007/s10495-020-01643-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/25/2022]
Abstract
P2Et extract obtained from the Caesalpinia spinosa plant is abundant in phenolic compounds such as gallic acid and ethyl gallate and can generate signals to activate the immune response by inducing a mechanism known as immunogenic cell death in murine models of breast cancer and melanoma. Immunogenic cell death involves mechanisms such as autophagy, which can be modulated by various natural compounds, including phenolic compounds with a structure similar to those found in P2Et extract. Here, we determine the role of autophagy in apoptosis and the generation of immunogenic signals using murine wild-type B16-F10 melanoma cells and cells with beclin-1 gene knockout. We show that P2Et extract and ethyl gallate induced autophagy, partially protecting tumor cells from death and promoting calreticulin exposure and the release of ATP. Although ethyl gallate showed a mechanism similar to that of P2Et, the induction of apoptosis and immunogenic signals was significantly weaker. In contrast, gallic acid-induced autophagy acted by blocking autophagic flux, which was associated with increased cell death. However, this compound did not induce any of the immunogenic death signals evaluated. Therefore, the complex extract has greater antitumor potential than isolated compounds. Here, we show that inducing autophagic flux with P2Et protects cancer cells from cell death and that this delay in cell death is required for the generation of immunogenic signals.
Collapse
Affiliation(s)
- Karol Prieto
- Grupo de Inmunobiología Y Biología Celular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Maria Paula Lozano
- Grupo de Inmunobiología Y Biología Celular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Claudia Urueña
- Grupo de Inmunobiología Y Biología Celular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos Javier Alméciga-Díaz
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología Y Biología Celular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología Y Biología Celular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
38
|
Benvenuto M, Albonici L, Focaccetti C, Ciuffa S, Fazi S, Cifaldi L, Miele MT, De Maio F, Tresoldi I, Manzari V, Modesti A, Masuelli L, Bei R. Polyphenol-Mediated Autophagy in Cancer: Evidence of In Vitro and In Vivo Studies. Int J Mol Sci 2020; 21:E6635. [PMID: 32927836 PMCID: PMC7555128 DOI: 10.3390/ijms21186635] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
One of the hallmarks of cellular transformation is the altered mechanism of cell death. There are three main types of cell death, characterized by different morphological and biochemical features, namely apoptosis (type I), autophagic cell death (type II) and necrosis (type III). Autophagy, or self-eating, is a tightly regulated process involved in stress responses, and it is a lysosomal degradation process. The role of autophagy in cancer is controversial and has been associated with both the induction and the inhibition of tumor growth. Autophagy can exert tumor suppression through the degradation of oncogenic proteins, suppression of inflammation, chronic tissue damage and ultimately by preventing mutations and genetic instability. On the other hand, tumor cells activate autophagy for survival in cellular stress conditions. Thus, autophagy modulation could represent a promising therapeutic strategy for cancer. Several studies have shown that polyphenols, natural compounds found in foods and beverages of plant origin, can efficiently modulate autophagy in several types of cancer. In this review, we summarize the current knowledge on the effects of polyphenols on autophagy, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of polyphenols for envisioning future therapies employing polyphenols as chemoadjuvants.
Collapse
Affiliation(s)
- Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
- Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Sara Fazi
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Fernando De Maio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| |
Collapse
|
39
|
Coordination self-assembly of natural flavonoids into robust nanoparticles for enhanced in vitro chemo and photothermal cancer therapy. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
The immunoregulatory function of polyphenols: implications in cancer immunity. J Nutr Biochem 2020; 85:108428. [PMID: 32679443 DOI: 10.1016/j.jnutbio.2020.108428] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Polyphenols have demonstrated several potential biological activities, notably antitumoral activity dependent on immune function. In the present review, we describe studies that investigated antitumor immune responses influenced by polyphenols and the mechanisms by which polyphenols improve the immune response. We also discuss the limitations in related areas, especially unexplored areas of research, and next steps required to develop a therapeutic approach utilizing polyphenols in oncology.
Collapse
|
41
|
Deng LJ, Qi M, Li N, Lei YH, Zhang DM, Chen JX. Natural products and their derivatives: Promising modulators of tumor immunotherapy. J Leukoc Biol 2020; 108:493-508. [PMID: 32678943 PMCID: PMC7496826 DOI: 10.1002/jlb.3mr0320-444r] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
A wealth of evidence supports the role of tumor immunotherapy as a vital therapeutic option in cancer. In recent decades, accumulated studies have revealed the anticancer activities of natural products and their derivatives. Increasing interest has been driven toward finding novel potential modulators of tumor immunotherapy from natural products, a hot research topic worldwide. These works of research mainly focused on natural products, including polyphenols (e.g., curcumin, resveratrol), cardiotonic steroids (e.g., bufalin and digoxin), terpenoids (e.g., paclitaxel and artemisinins), and polysaccharide extracts (e.g., lentinan). Compelling data highlight that natural products have a promising future in tumor immunotherapy. Considering the importance and significance of this topic, we initially discussed the integrated research progress of natural products and their derivatives, including target T cells, macrophages, B cells, NKs, regulatory T cells, myeloid‐derived suppressor cells, inflammatory cytokines and chemokines, immunogenic cell death, and immune checkpoints. Furthermore, these natural compounds inactivate several key pathways, including NF‐κB, PI3K/Akt, MAPK, and JAK/STAT pathways. Here, we performed a deep generalization, analysis, and summarization of the previous achievements, recent progress, and the bottlenecks in the development of natural products as tumor immunotherapy. We expect this review to provide some insight for guiding future research.
Collapse
Affiliation(s)
- Li-Juan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ming Qi
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Nan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yu-He Lei
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dong-Mei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Jia-Xu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
42
|
Synthesis, physicochemical characterization and biological properties of two novel Cu(II) complexes based on natural products curcumin and quercetin. J Inorg Biochem 2020; 208:111083. [PMID: 32487364 DOI: 10.1016/j.jinorgbio.2020.111083] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/25/2022]
Abstract
Curcumin and quercetin are two of the most prominent natural polyphenols with a diverse spectrum of beneficial properties, including antioxidant, anti-inflammatory, chemopreventive and chemotherapeutic activity. The complexation of these natural products with bioactive transition metal ions can lead to the generation of novel metallodrugs with enhanced biochemical and pharmacological activities. Within this framework, the synthesis and detailed structural and physicochemical characterization of two novel complex assemblies of Cu(II) with curcumin and quercetin and the ancillary aromatic chelator 2,2'-bipyridine is presented. The two complexes represent the only crystallographically characterized structures with Cu(II) as the central metal ion and curcumin or quercetin as the ligands. The new complexes were biologically evaluated in vitro for their antioxidant potential, both exhibiting strong scavenging activity in the 2,2-diphenyl-1-picrylhydrazyl assay, and their plasmid DNA binding/cleavage properties. Both complexes appear to be non-toxic in the eukaryotic experimental model Saccharomyces cerevisiae and merit further investigation of their pharmacological profile.
Collapse
|
43
|
do Nascimento Santos DKD, Barros BRDS, Aguiar LMDS, da Cruz Filho IJ, de Lorena VMB, de Melo CML, Napoleão TH. Immunostimulatory and antioxidant activities of a lignin isolated from Conocarpus erectus leaves. Int J Biol Macromol 2020; 150:169-177. [DOI: 10.1016/j.ijbiomac.2020.02.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
|
44
|
Nutrigenomic Effects of Long-Term Grape Pomace Supplementation in Dairy Cows. Animals (Basel) 2020; 10:ani10040714. [PMID: 32325906 PMCID: PMC7222749 DOI: 10.3390/ani10040714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The aim of this study was to evaluate the effect of grape pomace (GP), the polyphenol-rich agricultural by-product, on dairy cows’ whole-blood transcriptome, milk production and composition. Twelve lactating Holstein-Friesian cows were randomly assigned to two groups; the first received a GP-supplemented diet for 60 days (group GP), whereas the second was given only a basal diet (CTR). The results reveal 40 protein-coding genes differentially expressed in the GP group when compared with the CTR group, but no effects were noticed on milk production, concentrations of crude protein, fat, casein, lactose and urea, or somatic cell count. Compared to CTR, GP had a transcriptomic signature mainly reflecting a reinforced immunogenic response. Abstract The increasing demand for more animal products put pressure on improving livestock production efficiency and sustainability. In this context, advanced animal nutrition studies appear indispensable. Here, the effect of grape pomace (GP), the polyphenol-rich agricultural by-product, was evaluated on Holstein-Friesian cows’ whole-blood transcriptome, milk production and composition. Two experimental groups were set up. The first one received a basal diet and served as a control, while the second one received a 7.5% GP-supplemented diet for a total of 60 days. Milk production and composition were not different between the group; however, the transcriptome analysis revealed a total of 40 genes significantly affected by GP supplementation. Among the most interesting down-regulated genes, we found the DnaJ heat-shock protein family member A1 (DNAJA1), the mitochondrial fission factor (MFF), and the impact RWD domain protein (IMPACT) genes. The gene set enrichment analysis evidenced the positive enrichment of ‘interferon alpha (IFN-α) and IFN-γ response’, ‘IL6-JAK-STAT3 signaling’ and ‘complement’ genes. Moreover, the functional analysis denoted positive enrichment of the ‘response to protozoan’ and ‘negative regulation of viral genome replication’ biological processes. Our data provide an overall view of the blood transcriptomic signature after a 60-day GP supplementation in dairy cows which mainly reflects a GP-induced immunomodulatory effect.
Collapse
|
45
|
Ammendola M, Haponska M, Balik K, Modrakowska P, Matulewicz K, Kazmierski L, Lis A, Kozlowska J, Garcia-Valls R, Giamberini M, Bajek A, Tylkowski B. Stability and anti-proliferative properties of biologically active compounds extracted from Cistus L. after sterilization treatments. Sci Rep 2020; 10:6521. [PMID: 32300137 PMCID: PMC7162948 DOI: 10.1038/s41598-020-63444-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
The growing interest of oncologists in natural compounds such as polyphenols and flavonoids is encouraging the development of innovative and efficient carriers for the delivery of those drugs. This study examines carboxymethyl chitosan-based microcapsules created by spray drying as a method for delivering biologically active compounds isolated from the Cistus herb. Effects of sterilization and encapsulation on the polyphenol and flavonoid content of Cistus extract were investigated to optimize the production process. Furthermore, in vitro studies were carried out to examine the anticancer properties of sterilized polyphenols and flavonoids on glioblastoma cells isolated from oncological patients. Acquired results show high anticancer potential towards glioblastoma as well as low cytotoxicity towards non-cancer cell lines by the substances in question. Steam sterilization is shown to affect the content of biologically active compounds the least. We demonstrate that the investigated form of drug encapsulation is both efficient and potentially possible to scale up from the viewpoint of the pharmaceutical industry.
Collapse
Affiliation(s)
- Mario Ammendola
- Departament d' enginyeria química, Universitat Rovira i Virgili, Av. dels Països Catalans 26, 43007, Tarragona, Spain
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007, Tarragona, Spain
- Procter & Gamble Services Company n.v., Temselaan 100, 1853, Strombeek-Bever, Belgium
| | - Monika Haponska
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007, Tarragona, Spain
- Eurecat, Centre Tecnològic de Catalunya, C/Marcellí Domingo s/n, 43007, Tarragona, Spain
| | - Karolina Balik
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007, Tarragona, Spain
- Department of Tissue Engineering, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in, Torun, Poland
| | - Paulina Modrakowska
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007, Tarragona, Spain
- Department of Tissue Engineering, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in, Torun, Poland
| | - Karolina Matulewicz
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007, Tarragona, Spain
- Department of Tissue Engineering, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in, Torun, Poland
| | - Lukasz Kazmierski
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007, Tarragona, Spain
- Department of Tissue Engineering, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in, Torun, Poland
| | - Aleksandra Lis
- Department of Tissue Engineering, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in, Torun, Poland
| | - Justyna Kozlowska
- Department of Chemistry of Biomaterials and Cosmetics, Faculty of Chemistry, Nicolas Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Ricard Garcia-Valls
- Departament d' enginyeria química, Universitat Rovira i Virgili, Av. dels Països Catalans 26, 43007, Tarragona, Spain
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007, Tarragona, Spain
- Eurecat, Centre Tecnològic de Catalunya, C/Marcellí Domingo s/n, 43007, Tarragona, Spain
| | - Marta Giamberini
- Departament d' enginyeria química, Universitat Rovira i Virgili, Av. dels Països Catalans 26, 43007, Tarragona, Spain
| | - Anna Bajek
- Department of Tissue Engineering, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in, Torun, Poland
| | - Bartosz Tylkowski
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007, Tarragona, Spain.
- Eurecat, Centre Tecnològic de Catalunya, C/Marcellí Domingo s/n, 43007, Tarragona, Spain.
| |
Collapse
|
46
|
Moody R, Wilson K, Jaworowski A, Plebanski M. Natural Compounds with Potential to Modulate Cancer Therapies and Self-Reactive Immune Cells. Cancers (Basel) 2020; 12:cancers12030673. [PMID: 32183059 PMCID: PMC7139800 DOI: 10.3390/cancers12030673] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer-related deaths are approaching 10 million each year. Survival statistics for some cancers, such as ovarian cancer, have remained unchanged for decades, with women diagnosed at stage III or IV having over 80% chance of a lethal cancer recurrence after standard first-line treatment (reductive surgery and chemotherapy). New treatments and adjunct therapies are needed. In ovarian cancer, as in other cancers, the immune response, particularly cytotoxic (CD8+) T cells are correlated with a decreased risk of recurrence. As well as completely new antigen targets resulting from DNA mutations (neo-antigens), these T cells recognize cancer-associated overexpressed, re-expressed or modified self-proteins. However, there is concern that activation of self-reactive responses may also promote off-target pathology. This review considers the complex interplay between cancer-reactive and self-reactive immune cells and discusses the potential uses for various leading immunomodulatory compounds, derived from plant-based sources, as a cancer therapy option or to modulate potential autoimmune pathology. Along with reviewing well-studied compounds such as curcumin (from turmeric), epigallocatechin gallate (EGCG, from green tea) and resveratrol (from grapes and certain berries), it is proposed that compounds from novel sources, for example, native Australian plants, will provide a useful source for the fine modulation of cancer immunity in patients.
Collapse
|
47
|
Chang YW, Huang WC, Lin CY, Wang WH, Hung LC, Chen YH. Tellimagrandin II, A Type of Plant Polyphenol Extracted from Trapa bispinosa Inhibits Antibiotic Resistance of Drug-Resistant Staphylococcus aureus. Int J Mol Sci 2019; 20:ijms20225790. [PMID: 31752109 PMCID: PMC6888525 DOI: 10.3390/ijms20225790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 01/25/2023] Open
Abstract
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has become a critical global concern. Identifying new candidates of anti-S. aureus agents is urgently required because the therapeutic strategies for infected patients are limited currently. Therefore, the present study investigated whether Tellimagrandin II (TGII), a pure compound extracted from the shells of Trapa bispinosa, exhibits antibacterial effects against MRSA. We first showed that TGII exerted potent inhibitory activity against MRSA with a minimum inhibitory concentration of 128 μg/mL. The obtained fractional inhibitory concentration suggested that TGII could alone exert antistaphylococcal activity, and TGII combined with low doses of antibiotics displayed synergistic effects against MRSA. Moreover, we found that TGII exerted bactericidal activity by reducing the expression of mecA followed by the negative regulation of the penicillin-binding protein 2a (PBP2a) of MRSA. Transmission electron microscopy (TEM) images further confirmed that TGII destroyed the integrity of the cell wall of MRSA and caused the loss of cytoplasm content. In conclusion, we evidenced the antibacterial effects of TGII against MRSA, which enables the effective dose of current antibiotics to be reduced and the predicament of drug-resistant S. aureus isolates to be overcome.
Collapse
Affiliation(s)
- Yu-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-W.C.); (C.-Y.L.)
- Department of Laboratory, Taitung Hospital, Ministry of Health and Welfare, Taitung 95043, Taiwan
| | - Wan-Chun Huang
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious diseases, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (W.-C.H.); (W.-H.W.); (L.-C.H.)
| | - Chun-Yu Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-W.C.); (C.-Y.L.)
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious diseases, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (W.-C.H.); (W.-H.W.); (L.-C.H.)
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Wen-Hung Wang
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious diseases, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (W.-C.H.); (W.-H.W.); (L.-C.H.)
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ling-Chien Hung
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious diseases, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (W.-C.H.); (W.-H.W.); (L.-C.H.)
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Yen-Hsu Chen
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious diseases, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (W.-C.H.); (W.-H.W.); (L.-C.H.)
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu 30010, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 5677)
| |
Collapse
|
48
|
Sun LR, Zhou W, Zhang HM, Guo QS, Yang W, Li BJ, Sun ZH, Gao SH, Cui RJ. Modulation of Multiple Signaling Pathways of the Plant-Derived Natural Products in Cancer. Front Oncol 2019; 9:1153. [PMID: 31781485 PMCID: PMC6856297 DOI: 10.3389/fonc.2019.01153] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022] Open
Abstract
Natural compounds are highly effective anticancer chemotherapeutic agents, and the targets of plant-derived anticancer agents have been widely reported. In this review, we focus on the main signaling pathways of apoptosis, proliferation, invasion, and metastasis that are regulated by polyphenols, alkaloids, saponins, and polysaccharides. Alkaloids primarily affect apoptosis-related pathways, while polysaccharides primarily target pathways related to proliferation, invasion, and metastasis. Other compounds, such as flavonoids and saponins, affect all of these aspects. The association between compound structures and signaling pathways may play a critical role in drug discovery.
Collapse
Affiliation(s)
- Li-Rui Sun
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Wei Zhou
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Hong-Mei Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Qiu-Shi Guo
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bing-Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Zhi-Hui Sun
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Shuo-Hui Gao
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ran-Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
49
|
Benvenuto M, Focaccetti C, Izzi V, Masuelli L, Modesti A, Bei R. Tumor antigens heterogeneity and immune response-targeting neoantigens in breast cancer. Semin Cancer Biol 2019; 72:65-75. [PMID: 31698088 DOI: 10.1016/j.semcancer.2019.10.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022]
Abstract
Breast cancer is both the most common type of cancer and the most frequent cause of cancer mortality in women, mainly because of its heterogeneity and limited immunogenicity. The aim of specific active cancer immunotherapy is to stimulate the host's immune response against cancer cells directly using a vaccine platform carrying one or more tumor antigens. In particular, the ideal tumor antigen should be able to elicit T cell and B cell responses, be specific for the tumor and be expressed at high levels on cancer cells. Neoantigens are ideal targets for immunotherapy because they are exclusive to individual patient's tumors, are absent in healthy tissues and are not subject to immune tolerance mechanisms. Thus, neoantigens should generate a specific reaction towards tumors since they constitute the largest fraction of targets of tumor-infiltrating T cells. In this review, we describe the technologies used for neoantigen discovery, the heterogeneity of neoantigens in breast cancer and recent studies of breast cancer immunotherapy targeting neoantigens.
Collapse
Affiliation(s)
- Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy; Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131, Rome, Italy.
| | - Chiara Focaccetti
- Department of Human Science and Promotion of the Quality of Life, University San Raffaele Rome, Via di Val Cannuta 247, 00166, Rome, Italy.
| | - Valerio Izzi
- Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7C, FI-90230, Oulu, Finland.
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy.
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
50
|
In vivo and in vitro inhibition of osteosarcoma growth by the pan Bcl-2 inhibitor AT-101. Invest New Drugs 2019; 38:675-689. [DOI: 10.1007/s10637-019-00827-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/24/2019] [Indexed: 01/08/2023]
|