1
|
Cao Z, Wang X, Liu H, Yang Z, Zeng Z. Gut microbiota mediate the alleviation effect of Xiehuo-Guzheng granules on β cell dedifferentiation in type 2 diabetes mellitus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156151. [PMID: 39437686 DOI: 10.1016/j.phymed.2024.156151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/24/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a worldwide public health problem characterized by a progressive decline in β cell function. In traditional Chinese medicine (TCM) theory, 'fire' and 'healthy qi deficiency' are important pathogeneses of T2DM, and purging 'fire' and reinforcing the 'healthy qi' (Pinyin name: Xiehuo-Guzheng, XHGZ) are important method of treatment. Over the years, we have observed its benefit for diabetes. However, the underlying mechanisms remain unclear. PURPOSE To investigate the mechanism of XHGZ granules against β cell dedifferentiation in T2DM based on gut microbiota. METHODS Rats with T2DM, induced by intraperitoneal injection of streptozotocin after eight weeks of high-fat diet, were randomly allocated to receive XHGZ granules, metformin, or distilled water for eight consecutive weeks. Changes in metabolic parameters, β cell dedifferentiation, inflammatory cytokines, gut microbiota, and microbial metabolites (lipopolysaccharide (LPS) and short-chain fatty acids (SCFAs)), were detected. Furthermore, faecal microbiota transplantation (FMT) was performed to confirm the anti-diabetic effect of XHGZ granule-regulated gut microbiota in pseudo-germ-free T2DM rats. RESULTS XHGZ granules significantly ameliorated hyperglycaemia, improved islet function and pathology, and reduced β cell dedifferentiation and pro-inflammatory cytokines in T2DM rats. 16S rRNA sequencing revealed that XHGZ granules decreased the LPS-containing microbiota (e.g., Colidextribacter, Desulfovibrionaceae, and Morganella) and increased the SCFAs-producing bacteria (e.g., Prevotella, Alloprevotella, and Muribaculaceae) and Lactobacillus_intestinalis. Correspondingly, it strengthened intestinal barrier, lowered LPS, and elevated acetic and butyric acids. Tax4Fun analysis indicated that XHGZ granules restored abnormal metabolism, lipopolysaccharide biosynthesis, and pantothenate and CoA biosynthesis. Moreover, the XHGZ granule-regulated microbiota also exhibited the effects of anti-diabetes, anti-β cell dedifferentiation, and anti-inflammation along with the reduction of LPS and the increase of SCFAs in pseudo-germ-free T2DM rats. CONCLUSION Our results show that XHGZ granules alleviate β cell dedifferentiation via regulating gut microbiota and their metabolites in T2DM, suggesting its potential as a promising complementary treatment for T2DM. As far as we know, there are very few studies on the alleviation of β cell dedifferentiation by TCM, and investigations into the mechanism from the perspective of intestinal flora and microbial metabolites are yet to be reported.
Collapse
Affiliation(s)
- Zebiao Cao
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Postdoctoral Research Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Xianzhe Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Huijun Liu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; Huangshi Hospital of Traditional Chinese Medicine, Huangshi, Hubei 435000, China
| | - Zhaojun Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Zhili Zeng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; Postdoctoral Research Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
2
|
Zhang N, Zhai L, Wong RMY, Cui C, Law SW, Chow SKH, Goodman SB, Cheung WH. Harnessing immunomodulation to combat sarcopenia: current insights and possible approaches. Immun Ageing 2024; 21:55. [PMID: 39103919 DOI: 10.1186/s12979-024-00458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Sarcopenia is a complex age-associated syndrome of progressive loss of muscle mass and strength. Although this condition is influenced by many factors, age-related changes in immune function including immune cell dynamics, and chronic inflammation contribute to its progression. The complex interplay between the immune system, gut-muscle axis, and autophagy further underscores their important roles in sarcopenia pathogenesis. Immunomodulation has emerged as a promising strategy to counteract sarcopenia. Traditional management approaches to treat sarcopenia including physical exercise and nutritional supplementation, and the emerging technologies of biophysical stimulation demonstrated the importance of immunomodulation and regulation of macrophages and T cells and reduction of chronic inflammation. Treatments to alleviate low-grade inflammation in older adults by modulating gut microbial composition and diversity further combat sarcopenia. Furthermore, some pharmacological interventions, nano-medicine, and cell therapies targeting muscle, gut microbiota, or autophagy present additional avenues for immunomodulation in sarcopenia. This narrative review explores the immunological underpinnings of sarcopenia, elucidating the relationship between the immune system and muscle during ageing. Additionally, the review discusses new areas such as the gut-muscle axis and autophagy, which bridge immune system function and muscle health. Insights into current and potential approaches for sarcopenia management through modulation of the immune system are provided, along with suggestions for future research directions and therapeutic strategies. We aim to guide further investigation into clinical immunological biomarkers and identify indicators for sarcopenia diagnosis and potential treatment targets to combat this condition. We also aim to draw attention to the importance of considering immunomodulation in the clinical management of sarcopenia.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Liting Zhai
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Can Cui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sheung-Wai Law
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Ahuja G, Arauz YLA, van Heuvelen MJG, Kortholt A, Oroszi T, van der Zee EA. The effects of whole-body vibration therapy on immune and brain functioning: current insights in the underlying cellular and molecular mechanisms. Front Neurol 2024; 15:1422152. [PMID: 39144715 PMCID: PMC11323691 DOI: 10.3389/fneur.2024.1422152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Whole-body vibration (WBV) therapy is a way of passive exercise in which subjects are exposed to mild and well-controlled mechanical vibrations through a vibrating platform. For a long time, studies have focused on the effects and applications of WBV to enhance musculoskeletal performance in athletes and patients suffering from musculoskeletal disorders. Recent evidence points toward the positive effect of WBV on the brain and its therapeutic potential in brain disorders. Research being done in the field gradually reveals cellular and molecular mechanisms underlying WBV affecting the body and brain. Particularly, the influence of WBV on immune and brain function is a growing field that warrants an up-to-date and integrated review. Immune function is closely intertwined with brain functioning and plays a significant role in various brain disorders. Dysregulation of the immune response is linked to conditions such as neuroinflammation, neurodegenerative diseases, and mood disorders, highlighting the crucial connection between the immune system and the brain. This review aims to explore the impact of WBV on the cellular and molecular pathways involved in immune and brain functions. Understanding the effects of WBV at a cellular and molecular level will aid in optimizing WBV protocols to improve its therapeutic potential for brain disorders.
Collapse
Affiliation(s)
- Gargi Ahuja
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Y. Laurisa Arenales Arauz
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussel, Belgium
| | - Marieke J. G. van Heuvelen
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Tamás Oroszi
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Eddy A. van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| |
Collapse
|
4
|
Cui Y, Liu J, Lei X, Liu S, Chen H, Wei Z, Li H, Yang Y, Zheng C, Li Z. Dual-directional regulation of spinal cord injury and the gut microbiota. Neural Regen Res 2024; 19:548-556. [PMID: 37721283 PMCID: PMC10581592 DOI: 10.4103/1673-5374.380881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 06/05/2023] [Indexed: 09/19/2023] Open
Abstract
There is increasing evidence that the gut microbiota affects the incidence and progression of central nervous system diseases via the brain-gut axis. The spinal cord is a vital important part of the central nervous system; however, the underlying association between spinal cord injury and gut interactions remains unknown. Recent studies suggest that patients with spinal cord injury frequently experience intestinal dysfunction and gut dysbiosis. Alterations in the gut microbiota can cause disruption in the intestinal barrier and trigger neurogenic inflammatory responses which may impede recovery after spinal cord injury. This review summarizes existing clinical and basic research on the relationship between the gut microbiota and spinal cord injury. Our research identified three key points. First, the gut microbiota in patients with spinal cord injury presents a key characteristic and gut dysbiosis may profoundly influence multiple organs and systems in patients with spinal cord injury. Second, following spinal cord injury, weakened intestinal peristalsis, prolonged intestinal transport time, and immune dysfunction of the intestine caused by abnormal autonomic nerve function, as well as frequent antibiotic treatment, may induce gut dysbiosis. Third, the gut microbiota and associated metabolites may act on central neurons and affect recovery after spinal cord injury; cytokines and the Toll-like receptor ligand pathways have been identified as crucial mechanisms in the communication between the gut microbiota and central nervous system. Fecal microbiota transplantation, probiotics, dietary interventions, and other therapies have been shown to serve a neuroprotective role in spinal cord injury by modulating the gut microbiota. Therapies targeting the gut microbiota or associated metabolites are a promising approach to promote functional recovery and improve the complications of spinal cord injury.
Collapse
Affiliation(s)
- Yinjie Cui
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyi Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Lei
- International Cooperation and Exchange Office, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Shuwen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haixia Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhijian Wei
- International Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Hongru Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan Yang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chenguang Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhongzheng Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Sun C, Zhou X, Guo T, Meng J. The immune role of the intestinal microbiome in knee osteoarthritis: a review of the possible mechanisms and therapies. Front Immunol 2023; 14:1168818. [PMID: 37388748 PMCID: PMC10306395 DOI: 10.3389/fimmu.2023.1168818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by cartilage damage and synovial inflammation and carries an enormous public health and economic burden. It is crucial to uncover the potential mechanisms of OA pathogenesis to develop new targets for OA treatment. In recent years, the pathogenic role of the gut microbiota in OA has been well recognized. Gut microbiota dysbiosis can break host-gut microbe equilibrium, trigger host immune responses and activate the "gut-joint axis", which aggravates OA. However, although the role of the gut microbiota in OA is well known, the mechanisms modulating the interactions between the gut microbiota and host immunity remain unclear. This review summarizes research on the gut microbiota and the involved immune cells in OA and interprets the potential mechanisms for the interactions between the gut microbiota and host immune responses from four aspects: gut barrier, innate immunity, adaptive immunity and gut microbiota modulation. Future research should focus on the specific pathogen or the specific changes in the gut microbiota composition to identify the related signaling pathways involved in the pathogenesis of OA. In addition, future studies should include more novel interventions on immune cell modifications and gene regulation of specific gut microbiota related to OA to validate the application of gut microbiota modulation in the onset of OA.
Collapse
Affiliation(s)
- Chang Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xing Zhou
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ting Guo
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jia Meng
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Nie H, Li Y, Lu XL, Yan J, Liu XR, Yin Q. Prodigiosin derived from chromium-resistant Serratia sp. prevents inflammation and modulates gut microbiota homeostasis in DSS-induced colitis mice. Int Immunopharmacol 2023; 116:109800. [PMID: 36780827 DOI: 10.1016/j.intimp.2023.109800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/13/2023]
Abstract
Prodigiosin (PG) is a secondary metabolite of microorganisms with anticancer, antimalarial, antibacterial and immunomodulatory effects. However, the modulatory effects on gut microbiome and intestinal immune microenvironment have never been explored in the ulcerative colitis (UC) mice model. In this study, 2.5% dextran sulfate sodium (DSS) induced UC mice model was constructed to investigate the effects of PG derived from a chromium-resistant Serratia sp. on the intestinal flora and inflammatory response. The results showed that prodigiosin administration attenuated the DSS-induced UC symptoms, including preventing the reduction of colonic length and DSS-induced mortality. Furthermore, prodigiosin ameliorated the DSS-induced gut microbiota community dysbiosis by restoring the abundance of Bacteroidota. At the genus level, the declined abundance of Bifidobacterium, Allobaculum and Akkermannia in UC mice was elevated by the treatment of PG. Pathological results by H&E staining showed that PG prevented the appearance of distortion and atrophy of crypt and neutrophil infiltration in a dose-dependent manner. RT-PCR revealed that the expression levels of the inflammatory factors IL-1β, IL-6 and IL-10 were significantly suppressed, and the expression of the intestinal tight junction protein Claudin-1, Occludin and ZO-1 were upregulted in PG-treated UC mice. Conclusively, our results revealed that prodigiosin effectively prevented inflammatory response and protected intestinal barrier integrity of DSS-induced colitis mice via modulating gut microbiota community structure, suppressing inflammatory factors' expression, and accelerating the expression of intestinal tight junction protein. These results will provide new insights into the interaction of prodigiosin with intestinal microbiota homeostasis and its application in clinical against inflammatory bowel disease.
Collapse
Affiliation(s)
- Hao Nie
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 61 Daxuecheng Middle Road, Shapingba District, Chongqing 401334, PR China
| | - Yingli Li
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 61 Daxuecheng Middle Road, Shapingba District, Chongqing 401334, PR China
| | - Xiao-Ling Lu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 61 Daxuecheng Middle Road, Shapingba District, Chongqing 401334, PR China
| | - Jing Yan
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 61 Daxuecheng Middle Road, Shapingba District, Chongqing 401334, PR China
| | - Xiang-Ru Liu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 61 Daxuecheng Middle Road, Shapingba District, Chongqing 401334, PR China
| | - Qi Yin
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 61 Daxuecheng Middle Road, Shapingba District, Chongqing 401334, PR China.
| |
Collapse
|
7
|
Tsai SH, Tseng YH, Chiou WF, Chen SM, Chung Y, Wei WC, Huang WC. The Effects of Whole-Body Vibration Exercise Combined With an Isocaloric High-Fructose Diet on Osteoporosis and Immunomodulation in Ovariectomized Mice. Front Nutr 2022; 9:915483. [PMID: 35795589 PMCID: PMC9251498 DOI: 10.3389/fnut.2022.915483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundOsteoporosis and immune-associated disorders are highly prevalent among menopausal women, and diet control and exercise exert beneficial effects on physiological modulation in this population. A controlled diet with a low fat content and a balanced caloric intake improves menopausal health, but the health effects of excessive fructose consumption on menopausal women are yet to be confirmed. In addition, whole-body vibration (WBV), a safe passive-training method, has been shown to have multiple beneficial effects on metabolism regulation, obesity, and bone health.MethodsThe ovariectomized (OVX) C57BL/6J model was used to verify the effects of WBV combined with a high-fructose diet (HFrD) for 16 weeks on physiological modulation and immune responses. The mice were randomly allocated to sham, OVX, OVX+HFrD, and OVX+HFrD+WBV groups, which were administered with the indicated ovariectomy, dietary and WBV training treatments. We conducted growth, dietary intake, glucose homeostasis, body composition, immunity, inflammation, histopathology, and osteoporotic assessments (primary outcomes).ResultsOur results showed that the isocaloric HFrD in OVX mice negated estrogen-deficiency–associated obesity, but that risk factors such as total cholesterol, glucose intolerance, osteoporosis, and liver steatosis still contributed to the development of metabolic diseases. Immune homeostasis in the OVX mice was also negatively affected by the HFrD diet, via the comprehensive stimulation of T cell activation, causing inflammation. The WBV intervention combined with the HFrD model significantly ameliorated weight gain, glucose intolerance, total cholesterol, and inflammatory cytokines (interferon gamma [IFN-γ], interleukin [IL]-17, and IL-4) in the OVX mice, although osteoporosis and liver steatosis were not affected compared to the negative control group. These findings indicate that an isocaloric high-fructose diet alone may not result in menopausal obesity, but that some deleterious physiological impacts still exist.ConclusionThe WBV method may modulate the physiological impacts of menopause and the HFrD diet, and should be considered as an alternative exercise prescription for people with poor compliance or who are unable or unwilling to use traditional methods to improve their health. In future studies, using the WBV method as a preventive or therapeutic strategy, combined with nutritional interventions, medication, and other exercise prescriptions, may prove beneficial for maintaining health in menopausal women.
Collapse
Affiliation(s)
- Syun-Hui Tsai
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Yu-Hwei Tseng
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Wen-Fei Chiou
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | | | - Yi Chung
- College of Human Development and Health, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Wen-Chi Wei
- National Research Institute of Chinese Medicine, Taipei, Taiwan
- Wen-Chi Wei
| | - Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- *Correspondence: Wen-Ching Huang
| |
Collapse
|
8
|
Ramires LC, Santos GS, Ramires RP, da Fonseca LF, Jeyaraman M, Muthu S, Lana AV, Azzini G, Smith CS, Lana JF. The Association between Gut Microbiota and Osteoarthritis: Does the Disease Begin in the Gut? Int J Mol Sci 2022; 23:1494. [PMID: 35163417 PMCID: PMC8835947 DOI: 10.3390/ijms23031494] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Some say that all diseases begin in the gut. Interestingly, this concept is actually quite old, since it is attributed to the Ancient Greek physician Hippocrates, who proposed the hypothesis nearly 2500 years ago. The continuous breakthroughs in modern medicine have transformed our classic understanding of the gastrointestinal tract (GIT) and human health. Although the gut microbiota (GMB) has proven to be a core component of human health under standard metabolic conditions, there is now also a strong link connecting the composition and function of the GMB to the development of numerous diseases, especially the ones of musculoskeletal nature. The symbiotic microbes that reside in the gastrointestinal tract are very sensitive to biochemical stimuli and may respond in many different ways depending on the nature of these biological signals. Certain variables such as nutrition and physical modulation can either enhance or disrupt the equilibrium between the various species of gut microbes. In fact, fat-rich diets can cause dysbiosis, which decreases the number of protective bacteria and compromises the integrity of the epithelial barrier in the GIT. Overgrowth of pathogenic microbes then release higher quantities of toxic metabolites into the circulatory system, especially the pro-inflammatory cytokines detected in osteoarthritis (OA), thereby promoting inflammation and the initiation of many disease processes throughout the body. Although many studies link OA with GMB perturbations, further research is still needed.
Collapse
Affiliation(s)
- Luciano C. Ramires
- Department of Orthopaedics and Sports Medicine, Mãe de Deus Hospital, Porto Alegre 90110-270, RS, Brazil;
| | - Gabriel Silva Santos
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, SP, Brazil; (G.A.); (J.F.L.)
| | - Rafaela Pereira Ramires
- Department of Biology, Cellular, Molecular and Biomedical Science, Boise State University, 1910 W University Drive, Boise, ID 83725, USA;
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, The Federal University of São Paulo, São Paulo 04024-002, SP, Brazil
| | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India;
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, Tamil Nadu, India;
| | - Anna Vitória Lana
- Department of Medicine, Max Planck University Center, Indaiatuba 13343-060, SP, Brazil;
| | - Gabriel Azzini
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, SP, Brazil; (G.A.); (J.F.L.)
| | - Curtis Scott Smith
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 83703, USA;
| | - José Fábio Lana
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, SP, Brazil; (G.A.); (J.F.L.)
| |
Collapse
|
9
|
Chen Y, Hu S, Li J, Zhao B, Yang N, Zhou T, Liang S, Bai S, Wu X. Bacitracin Methylene Disalicylate Improves Intestinal Health by Modulating Its Development and Microbiota in Weaned Rabbits. Front Microbiol 2021; 12:579006. [PMID: 34248860 PMCID: PMC8267888 DOI: 10.3389/fmicb.2021.579006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 05/31/2021] [Indexed: 12/30/2022] Open
Abstract
Intestinal infections are a major cause of morbidity and mortality in humans and agricultural animals, especially newborns and weaned animals. Preventive treatments that help weaned animals maintain homeostasis and balance the hindgut microbial populations are desirable. The present study aimed to explore the impact of bacitracin methylene disalicylate (BMD) on the intestinal health by analyzing the intestinal environment, morphology, expression of peptidoglycan recognition proteins (PGRPs), and flora of weaned rabbits. A total of 300 New Zealand weaned rabbits were randomly divided into the following five treatment groups for a 35-day feed trial: control group (basal diet), bacitracin zinc (BZ) group (50 mg/kg BZ), BMDa group (100 mg/kg BMD), BMDb group (50 mg/kg BMD), and BMDc group (rabbits fed a basal diet supplemented with 25 mg/kg BMD). In each treatment group, 28 rabbits were slaughtered for experimental analysis. The results showed that the supplementation of BMD increased the environmental acidity of the cecum of the weaned rabbits and reduced the ammonia-nitrogen concentration, which was beneficial to the survival of useful bacteria in the intestine. The morphology analysis of the duodenum using hematoxylin and eosin staining revealed that the villus length, villus/crypt ratio, and intestinal wall thickness increased in the BMD group, thereby improving the structure of the duodenum and the absorption capacity of the small intestine. Moreover, real-time polymerase chain reaction test showed that PGRPs (especially PGLYRP-1 and PGLYRP-2) in the intestinal had an antagonistic effect with BMD in the process of inhibiting pathogenic bacteria, resulting in their decreased expression (P < 0.05). Furthermore, through 16S rRNA sequencing in the cecal content, the abundance of the predominant phyla in the BMDa and BZ groups was found to be the closest. The abundance of the genera Lachnospira, Erysipelotrichaceae (p-75-a5), Paraprevotellaceae (YRC22), Mogibacterium, Peptococcaceae (rc4-4), Anaerovibrio, Succinivibrio, and Sphaerochaeta increased in the BMDa and BZ groups (P < 0.05). The relative abundance of Alistipes, Sedimentibacter, and Dorea significantly increased only in the BMDa group (P < 0.05). Conclusively, BMD, as well as microbes, improved the intestinal environment and structure to maintain the intestinal health of weaned rabbits.
Collapse
Affiliation(s)
- Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Shuaishuai Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tong Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shuang Liang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shaocheng Bai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Michels MDL, Spivakoski CS, Réus BDS, Alves DMDS, Mattje PND, Hohl A, Ronsoni MF, Sande‐Lee S. Effect of whole body vibration on clinical and metabolic outcomes in adults with type 2 diabetes: an observational pilot trial. PRACTICAL DIABETES 2021. [DOI: 10.1002/pdi.2337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manuella de L Michels
- Division of Endocrinology and Metabolism, University Hospital of the Federal University of Santa Catarina, Florianópolis SC Brazil
| | - Camila S Spivakoski
- Division of Endocrinology and Metabolism, University Hospital of the Federal University of Santa Catarina, Florianópolis SC Brazil
| | - Bruna da S Réus
- Division of Endocrinology and Metabolism, University Hospital of the Federal University of Santa Catarina, Florianópolis SC Brazil
| | - Débora M dos S Alves
- Division of Endocrinology and Metabolism, University Hospital of the Federal University of Santa Catarina, Florianópolis SC Brazil
| | - Priscila ND Mattje
- Division of Endocrinology and Metabolism, University Hospital of the Federal University of Santa Catarina, Florianópolis SC Brazil
| | - Alexandre Hohl
- Division of Endocrinology and Metabolism, University Hospital of the Federal University of Santa Catarina, Florianópolis SC Brazil
| | - Marcelo F Ronsoni
- Division of Endocrinology and Metabolism, University Hospital of the Federal University of Santa Catarina, Florianópolis SC Brazil
| | - Simone Sande‐Lee
- Division of Endocrinology and Metabolism, University Hospital of the Federal University of Santa Catarina, Florianópolis SC Brazil
| |
Collapse
|
11
|
Yang L, Lin H, Lin W, Xu X. Exercise Ameliorates Insulin Resistance of Type 2 Diabetes through Motivating Short-Chain Fatty Acid-Mediated Skeletal Muscle Cell Autophagy. BIOLOGY 2020; 9:biology9080203. [PMID: 32756447 PMCID: PMC7464264 DOI: 10.3390/biology9080203] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023]
Abstract
Background: Exercise can ameliorate type II diabetes mellitus (T2DM) by regulating intestinal flora metabolites. However, the detailed mechanism needs to be further explored. Methods: A T2DM model using mice was established by feeding them a high-fat diet and giving them subsequent streptozocin injections. Fasting blood glucose and serum insulin were determined by blood glucose meter and radioimmunoassay, respectively. Intestinal flora was measured by 16sRNA sequencing. SCFA content was measured by gas chromatography (GC) or enzyme-linked immunosorbent assay (ELISA). A fluorescently labeled 2-deoxyglucose (2-NBDG) kit was employed to detect glucose uptake capacity, and western blot was utilized to explore the signaling pathway of insulin resistance and cell autophagy. Results: In the T2DM model, along with a reduction in insulin resistance (IR), exercise reversed the decline of intestinal Bacteroidetes and the increase of Firmicutes. For metabolites of Bacteroides, exercise restored the decline in total intestinal and plasma short-chain fatty acids (SCFAs) in T2DM mice. However, the administration of GLPG0974—the inhibitor of G protein-coupled receptor 43 (GPR43), which is the receptor of SCFAs—abolished exercise-mediated alleviation in IR in vivo and acetate-mediated reduction of skeletal muscle IR (SMIR) in vitro. Mechanistically, exercise induced skeletal muscle cell autophagy, thereby ameliorating SMIR, which was neutralized by GLPG0974 exposure. Conclusions: Exercise-mediated SCFAs-upregulation may ameliorate insulin resistance (IR) through increasing autophagy of skeletal muscle cells by binding to GPR43. This study provides a theoretical basis for targeting gut bacterial metabolites to prevent T2DM.
Collapse
Affiliation(s)
- Ling Yang
- National Demonstration Center for Experimental Sports Science Education, School of Physical Education, South China Normal University, Guangzhou 510006, China;
- School of Physical Education, Shao Guan University, Shaoguan 512000, China
| | - Haiqi Lin
- School of Physical Education, South China University of Technology, Guangzhou 510641, China;
| | - Wentao Lin
- Guangzhou Institute of Physical Education, Guangzhou Sport University, Guangzhou 510500, China;
| | - Xiaoyang Xu
- National Demonstration Center for Experimental Sports Science Education, School of Physical Education, South China Normal University, Guangzhou 510006, China;
- Correspondence: ; Tel.: +86-135-0300-9002
| |
Collapse
|
12
|
Oroszi T, van Heuvelen MJ, Nyakas C, van der Zee EA. Vibration detection: its function and recent advances in medical applications. F1000Res 2020; 9:F1000 Faculty Rev-619. [PMID: 32595943 PMCID: PMC7308885 DOI: 10.12688/f1000research.22649.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Vibrations are all around us. We can detect vibrations with sensitive skin mechanoreceptors, but our conscious awareness of the presence of vibrations is often limited. Nevertheless, vibrations play a role in our everyday life. Here, we briefly describe the function of vibration detection and how it can be used for medical applications by way of whole body vibration. Strong vibrations can be harmful, but milder vibrations can be beneficial, although to what extent and how large the clinical relevance is are still controversial. Whole body vibration can be applied via a vibrating platform, used in both animal and human research. Recent findings make clear that the mode of action is twofold: next to the rather well-known exercise (muscle) component, it also has a sensory (skin) component. Notably, the sensory (skin) component stimulating the brain has potential for several purposes including improvements in brain-related disorders. Combining these two components by selecting the optimal settings in whole body vibration has clear potential for medical applications. To realize this, the field needs more standardized and personalized protocols. It should tackle what could be considered the "Big Five" variables of whole body vibration designs: vibration amplitude, vibration frequency, method of application, session duration/frequency, and total intervention duration. Unraveling the underlying mechanisms by translational research can help to determine the optimal settings. Many systematic reviews on whole body vibration end with the conclusion that the findings are promising yet inconclusive. This is mainly because of the large variation in the "Big Five" settings between studies and incomplete reporting of methodological details hindering reproducibility. We are of the opinion that when (part of) these optimal settings are being realized, a much better estimate can be given about the true potential of whole body vibration as a medical application.
Collapse
Affiliation(s)
- Tamás Oroszi
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Research Center for Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Marieke J.G. van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Eddy A. van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|