1
|
Qin YJ, Zhang P, Zhang P, Li J, Yang Q, Sun JL, Liang YZ, Wang LL, Zhang LZ, Han Y. The impact of endogenous N/OFQ on DPN: Insights into lower limb blood flow regulation in rats. Neuropeptides 2025; 109:102492. [PMID: 39644710 DOI: 10.1016/j.npep.2024.102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, often accompanied by impaired vascular endothelial function in the lower limbs. This dysfunction is characterized by a reduced vasodilatory response, leading to decreased blood flow in the lower limbs and ultimately contributing to the development of diabetic peripheral neuropathy. To delve deeper into this pathological process, the study employed bioinformatics to identify and analyze genes highly active in DPN. The investigation revealed that Membrane metallo-endopeptidase (MME) was effectively mitigated by its antagonist. Male Sprague-Dawley (SD) rats served as the model to systematically explore the intrinsic connection among the nociceptible/orphanin FQ-N/OFQ receptor (N/OFQ-NOP) system, femoral artery blood flow in the lower extremities, MME, and DPN. The rats were randomized into two groups: a control group and a DPN group induced by a single intraperitoneal injection of 55 mg/kg streptozotocin (STZ), with 6 rats in each group. The findings indicated that compared to the control group, the DPN group exhibited a significant reduction in femoral artery blood flow. This was accompanied by a notable increase in serum N/OFQ concentration, heightened expression of opioid-related nociceptive protein receptor 1 (OPRL1) and MME in femoral artery tissues of the lower limbs, and an elevated sciatic nerve stimulation threshold. These results suggest that the serum N/OFQ level in DPN rats is increased, which may promote the occurrence of peripheral neuropathy by up regulating MME and reducing peripheral flow distribution.
Collapse
Affiliation(s)
- Yuan-Jing Qin
- College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Po Zhang
- College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Peng Zhang
- College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Jing Li
- Department of Endocrine, Central Hospital of China Railway 12th Bureau Group, 182 Yingze Road, Taiyuan 030001, Shanxi, China
| | - Qixing Yang
- Department of Anesthesiology, Linfen People's Hospital, Linfen 041000, China
| | - Jun-Li Sun
- College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Yu-Zhang Liang
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Li-Li Wang
- College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Lin-Zhong Zhang
- College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Yi Han
- College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China.
| |
Collapse
|
2
|
Zhou Z, Mao X, Jiang C, Li W, Zhou T, Liu M, Sun S, Wang M, Dong N, Wu Q, Zhou H. Deficiencies in corin and atrial natriuretic peptide-mediated signaling impair endochondral ossification in bone development. Commun Biol 2024; 7:1380. [PMID: 39443661 PMCID: PMC11500007 DOI: 10.1038/s42003-024-07077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Corin is a protease that activates atrial natriuretic peptide (ANP), a hormone in cardiovascular homeostasis. Structurally, ANP is similar to C-type natriuretic peptide (CNP) crucial in bone development. Here, we examine the role of corin and ANP in chondrocyte differentiation and bone formation. We show that in Corin and Nppa (encoding ANP) knockout (KO) mice, chondrocyte differentiation is impaired, resulting in shortened limb long bones. In adult mice, Corin and Nppa deficiency impairs bone density and microarchitecture. Molecular studies in cartilages from newborn Corin and Nppa KO mice and in cultured chondrocytes indicate that corin and ANP act in chondrocytes via cGMP-dependent protein kinase G signaling to inhibit mitogen-activated protein kinase phosphorylation and stimulate glycogen synthase kinase-3β phosphorylation and β-catenin upregulation. These results indicate that corin and ANP signaling regulates chondrocyte differentiation in bone development and homeostasis, suggesting that enhancing ANP signaling may improve bone quality in patients with osteoporosis.
Collapse
Affiliation(s)
- Zibin Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Xiaoyu Mao
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Chun Jiang
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Wenguo Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Shijin Sun
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Mengting Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| | - Haibin Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Zhazykbayeva S, Budde H, Kaçmaz M, Zemedie Y, Osman H, Hassoun R, Jaquet K, Akin I, El-Battrawy I, Herwig M, Hamdani N. Exploring PKG signaling as a therapeutic avenue for pressure overload, ischemia, and HFpEF. Expert Opin Ther Targets 2024; 28:857-873. [PMID: 39329430 DOI: 10.1080/14728222.2024.2400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Heart failure (HF) is a complex and heterogeneous syndrome resulting from any diastolic or systolic dysfunction of the cardiac muscle. In addition to comorbid conditions, pressure overload, and myocardial ischemia are associated with cardiac remodeling which manifests as extracellular matrix (ECM) perturbations, impaired cellular responses, and subsequent ventricular dysfunction. AREAS COVERED The current review discusses the main aspects of the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway (cGMP-PKG) pathway modulators and highlights the promising outcomes of its novel pharmacological boosters. EXPERT OPINION Among several signaling pathways involved in the pathogenesis of pressure overload, ischemia and HF with preserved ejection fraction (HFpEF) is cGMP-PKG pathway. This pathway plays a pivotal role in the regulation of cardiac contractility, and modulation of cGMP-PKG signaling, contributing to the development of the diseases. Ventricular cardiomyocytes of HF patients and animal models are known to exhibit reduced cGMP levels and disturbed cGMP signaling including hypophosphorylation of PKG downstream targets. However, restoration of cGMP-PKG signaling improves cardiomyocyte function and promotes cardioprotective effects.
Collapse
Affiliation(s)
- S Zhazykbayeva
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Budde
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - M Kaçmaz
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
| | - Y Zemedie
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Osman
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - R Hassoun
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - K Jaquet
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - I Akin
- Medical University Mannheim, Medical Faculty, Mannheim University, Heidelberg, Germany
| | - I El-Battrawy
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
| | - M Herwig
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - N Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
- Department of Physiology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Fato BR, de Alwis N, Beard S, Binder NK, Pritchard N, Kaitu'u-Lino TJ, Bubb KJ, Hannan NJ. Exploring the Therapeutic Potential of C-Type Natriuretic Peptide for Preeclampsia. Hypertension 2024; 81:1883-1894. [PMID: 39016006 DOI: 10.1161/hypertensionaha.124.22820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Preeclampsia is a serious condition of pregnancy, complicated by aberrant maternal vascular dysfunction. CNP (C-type natriuretic peptide) contributes to vascular homeostasis, acting through NPR-B (natriuretic peptide receptor-B) and NPR-C (natriuretic peptide receptor-C). CNP mitigates vascular dysfunction of arteries in nonpregnant cohorts; this study investigates whether CNP can dilate maternal arteries in ex vivo preeclampsia models. METHODS Human omental arteries were dissected from fat biopsies collected during cesarean section. CNP, NPR-B, and NPR-C mRNA expression was assessed in arteries collected from pregnancies complicated by preeclampsia (n=6) and normotensive controls (n=11). Using wire myography, we investigated the effects of CNP on dilation of arteries from normotensive pregnancies. Arteries were preconstricted with either serum from patients with preeclampsia (n=6) or recombinant ET-1 (endothelin-1; vasoconstrictor elevated in preeclampsia; n=6) to model vasoconstriction associated with preeclampsia. Preconstricted arteries were treated with recombinant CNP (0.001-100 µmol/L) or vehicle and vascular relaxation assessed. In further studies, arteries were preincubated with NPR-B (5 µmol/L) and NPR-C (10 µmol/L) antagonists before serum-induced constriction (n=4-5) to explore mechanistic signaling. RESULTS CNP, NPR-B, and NPR-C mRNAs were not differentially expressed in omental arteries from preeclamptic pregnancies. CNP potently stimulated maternal artery vasorelaxation in our model of preeclampsia (using preeclamptic serum). Its vasodilatory actions were driven through the activation of NPR-B predominantly; antagonism of this receptor alone dampened CNP vasorelaxation. Interestingly, CNP did not reduce ET-1-driven omental artery constriction. CONCLUSIONS Collectively, these data suggest that enhancing CNP signaling through NPR-B offers a potential therapeutic strategy to reduce systemic vascular constriction in preeclampsia.
Collapse
Affiliation(s)
- Bianca R Fato
- Therapeutics Discovery and Vascular Function in Pregnancy Group (B.R.F., N.d.A., S.B., N.K.B., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
- Department of Obstetrics, Gynecology and Newborn Health, Mercy Hospital for Women (B.R.F., N.d.A., S.B., N.K.B., N.P., T.J.K.-L., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
| | - Natasha de Alwis
- Therapeutics Discovery and Vascular Function in Pregnancy Group (B.R.F., N.d.A., S.B., N.K.B., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
- Department of Obstetrics, Gynecology and Newborn Health, Mercy Hospital for Women (B.R.F., N.d.A., S.B., N.K.B., N.P., T.J.K.-L., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
| | - Sally Beard
- Therapeutics Discovery and Vascular Function in Pregnancy Group (B.R.F., N.d.A., S.B., N.K.B., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
- Department of Obstetrics, Gynecology and Newborn Health, Mercy Hospital for Women (B.R.F., N.d.A., S.B., N.K.B., N.P., T.J.K.-L., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
| | - Natalie K Binder
- Therapeutics Discovery and Vascular Function in Pregnancy Group (B.R.F., N.d.A., S.B., N.K.B., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
- Department of Obstetrics, Gynecology and Newborn Health, Mercy Hospital for Women (B.R.F., N.d.A., S.B., N.K.B., N.P., T.J.K.-L., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
| | - Natasha Pritchard
- Department of Obstetrics, Gynecology and Newborn Health, Mercy Hospital for Women (B.R.F., N.d.A., S.B., N.K.B., N.P., T.J.K.-L., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Department of Obstetrics, Gynecology and Newborn Health, Mercy Hospital for Women (B.R.F., N.d.A., S.B., N.K.B., N.P., T.J.K.-L., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
| | - Kristen J Bubb
- Department of Physiology, Biomedicine Discovery Institute (K.J.B.), Monash University, Clayton, Victoria, Australia
- Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences (K.J.B.), Monash University, Clayton, Victoria, Australia
| | - Natalie J Hannan
- Therapeutics Discovery and Vascular Function in Pregnancy Group (B.R.F., N.d.A., S.B., N.K.B., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
- Department of Obstetrics, Gynecology and Newborn Health, Mercy Hospital for Women (B.R.F., N.d.A., S.B., N.K.B., N.P., T.J.K.-L., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
5
|
Li SJ, Wei JQ, Kang YY, Wang RQ, Rong WW, Zhao JJ, Deng QW, Gao PJ, Li XD, Wang JG. Natriuretic peptide receptor-C perturbs mitochondrial respiration in white adipose tissue. J Lipid Res 2024; 65:100623. [PMID: 39154732 PMCID: PMC11418126 DOI: 10.1016/j.jlr.2024.100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/15/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024] Open
Abstract
Natriuretic peptide receptor-C (NPR-C) is highly expressed in adipose tissues and regulates obesity-related diseases; however, the detailed mechanism remains unknown. In this research, we aimed to explore the potential role of NPR-C in cold exposure and high-fat/high-sugar (HF/HS) diet-induced metabolic changes, especially in regulating white adipose tissue (WAT) mitochondrial function. Our findings showed that NPR-C expression, especially in epididymal WAT (eWAT), was reduced after cold exposure. Global Npr3 (gene encoding NPR-C protein) deficiency led to reduced body weight, increased WAT browning, thermogenesis, and enhanced expression of genes related to mitochondrial biogenesis. RNA-sequencing of eWAT showed that Npr3 deficiency enhanced the expression of mitochondrial respiratory chain complex genes and promoted mitochondrial oxidative phosphorylation in response to cold exposure. In addition, Npr3 KO mice were able to resist obesity induced by HF/HS diet. Npr3 knockdown in stromal vascular fraction (SVF)-induced white adipocytes promoted the expression of proliferator-activated receptor gamma coactivator 1α (PGC1α), uncoupling protein one (UCP1), and mitochondrial respiratory chain complexes. Mechanistically, NPR-C inhibited cGMP and calcium signaling in an NPR-B-dependent manner but suppressed cAMP signaling in an NPR-B-independent manner. Moreover, Npr3 knockdown induced browning via AKT and p38 pathway activation, which were attenuated by Npr2 knockdown. Importantly, treatment with the NPR-C-specific antagonist, AP-811, decreased WAT mass and increased PGC-1α, UCP1, and mitochondrial complex expression. Our findings reveal that NPR-C deficiency enhances mitochondrial function and energy expenditure in white adipose tissue, contributing to improved metabolic health and resistance to obesity.
Collapse
Affiliation(s)
- Shi-Jin Li
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jin-Qiu Wei
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan-Yuan Kang
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Qi Wang
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wu-Wei Rong
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Jia Zhao
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian-Wan Deng
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping-Jin Gao
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Dong Li
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ji-Guang Wang
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Lu Z, Verginadis I, Kumazoe M, Castillo GM, Yao Y, Guerra RE, Bicher S, You M, McClung G, Qiu R, Xiao Z, Miao Z, George SS, Beiting DP, Nojiri T, Tanaka Y, Fujimura Y, Onda H, Hatakeyama Y, Nishimoto-Ashfield A, Bykova K, Guo W, Fan Y, Buynov NM, Diehl JA, Stanger BZ, Tachibana H, Gade TP, Puré E, Koumenis C, Bolotin EM, Fuchs SY. Modified C-type natriuretic peptide normalizes tumor vasculature, reinvigorates antitumor immunity, and improves solid tumor therapies. Sci Transl Med 2024; 16:eadn0904. [PMID: 39167664 DOI: 10.1126/scitranslmed.adn0904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/23/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
Deficit of oxygen and nutrients in the tumor microenvironment (TME) triggers abnormal angiogenesis that produces dysfunctional and leaky blood vessels, which fail to adequately perfuse tumor tissues. Resulting hypoxia, exacerbation of metabolic disturbances, and generation of an immunosuppressive TME undermine the efficacy of anticancer therapies. Use of carefully scheduled angiogenesis inhibitors has been suggested to overcome these problems and normalize the TME. Here, we propose an alternative agonist-based normalization approach using a derivative of the C-type natriuretic peptide (dCNP). Multiple gene expression signatures in tumor tissues were affected in mice treated with dCNP. In several mouse orthotopic and subcutaneous solid tumor models including colon and pancreatic adenocarcinomas, this well-tolerated agent stimulated formation of highly functional tumor blood vessels to reduce hypoxia. Administration of dCNP also inhibited stromagenesis and remodeling of the extracellular matrix and decreased tumor interstitial fluid pressure. In addition, treatment with dCNP reinvigorated the antitumor immune responses. Administration of dCNP decelerated growth of primary mouse tumors and suppressed their metastases. Moreover, inclusion of dCNP into the chemo-, radio-, or immune-therapeutic regimens increased their efficacy against solid tumors in immunocompetent mice. These results demonstrate the proof of principle for using vasculature normalizing agonists to improve therapies against solid tumors and characterize dCNP as the first in class among such agents.
Collapse
Affiliation(s)
- Zhen Lu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ioannis Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | | | - Yao Yao
- PharmaIN Corp., Bothell, WA 98011, USA
| | | | - Sandra Bicher
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Menghao You
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George McClung
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rong Qiu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zebin Xiao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhen Miao
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Subin S George
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takashi Nojiri
- Department of General Thoracic Surgery, Higashiosaka City Medical Center, Higashiosaka 578-8588, Japan
| | - Yasutake Tanaka
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiroaki Onda
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yui Hatakeyama
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | | | | | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - J Alan Diehl
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ben Z Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Terence P Gade
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ellen Puré
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Scott NJA, Prickett TCR, Charles CJ, Espiner EA, Richards AM, Rademaker MT. Haemodynamic, hormonal and renal actions of osteocrin in normal sheep. Exp Physiol 2024; 109:1305-1316. [PMID: 38890799 PMCID: PMC11291853 DOI: 10.1113/ep091826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Osteocrin (OSTN) is an endogenous protein sharing structural similarities with the natriuretic peptides [NPs; atrial (ANP), B-type (BNP) and C-type (CNP) NP], which are hormones known for their crucial role in maintaining pressure/volume homeostasis. Osteocrin competes with the NPs for binding to the receptor involved in their clearance (NPR-C). In the present study, having identified, for the first time, the major circulating form of OSTN in human and ovine plasma, we examined the integrated haemodynamic, endocrine and renal effects of vehicle-controlled incremental infusions of ovine proOSTN (83-133) and its metabolism in eight conscious normal sheep. Incremental i.v. doses of OSTN produced stepwise increases in circulating concentrations of the peptide, and its metabolic clearance rate was inversely proportional to the dose. Osteocrin increased plasma levels of ANP, BNP and CNP in a dose-dependent manner, together with concentrations of their intracellular second messenger, cGMP. Increases in plasma cGMP were associated with progressive reductions in arterial pressure and central venous pressure. Plasma cAMP, renin and aldosterone were unchanged. Despite significant increases in urinary cGMP levels, OSTN administration was not associated with natriuresis or diuresis in normal sheep. These results support OSTN as an endogenous ligand for NPR-C in regulating plasma concentrations of NPs and associated cGMP-mediated bioactivity. Collectively, our findings support a role for OSTN in maintaining cardiovascular homeostasis.
Collapse
Affiliation(s)
- Nicola J. A. Scott
- Department of Medicine, Christchurch Heart InstituteUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Timothy C. R. Prickett
- Department of Medicine, Christchurch Heart InstituteUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Christopher J. Charles
- Department of Medicine, Christchurch Heart InstituteUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Eric A. Espiner
- Department of Medicine, Christchurch Heart InstituteUniversity of Otago ChristchurchChristchurchNew Zealand
| | - A. Mark Richards
- Department of Medicine, Christchurch Heart InstituteUniversity of Otago ChristchurchChristchurchNew Zealand
- Cardiovascular Research Institute, National University Health SystemsCentre for Translational MedicineSingaporeSingapore
| | - Miriam T. Rademaker
- Department of Medicine, Christchurch Heart InstituteUniversity of Otago ChristchurchChristchurchNew Zealand
| |
Collapse
|
8
|
Giovou AE, Gladka MM, Christoffels VM. The Impact of Natriuretic Peptides on Heart Development, Homeostasis, and Disease. Cells 2024; 13:931. [PMID: 38891063 PMCID: PMC11172276 DOI: 10.3390/cells13110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
During mammalian heart development, the clustered genes encoding peptide hormones, Natriuretic Peptide A (NPPA; ANP) and B (NPPB; BNP), are transcriptionally co-regulated and co-expressed predominately in the atrial and ventricular trabecular cardiomyocytes. After birth, expression of NPPA and a natural antisense transcript NPPA-AS1 becomes restricted to the atrial cardiomyocytes. Both NPPA and NPPB are induced by cardiac stress and serve as markers for cardiovascular dysfunction or injury. NPPB gene products are extensively used as diagnostic and prognostic biomarkers for various cardiovascular disorders. Membrane-localized guanylyl cyclase receptors on many cell types throughout the body mediate the signaling of the natriuretic peptide ligands through the generation of intracellular cGMP, which interacts with and modulates the activity of cGMP-activated kinase and other enzymes and ion channels. The natriuretic peptide system plays a fundamental role in cardio-renal homeostasis, and its potent diuretic and vasodilatory effects provide compensatory mechanisms in cardiac pathophysiological conditions and heart failure. In addition, both peptides, but also CNP, have important intracardiac actions during heart development and homeostasis independent of the systemic functions. Exploration of the intracardiac functions may provide new leads for the therapeutic utility of natriuretic peptide-mediated signaling in heart diseases and rhythm disorders. Here, we review recent insights into the regulation of expression and intracardiac functions of NPPA and NPPB during heart development, homeostasis, and disease.
Collapse
Affiliation(s)
- Alexandra E Giovou
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105AZ Amsterdam, The Netherlands
| | - Monika M Gladka
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105AZ Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
9
|
Liu C, Long Q, Yang H, Yang H, Tang Y, Liu B, Zhou Z, Yuan J. Sacubitril/Valsartan inhibits M1 type macrophages polarization in acute myocarditis by targeting C-type natriuretic peptide. Biomed Pharmacother 2024; 174:116535. [PMID: 38581923 DOI: 10.1016/j.biopha.2024.116535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024] Open
Abstract
Studies have shown that Sacubitril/valsartan (Sac/Val) can reduce myocardial inflammation in myocarditis mice, in addition to its the recommended treatment of heart failure. However, the underlying mechanisms of Sac/Val in myocarditis remain unclear. C-type natriuretic peptide (CNP), one of the targeting natriuretic peptides of Sac/Val, was recently reported to exert cardio-protective and anti-inflammatory effects in cardiovascular systems. Here, we focused on circulating levels of CNP in patients with acute myocarditis (AMC) and whether Sac/Val modulates inflammation by targeting CNP in experimental autoimmune myocarditis (EAM) mice as well as LPS-induced RAW 264.7 cells and bone marrow derived macrophages (BMDMs) models. Circulating CNP levels were higher in AMC patients compared to healthy controls, and these levels positively correlated with the elevated inflammatory cytokines IL-6 and monocyte count. In EAM mice, Sac/Val alleviated myocardial inflammation while augmenting circulating CNP levels rather than BNP and ANP, accompanied by reduction in intracardial M1 macrophage infiltration and expression of inflammatory cytokines IL-1β, TNF-α, and IL-6. Furthermore, Sac/Val inhibited CNP degradation and directly blunted M1 macrophage polarization in LPS-induced RAW 264.7 cells and BMDMs. Mechanistically, the effects might be mediated by the NPR-C/cAMP/JNK/c-Jun signaling pathway apart from NPR-B/cGMP/NF-κB pathway. In conclusion, Sac/Val exerts a protective effect in myocarditis by increasing CNP concentration and inhibiting M1 macrophages polarization.
Collapse
Affiliation(s)
- Changhu Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Long
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Han Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongmin Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yaohan Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bingjun Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jing Yuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
10
|
Yao J, Chen Y, Huang Y, Sun X, Shi X. The role of cardiac microenvironment in cardiovascular diseases: implications for therapy. Hum Cell 2024; 37:607-624. [PMID: 38498133 DOI: 10.1007/s13577-024-01052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
Due to aging populations and changes in lifestyle, cardiovascular diseases including cardiomyopathy, hypertension, and atherosclerosis, are the leading causes of death worldwide. The heart is a complicated organ composed of multicellular types, including cardiomyocytes, fibroblasts, endothelial cells, vascular smooth muscle cells, and immune cells. Cellular specialization and complex interplay between different cell types are crucial for the cardiac tissue homeostasis and coordinated function of the heart. Mounting studies have demonstrated that dysfunctional cells and disordered cardiac microenvironment are closely associated with the pathogenesis of various cardiovascular diseases. In this paper, we discuss the composition and the homeostasis of cardiac tissues, and focus on the role of cardiac environment and underlying molecular mechanisms in various cardiovascular diseases. Besides, we elucidate the novel treatment for cardiovascular diseases, including stem cell therapy and targeted therapy. Clarification of these issues may provide novel insights into the prevention and potential targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Jiayu Yao
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yuejun Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yuqing Huang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| |
Collapse
|
11
|
Prickett TCR, Espiner EA, Pearson JF. Association of natriuretic peptides and receptor activity with cardio-metabolic health at middle age. Sci Rep 2024; 14:9919. [PMID: 38689031 PMCID: PMC11061163 DOI: 10.1038/s41598-024-60677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
Natriuretic peptides (NP) have multiple actions benefitting cardiovascular and metabolic health. Although many of these are mediated by Guanylyl Cyclase (GC) receptors NPR1 and NPR2, their role and relative importance in vivo is unclear. The intracellular mediator of NPR1 and NPR2, cGMP, circulates in plasma and can be used to examine relationships between receptor activity and tissue responses targeted by NPs. Plasma cGMP was measured in 348 participants previously recruited in a multidisciplinary community study (CHALICE) at age 50 years at a single centre. Associations between bio-active NPs and bio-inactive aminoterminal products with cGMP, and of cGMP with tissue response, were analysed using linear regression. Mediation of associations by NPs was assessed by Causal Mediation Analysis (CMA). ANP's contribution to cGMP far exceed those of other NPs. Modelling across three components (demographics, NPs and cardiovascular function) shows that ANP and CNP are independent and positive predictors of cGMP. Counter intuitively, findings from CMA imply that in specific tissues, NPR1 responds more to BNP stimulation than ANP. Collectively these findings align with longer tissue half-life of BNP, and direct further therapeutic interventions towards extending tissue activity of ANP and CNP.
Collapse
Affiliation(s)
- Timothy C R Prickett
- Departments of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand.
| | - Eric A Espiner
- Departments of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand
| | - John F Pearson
- Departments of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand
| |
Collapse
|
12
|
Bao Q, Zhang B, Zhou L, Yang Q, Mu X, Liu X, Zhang S, Yuan M, Zhang Y, Che J, Wei W, Liu T, Li G, He J. CNP Ameliorates Macrophage Inflammatory Response and Atherosclerosis. Circ Res 2024; 134:e72-e91. [PMID: 38456298 DOI: 10.1161/circresaha.123.324086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND CNP (C-type natriuretic peptide), an endogenous short peptide in the natriuretic peptide family, has emerged as an important regulator to govern vascular homeostasis. However, its role in the development of atherosclerosis remains unclear. This study aimed to investigate the impact of CNP on the progression of atherosclerotic plaques and elucidate its underlying mechanisms. METHODS Plasma CNP levels were measured in patients with acute coronary syndrome. The potential atheroprotective role of CNP was evaluated in apolipoprotein E-deficient (ApoE-/-) mice through CNP supplementation via osmotic pumps, genetic overexpression, or LCZ696 administration. Various functional experiments involving CNP treatment were performed on primary macrophages derived from wild-type and CD36 (cluster of differentiation 36) knockout mice. Proteomics and multiple biochemical analyses were conducted to unravel the underlying mechanism. RESULTS We observed a negative correlation between plasma CNP concentration and the burden of coronary atherosclerosis in patients. In early atherosclerotic plaques, CNP predominantly accumulated in macrophages but significantly decreased in advanced plaques. Supplementing CNP via osmotic pumps or genetic overexpression ameliorated atherosclerotic plaque formation and enhanced plaque stability in ApoE-/- mice. CNP promoted an anti-inflammatory macrophage phenotype and efferocytosis and reduced foam cell formation and necroptosis. Mechanistically, we found that CNP could accelerate HIF-1α (hypoxia-inducible factor 1-alpha) degradation in macrophages by enhancing the interaction between PHD (prolyl hydroxylase domain-containing protein) 2 and HIF-1α. Furthermore, we observed that CD36 bound to CNP and mediated its endocytosis in macrophages. Moreover, we demonstrated that the administration of LCZ696, an orally bioavailable drug recently approved for treating chronic heart failure with reduced ejection fraction, could amplify the bioactivity of CNP and ameliorate atherosclerotic plaque formation. CONCLUSIONS Our study reveals that CNP enhanced plaque stability and alleviated macrophage inflammatory responses by promoting HIF-1α degradation, suggesting a novel atheroprotective role of CNP. Enhancing CNP bioactivity may offer a novel pharmacological strategy for treating related diseases.
Collapse
Affiliation(s)
- Qiankun Bao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Bangying Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Lu Zhou
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Qian Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Xiaofeng Mu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Xing Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Shiying Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Meng Yuan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Yue Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Jingjin Che
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Wen Wei
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe (W.W.)
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, China (J.H.)
| |
Collapse
|
13
|
Wang F, Zhao D, Xu WY, Liu Y, Sun H, Lu S, Ji Y, Jiang J, Chen Y, He Q, Gong C, Liu R, Su Z, Dong Y, Yan Z, Liu L. Blood leukocytes as a non-invasive diagnostic tool for thyroid nodules: a prospective cohort study. BMC Med 2024; 22:147. [PMID: 38561764 PMCID: PMC10986011 DOI: 10.1186/s12916-024-03368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Thyroid nodule (TN) patients in China are subject to overdiagnosis and overtreatment. The implementation of existing technologies such as thyroid ultrasonography has indeed contributed to the improved diagnostic accuracy of TNs. However, a significant issue persists, where many patients undergo unnecessary biopsies, and patients with malignant thyroid nodules (MTNs) are advised to undergo surgery therapy. METHODS This study included a total of 293 patients diagnosed with TNs. Differential methylation haplotype blocks (MHBs) in blood leukocytes between MTNs and benign thyroid nodules (BTNs) were detected using reduced representation bisulfite sequencing (RRBS). Subsequently, an artificial intelligence blood leukocyte DNA methylation (BLDM) model was designed to optimize the management and treatment of patients with TNs for more effective outcomes. RESULTS The DNA methylation profiles of peripheral blood leukocytes exhibited distinctions between MTNs and BTNs. The BLDM model we developed for diagnosing TNs achieved an area under the curve (AUC) of 0.858 in the validation cohort and 0.863 in the independent test cohort. Its specificity reached 90.91% and 88.68% in the validation and independent test cohorts, respectively, outperforming the specificity of ultrasonography (43.64% in the validation cohort and 47.17% in the independent test cohort), albeit with a slightly lower sensitivity (83.33% in the validation cohort and 82.86% in the independent test cohort) compared to ultrasonography (97.62% in the validation cohort and 100.00% in the independent test cohort). The BLDM model could correctly identify 89.83% patients whose nodules were suspected malignant by ultrasonography but finally histological benign. In micronodules, the model displayed higher specificity (93.33% in the validation cohort and 92.00% in the independent test cohort) and accuracy (88.24% in the validation cohort and 87.50% in the independent test cohort) for diagnosing TNs. This performance surpassed the specificity and accuracy observed with ultrasonography. A TN diagnostic and treatment framework that prioritizes patients is provided, with fine-needle aspiration (FNA) biopsy performed only on patients with indications of MTNs in both BLDM and ultrasonography results, thus avoiding unnecessary biopsies. CONCLUSIONS This is the first study to demonstrate the potential of non-invasive blood leukocytes in diagnosing TNs, thereby making TN diagnosis and treatment more efficient in China.
Collapse
Affiliation(s)
- Feihang Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Danyang Zhao
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Wang-Yang Xu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | - Yiying Liu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | - Huiyi Sun
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Shanshan Lu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yi Chen
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Qiye He
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | | | - Rui Liu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | - Zhixi Su
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China.
| | - Yi Dong
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Zhiping Yan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| | - Lingxiao Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| |
Collapse
|
14
|
Iwamiya S, Ihara K, Furukawa T, Sasano T. Sacubitril/valsartan attenuates atrial conduction disturbance and electrophysiological heterogeneity with ameliorating fibrosis in mice. Front Cardiovasc Med 2024; 11:1341601. [PMID: 38312235 PMCID: PMC10834649 DOI: 10.3389/fcvm.2024.1341601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Background Sacubitril/valsartan (SacVal) has been shown to improve the prognosis of heart failure; however, whether SacVal reduces the occurrence of atrial fibrillation (AF) in heart failure has not yet been elucidated. In this study, we aimed to determine whether SacVal is effective in reducing the occurrence of AF in heart failure and identify the underlying mechanism of its electrophysiological effect in mice. Methods Adult male mice underwent transverse aortic constriction, followed by SacVal, valsartan, or vehicle treatment for two weeks. Electrophysiological study (EPS) and optical mapping were performed to assess the susceptibility to AF and the atrial conduction properties, and fibrosis was investigated using heart tissue and isolated cardiac fibroblasts (CFs). Results EPS analysis revealed that AF was significantly less inducible in SacVal-treated mice than in vehicle-treated mice. Optical mapping of the atrium showed that SacVal-treated and valsartan-treated mice restored the prolonged action potential duration (APD); however, only SacVal-treated mice showed the restoration of decreased conduction velocity (CV) compared to vehicle-treated mice. In addition, the electrophysiological distribution analysis demonstrated that heterogeneous electrophysiological properties were rate-dependent and increased heterogeneity was closely related to the susceptibility to AF. SacVal attenuated the increased heterogeneity of CV at short pacing cycle length in atria, whereas Val could not. Histological and molecular evaluation showed that SacVal exerted the anti-fibrotic effect on the atria. An in vitro study of CFs treated with natriuretic peptides and LBQ657, the metabolite and active form of sacubitril, revealed that C-type natriuretic peptide (CNP) combined with LBQ657 had an additional anti-fibrotic effect on CFs. Conclusions Our results demonstrated that SacVal can improve the conduction disturbance and heterogeneity through the attenuation of fibrosis in murine atria and reduce the susceptibility of AF in heart failure with pressure overload, which might be attributed to the enhanced function of CNP.
Collapse
Affiliation(s)
- Satoshi Iwamiya
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kensuke Ihara
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsushi Furukawa
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
15
|
Dorey TW, Liu Y, Jansen HJ, Bohne LJ, Mackasey M, Atkinson L, Prasai S, Belke DD, Fatehi-Hassanabad A, Fedak PWM, Rose RA. Natriuretic Peptide Receptor B Protects Against Atrial Fibrillation by Controlling Atrial cAMP Via Phosphodiesterase 2. Circ Arrhythm Electrophysiol 2023; 16:e012199. [PMID: 37933567 DOI: 10.1161/circep.123.012199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND β-AR (β-adrenergic receptor) stimulation regulates atrial electrophysiology and Ca2+ homeostasis via cAMP-dependent mechanisms; however, enhanced β-AR signaling can promote atrial fibrillation (AF). CNP (C-type natriuretic peptide) can also regulate atrial electrophysiology through the activation of NPR-B (natriuretic peptide receptor B) and cGMP-dependent signaling. Nevertheless, the role of NPR-B in regulating atrial electrophysiology, Ca2+ homeostasis, and atrial arrhythmogenesis is incompletely understood. METHODS Studies were performed using atrial samples from human patients with AF or sinus rhythm and in wild-type and NPR-B-deficient (NPR-B+/-) mice. Studies were conducted in anesthetized mice by intracardiac electrophysiology, in isolated mouse atrial preparations using high-resolution optical mapping, in isolated mouse and human atrial myocytes using patch-clamping and Ca2+ imaging, and in mouse and human atrial tissues using molecular biology. RESULTS Atrial NPR-B protein levels were reduced in patients with AF, and NPR-B+/- mice were more susceptible to AF. Atrial cGMP levels and PDE2 (phosphodiesterase 2) activity were reduced in NPR-B+/- mice leading to larger increases in atrial cAMP in the presence of the β-AR agonist isoproterenol. NPR-B+/- mice displayed larger increases in action potential duration and L-type Ca2+ current in the presence of isoproterenol. This resulted in the occurrence of spontaneous sarcoplasmic reticulum Ca2+ release events and delayed afterdepolarizations in NPR-B+/- atrial myocytes. Phosphorylation of the RyR2 (ryanodine receptor) and phospholamban was increased in NPR-B+/- atria in the presence of isoproterenol compared with the wildtypes. C-type natriuretic peptide inhibited isoproterenol-stimulated L-type Ca2+ current through PDE2 in mouse and human atrial myocytes. CONCLUSIONS NPR-B protects against AF by preventing enhanced atrial responses to β-adrenergic receptor agonists.
Collapse
Affiliation(s)
- Tristan W Dorey
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
- Department of Physiology and Pharmacology (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Yingjie Liu
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
- Department of Physiology and Pharmacology (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Hailey J Jansen
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
- Department of Physiology and Pharmacology (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Loryn J Bohne
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
- Department of Physiology and Pharmacology (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Martin Mackasey
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
- Department of Physiology and Pharmacology (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Logan Atkinson
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada (L.A.)
| | - Shuvam Prasai
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
- Department of Physiology and Pharmacology (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Darrell D Belke
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Ali Fatehi-Hassanabad
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Paul W M Fedak
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Robert A Rose
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
- Department of Physiology and Pharmacology (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| |
Collapse
|
16
|
Zhang H, Li C, Liu Q, Li J, Wu H, Xu R, Sun Y, Cheng M, Zhao X, Pan M, Wei Q, Ma B. C-type natriuretic peptide improves maternally aged oocytes quality by inhibiting excessive PINK1/Parkin-mediated mitophagy. eLife 2023; 12:RP88523. [PMID: 37860954 PMCID: PMC10588981 DOI: 10.7554/elife.88523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
The overall oocyte quality declines with aging, and this effect is strongly associated with a higher reactive oxygen species (ROS) level and the resultant oxidative damage. C-type natriuretic peptide (CNP) is a well-characterized physiological meiotic inhibitor that has been successfully used to improve immature oocyte quality during in vitro maturation. However, the underlying roles of CNP in maternally aged oocytes have not been reported. Here, we found that the age-related reduction in the serum CNP concentration was highly correlated with decreased oocyte quality. Treatment with exogenous CNP promoted follicle growth and ovulation in aged mice and enhanced meiotic competency and fertilization ability. Interestingly, the cytoplasmic maturation of aged oocytes was thoroughly improved by CNP treatment, as assessed by spindle/chromosome morphology and redistribution of organelles (mitochondria, the endoplasmic reticulum, cortical granules, and the Golgi apparatus). CNP treatment also ameliorated DNA damage and apoptosis caused by ROS accumulation in aged oocytes. Importantly, oocyte RNA-seq revealed that the beneficial effect of CNP on aged oocytes was mediated by restoration of mitochondrial oxidative phosphorylation, eliminating excessive mitophagy. CNP reversed the defective phenotypes in aged oocytes by alleviating oxidative damage and suppressing excessive PINK1/Parkin-mediated mitophagy. Mechanistically, CNP functioned as a cAMP/PKA pathway modulator to decrease PINK1 stability and inhibit Parkin recruitment. In summary, our results demonstrated that CNP supplementation constitutes an alternative therapeutic approach for advanced maternal age-related oocyte deterioration and may improve the overall success rates of clinically assisted reproduction in older women.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Chan Li
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Qingyang Liu
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Jingmei Li
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Hao Wu
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Rui Xu
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Yidan Sun
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Ming Cheng
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Menghao Pan
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| |
Collapse
|
17
|
Lu YY, Li SJ, Zhang Z, He S, Guo YT, Hong MN, Shao S, Wang RQ, Zhang J, Wang JG, Gao PJ, Li XD. C-atrial natriuretic peptide (ANP) 4-23 attenuates renal fibrosis in deoxycorticosterone-acetate-salt hypertensive mice. Exp Cell Res 2023; 431:113738. [PMID: 37572787 DOI: 10.1016/j.yexcr.2023.113738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/08/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Epithelial-mesenchymal transition (EMT) plays a critical role in hypertension-induced renal fibrosis, a final pathway that leads to end-stage renal failure. C-Atrial natriuretic peptide (ANP)4-23, a specific agonist of natriuretic peptide receptor-C (NPR-C), has been reported to have protective effects against hypertension. However, the role of C-ANP4-23 in hypertension-associated renal fibrosis has not yet been elucidated. In this study, mice were randomly divided into SHAM group, DOCA-salt group and DOCA-salt + C-ANP4-23 group. Renal morphology changes, renal function and fibrosis were detected. Human proximal tubular epithelial cells (HK2) stimulated by aldosterone were used for cell function and mechanism study. The DOCA-salt treated mice exhibited hypertension, kidney fibrosis and renal dysfunction, which were attenuated by C-ANP4-23. Moreover, C-ANP4-23 inhibited DOCA-salt treatment-induced renal EMT as evidenced by decrease of the mesenchymal marker alpha-smooth muscle actin (ACTA2) and vimentin and increase of epithelial cell marker E-cadherin. In HK2 cells, aldosterone induced EMT response, which was also suppressed by C-ANP4-23. The key transcription factors (twist, snail, slug and ZEB1) involved in EMT were increased in the kidney of DOCA-salt-treated mice, which were also suppressed by C-ANP4-23. Mechanistically, C-ANP4-23 inhibited the aldosterone-induced translocation of MR from cytosol to nucleus without change of MR expression. Furthermore, C-ANP4-23 rescued the enhanced expression of NADPH oxidase (NOX) 4 and oxidative stress after aldosterone stimulation. Aldosterone-induced Akt and Erk1/2 activation was also suppressed by C-ANP4-23. Our data suggest that C-ANP4-23 attenuates renal fibrosis, likely through inhibition of MR activation, enhanced oxidative stress and Akt and Erk1/2 signaling pathway.
Collapse
Affiliation(s)
- Yuan-Yuan Lu
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China; Shanghai Geriatric Medical Center, Shanghai, China; Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi-Jin Li
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China; State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Zhong Zhang
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Shun He
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yue-Tong Guo
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Mo-Na Hong
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Shuai Shao
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Rui-Qi Wang
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Jia Zhang
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Ji-Guang Wang
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Ping-Jin Gao
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Xiao-Dong Li
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
18
|
Bachmann JC, Kirchhoff JE, Napolitano JE, Sorota S, Gordon WM, Feric N, Aschar‐Sobbi R, Lv J, Cao Z, Coppieters K, Borghetti G, Nyberg M. C-type natriuretic peptide induces inotropic and lusitropic effects in human 3D-engineered cardiac tissue: Implications for the regulation of cardiac function in humans. Exp Physiol 2023; 108:1172-1188. [PMID: 37493451 PMCID: PMC10988518 DOI: 10.1113/ep091303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
The role of C-type natriuretic peptide (CNP) in the regulation of cardiac function in humans remains to be established as previous investigations have been confined to animal model systems. Here, we used well-characterized engineered cardiac tissues (ECTs) generated from human stem cell-derived cardiomyocytes and fibroblasts to study the acute effects of CNP on contractility. Application of CNP elicited a positive inotropic response as evidenced by increases in maximum twitch amplitude, maximum contraction slope and maximum calcium amplitude. This inotropic response was accompanied by a positive lusitropic response as demonstrated by reductions in time from peak contraction to 90% of relaxation and time from peak calcium transient to 90% of decay that paralleled increases in maximum contraction decay slope and maximum calcium decay slope. To establish translatability, CNP-induced changes in contractility were also assessed in rat ex vivo (isolated heart) and in vivo models. Here, the effects on force kinetics observed in ECTs mirrored those observed in both the ex vivo and in vivo model systems, whereas the increase in maximal force generation with CNP application was only detected in ECTs. In conclusion, CNP induces a positive inotropic and lusitropic response in ECTs, thus supporting an important role for CNP in the regulation of human cardiac function. The high degree of translatability between ECTs, ex vivo and in vivo models further supports a regulatory role for CNP and expands the current understanding of the translational value of human ECTs. NEW FINDINGS: What is the central question of this study? What are the acute responses to C-type natriuretic peptide (CNP) in human-engineered cardiac tissues (ECTs) on cardiac function and how well do they translate to matched concentrations in animal ex vivo and in vivo models? What is the main finding and its importance? Acute stimulation of ECTs with CNP induced positive lusitropic and inotropic effects on cardiac contractility, which closely reflected the changes observed in rat ex vivo and in vivo cardiac models. These findings support an important role for CNP in the regulation of human cardiac function and highlight the translational value of ECTs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Juan Lv
- Research & Early DevelopmentNovo Nordisk A/SMaaloevDenmark
| | - Zhiyou Cao
- Research & Early DevelopmentNovo Nordisk A/SMaaloevDenmark
| | - Ken Coppieters
- Research & Early DevelopmentNovo Nordisk A/SMaaloevDenmark
| | | | - Michael Nyberg
- Research & Early DevelopmentNovo Nordisk A/SMaaloevDenmark
| |
Collapse
|
19
|
Lessey AJ, Mirczuk SM, Chand AN, Kurrasch DM, Korbonits M, Niessen SJM, McArdle CA, McGonnell IM, Fowkes RC. Pharmacological and Genetic Disruption of C-Type Natriuretic Peptide ( nppcl) Expression in Zebrafish ( Danio rerio) Causes Stunted Growth during Development. Int J Mol Sci 2023; 24:12921. [PMID: 37629102 PMCID: PMC10454581 DOI: 10.3390/ijms241612921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Human patients with mutations within NPPC or NPR2 genes (encoding C-type natriuretic peptide (CNP) and guanylyl cyclase-B (GC-B), respectively) display clinical signs associated with skeletal abnormalities, such as overgrowth or short stature. Mice with induced models of Nppc or Npr2 deletion display profound achondroplasia, dwarfism and early death. Recent pharmacological therapies to treat short stature are utilizing long-acting CNP analogues, but the effects of manipulating CNP expression during development remain unknown. Here, we use Danio rerio (zebrafish) as a model for vertebrate development, employing both pharmacological and reverse genetics approaches to alter expression of genes encoding CNP in zebrafish. Four orthologues of CNP were identified in zebrafish, and spatiotemporal expression profiling confirmed their presence during development. Bioinformatic analyses suggested that nppcl is the most likely the orthologue of mammalian CNP. Exogenous CNP treatment of developing zebrafish embryos resulted in impaired growth characteristics, such as body length, head width and eye diameter. This reduced growth was potentially caused by increased apoptosis following CNP treatment. Expression of endogenous nppcl was downregulated in these CNP-treated embryos, suggesting that negative feedback of the CNP system might influence growth during development. CRISPR knock-down of endogenous nppcl in developing zebrafish embryos also resulted in impaired growth characteristics. Collectively, these data suggest that CNP in zebrafish is crucial for normal embryonic development, specifically with regard to growth.
Collapse
Affiliation(s)
- Andrew J. Lessey
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (A.J.L.); (S.M.M.); (A.N.C.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Samantha M. Mirczuk
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (A.J.L.); (S.M.M.); (A.N.C.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Annisa N. Chand
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (A.J.L.); (S.M.M.); (A.N.C.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Deborah M. Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N2, Canada;
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Stijn J. M. Niessen
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK;
- Veterinary Specialist Consultations, Loosdrechtseweg 56, 1215 JX Hilversum, The Netherlands
| | - Craig A. McArdle
- Department of Translational Science, Bristol Medical School, University of Bristol, Whitson Street, Bristol BS1 3NY, UK;
| | - Imelda M. McGonnell
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Robert C. Fowkes
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (A.J.L.); (S.M.M.); (A.N.C.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
- Endocrine Signaling Group, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, Wilson Road, East Lansing, MI 48824, USA
| |
Collapse
|
20
|
Wu Q. Natriuretic Peptide Signaling in Uterine Biology and Preeclampsia. Int J Mol Sci 2023; 24:12309. [PMID: 37569683 PMCID: PMC10418983 DOI: 10.3390/ijms241512309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Endometrial decidualization is a uterine process essential for spiral artery remodeling, embryo implantation, and trophoblast invasion. Defects in endometrial decidualization and spiral artery remodeling are important contributing factors in preeclampsia, a major disorder in pregnancy. Atrial natriuretic peptide (ANP) is a cardiac hormone that regulates blood volume and pressure. ANP is also generated in non-cardiac tissues, such as the uterus and placenta. In recent human genome-wide association studies, multiple loci with genes involved in natriuretic peptide signaling are associated with gestational hypertension and preeclampsia. In cellular experiments and mouse models, uterine ANP has been shown to stimulate endometrial decidualization, increase TNF-related apoptosis-inducing ligand expression and secretion, and enhance apoptosis in arterial smooth muscle cells and endothelial cells. In placental trophoblasts, ANP stimulates adenosine 5'-monophosphate-activated protein kinase and the mammalian target of rapamycin complex 1 signaling, leading to autophagy inhibition and protein kinase N3 upregulation, thereby increasing trophoblast invasiveness. ANP deficiency impairs endometrial decidualization and spiral artery remodeling, causing a preeclampsia-like phenotype in mice. These findings indicate the importance of natriuretic peptide signaling in pregnancy. This review discusses the role of ANP in uterine biology and potential implications of impaired ANP signaling in preeclampsia.
Collapse
Affiliation(s)
- Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| |
Collapse
|
21
|
Guarino BD, Dado CD, Kumar A, Braza J, Harrington EO, Klinger JR. Deletion of the Npr3 gene increases severity of acute lung injury in obese mice. Pulm Circ 2023; 13:e12270. [PMID: 37528869 PMCID: PMC10387407 DOI: 10.1002/pul2.12270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 08/03/2023] Open
Abstract
Previous studies have shown that atrial natriuretic peptide (ANP) attenuates agonist-induced pulmonary edema and that this effect may be mediated in part by the ANP clearance receptor, natriuretic peptide receptor-C (NPR-C). Obesity has been associated with lower plasma ANP levels due to increased expression of NPR-C, and with decreased severity of acute lung injury (ALI). Therefore, we hypothesized that increased expression of NPR-C may attenuate ALI severity in obese populations. To test this, we examined ALI in Npr3 wild-type (WT) and knockout (KO) mice fed normal chow (NC) or high-fat diets (HFD). After 12 weeks, ALI was induced with intra-tracheal administration of Pseudomonas aeruginosa strain 103 (PA103) or saline. ALI severity was determined by lung wet-to-dry ratio (W/D) along with measurement of cell count, protein levels from bronchoalveolar lavage fluid (BALF), and quantitative polymerase chain reaction was performed on whole lung to measure cytokine/chemokine and Npr3 mRNA expression. ANP levels were measured from plasma. PA103 caused ALI as determined by significant increases in W/D, BALF protein concentration, and whole lung cytokine/chemokine expression. PA103 increased Npr3 expression in the lungs of wild-type (WT) mice regardless of diet. There was a nonsignificant trend toward increased Npr3 expression in the lungs of WT mice fed HFD versus NC. No differences in ALI were seen between Npr3 knockout (KO) mice and WT-fed NC, but Npr3 KO mice fed HFD had a significantly greater W/D and BALF protein concentration than WT mice fed HFD. These findings support the hypothesis that Npr3 may help protect against ALI in obesity.
Collapse
Affiliation(s)
- Brianna D. Guarino
- Vascular Research LabProvidence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
- Department of Medicine, Sleep and Critical Care MedicineRhode Island HospitalProvidenceRhode IslandUSA
- Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Christopher D. Dado
- Vascular Research LabProvidence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
- Department of Medicine, Sleep and Critical Care MedicineRhode Island HospitalProvidenceRhode IslandUSA
- Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Ashok Kumar
- Vascular Research LabProvidence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
- Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Julie Braza
- Vascular Research LabProvidence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
- Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Elizabeth O. Harrington
- Vascular Research LabProvidence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
- Department of Medicine, Sleep and Critical Care MedicineRhode Island HospitalProvidenceRhode IslandUSA
- Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - James R. Klinger
- Vascular Research LabProvidence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
- Department of Medicine, Sleep and Critical Care MedicineRhode Island HospitalProvidenceRhode IslandUSA
- Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| |
Collapse
|
22
|
Della Corte V, Pacinella G, Todaro F, Pecoraro R, Tuttolomondo A. The Natriuretic Peptide System: A Single Entity, Pleiotropic Effects. Int J Mol Sci 2023; 24:ijms24119642. [PMID: 37298592 DOI: 10.3390/ijms24119642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
In the modern scientific landscape, natriuretic peptides are a complex and interesting network of molecules playing pleiotropic effects on many organs and tissues, ensuring the maintenance of homeostasis mainly in the cardiovascular system and regulating the water-salt balance. The characterization of their receptors, the understanding of the molecular mechanisms through which they exert their action, and the discovery of new peptides in the last period have made it possible to increasingly feature the physiological and pathophysiological role of the members of this family, also allowing to hypothesize the possible settings for using these molecules for therapeutic purposes. This literature review traces the history of the discovery and characterization of the key players among the natriuretic peptides, the scientific trials performed to ascertain their physiological role, and the applications of this knowledge in the clinical field, leaving a glimpse of new and exciting possibilities for their use in the treatment of diseases.
Collapse
Affiliation(s)
- Vittoriano Della Corte
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Gaetano Pacinella
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Federica Todaro
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Rosaria Pecoraro
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
23
|
Cronjé HT, Karhunen V, Hovingh GK, Coppieters K, Lagerstedt JO, Nyberg M, Gill D. Genetic evidence implicating natriuretic peptide receptor-3 in cardiovascular disease risk: a Mendelian randomization study. BMC Med 2023; 21:158. [PMID: 37101178 PMCID: PMC10134514 DOI: 10.1186/s12916-023-02867-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND C-type natriuretic peptide (CNP) is a known target for promoting growth and has been implicated as a therapeutic opportunity for the prevention and treatment of cardiovascular disease (CVD). This study aimed to explore the effect of CNP on CVD risk using the Mendelian randomization (MR) framework. METHODS Instrumental variables mimicking the effects of pharmacological intervention on CNP were identified as uncorrelated genetic variants located in the genes coding for its primary receptors, natriuretic peptide receptors-2 and 3 (NPR2 and NPR3), that associated with height. We performed MR and colocalization analyses to investigate the effects of NPR2 signalling and NPR3 function on CVD outcomes and risk factors. MR estimates were compared to those obtained when considering height variants from throughout the genome. RESULTS Genetically-proxied reduced NPR3 function was associated with a lower risk of CVD, with odds ratio (OR) 0.74 per standard deviation (SD) higher NPR3-predicted height, and 95% confidence interval (95% CI) 0.64-0.86. This effect was greater in magnitude than observed when considering height variants from throughout the genome. For CVD subtypes, similar MR associations for NPR3-predicted height were observed when considering the outcomes of coronary artery disease (0.75, 95% CI 0.60-0.92), stroke (0.69, 95% CI 0.50-0.95) and heart failure (0.77, 95% CI 0.58-1.02). Consideration of CVD risk factors identified systolic blood pressure (SBP) as a potential mediator of the NPR3-related CVD risk lowering. For stroke, we found that the MR estimate for NPR3 was greater in magnitude than could be explained by a genetically predicted SBP effect alone. Colocalization results largely supported the MR findings, with no evidence of results being driven by effects due to variants in linkage disequilibrium. There was no MR evidence supporting effects of NPR2 on CVD risk, although this null finding could be attributable to fewer genetic variants being identified to instrument this target. CONCLUSIONS This genetic analysis supports the cardioprotective effects of pharmacologically inhibiting NPR3 receptor function, which is only partly mediated by an effect on blood pressure. There was unlikely sufficient statistical power to investigate the cardioprotective effects of NPR2 signalling.
Collapse
Affiliation(s)
- Héléne T Cronjé
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark.
| | - Ville Karhunen
- Faculty of Science, Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - G Kees Hovingh
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Global Chief Medical Office, Novo Nordisk, Copenhagen, Denmark
| | - Ken Coppieters
- Global Project Management, Global Drug Discovery, Novo Nordisk, Copenhagen, Denmark
| | - Jens O Lagerstedt
- Rare Endocrine Disorders, Research and Early Development, Novo Nordisk, Copenhagen, Denmark
- Department of Experimental Medical Science, Lund University, 221 84, Lund, Sweden
| | - Michael Nyberg
- Vascular Biology, Research and Early Development, Novo Nordisk, Maaloev, Denmark
| | - Dipender Gill
- Chief Scientific Advisor Office, Research and Early Development, Novo Nordisk, Copenhagen, Denmark.
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
24
|
Mitchell SM, Pajovich HT, Broas SM, Hugo MM, Banerjee IA. Molecular dynamics simulations and in vitro studies of hybrid decellularized leaf-peptide-polypyrrole composites for potential tissue engineering applications. J Biomol Struct Dyn 2023; 41:1665-1680. [PMID: 34990308 DOI: 10.1080/07391102.2021.2023643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tissue engineering (TE) aims to repair and regenerate damaged tissue by an assimilation of optimal combination of cells specific to the tissue with an appropriate biomaterial. In this work, a new biomaterial for potential cardiac TE applications was developed by utilizing a combination of in silico studies and in vitro experiments. Molecular dynamics (MD) simulations for the formation of the novel composite prepared from the decellularized leaf components cellulose and pectin along with the VEGF derived peptide (NYLTHRQ) and polypyrrole (PPy) was carried out to assess self-assembly, mechanical properties, and interactions with integrin and NPR-C receptors which are commonly found in cells of cardiac tissue. Results of molecular dynamics simulations indicated the successful formation of stable assemblies. MD simulations also revealed that the scaffold successfully interacted with integrin and NPR-C receptors. As a proof of concept, beet leaves were decellularized (DC) and cross-linked with NYLTHRQ and PPy using layer-by-layer assembly. Decellularization (DC) was confirmed by DNA and protein quantification. Incorporation of the NYLTHRQ peptide and polypyrrole was confirmed by FTIR spectroscopy and SEM imaging. The DC-NYLTHRQ-PPy scaffold was seeded with co-cultured cardiomyocytes and vascular smooth muscle cells. The scaffold promoted cell proliferation and adhesion. Actin and Troponin T immunofluorescence staining showed the presence of these critical cardiomyocyte markers. Thus, for the first time we have developed a decellularized leaf-peptide-PPy composite scaffold by a combination of in silico studies and laboratory analyses that may have potential applications in cardiac TE.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Sarah M Broas
- Department of Chemistry, Fordham University, Bronx, NY, USA
| | - Mindy M Hugo
- Department of Chemistry, Fordham University, Bronx, NY, USA
| | | |
Collapse
|
25
|
Cachorro E, Günscht M, Schubert M, Sadek MS, Siegert J, Dutt F, Bauermeister C, Quickert S, Berning H, Nowakowski F, Lämmle S, Firneburg R, Luo X, Künzel SR, Klapproth E, Mirtschink P, Mayr M, Dewenter M, Vettel C, Heijman J, Lorenz K, Guan K, El-Armouche A, Wagner M, Kämmerer S. CNP Promotes Antiarrhythmic Effects via Phosphodiesterase 2. Circ Res 2023; 132:400-414. [PMID: 36715019 PMCID: PMC9930893 DOI: 10.1161/circresaha.122.322031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Ventricular arrhythmia and sudden cardiac death are the most common lethal complications after myocardial infarction. Antiarrhythmic pharmacotherapy remains a clinical challenge and novel concepts are highly desired. Here, we focus on the cardioprotective CNP (C-type natriuretic peptide) as a novel antiarrhythmic principle. We hypothesize that antiarrhythmic effects of CNP are mediated by PDE2 (phosphodiesterase 2), which has the unique property to be stimulated by cGMP to primarily hydrolyze cAMP. Thus, CNP might promote beneficial effects of PDE2-mediated negative crosstalk between cAMP and cGMP signaling pathways. METHODS To determine antiarrhythmic effects of cGMP-mediated PDE2 stimulation by CNP, we analyzed arrhythmic events and intracellular trigger mechanisms in mice in vivo, at organ level and in isolated cardiomyocytes as well as in human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS In ex vivo perfused mouse hearts, CNP abrogated arrhythmia after ischemia/reperfusion injury. Upon high-dose catecholamine injections in mice, PDE2 inhibition prevented the antiarrhythmic effect of CNP. In mouse ventricular cardiomyocytes, CNP blunted the catecholamine-mediated increase in arrhythmogenic events as well as in ICaL, INaL, and Ca2+ spark frequency. Mechanistically, this was driven by reduced cellular cAMP levels and decreased phosphorylation of Ca2+ handling proteins. Key experiments were confirmed in human iPSC-derived cardiomyocytes. Accordingly, the protective CNP effects were reversed by either specific pharmacological PDE2 inhibition or cardiomyocyte-specific PDE2 deletion. CONCLUSIONS CNP shows strong PDE2-dependent antiarrhythmic effects. Consequently, the CNP-PDE2 axis represents a novel and attractive target for future antiarrhythmic strategies.
Collapse
Affiliation(s)
- Eleder Cachorro
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Mario Günscht
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Mario Schubert
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Mirna S. Sadek
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Johanna Siegert
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Fabian Dutt
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Carla Bauermeister
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Susann Quickert
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Henrik Berning
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Felix Nowakowski
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Simon Lämmle
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Rebecca Firneburg
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Xiaojing Luo
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Stephan R. Künzel
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Erik Klapproth
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Peter Mirtschink
- Institute of Clinical Chemistry and Laboratory Medicine, Department of Clinical Pathobiochemistry, University Hospital Dresden, Germany (P.M.)
| | - Manuel Mayr
- The James Black Centre, King’s College, University of London, United Kingdom (M.M.)
- Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany (M.M.)
| | - Matthias Dewenter
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Germany (M.D.)
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Germany (M.D., C.V.)
| | - Christiane Vettel
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Germany (M.D., C.V.)
- Institute of Experimental and Clinical Pharmacology and Toxicology, University Medical Center Mannheim, Germany (C.V.)
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine, and Life Sciences, Maastricht University, The Netherlands (J.H.)
| | - Kristina Lorenz
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Germany (K.L.)
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (K.L.)
| | - Kaomei Guan
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Ali El-Armouche
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Michael Wagner
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
- Bereich Rhythmologie, Klinik für Innere Medizin und Kardiologie, Herzzentrum Dresden, Dresden University of Technology, Germany (M.W.)
| | - Susanne Kämmerer
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| |
Collapse
|
26
|
Mavragani A, Pearson JF, Troughton RW, Kennedy MA, Espiner EA. The Predictive Value of A, B, and C-Type Natriuretic Peptides in People at Risk of Heart Disease: Protocol for a Longitudinal Observational Study. JMIR Res Protoc 2023; 12:e37011. [PMID: 36630163 PMCID: PMC9878369 DOI: 10.2196/37011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Heart disease and stroke are major and often unheralded causes of serious morbidity and premature death in middle age. Early detection of those most at risk is an urgent unmet need for instituting preventative measures. In an earlier community study (Canterbury Health, Ageing and Life Course [CHALICE]) of healthy people aged 50 years, contrary to previous reports, low levels of the heart hormone B-type natriuretic peptide (BNP) were associated with reduced measures of heart function and higher markers of vascular risk. A specific gene variant (rs198358) was found to be an independent contributor to higher BNP levels. A closely related vascular hormone (C-type natriuretic peptide [CNP]) showed opposite associations-higher levels were correlated with higher vascular risk and reduced cardiac function. To determine whether these novel findings predict serious heart or vascular disease in later life, this proposal re-examines the same CHALICE participants 15 years later. OBJECTIVE The primary objective is to determine the predictive value of (1) low plasma concentrations of the circulating cardiac hormones (atrial natriuretic peptide [ANP] and BNP) and (2) high levels of the vascular hormone CNP at age 50 years in detecting impaired cardiac and vascular function 15 years later. Secondary objectives are to determine specific associations of individual analytes (ANP, BNP, CNP, cyclic guanosine monophosphate [cGMP]) with echo-derived changes in cardiac performance at ages 50 years and 65 years. METHODS All of the 348 participants (205/348, 58.9% female; 53/348, 15.2% Māori or Pacifica ethnicity) participating in the original CHALICE study-free of history of heart or renal disease at age 50 years and who consented to further study-will be contacted, recruited, and restudied as previously described. Data will include intervening health history, physical examination, heart function (speckle-tracking echocardiography), vascular status (carotid intimal thickness), and genetic status (genome-wide genotyping). Laboratory measures will include fasting blood sampling and routine biochemistry, ANP, BNP, CNP, their downstream effector (cGMP), and their bio-inactive products. Humoral metabolic-cardiovascular risk factors will be measured after an overnight fast. Primary outcomes will be analyzed using multiple linear regression. RESULTS The study will commence in 2022 and be completed in 2024. CONCLUSIONS Proving our hypothesis-that low BNP and high CNP at any age in healthy people predict premature aging of heart and blood vessels, respectively-opens the way to early detection and improved outcomes for those most at risk. Confirmation of our hypotheses would improve current methods of screening and, in appropriate cases, enable interventions aimed at increasing natriuretic hormones and reducing risk of serious cardiovascular complications using drugs already available. Such advances in detection, and from interventional corrections, have the potential to not only improve health in the community but also reduce the high costs inevitably associated with heart failure. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/37011.
Collapse
Affiliation(s)
| | - John F Pearson
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand
| | - Richard W Troughton
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christcurch, New Zealand
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Eric A Espiner
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christcurch, New Zealand
| |
Collapse
|
27
|
Ivnitsky JJ, Schäfer TV, Rejniuk VL, Golovko AI. Endogenous humoral determinants of vascular endothelial dysfunction as triggers of acute poisoning complications. J Appl Toxicol 2023; 43:47-65. [PMID: 35258106 DOI: 10.1002/jat.4312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022]
Abstract
The vascular endothelium is not only the semipermeable membrane that separates tissue from blood but also an organ that regulates inflammation, vascular tone, blood clotting, angiogenesis and synthesis of connective tissue proteins. It is susceptible to the direct cytotoxic action of numerous xenobiotics and to the acute hypoxia that accompanies acute poisoning. This damage is superimposed on the preformed state of the vascular endothelium, which, in turn, depends on many humoral factors. The probability that an exogenous toxicant will cause life-threatening dysfunction of the vascular endothelium, thereby complicating the course of acute poisoning, increases with an increase in the content of endogenous substances in the blood that disrupt endothelial function. These include ammonia, bacterial endotoxin, indoxyl sulfate, para-cresyl sulfate, trimethylamine N-oxide, asymmetric dimethylarginine, glucose, homocysteine, low-density and very-low-density lipoproteins, free fatty acids and products of intravascular haemolysis. Some other endogenous substances (albumin, haptoglobin, haemopexin, biliverdin, bilirubin, tetrahydrobiopterin) or food-derived compounds (ascorbic acid, rutin, omega-3 polyunsaturated fatty acids, etc.) reduce the risk of lethal vascular endothelial dysfunction. The individual variability of the content of these substances in the blood contributes to the stochasticity of the complications of acute poisoning and is a promising target for the risk reduction measures. Another feasible option may be the repositioning of drugs that affect the function of the vascular endothelium while being currently used for other indications.
Collapse
Affiliation(s)
- Jury Ju Ivnitsky
- Golikov Research Clinical Center of Toxicology under the Federal Medical Biological Agency, Saint Petersburg, Russia
| | - Timur V Schäfer
- State Scientific Research Test Institute of the Military Medicine of Defense Ministry of the Russian Federation, Saint Petersburg, Russia
| | - Vladimir L Rejniuk
- Golikov Research Clinical Center of Toxicology under the Federal Medical Biological Agency, Saint Petersburg, Russia
| | - Alexandr I Golovko
- Golikov Research Clinical Center of Toxicology under the Federal Medical Biological Agency, Saint Petersburg, Russia
| |
Collapse
|
28
|
Sarzani R, Allevi M, Di Pentima C, Schiavi P, Spannella F, Giulietti F. Role of Cardiac Natriuretic Peptides in Heart Structure and Function. Int J Mol Sci 2022; 23:ijms232214415. [PMID: 36430893 PMCID: PMC9697447 DOI: 10.3390/ijms232214415] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Cardiac natriuretic peptides (NPs), atrial NP (ANP) and B-type NP (BNP) are true hormones produced and released by cardiomyocytes, exerting several systemic effects. Together with C-type NP (CNP), mainly expressed by endothelial cells, they also exert several paracrine and autocrine activities on the heart itself, contributing to cardiovascular (CV) health. In addition to their natriuretic, vasorelaxant, metabolic and antiproliferative systemic properties, NPs prevent cardiac hypertrophy, fibrosis, arrhythmias and cardiomyopathies, counteracting the development and progression of heart failure (HF). Moreover, recent studies revealed that a protein structurally similar to NPs mainly produced by skeletal muscles and osteoblasts called musclin/osteocrin is able to interact with the NPs clearance receptor, attenuating cardiac dysfunction and myocardial fibrosis and promoting heart protection during pathological overload. This narrative review is focused on the direct activities of this molecule family on the heart, reporting both experimental and human studies that are clinically relevant for physicians.
Collapse
Affiliation(s)
- Riccardo Sarzani
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
- Correspondence: (R.S.); Tel.: +39-071-5964696
| | - Massimiliano Allevi
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Chiara Di Pentima
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
| | - Paola Schiavi
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Francesco Spannella
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Federico Giulietti
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
| |
Collapse
|
29
|
Perez-Ternero C, Pallier PN, Tremoleda JL, Delogu A, Fernandes C, Michael-Titus AT, Hobbs AJ. C-type natriuretic peptide preserves central neurological function by maintaining blood-brain barrier integrity. Front Mol Neurosci 2022; 15:991112. [PMID: 36267701 PMCID: PMC9577671 DOI: 10.3389/fnmol.2022.991112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
C-type natriuretic peptide (CNP) is highly expressed in the central nervous system (CNS) and key to neuronal development; however, a broader role for CNP in the CNS remains unclear. To address this deficit, we investigated behavioral, sensory and motor abnormalities and blood-brain barrier (BBB) integrity in a unique mouse model with inducible, global deletion of CNP (gbCNP-/-). gbCNP-/- mice and wild-type littermates at 12 (young adult) and 65 (aged) weeks of age were investigated for changes in gait and motor coordination (CatWalk™ and rotarod tests), anxiety-like behavior (open field and elevated zero maze tests), and motor and sensory function (modified neurological severity score [mNSS] and primary SHIRPA screen). Vascular permeability was assessed in vivo (Miles assay) with complementary in vitro studies conducted in primary murine brain endothelial cells. Young adult gbCNP-/- mice had normal gait but reduced motor coordination, increased locomotor activity in the open field and elevated zero maze, and had a higher mNSS score. Aged gbCNP-/- animals developed recurrent spontaneous seizures and had impaired gait and wide-ranging motor and sensory dysfunction. Young adult and aged gbCNP-/- mice exhibited increased BBB permeability, which was partially restored in vitro by CNP administration. Cultured brain endothelial cells from gbCNP-/- mice had an abnormal ZO-1 protein distribution. These data suggest that lack of CNP in the CNS impairs tight junction protein arrangement and increases BBB permeability, which is associated with changes in locomotor activity, motor coordination and late-onset seizures.
Collapse
Affiliation(s)
- Cristina Perez-Ternero
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Patrick N. Pallier
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Jordi L. Tremoleda
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Alessio Delogu
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Adina T. Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Adrian J. Hobbs
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
30
|
Endogenous Vasoactive Peptides and Vascular Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1534470. [PMID: 36225176 PMCID: PMC9550461 DOI: 10.1155/2022/1534470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
Vascular aging is a specific type of organic aging that plays a central role in the morbidity and mortality of cardiovascular and cerebrovascular diseases among the elderly. It is essential to develop novel interventions to prevent/delay age-related vascular pathologies by targeting fundamental cellular and molecular aging processes. Endogenous vasoactive peptides are compounds formed by a group of amino acids connected by peptide chains that exert regulatory roles in intercellular interactions involved in a variety of biological and pathological processes. Emerging evidence suggests that a variety of vasoactive peptides play important roles in the occurrence and development of vascular aging and related diseases such as atherosclerosis, hypertension, vascular calcification, abdominal aortic aneurysms, and stroke. This review will summarize the cumulative roles and mechanisms of several important endogenous vasoactive peptides in vascular aging and vascular aging-related diseases. In addition, we also aim to explore the promising diagnostic function as biomarkers and the potential therapeutic application of endogenous vasoactive peptides in vascular aging-related diseases.
Collapse
|
31
|
Abassi Z, Khoury EE, Karram T, Aronson D. Edema formation in congestive heart failure and the underlying mechanisms. Front Cardiovasc Med 2022; 9:933215. [PMID: 36237903 PMCID: PMC9553007 DOI: 10.3389/fcvm.2022.933215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Congestive heart failure (HF) is a complex disease state characterized by impaired ventricular function and insufficient peripheral blood supply. The resultant reduced blood flow characterizing HF promotes activation of neurohormonal systems which leads to fluid retention, often exhibited as pulmonary congestion, peripheral edema, dyspnea, and fatigue. Despite intensive research, the exact mechanisms underlying edema formation in HF are poorly characterized. However, the unique relationship between the heart and the kidneys plays a central role in this phenomenon. Specifically, the interplay between the heart and the kidneys in HF involves multiple interdependent mechanisms, including hemodynamic alterations resulting in insufficient peripheral and renal perfusion which can lead to renal tubule hypoxia. Furthermore, HF is characterized by activation of neurohormonal factors including renin-angiotensin-aldosterone system (RAAS), sympathetic nervous system (SNS), endothelin-1 (ET-1), and anti-diuretic hormone (ADH) due to reduced cardiac output (CO) and renal perfusion. Persistent activation of these systems results in deleterious effects on both the kidneys and the heart, including sodium and water retention, vasoconstriction, increased central venous pressure (CVP), which is associated with renal venous hypertension/congestion along with increased intra-abdominal pressure (IAP). The latter was shown to reduce renal blood flow (RBF), leading to a decline in the glomerular filtration rate (GFR). Besides the activation of the above-mentioned vasoconstrictor/anti-natriuretic neurohormonal systems, HF is associated with exceptionally elevated levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). However, the supremacy of the deleterious neurohormonal systems over the beneficial natriuretic peptides (NP) in HF is evident by persistent sodium and water retention and cardiac remodeling. Many mechanisms have been suggested to explain this phenomenon which seems to be multifactorial and play a major role in the development of renal hyporesponsiveness to NPs and cardiac remodeling. This review focuses on the mechanisms underlying the development of edema in HF with reduced ejection fraction and refers to the therapeutic maneuvers applied today to overcome abnormal salt/water balance characterizing HF.
Collapse
Affiliation(s)
- Zaid Abassi
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
- Department of Laboratory Medicine, Rambam Health Care Campus, Haifa, Israel
- *Correspondence: Zaid Abassi,
| | - Emad E. Khoury
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
| | - Tony Karram
- Department of Vascular Surgery and Kidney Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Doron Aronson
- Department of Cardiology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
32
|
Tokudome T, Otani K. Molecular Mechanism of Blood Pressure Regulation through the Atrial Natriuretic Peptide. BIOLOGY 2022; 11:biology11091351. [PMID: 36138830 PMCID: PMC9495342 DOI: 10.3390/biology11091351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/24/2022]
Abstract
Simple Summary Atrial natriuretic peptide (ANP) is a cardiac peptide hormone that was identified by Kangawa and Matsuo in 1984. In Japan, ANP has been used as an intravenous drug for the treatment of acute heart failure since 1995. Because ANP has a hypotensive effect, it is important to avoid excessive lowering of blood pressure when ANP is used. Recently, a compound that inhibits neutral endopeptidase, the enzyme that degrades ANP, has been developed (angiotensin receptor-neprilysin inhibitor (ARNI)). ARNI has been approved worldwide for the treatment of chronic heart failure and has been authorized in Japan as an antihypertensive drug. However, it is not understood exactly how ANP exerts its hypotensive effect. In this review, we discuss the molecular mechanism of the blood pressure-regulating effects of ANP, focusing on our recent findings. Abstract Natriuretic peptides, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP), have cardioprotective effects and regulate blood pressure in mammals. ANP and BNP are hormones secreted from the heart into the bloodstream in response to increased preload and afterload. Both hormones act through natriuretic peptide receptor 1 (NPR1). In contrast, CNP acts through natriuretic peptide receptor 2 (NPR2) and was found to be produced by the vascular endothelium, chondrocytes, and cardiac fibroblasts. Based on its relatively low plasma concentration compared with ANP and BNP, CNP is thought to function as both an autocrine and a paracrine factor in the vasculature, bone, and heart. The cytoplasmic domains of both NPR1 and NPR2 display a guanylate cyclase activity that catalyzes the formation of cyclic GMP. NPR3 lacks this guanylate cyclase activity and is reportedly coupled to Gi-dependent signaling. Recently, we reported that the continuous infusion of the peptide osteocrin, an endogenous ligand of NPR3 secreted by bone and muscle cells, lowered blood pressure in wild-type mice, suggesting that endogenous natriuretic peptides play major roles in the regulation of blood pressure. Neprilysin is a neutral endopeptidase that degrades several vasoactive peptides, including natriuretic peptides. The increased worldwide clinical use of the angiotensin receptor-neprilysin inhibitor for the treatment of chronic heart failure has brought renewed attention to the physiological effects of natriuretic peptides. In this review, we provide an overview of the discovery of ANP and its translational research. We also highlight our recent findings on the blood pressure regulatory effects of ANP, focusing on its molecular mechanisms.
Collapse
Affiliation(s)
- Takeshi Tokudome
- Department of Pathophysiology of Heart Failure and Therapeutics, National Cerebral and Cardiovascular Center Research Institute, Suita 564-8565, Japan
- Correspondence: ; Tel.: +81-6-6170-1069
| | - Kentaro Otani
- Center for Regenerative Medicine, National Cerebral and Cardiovascular Center Research Institute, Suita 564-8565, Japan
| |
Collapse
|
33
|
Pleiotropic Roles of Atrial Natriuretic Peptide in Anti-Inflammation and Anti-Cancer Activity. Cancers (Basel) 2022; 14:cancers14163981. [PMID: 36010974 PMCID: PMC9406604 DOI: 10.3390/cancers14163981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The relationship between inflammation and carcinogenesis, as well as the response to anti-tumor therapy, is intimate. Atrial natriuretic peptides (ANPs) play a pivotal role in the homeostatic control of blood pressure, electrolytes, and water balance. In addition, ANPs exert immune-modulatory effects in the tissue microenvironment, thus exhibiting a fascinating ability to prevent inflammation-related tumorigenesis and cancer recurrence. In cancers, ANPs show anti-proliferative effects through several molecular pathways. Furthermore, ANPs attenuate the side effects of cancer therapy. Therefore, ANPs have potential therapeutic value in tumors. Here, we summarized the roles of ANPs in diverse aspects of the immune system and the molecular mechanisms underlying the anti-cancer effects of ANPs, contributing to the development of ANP-based anti-cancer agents. Abstract The atrial natriuretic peptide (ANP), a cardiovascular hormone, plays a pivotal role in the homeostatic control of blood pressure, electrolytes, and water balance and is approved to treat congestive heart failure. In addition, there is a growing realization that ANPs might be related to immune response and tumor growth. The anti-inflammatory and immune-modulatory effects of ANPs in the tissue microenvironment are mediated through autocrine or paracrine mechanisms, which further suppress tumorigenesis. In cancers, ANPs show anti-proliferative effects through several molecular pathways. Furthermore, ANPs attenuate the side effects of cancer therapy. Therefore, ANPs act on several hallmarks of cancer, such as inflammation, angiogenesis, sustained tumor growth, and metastasis. In this review, we summarized the contributions of ANPs in diverse aspects of the immune system and the molecular mechanisms underlying the anti-cancer effects of ANPs.
Collapse
|
34
|
Mustafa NH, Jalil J, Zainalabidin S, Saleh MS, Asmadi AY, Kamisah Y. Molecular mechanisms of sacubitril/valsartan in cardiac remodeling. Front Pharmacol 2022; 13:892460. [PMID: 36003518 PMCID: PMC9393311 DOI: 10.3389/fphar.2022.892460] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases have become a major clinical burden globally. Heart failure is one of the diseases that commonly emanates from progressive uncontrolled hypertension. This gives rise to the need for a new treatment for the disease. Sacubitril/valsartan is a new drug combination that has been approved for patients with heart failure. This review aims to detail the mechanism of action for sacubitril/valsartan in cardiac remodeling, a cellular and molecular process that occurs during the development of heart failure. Accumulating evidence has unveiled the cardioprotective effects of sacubitril/valsartan on cellular and molecular modulation in cardiac remodeling, with recent large-scale randomized clinical trials confirming its supremacy over other traditional heart failure treatments. However, its molecular mechanism of action in cardiac remodeling remains obscure. Therefore, comprehending the molecular mechanism of action of sacubitril/valsartan could help future research to study the drug's potential therapy to reduce the severity of heart failure.
Collapse
Affiliation(s)
- Nor Hidayah Mustafa
- Centre for Drug and Herbal Research Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Centre for Drug and Herbal Research Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satirah Zainalabidin
- Program of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohammed S.M. Saleh
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ahmad Yusof Asmadi
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur, Malaysia
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
Michel JB, Lagrange J, Regnault V, Lacolley P. Conductance Artery Wall Layers and Their Respective Roles in the Clearance Functions. Arterioscler Thromb Vasc Biol 2022; 42:e253-e272. [PMID: 35924557 DOI: 10.1161/atvbaha.122.317759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evolutionary organization of the arterial wall into layers occurred concomitantly with the emergence of a highly muscularized, pressurized arterial system that facilitates outward hydraulic conductance and mass transport of soluble substances across the arterial wall. Although colliding circulating cells disperse potential energy within the arterial wall, the different layers counteract this effect: (1) the endothelium ensures a partial barrier function; (2) the media comprises smooth muscle cells capable of endocytosis/phagocytosis; (3) the outer adventitia and perivascular adipocytic tissue are the final receptacles of convected substances. While the endothelium forms a physical and a biochemical barrier, the medial layer is avascular, relying on the specific permeability properties of the endothelium for metabolic support. Different components of the media interact with convected molecules: medial smooth muscle cells take up numerous molecules via scavenger receptors and are capable of phagocytosis of macro/micro particles. The outer layers-the highly microvascularized innervated adventitia and perivascular adipose tissue-are also involved in the clearance functions of the media: the adventitia is the seat of immune response development, inward angiogenesis, macromolecular lymphatic drainage, and neuronal stimulation. Consequently, the clearance functions of the arterial wall are physiologically essential, but also may favor the development of arterial wall pathologies. This review describes how the walls of large conductance arteries have acquired physiological clearance functions, how this is determined by the attributes of the endothelial barrier, governed by endocytic and phagocytic capacities of smooth muscle cells, impacting adventitial functions, and the role of these clearance functions in arterial wall diseases.
Collapse
|
36
|
Ohara H, Nabika T. Genetic Modifications to Alter Blood Pressure Level. Biomedicines 2022; 10:biomedicines10081855. [PMID: 36009402 PMCID: PMC9405136 DOI: 10.3390/biomedicines10081855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Genetic manipulation is one of the indispensable techniques to examine gene functions both in vitro and in vivo. In particular, cardiovascular phenotypes such as blood pressure cannot be evaluated in vitro system, necessitating the creation of transgenic or gene-targeted knock-out and knock-in experimental animals to understand the pathophysiological roles of specific genes on the disease conditions. Although genome-wide association studies (GWAS) in various human populations have identified multiple genetic variations associated with increased risk for hypertension and/or its complications, the causal links remain unresolved. Genome-editing technologies can be applied to many different types of cells and organisms for creation of knock-out/knock-in models. In the post-GWAS era, it may be more worthwhile to validate pathophysiological implications of the risk variants and/or candidate genes by creating genome-edited organisms.
Collapse
|
37
|
Hu B, Lelek S, Spanjaard B, El-Sammak H, Simões MG, Mintcheva J, Aliee H, Schäfer R, Meyer AM, Theis F, Stainier DYR, Panáková D, Junker JP. Origin and function of activated fibroblast states during zebrafish heart regeneration. Nat Genet 2022; 54:1227-1237. [PMID: 35864193 PMCID: PMC7613248 DOI: 10.1038/s41588-022-01129-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022]
Abstract
The adult zebrafish heart has a high capacity for regeneration following injury. However, the composition of the regenerative niche has remained largely elusive. Here, we dissected the diversity of activated cell states in the regenerating zebrafish heart based on single-cell transcriptomics and spatiotemporal analysis. We observed the emergence of several transient cell states with fibroblast characteristics following injury, and we outlined the proregenerative function of collagen-12-expressing fibroblasts. To understand the cascade of events leading to heart regeneration, we determined the origin of these cell states by high-throughput lineage tracing. We found that activated fibroblasts were derived from two separate sources: the epicardium and the endocardium. Mechanistically, we determined Wnt signalling as a regulator of the endocardial fibroblast response. In summary, our work identifies specialized activated fibroblast cell states that contribute to heart regeneration, thereby opening up possible approaches to modulating the regenerative capacity of the vertebrate heart. Single-cell RNA sequencing and spatiotemporal analysis of the regenerating zebrafish heart identify transient proregenerative fibroblast-like cells that are derived from the epicardium and the endocardium. Wnt signalling regulates the endocardial fibroblast response.
Collapse
Affiliation(s)
- Bo Hu
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Sara Lelek
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research) partner site, Berlin, Germany
| | - Bastiaan Spanjaard
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Hadil El-Sammak
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Rhine/Main, Frankfurt, Germany
| | - Mariana Guedes Simões
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Janita Mintcheva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Hananeh Aliee
- Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Munich, Germany
| | - Ronny Schäfer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Alexander M Meyer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Fabian Theis
- Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Munich, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Rhine/Main, Frankfurt, Germany
| | - Daniela Panáková
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research) partner site, Berlin, Germany.
| | - Jan Philipp Junker
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research) partner site, Berlin, Germany.
| |
Collapse
|
38
|
Nishikimi T, Nakagawa Y. B-Type Natriuretic Peptide (BNP) Revisited—Is BNP Still a Biomarker for Heart Failure in the Angiotensin Receptor/Neprilysin Inhibitor Era? BIOLOGY 2022; 11:biology11071034. [PMID: 36101415 PMCID: PMC9312360 DOI: 10.3390/biology11071034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Active BNP-32, less active proBNP-108, and inactive N-terminal proBNP-76 all circulate in the blood. The circulating protease neprilysin has lower substrate specificity for BNP than ANP, while proBNP and N-terminal proBNP are not degraded by neprilysin. Currently available BNP immunoassays react with both mature BNP and proBNP; therefore, measured plasma BNP is mature BNP + proBNP. Because ARNI administration increases mature BNP, measured plasma BNP initially increases with ARNI administration by the amount of the increase in mature BNP. Later, ARNI administration reduces myocardial wall stress, and the resultant reduction in BNP production more than offsets the increase of mature BNP due to inhibition of degradation by neprilysin, resulting in lower plasma BNP levels. In the ARNI era, BNP remains a useful biomarker for heart failure, though mild increases early during ARNI administration should be taken into consideration. Abstract Myocardial wall stress, cytokines, hormones, and ischemia all stimulate B-type (or brain) natriuretic peptide (BNP) gene expression. Within the myocardium, ProBNP-108, a BNP precursor, undergoes glycosylation, after which a portion is cleaved by furin into mature BNP-32 and N-terminal proBNP-76, depending on the glycosylation status. As a result, active BNP, less active proBNP, and inactive N-terminal proBNP all circulate in the blood. There are three major pathways for BNP clearance: (1) cellular internalization via natriuretic peptide receptor (NPR)-A and NPR-C; (2) degradation by proteases in the blood, including neprilysin, dipeptidyl-peptidase-IV, insulin degrading enzyme, etc.; and (3) excretion in the urine. Because neprilysin has lower substrate specificity for BNP than atrial natriuretic peptide (ANP), the increase in plasma BNP after angiotensin receptor neprilysin inhibitor (ARNI) administration is much smaller than the increase in plasma ANP. Currently available BNP immunoassays react with both mature BNP and proBNP. Therefore, BNP measured with an immunoassay is mature BNP + proBNP. ARNI administration increases mature BNP but not proBNP, as the latter is not degraded by neprilysin. Consequently, measured plasma BNP initially increases with ARNI administration by the amount of the increase in mature BNP. Later, ARNI reduces myocardial wall stress, and the resultant reduction in BNP production more than offsets the increase in mature BNP mediated by inhibiting degradation by neprilysin, which lowers plasma BNP levels. These results suggest that even in the ARNI era, BNP can be used for diagnosis and assessment of the pathophysiology and prognosis of heart failure, though the mild increases early during ARNI administration should be taken into consideration.
Collapse
Affiliation(s)
- Toshio Nishikimi
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
- Department of Medicine, Wakakusa Tatsuma Rehabilitation Hospital, 1580 Ooaza Tatsuma, Daito City 574-0012, Japan
- Correspondence: ; Tel.: +81-75-751-4287
| | - Yasuaki Nakagawa
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
| |
Collapse
|
39
|
Tokudome T, Otani K, Mao Y, Jensen LJ, Arai Y, Miyazaki T, Sonobe T, Pearson JT, Osaki T, Minamino N, Ishida J, Fukamizu A, Kawakami H, Onozuka D, Nishimura K, Miyazato M, Nishimura H. Endothelial Natriuretic Peptide Receptor 1 Play Crucial Role for Acute and Chronic Blood Pressure Regulation by Atrial Natriuretic Peptide. Hypertension 2022; 79:1409-1422. [PMID: 35534926 DOI: 10.1161/hypertensionaha.121.18114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND ANP (atrial natriuretic peptide), acting through NPR1 (natriuretic peptide receptor 1), provokes hypotension. Such hypotension is thought to be due to ANP inducing vasodilation via NPR1 in the vasculature; however, the underlying mechanism remains unclear. Here, we investigated the mechanisms of acute and chronic blood pressure regulation by ANP. METHODS AND RESULTS Immunohistochemical analysis of rat tissues revealed that NPR1 was abundantly expressed in endothelial cells and smooth muscle cells of small arteries and arterioles. Intravenous infusion of ANP significantly lowered systolic blood pressure in wild-type mice. ANP also significantly lowered systolic blood pressure in smooth muscle cell-specific Npr1-knockout mice but not in endothelial cell-specific Npr1-knockout mice. Moreover, ANP significantly lowered systolic blood pressure in Nos3-knockout mice. In human umbilical vein endothelial cells, treatment with ANP did not influence nitric oxide production or intracellular Ca2+ concentration, but it did hyperpolarize the cells. ANP-induced hyperpolarization of human umbilical vein endothelial cells was inhibited by several potassium channel blockers and was also abolished under knockdown of RGS2 (regulator of G-protein signaling 2), an GTPase activating protein in G-protein α-subunit. ANP increased Rgs2 mRNA expression in human umbilical vein endothelial cells but failed to lower systolic blood pressure in Rgs2-knockout mice. Endothelial cell-specific Npr1-overexpressing mice exhibited lower blood pressure than did wild-type mice independent of RGS2, and showed dilation of arterial vessels on synchrotron radiation microangiography. CONCLUSIONS Together, these results indicate that vascular endothelial NPR1 plays a crucial role in ANP-mediated blood pressure regulation, presumably by a mechanism that is RGS2-dependent in the acute phase and RGS2-independent in the chronic phase.
Collapse
Affiliation(s)
- Takeshi Tokudome
- Department of Biochemistry (T.T., Y.M., N.M., M.M., H.N.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Kentaro Otani
- Department of Regenerative Medicine and Tissue Engineering (K.O.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Yuanjie Mao
- Department of Biochemistry (T.T., Y.M., N.M., M.M., H.N.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.,Diabetes Institute, Ohio University, Athens (Y.M.)
| | - Lars Jørn Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.J.J.)
| | - Yuji Arai
- Department of Research Promotion and Management (Y.A.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Takahiro Miyazaki
- Department of Cell Biology (T.M.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Takashi Sonobe
- Department of Cardiac Physiology (T.S., J.T.P.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - James T Pearson
- Department of Cardiac Physiology (T.S., J.T.P.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.,Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia (J.T.P.)
| | - Tsukasa Osaki
- Department of Biochemistry and Molecular Biology, Yamagata University School of Medicine, Japan (T.O.)
| | - Naoto Minamino
- Department of Biochemistry (T.T., Y.M., N.M., M.M., H.N.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Junji Ishida
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (J.I., A.F.)
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (J.I., A.F.)
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan (H.K.)
| | - Daisuke Onozuka
- Department of Medical Informatics and Clinical Epidemiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan (D.O.)
| | - Kunihiro Nishimura
- Department of Preventive Medicine and Epidemiology (K.N.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Mikiya Miyazato
- Department of Biochemistry (T.T., Y.M., N.M., M.M., H.N.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Hirohito Nishimura
- Department of Biochemistry (T.T., Y.M., N.M., M.M., H.N.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| |
Collapse
|
40
|
CNP, the Third Natriuretic Peptide: Its Biology and Significance to the Cardiovascular System. BIOLOGY 2022; 11:biology11070986. [PMID: 36101368 PMCID: PMC9312265 DOI: 10.3390/biology11070986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary CNP is the third natriuretic peptide to be isolated and is widely expressed in the central nervous system, osteochondral system, and vascular system. The receptor that is mainly targeted by CNP is GC-B, which differs from GC-A, the receptor targeted by the other two natriuretic peptides, ANP and BNP. Consequently, the actions of CNP differ somewhat from those of ANP and BNP. Research into the actions of CNP has shown that CNP attenuates cardiac remodeling in animal models of cardiac hypertrophy, myocardial infarction, and myocarditis. Studies examining CNP/GC-B signaling showed that it contributes to the prevention of cardiac stiffness. Endogenous CNP, perhaps acting in part through CNP/NPR-C signaling, contributes to the regulation of vascular function and blood pressure. CNP regulates vascular remodeling and angiogenesis via CNP/GC-B/CGK signaling. CNP attenuates interstitial fibrosis and fibrosis-related gene expression in pressure overload and myocardial infarction models. The clinical application of CNP as a therapeutic agent for cardiovascular diseases is anticipated. Abstract The natriuretic peptide family consists of three biologically active peptides: ANP, BNP, and CNP. CNP is more widely expressed than the other two peptides, with significant levels in the central nervous system, osteochondral system, and vascular system. The receptor that is mainly targeted by CNP is GC-B, which differs from GC-A, the receptor targeted by ANP and BNP. Consequently, the actions of CNP differ somewhat from those of ANP and BNP. CNP knockout leads to severe dwarfism, and there has been important research into the role of CNP in the osteochondral system. As a result, a CNP analog is now available for clinical use in patients with achondroplasia. In the cardiovascular system, CNP and its downstream signaling are involved in the regulatory mechanisms underlying myocardial remodeling, cardiac function, vascular tone, angiogenesis, and fibrosis, among others. This review focuses on the roles of CNP in the cardiovascular system and considers its potential for clinical application in the treatment of cardiovascular diseases.
Collapse
|
41
|
Wang C, Taskinen JH, Segersvärd H, Immonen K, Kosonen R, Tolva JM, Mäyränpää MI, Kovanen PT, Olkkonen VM, Sinisalo J, Laine M, Tikkanen I, Lakkisto P. Alterations of Cardiac Protein Kinases in Cyclic Nucleotide-Dependent Signaling Pathways in Human Ischemic Heart Failure. Front Cardiovasc Med 2022; 9:919355. [PMID: 35783854 PMCID: PMC9247256 DOI: 10.3389/fcvm.2022.919355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives Impaired protein kinase signaling is a hallmark of ischemic heart disease (IHD). Inadequate understanding of the pathological mechanisms limits the development of therapeutic approaches. We aimed to identify the key cardiac kinases and signaling pathways in patients with IHD with an effort to discover potential therapeutic strategies. Methods Cardiac kinase activity in IHD left ventricle (LV) and the related signaling pathways were investigated by kinomics, transcriptomics, proteomics, and integrated multi-omics approach. Results Protein kinase A (PKA) and protein kinase G (PKG) ranked on top in the activity shift among the cardiac kinases. In the IHD LVs, PKA activity decreased markedly compared with that of controls (62% reduction, p = 0.0034), whereas PKG activity remained stable, although the amount of PKG protein increased remarkably (65%, p = 0.003). mRNA levels of adenylate cyclases (ADCY 1, 3, 5, 9) and cAMP-hydrolysing phosphodiesterases (PDE4A, PDE4D) decreased significantly, although no statistically significant alterations were observed in that of PKGs (PRKG1 and PRKG2) and guanylate cyclases (GUCYs). The gene expression of natriuretic peptide CNP decreased remarkably, whereas those of BNP, ANP, and neprilysin increased significantly in the IHD LVs. Proteomics analysis revealed a significant reduction in protein levels of “Energy metabolism” and “Muscle contraction” in the patients. Multi-omics integration highlighted intracellular signaling by second messengers as the top enriched Reactome pathway. Conclusion The deficiency in cAMP/PKA signaling pathway is strongly implicated in the pathogenesis of IHD. Natriuretic peptide CNP could be a potential therapeutic target for the modulation of cGMP/PKG signaling.
Collapse
Affiliation(s)
- Chunguang Wang
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2 U, Helsinki, Finland
- *Correspondence: Chunguang Wang
| | - Juuso H. Taskinen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2 U, Helsinki, Finland
| | - Heli Segersvärd
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2 U, Helsinki, Finland
| | - Katariina Immonen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2 U, Helsinki, Finland
| | - Riikka Kosonen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2 U, Helsinki, Finland
| | - Johanna M. Tolva
- Transplantation Laboratory, Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Mikko I. Mäyränpää
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Petri T. Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2 U, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juha Sinisalo
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mika Laine
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2 U, Helsinki, Finland
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ilkka Tikkanen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2 U, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Päivi Lakkisto
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2 U, Helsinki, Finland
- Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Päivi Lakkisto
| |
Collapse
|
42
|
Natriuretic Peptide-Based Novel Therapeutics: Long Journeys of Drug Developments Optimized for Disease States. BIOLOGY 2022; 11:biology11060859. [PMID: 35741380 PMCID: PMC9219923 DOI: 10.3390/biology11060859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary Natriuretic peptides are endogenous hormones produced in the heart and vascular endothelium, and they enable cardiorenal protective actions or bone growth via cGMP stimulation through their receptor guanylyl cyclase receptor A or B. To optimize the drug for each disease state, we must consider drug metabolism, delivery systems, and target receptor(s). This review summarizes attempts to develop novel natriuretic peptide-based therapeutics, including novel designer natriuretic peptides and oral drugs to enhance endogenous natriuretic peptides. We introduce some therapeutics that have been successful in clinical practice, as well as the prospective drug developments in the natriuretic peptide system for disease states. Abstract The field of natriuretic peptides (NPs) as an endocrine hormone has been developing since 1979. There are three peptides in humans: atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP), which bind to the guanylyl cyclase-A (GC-A) receptor (also called natriuretic peptide receptor-A (NPR-A)), and C-type natriuretic peptide (CNP), which binds to the GC-B receptor (also called the NPR-B) and then synthesizes intracellular cGMP. GC-A receptor stimulation has natriuretic, vasodilatory, cardiorenal protective and anti-renin–angiotensin–aldosterone system actions, and GC-B receptor stimulation can suppress myocardial fibrosis and can activate bone growth before epiphyseal plate closure. These physiological effects are useful as therapeutics for some disease states, such as heart failure, hypertension, and dwarfism. To optimize the therapeutics for each disease state, we must consider drug metabolism, delivery systems, and target receptor(s). We review the cardiac NP system; new designer NPs, such as modified/combined NPs and modified peptides that can bind to not only NP receptors but receptors for other systems; and oral drugs that enhance endogenous NP activity. Finally, we discuss prospective drug discoveries and the development of novel NP therapeutics.
Collapse
|
43
|
Molecular Mechanism of Induction of Bone Growth by the C-Type Natriuretic Peptide. Int J Mol Sci 2022; 23:ijms23115916. [PMID: 35682595 PMCID: PMC9180634 DOI: 10.3390/ijms23115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
The skeletal development process in the body occurs through sequential cellular and molecular processes called endochondral ossification. Endochondral ossification occurs in the growth plate where chondrocytes differentiate from resting, proliferative, hypertrophic to calcified zones. Natriuretic peptides (NPTs) are peptide hormones with multiple functions, including regulation of blood pressure, water-mineral balance, and many metabolic processes. NPTs secreted from the heart activate different tissues and organs, working in a paracrine or autocrine manner. One of the natriuretic peptides, C-type natriuretic peptide-, induces bone growth through several mechanisms. This review will summarize the knowledge, including the newest discoveries, of the mechanism of CNP activation in bone growth.
Collapse
|
44
|
Katayama Y, Saito A, Ogoshi M, Tsuneoka Y, Mukuda T, Azuma M, Kusakabe M, Takei Y, Tsukada T. Gene duplication of C-type natriuretic peptide-4 (CNP4) in teleost lineage elicits subfunctionalization of ancestral CNP. Cell Tissue Res 2022; 388:225-238. [PMID: 35171324 DOI: 10.1007/s00441-022-03596-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/27/2022] [Indexed: 02/06/2023]
Abstract
The diversified natriuretic peptide (NP) family, consisting of four CNPs (CNP1-4), ANP, BNP, and VNP, has been identified in the eel. Here, we successfully cloned additional cnp genes from the brain of eel (a basal teleost) and zebrafish (a later branching teleost). The genes were identified as paralogues of cnp4 generated by the third round of whole genome duplication (3R) in the teleost lineage, thereby being named eel cnp4b and zebrafish cnp4-like, respectively. To examine the histological patterns of their expressions, we employed a newly developed in situ hybridization (ISH) chain reaction using short hairpin DNAs, in addition to conventional ISH. Eel cnp4b was expressed in the medulla oblongata, while mRNAs of eel cnp4a (former cnp4) were localized in the preoptic area. In the zebrafish brain, cnp4-like mRNA was undetectable, while the known cnp4 was expressed in both the preoptic area and medulla oblongata. Together with the different mRNA distribution of cnp4a and cnp4b in eel peripheral tissues determined by RT-PCR and ISH, it is suggested that subfunctionalization by duplicated cnp4s in ancestral teleosts has been retained only in basal teleosts. Intriguingly, cnp4b-expressing neurons in the glossopharyngeal-vagal motor complex of the medulla oblongata were co-localized with choline acetyltransferase, suggesting an involvement of Cnp4b in swallowing and respiration functions that are modulated by the vagus. Since teleost Cnp4 is an ortholog of mammalian CNP, the identified localization of teleost Cnp4 will contribute to future studies aimed at deciphering the physiological functions of CNP.
Collapse
Affiliation(s)
- Yukitoshi Katayama
- Faculty of Science, Ushimado Marine Institute, Okayama University, 130-17 Kashino, Setouchi, Okayama, 701-4303, Japan
- Department of Biomolecular Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Ami Saito
- Department of Biomolecular Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Maho Ogoshi
- Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsushima-Naka, Kita, Okayama, Okayama, 700-8530, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota, Tokyo, 143-8540, Japan
| | - Takao Mukuda
- Department of Anatomy, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, Tottori, 683-8503, Japan
| | - Morio Azuma
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Makoto Kusakabe
- Faculty of Science, Shizuoka University, 836 Otani, Suruga, Shizuoka, Shizuoka, 422-8529, Japan
| | - Yoshio Takei
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| | - Takehiro Tsukada
- Department of Biomolecular Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
| |
Collapse
|
45
|
Fan M, Miao Y, Yan Y, Zhu K, Zhao X, Pan M, Ma B, Wei Q. C-Type Natriuretic Peptide Regulates the Expression and Secretion of Antibacterial Peptide S100A7 in Goat Mammary Gland Through PKG/JNK/c-Jun Signaling Pathway. Front Vet Sci 2022; 9:822165. [PMID: 35498722 PMCID: PMC9039262 DOI: 10.3389/fvets.2022.822165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
During infection, the infected tissue secretes a variety of endogenous peptides to resist further invasion of pathogens. Among these endogenous peptides, the natriuretic peptides and the antimicrobial peptides attracted the most attention. C-type natriuretic peptide (CNP) and its receptor natriuretic peptide receptor B (NPR-B) were members of the natriuretic peptide system. The antimicrobial peptide S100A7 plays an important role to resist infection of bacteria in mastitis. It is reported that the expression of S100A7 is regulated by an activator protein-1 (AP-1)-responsive promoter. As a subunit of AP-1, c-Jun is a downstream target of CNP/NPR-B signaling pathway. Therefore, it is a hypothesis that the CNP/NPR-B signaling pathway induces the expression and secretion of S100A7 in mammary glands to take part in local mammary gland innate immunity. To verify this hypothesis, goat mammary gland and isolated mammary epithelial cells (MECs) were used to explore the expression of CNP/NPR-B and their physiological roles in goat mammary gland. The results showed that goat mammary gland expressed NPR-B, but not CNP. The expression and secretion of S100A7 in goat MECs were obviously induced by CNP/NPR-B signaling pathway. After treatment with CNP, the cyclic guanosine monophosphate (cGMP) level in goat MECs was significantly upregulated. Along with the upregulation of cGMP level, the phosphorylation levels of c-Jun N-terminal kinase (JNK) and its target c-Jun were also increased gradually. KT5823 is a specific inhibitor for protein kinase G (PKG). KT5823 remarkably inhibited the phosphorylation of JNK and c-Jun induced by CNP. Correspondingly, KT5823 evidently inhibited the expression and secretion of S100A7 induced by CNP. On the other hand, the expression of NPR-B and S100A7 was upregulated in the mastitis goat mammary gland. But, there was no significant difference in expression of CNP between healthy and mastitis goat mammary gland tissues. The goat mastitis model was established in vitro using goat MECs treated by lipopolysaccharide (LPS). LPS treatment also could increase the expression of NPR-B and S100A7. In conclusion, goat mammary gland expressed NPR-B, indicating mammary gland was the target organ for natriuretic peptide system. Moreover, CNP, through NPR-B/JNK/c-Jun signaling pathway to regulate the expression and secretion of S100A7 in MECs, played an important role in mammary gland innate immunity.
Collapse
Affiliation(s)
- Mingzhen Fan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuyang Miao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yutong Yan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Kunyuan Zhu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xiaoe Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Menghao Pan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- *Correspondence: Baohua Ma
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Qiang Wei
| |
Collapse
|
46
|
Lauffer P, Boudin E, van der Kaay DCM, Koene S, van Haeringen A, van Tellingen V, Van Hul W, Prickett TCR, Mortier G, Espiner EA, van Duyvenvoorde HA. Broadening the Spectrum of Loss-of-Function Variants in NPR-C-Related Extreme Tall Stature. J Endocr Soc 2022; 6:bvac019. [PMID: 35233476 PMCID: PMC8879884 DOI: 10.1210/jendso/bvac019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/28/2022] Open
Abstract
CONTEXT Natriuretic peptide receptor-C (NPR-C, encoded by NPR3) belongs to a family of cell membrane-integral proteins implicated in various physiological processes, including longitudinal bone growth. NPR-C acts as a clearance receptor of natriuretic peptides, including C-type natriuretic peptide (CNP), that stimulate the cGMP-forming guanylyl cyclase-coupled receptors NPR-A and NPR-B. Pathogenic variants in CNP, NPR2, and NPR3 may cause a tall stature phenotype associated with macrodactyly of the halluces and epiphyseal dysplasia. OBJECTIVE Here we report on a boy with 2 novel biallelic inactivating variants of NPR3. METHODS History and clinical characteristics were collected. Biochemical indices of natriuretic peptide clearance and in vitro cellular localization of NPR-C were studied to investigate causality of the identified variants. RESULTS We identified 2 novel compound heterozygous NPR3 variants c.943G>A p.(Ala315Thr) and c.1294A>T p.(Ile432Phe) in a boy with tall stature and macrodactyly of the halluces. In silico analysis indicated decreased stability of NPR-C, presumably resulting in increased degradation or trafficking defects. Compared to other patients with NPR-C loss-of-function, the phenotype seemed to be milder: pseudo-epiphyses in hands and feet were absent, biochemical features were less severe, and there was some co-localization of p.(Ile432Phe) NPR-C with the cell membrane, as opposed to complete cytoplasmic retention. CONCLUSION With this report on a boy with tall stature and macrodactyly of the halluces we further broaden the genotypic and phenotypic spectrum of NPR-C-related tall stature.
Collapse
Affiliation(s)
- Peter Lauffer
- Department of Pediatric Endocrinology, Emma Children’s Hospital, Amsterdam University Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Eveline Boudin
- Department of Medical Genetics, Antwerp University Hospital and University of Antwerp, 2650 Edegem, Belgium
| | - Daniëlle C M van der Kaay
- Department of Pediatric Endocrinology, Sophia Children’s Hospital, Erasmus Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Saskia Koene
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Vera van Tellingen
- Department of Pediatrics, Catharina Hospital, 5623 EJ Eindhoven, the Netherlands
| | - Wim Van Hul
- Department of Medical Genetics, Antwerp University Hospital and University of Antwerp, 2650 Edegem, Belgium
| | | | - Geert Mortier
- Department of Medical Genetics, Antwerp University Hospital and University of Antwerp, 2650 Edegem, Belgium
| | - Eric A Espiner
- Department of Medicine, University of Otago, 8140 Christchurch, New Zealand
| | | |
Collapse
|
47
|
Takei Y. Evolution of the membrane/particulate guanylyl cyclase: From physicochemical sensors to hormone receptors. Gen Comp Endocrinol 2022; 315:113797. [PMID: 33957096 DOI: 10.1016/j.ygcen.2021.113797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Guanylyl cyclase (GC) is an enzyme that produces 3',5'-cyclic guanosine monophosphate (cGMP), one of the two canonical cyclic nucleotides used as a second messenger for intracellular signal transduction. The GCs are classified into two groups, particulate/membrane GCs (pGC) and soluble/cytosolic GCs (sGC). In relation to the endocrine system, pGCs include hormone receptors for natriuretic peptides (GC-A and GC-B) and guanylin peptides (GC-C), while sGC is a receptor for nitric oxide and carbon monoxide. Comparing the functions of pGCs in eukaryotes, it is apparent that pGCs perceive various environmental factors such as light, temperature, and various external chemical signals in addition to endocrine hormones, and transmit the information into the cell using the intracellular signaling cascade initiated by cGMP, e.g., cGMP-dependent protein kinases, cGMP-sensitive cyclic nucleotide-gated ion channels and cGMP-regulated phosphodiesterases. Among vertebrate pGCs, GC-E and GC-F are localized on retinal epithelia and are involved in modifying signal transduction from the photoreceptor, rhodopsin. GC-D and GC-G are localized in olfactory epithelia and serve as sensors at the extracellular domain for external chemical signals such as odorants and pheromones. GC-G also responds to guanylin peptides in the urine, which alters sensitivity to other chemicals. In addition, guanylin peptides that are secreted into the intestinal lumen, a pseudo-external environment, act on the GC-C on the apical membrane for regulation of epithelial transport. In this context, GC-C and GC-G appear to be in transition from exocrine pheromone receptor to endocrine hormone receptor. The pGCs also exist in various deuterostome and protostome invertebrates, and act as receptors for environmental, exocrine and endocrine factors including hormones. Tracing the evolutionary history of pGCs, it appears that pGCs first appeared as a sensor for physicochemical signals in the environment, and then evolved to function as hormone receptors. In this review, the author proposes an evolutionary history of pGCs that highlights the emerging role of the GC/cGMP system for signal transduction in hormone action.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan.
| |
Collapse
|
48
|
|
49
|
Sogawa-Fujiwara C, Fujiwara Y, Hanagata A, Yang Q, Mihara T, Kaji N, Kunieda T, Hori M. Npr2 mutant mice show vasodilation and undeveloped adipocytes in mesentery. BMC Res Notes 2021; 14:438. [PMID: 34838130 PMCID: PMC8626926 DOI: 10.1186/s13104-021-05853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/15/2021] [Indexed: 11/10/2022] Open
Abstract
Objective The biological importance for the signaling of C-type natriuretic peptide (CNP) and natriuretic peptide receptor B (NPR-B) has been recognized. However, the details remain unclear and are debatable. The Npr2 is a gene of NPR-B, and we previously reported a unique phenotype of a spontaneous mutant mouse lacking Npr2 (Npr2slw/slw), such as severe ileus-like disorder with bloodless blood vessels. In this study, we analyzed the bloodless mesenteric vascular morphology of Npr2slw/slw by histological observation to clarify the effects of the CNP/NPR-B signal deficiency. Results Blood vessels in the mesentery were clearly dilated in the preweaning Npr2slw/slw mice. Additionally, in the Npr2slw/slw mice, the lacteals were partially dilation or randomly direction mucosal epithelial cells in villi, and mesenteric adipocytes were undeveloped. These findings provide important information for understanding the role of CNP/NPR-B signals on intestine with mesentery.
Collapse
Affiliation(s)
- Chizuru Sogawa-Fujiwara
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Yasuhiro Fujiwara
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Atsuki Hanagata
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Qunhui Yang
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Taiki Mihara
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Noriyuki Kaji
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Tetsuo Kunieda
- Faculty of Veterinary Medcine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime, 794-8555, Japan
| | - Masatoshi Hori
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
50
|
Ai X, Hou X, Guo T. C-type natriuretic peptide promotes adipogenic differentiation of goat adipose-derived stem cells via cGMP/PKG/ p38 MAPK signal pathway. In Vitro Cell Dev Biol Anim 2021; 57:865-877. [PMID: 34786662 DOI: 10.1007/s11626-021-00621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/31/2021] [Indexed: 10/19/2022]
Abstract
C-type natriuretic peptide (CNP) is a member of natriuretic peptide family, which plays unique roles in cardiovascular system. Once CNP binds to natriuretic peptide receptor B (NPR-B), NPR-B induces the production of cGMP, thereby activating PKG and downstream targets. The expression of NPR-B in adipose tissue led to a hypothesis that CNP could have roles involving in regulation of adipogenesis. However, there are few studies on the relationship between CNP and adipogenesis in goat. In the present study, goat adipose-derived stem cells (ADSCs) were isolated and employed to investigate the effect of CNP on adipogenesis in goat. The results showed that CNP significantly promoted adipogenic differentiation of goat ADSCs and also up-regulated the expression of brown adipose genes including uncoupling protein 1 (UCP-1) and peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α). Furthermore, treatment with CNP increased the cGMP production and the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), MAPK activated protein kinase 2 (MK2), and activating transcription factor 2 (ATF2) during adipogenic differentiation. Conversely, PKG inhibitor Rp-8-CPT-cGMP or p38 MAPK specific inhibitor SB203580 abolished stimulative effect of CNP on adipogenic differentiation. Collectively, it is proved that CNP promoted adipogenic differentiation of goat ADSCs depending on the cGMP/PKG/p38 MAPK signal pathway.
Collapse
Affiliation(s)
- Xia Ai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| | - Ximiao Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Tingting Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| |
Collapse
|