1
|
Zhen K, Wei X, Zhi Z, Shang S, Zhang S, Xu Y, Fu X, Cheng L, Yao J, Li Y, Chen X, Liu P, Zhang H. Circulating Extracellular Vesicles from Heart Failure Patients Inhibit Human Cardiomyocyte Activities. J Cardiovasc Transl Res 2024:10.1007/s12265-024-10571-1. [PMID: 39384702 DOI: 10.1007/s12265-024-10571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Extracellular vesicles (EVs) have been implicated in cardiac remodeling during heart failure (HF). However, the role of circulating EVs (CEVs) in the process of HF is poorly understood. To elucidate the molecular mechanism associated with CEVs in the context of HF, the proteome of 4D label-free EVs from plasma samples was identified. Among the identified proteins, 6 exhibited upregulation while 9 demonstrated downregulation in CEVs derived from HF patients (HCEVs) compared to healthy controls (NCEVs). Our results showed that up-regulated proteins mainly participate in the primary metabolic, glycerolipid metabolic processes, oxidation-reduction process, and inflammatory amplification. In contrast, the down-regulated proteins influenced cell development, differentiation, and proliferation. Compared to NCEVs, HCEVs significantly induced inflammation and triacylglycerol (TAG) accumulation in human cardiomyocytes (HCMs) in vitro. They also compromised their regenerative capacities, triggered endoplasmic reticulum (ER) stress and increased autophagy in HCMs. Further, HCEVs induced differentiation of human cardiac fibroblasts (HCFs), amplifying pro-inflammatory, and pro-fibrotic factors, and enhancing extracellular matrix deposition. Notably, HCEVs are also associated with an increase in the HF biomarker MMP9 within HCFs and demonstrate a negative correlation with autophagic flux. In conclusion, HCEVs appear pivotal in advancing HF via pathological cardiac remodeling.
Collapse
Affiliation(s)
- Ke Zhen
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100011, China
| | - Xiaojuan Wei
- Department of Cardiovascular Surgery, Air Force Medical Center, PLA, Beijing, 100048, China
| | - Zelun Zhi
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shiyu Shang
- The First Clinical Medical College, Hebei North University, Zhangjiakou, 075132, China
| | - Shuyan Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yilu Xu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Xiaochuan Fu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Linjia Cheng
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Jing Yao
- Department of Cardiovascular Surgery, Air Force Medical Center, PLA, Beijing, 100048, China
| | - Yue Li
- Department of Cardiovascular Surgery, Air Force Medical Center, PLA, Beijing, 100048, China
| | - Xia Chen
- Department of Cardiovascular Surgery, Air Force Medical Center, PLA, Beijing, 100048, China
| | - Pingsheng Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongchao Zhang
- Department of Cardiovascular Surgery, Air Force Medical Center, PLA, Beijing, 100048, China.
| |
Collapse
|
2
|
Kim J, Ro J, Cho YK. Vascularized platforms for investigating cell communication via extracellular vesicles. BIOMICROFLUIDICS 2024; 18:051504. [PMID: 39323481 PMCID: PMC11421861 DOI: 10.1063/5.0220840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
The vascular network plays an essential role in the maintenance of all organs in the body via the regulated delivery of oxygen and nutrients, as well as tissue communication via the transfer of various biological signaling molecules. It also serves as a route for drug administration and affects pharmacokinetics. Due to this importance, engineers have sought to create physiologically relevant and reproducible vascular systems in tissue, considering cell-cell and extracellular matrix interaction with structural and physical conditions in the microenvironment. Extracellular vesicles (EVs) have recently emerged as important carriers for transferring proteins and genetic material between cells and organs, as well as for drug delivery. Vascularized platforms can be an ideal system for studying interactions between blood vessels and EVs, which are crucial for understanding EV-mediated substance transfer in various biological situations. This review summarizes recent advances in vascularized platforms, standard and microfluidic-based techniques for EV isolation and characterization, and studies of EVs in vascularized platforms. It provides insights into EV-related (patho)physiological regulations and facilitates the development of EV-based therapeutics.
Collapse
|
3
|
Gonçalves MO, Di Iorio JF, Marin GV, Meneghetti P, Negreiros NGS, Torrecilhas AC. Extracellular vesicles. CURRENT TOPICS IN MEMBRANES 2024; 94:1-31. [PMID: 39370203 DOI: 10.1016/bs.ctm.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Cells, pathogens, and other systems release extracellular vesicles (EVs). The particles promote intercellular communication and contain proteins, lipids, RNA and DNA. Initially considered to be cellular waste in the twentieth century, EVs were becoming recognized for their function in biological communication and control. EVs are divided into many subtypes: exosomes, microvesicles, and apoptotic bodies. Exosomes form in the late endosome/multivesicular body and are released when the compartments fuse with the plasma membrane. Microvesicles are generated by direct budding of the plasma membrane, whereas apoptotic bodies are formed after cellular apoptosis. The new guideline for EVs that describes alternate nomenclature for EVs. The particles modulate the immune response by affecting both innate and adaptive immunity, and their specific the structure allows them to be used as biomarkers to diagnose a variety of diseases. EVs have a wide range of applications, for example, delivery systems for medications and genetic therapies because of their ability to convey specific cellular material. In anti-tumor therapy, EVs deliver therapeutic chemicals to tumor cells. The EVs promote transplant compatibility and reduce organ rejection. Host-parasite interactions, therapeutic and diagnostic for cancer, cardiovascular disease, cardiac tissue regeneration, and the treatment of neurological diseases such as Alzheimer's and Parkinson's. The study of EVs keeps on expanding, revealing new functions and beneficial options. EVs have the potential to change drug delivery, diagnostics, and specific therapeutics, creating a new frontier in biomedical.
Collapse
Affiliation(s)
- Mariana Ottaiano Gonçalves
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Juliana Fortes Di Iorio
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Gabriela Villa Marin
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Paula Meneghetti
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Náthani Gabrielly Silva Negreiros
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
4
|
Gu Y, Feng J, Shi J, Xiao G, Zhang W, Shao S, Liu B, Guo H. Global Research Trends on Exosome in Cardiovascular Diseases: A Bibliometric-Based Visual Analysis. Vasc Health Risk Manag 2024; 20:377-402. [PMID: 39188326 PMCID: PMC11346494 DOI: 10.2147/vhrm.s473520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024] Open
Abstract
Background Exosomes in cardiovascular diseases (CVDs) have attracted huge attention with substantial value and potential. Our bibliometrics is based on literature from the field of cardiovascular exosomes over the past 30 years, which has been visualized to display the development process, research hotspots, and cutting-edge trends of clinical practices, mechanisms, and management strategies related to psych cardiology. Methods We selected articles and reviews on exosomes in CVDs from the core collection of Web of Science, and generated visual charts by using CiteSpace and VOSviewer software. Results Our research included 1613 publications. The number of exosome articles in CVD fluctuates slightly, but overall shows an increasing trend. The main research institutions were Tongji University and Nanjing Medical University. The International Journal of Molecular Sciences has the highest publication volume, while the Journal of Cellular and Molecular Medicine has the highest citation count. Among all the authors, Eduardo Marban ranks first in terms of publication volume and H-index. The most common keywords are exosome, extracellular vesicles, and angiogenesis. Conclusion This is a bibliometric study on the research hotspots and trends of exosomes in CVD. Exosome research in the field of cardiovascular medicine is on the rise. Some exosome treatment methods may become the focus of future research.
Collapse
Affiliation(s)
- Yunxiao Gu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jiaming Feng
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jiayi Shi
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Guanyi Xiao
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Weiwei Zhang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Shuijin Shao
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Baonian Liu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Haidong Guo
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Barnadas-Carceller B, Del Portillo HA, Fernandez-Becerra C. Extracellular vesicles as biomarkers in parasitic disease diagnosis. CURRENT TOPICS IN MEMBRANES 2024; 94:187-223. [PMID: 39370207 DOI: 10.1016/bs.ctm.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Parasitic diseases constitute a major global health problem, affecting millions of people worldwide. Recent advances in the study of extracellular vesicles (EVs) have opened up new strategies for biomarker discovery in protozoan and helminth infections. Analyses of EVs in cultures and biological fluids have identified numerous potential biomarkers that could be useful for early and differential diagnosis, monitoring therapeutic responses, and the overall management and control of these diseases. Despite the potential of these biomarkers, several challenges must be addressed, including limited research, the need for standardized protocols, and the reproducibility of results across studies. In many parasitic infections, EVs have been obtained from various sample types, including plasma from human patients and mouse models, as well as cultures of the parasites at different stages. EVs were isolated by various methods and predominantly characterized through proteomic analysis or RNA sequencing to assess their cargo and identify potential biomarkers. These biomarker candidates were investigated and validated using different assays such as ELISA, Western Blot, and ROC curves. Overall, the use of EVs is considered a promising new diagnostic strategy for parasite infections, but further research with larger cohorts, standardized methods, and additional validation tests are essential for effective diagnosis and management of these diseases.
Collapse
Affiliation(s)
- Berta Barnadas-Carceller
- ISGlobal, Barcelona Institute for Global Health, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; IGTP Institut d'Investigació Germans Trias I Pujol, Badalona, Barcelona, Spain
| | - Hernando A Del Portillo
- ISGlobal, Barcelona Institute for Global Health, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; IGTP Institut d'Investigació Germans Trias I Pujol, Badalona, Barcelona, Spain; ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Carmen Fernandez-Becerra
- ISGlobal, Barcelona Institute for Global Health, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; IGTP Institut d'Investigació Germans Trias I Pujol, Badalona, Barcelona, Spain; CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Khan NLA, Muhandiram S, Dissanayake K, Godakumara K, Midekessa G, Andronowska A, Heath PR, Kodithuwakku S, Hart AR, Fazeli A. Effect of 3D and 2D cell culture systems on trophoblast extracellular vesicle physico-chemical characteristics and potency. Front Cell Dev Biol 2024; 12:1382552. [PMID: 38835509 PMCID: PMC11148233 DOI: 10.3389/fcell.2024.1382552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
The growing understanding of the role of extracellular vesicles (EVs) in embryo-maternal communication has sparked considerable interest in their therapeutic potential within assisted reproductive technology, particularly in enhancing implantation success. However, the major obstacle remains the large-scale production of EVs, and there is still a gap in understanding how different culture systems affect the characteristics of the EVs. In the current study, trophoblast analogue human chorionic carcinoma cell line was cultivated in both conventional monolayer culture (2D) and as spheroids in suspension culture (3D) and how the cell growth environment affects the physical, biochemical and cellular signalling properties of EVs produced by them was studied. Interestingly, the 3D system was more active in secreting EVs compared to the 2D system, while no significant differences were observed in terms of morphology, size, and classical EV protein marker expression between EVs derived from the two culture systems. There were substantial differences in the proteomic cargo profile and cellular signalling potency of EVs derived from the two culture systems. Notably, 2D EVs were more potent in inducing a cellular response in endometrial epithelial cells (EECs) compared to 3D EVs. Therefore, it is essential to recognize that the biological activity of EVs depends not only on the cell of origin but also on the cellular microenvironment of the parent cell. In conclusion, caution is warranted when selecting an EV production platform, especially for assessing the functional and therapeutic potential of EVs through in vitro studies.
Collapse
Affiliation(s)
- Norhayati Liaqat Ali Khan
- Division of Clinical Medicine, School of Medicine and Population Health, The Medical School, University of Sheffield, Sheffield, United Kingdom
- Centre of Preclinical Science Studies, Faculty of Dentistry, University Teknologi MARA (UiTM), Sg. Buloh, Selangor, Malaysia
| | - Subhashini Muhandiram
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Keerthie Dissanayake
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Getnet Midekessa
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Aneta Andronowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Paul R Heath
- Division of Clinical Medicine, School of Medicine and Population Health, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Suranga Kodithuwakku
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Amber Rose Hart
- Division of Clinical Medicine, School of Medicine and Population Health, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Alireza Fazeli
- Division of Clinical Medicine, School of Medicine and Population Health, The Medical School, University of Sheffield, Sheffield, United Kingdom
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
7
|
Marlęga-Linert J, Gąsecka A, van der Pol E, Kuchta A, Filipiak KJ, Fijałkowski M, Gruchała M, Nieuwland R, Mickiewicz A. Lipoprotein apheresis affects the concentration of extracellular vesicles in patients with elevated lipoprotein (a). Sci Rep 2024; 14:2762. [PMID: 38307884 PMCID: PMC10837138 DOI: 10.1038/s41598-024-51782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/09/2024] [Indexed: 02/04/2024] Open
Abstract
Lipoprotein apheresis (LA) is a therapeutic option for hyperlipoproteinemia(a) (hyper-Lp(a)) and atherosclerotic cardiovascular disease (ASCVD). LA improves blood rheology, reduces oxidative stress parameters and improves endothelial function. The underlying molecular mechanisms of LA beneficial effects are unknown, but it has been suggested that LA exhibits multiple activities beyond simply removing lipoproteins. We hypothesized that LA removes not only lipoproteins, but also extracellular vesicles (EVs). To test this hypothesis, we performed a prospective study in 22 patients undergoing LA for hyper-Lp(a) and ASCVD. Different EVs subtypes were measured before and directly after LA, and after 7 days. We used calibrated flow cytometry to detect total particle concentration (diameter > ~ 100 nm), total lipoproteins concentration (diameter > 200 nm, RI > 1.51), total EV concentration (diameter > 200 nm, RI < 1.41), concentrations of EVs derived from erythrocytes (CD235a+; diameter > 200 nm, RI < 1.41), leukocytes (CD45+; diameter > 200 nm, RI < 1.41) and platelets (CD61+, PEVs; diameter > 200 nm, RI < 1.41). LA reduced the concentrations of all investigated EVs subtypes and lipoproteins. Lp(a) concentration was lowered by 64.5% [(58% - 71%); p < 0.001]. Plasma concentrations of EVs > 200 nm in diameter derived from platelets (CD61 +), leukocytes (CD45+) and erythrocytes (CD235a+) decreased after single LA procedure by 42.7% [(12.8-54.7); p = 0.005], 42.6% [(29.7-54.1); p = 0.030] and 26.7% [(1.0-62.7); p = 0.018], respectively, compared to baseline. All EV subtypes returned to the baseline concentrations in blood plasma after 7 days. To conclude, LA removes not only Lp(a), but also cell-derived EVs, which may contribute to LA beneficial effects.
Collapse
Affiliation(s)
- Joanna Marlęga-Linert
- First Chair and Department of Cardiology, Medical University of Gdansk, Gdańsk, Poland
| | - Aleksandra Gąsecka
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
- Amsterdam Vesicle Center and Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Edwin van der Pol
- Amsterdam Vesicle Center and Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centres, Amsterdam, The Netherlands
- Biomedical Engineering and Physics, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Agnieszka Kuchta
- Department of Clinical Chemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Krzysztof J Filipiak
- Institute of Clinical Sciences, Maria Skłodowska-Curie Medical Academy in Warsaw, Warsaw, Poland
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Marcin Fijałkowski
- First Chair and Department of Cardiology, Medical University of Gdansk, Gdańsk, Poland
| | - Marcin Gruchała
- First Chair and Department of Cardiology, Medical University of Gdansk, Gdańsk, Poland
| | - Rienk Nieuwland
- Amsterdam Vesicle Center and Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Agnieszka Mickiewicz
- First Chair and Department of Cardiology, Medical University of Gdansk, Gdańsk, Poland.
| |
Collapse
|
8
|
Taghdiri A. Cardiovascular biomarkers: exploring troponin and BNP applications in conditions related to carbon monoxide exposure. Egypt Heart J 2024; 76:9. [PMID: 38282021 PMCID: PMC10822827 DOI: 10.1186/s43044-024-00446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/25/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND The diagnosis and prognosis of cardiovascular disorders are greatly aided by cardiovascular biomarkers. The uses of troponin and B-type natriuretic peptide in situations involving carbon monoxide exposure are examined in this narrative review. These biomarkers are important because they help predict outcomes in cardiovascular disorders, track the effectiveness of therapy, and influence therapeutic choices. MAIN BODY Clinical practice makes considerable use of B-type natriuretic peptide (BNP), which has diuretic and vasodilatory effects, and troponin, a particular marker for myocardial injury. Carbon monoxide (CO) poisoning is a major worldwide health problem because CO, a "silent killer," has significant clinical consequences. Higher risk of cardiac problems, poorer clinical outcomes, and greater severity of carbon monoxide poisoning are all linked to elevated troponin and B-type natriuretic peptide levels. BNP's adaptability in diagnosing cardiac dysfunction and directing decisions for hyperbaric oxygen therapy is complemented by troponin's specificity in identifying CO-induced myocardial damage. When combined, they improve the accuracy of carbon monoxide poisoning diagnoses and offer a thorough understanding of cardiac pathophysiology. CONCLUSIONS To sum up, this review emphasizes the importance of troponin and B-type natriuretic peptide (BNP) as cardiac indicators during carbon monoxide exposure. While BNP predicts long-term cardiac problems, troponin is better at short-term morbidity and death prediction. When highly sensitive troponin I (hsTnI) and B-type natriuretic peptide are combined, the diagnostic accuracy of carbon monoxide poisoning patients is improved. One of the difficulties is evaluating biomarker levels since carbon monoxide poisoning symptoms are not always clear-cut. Accurate diagnosis and treatment depend on the investigation of new biomarkers and the use of standardized diagnostic criteria. The results advance the use of cardiovascular biomarkers in the intricate field of carbon monoxide exposure.
Collapse
Affiliation(s)
- Andia Taghdiri
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia.
| |
Collapse
|
9
|
Ateeq M, Broadwin M, Sellke FW, Abid MR. Extracellular Vesicles' Role in Angiogenesis and Altering Angiogenic Signaling. Med Sci (Basel) 2024; 12:4. [PMID: 38249080 PMCID: PMC10801520 DOI: 10.3390/medsci12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Angiogenesis, the process of new blood vessels formation from existing vasculature, plays a vital role in development, wound healing, and various pathophysiological conditions. In recent years, extracellular vesicles (EVs) have emerged as crucial mediators in intercellular communication and have gained significant attention for their role in modulating angiogenic processes. This review explores the multifaceted role of EVs in angiogenesis and their capacity to modulate angiogenic signaling pathways. Through comprehensive analysis of a vast body of literature, this review highlights the potential of utilizing EVs as therapeutic tools to modulate angiogenesis for both physiological and pathological purposes. A good understanding of these concepts holds promise for the development of novel therapeutic interventions targeting angiogenesis-related disorders.
Collapse
Affiliation(s)
- Maryam Ateeq
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
| |
Collapse
|
10
|
Bai W, Zhu T, Zuo J, Li Y, Huang X, Li G. Delivery of SAV-siRNA via Exosomes from Adipose-Derived Stem Cells for the Treatment of Myocardial Infarction. Tissue Eng Regen Med 2023; 20:1063-1077. [PMID: 37801227 PMCID: PMC10645647 DOI: 10.1007/s13770-023-00588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Myocardial infarction (MI) leads to cardiomyocyte death, poor cardiac remodeling, and heart failure, making it a major cause of mortality and morbidity. To restore cardiac pumping function, induction of cardiomyocyte regeneration has become a focus of academic interest. The Hippo pathway is known to regulate cardiomyocyte proliferation and heart size, and its inactivation allows adult cardiomyocytes to re-enter the cell cycle. METHODS In this study, we investigated whether exosomes from adipose-derived stem cells (ADSCs) could effectively transfer siRNA for the Hippo pathway regulator Salvador (SAV) into cardiomyocytes to induce cardiomyocyte regeneration in a mouse model of MI. RESULTS Our results showed that exosomes loaded with SAV-siRNA effectively transferred siRNA into cardiomyocytes and induced cardiomyocyte re-entry into the cell cycle, while retaining the previously demonstrated therapeutic efficacy of ADSC-derived exosomes to improve post-infarction cardiac function through anti-fibrotic, pro-angiogenic, and other effects. CONCLUSIONS Our findings suggest that siRNA delivery via ADSC-derived exosomes may be a promising approach for the treatment of MI.
Collapse
Affiliation(s)
- Weizhe Bai
- Department of Cardiac Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Tianchuan Zhu
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Jiebin Zuo
- Department of Cardiac Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Yang Li
- Department of Cardiac Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Xi Huang
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Zhuhai, Guangdong, People's Republic of China.
| | - Gang Li
- Department of Cardiac Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Zhuhai, Guangdong, People's Republic of China.
| |
Collapse
|
11
|
Heiston EM, Ballantyne A, La Salvia S, Musante L, Erdbrügger U, Malin SK. Acute exercise decreases insulin-stimulated extracellular vesicles in conjunction with augmentation index in adults with obesity. J Physiol 2023; 601:5033-5050. [PMID: 35081660 PMCID: PMC9314457 DOI: 10.1113/jp282274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022] Open
Abstract
Extracellular vesicles (EVs) are often elevated in obesity and may modulate disease risk. Although acute exercise reduces fasting EVs in adults with obesity, no data exist on insulin-mediated EV responses. This study evaluated the effects of exercise on EV responses to insulin in relation to vascular function. Ten (5M/5F) sedentary adults with obesity (34.3 ± 3.7 kg/m2 ) completed an evening control and acute exercise condition (70%V ̇ O 2 max ${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}}$ to expend 400 kcal). Following an overnight fast, participants underwent a 2 h euglycaemic-hyperinsulinaemic clamp (90 mg/dl; 40 mU/m2 /min) to determine metabolic insulin sensitivity (M-value), phenotypes of medium- to large-sized EVs, and aortic waveform measures. Endothelial (CD105+ , CD41- /CD31+ )-, leukocyte (CD45+ )-, platelet (CD41+ , CD41+ /31+ )- and tetraspanin (TX+ )-derived EVs, as well as platelet endothelial cell adhesion molecule (CD31+ ), were determined before and after the clamp using high resolution spectral flow cytometry. Although exercise did not alter fasting haemodynamics, it lowered the augmentation index (AIx75, P = 0.024) and increased the M-value (P = 0.042). Further, exercise decreased all fasting EVs (P < 0.01) and decreased insulin-stimulated TX+ (P = 0.060), CD31+ (P = 0.060) and CD41- /31+ (P = 0.045) compared to rest. Interestingly, greater insulin-stimulated decreases in CD41- /31+ were associated with reduced AIx75 during the clamp (r = 0.62, P = 0.059), while insulin-stimulated decreases in CD41+ (r = -0.68, P = 0.031), CD41+ /31+ (r = -0.69, P = 0.262), TX+ (r = -0.66, P = 0.037) and CD31+ (r = -0.69, P = 0.028) correlated with M-value following exercise. Thus, acute exercise may decrease fasting and insulin-stimulated medium- to large-size EVs in conjunction with improved M-value and AIx75. More research is needed to understand effects of exercise on EVs in the regulation of glucose homeostasis and vascular function. KEY POINTS: Extracellular vesicles (EVs) are increased in states of obesity and may play a role in altered insulin sensitivity and blood pressure; aerobic exercise decreases fasting EV concentrations the following day in adults with obesity. This study directly tested the effects of insulin on EVs and how a single bout of exercise impacts these responses. Together, these data highlight the positive effects of a single bout of exercise on fasting and insulin-stimulated EVs, with the latter relating to increased insulin sensitivity and decreased augmentation index. These results support future research identifying EVs as mechanistic factors in glucose regulation and vascular function as well as clinical use of exercise to reduce cardiovascular disease risk.
Collapse
Affiliation(s)
- Emily M. Heiston
- Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA
- Department of Kinesiology, University of Virginia, VA
| | | | - Sabrina La Salvia
- Division of Nephrology, Department of Medicine, University of Virginia, VA
| | - Luca Musante
- Division of Nephrology, Department of Medicine, University of Virginia, VA
| | - Uta Erdbrügger
- Division of Nephrology, Department of Medicine, University of Virginia, VA
| | - Steven K. Malin
- Department of Kinesiology, University of Virginia, VA
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, New Brunswick, NJ
- The New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, NJ
| |
Collapse
|
12
|
Collado A, Gan L, Tengbom J, Kontidou E, Pernow J, Zhou Z. Extracellular vesicles and their non-coding RNA cargos: Emerging players in cardiovascular disease. J Physiol 2023; 601:4989-5009. [PMID: 36094621 DOI: 10.1113/jp283200] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, have recently received attention as essential mechanisms for cell-to-cell communication in cardiovascular disease. EVs can be released from different types of cells, including endothelial cells, smooth muscle cells, cardiac cells, fibroblasts, platelets, adipocytes, immune cells and stem cells. Non-coding (nc)RNAs as EV cargos have recently been investigated in the cardiovascular system. Up- or downregulated ncRNAs in EVs have been shown to play a crucial role in various cardiovascular diseases. Communication via EV-derived ncRNAs can occur between cells of the same type and between different types of cells involved in the pathophysiology of cardiovascular disease. In the present review, we highlight the important aspects of diverse cell-derived EVs and their ncRNA cargos as disease mediators and potential therapeutic targets in atherosclerosis, coronary artery disease, ischaemic heart disease and cardiac fibrosis. In addition, we summarize the potential of EV-derived ncRNAs in the treatment of cardiovascular disease. Finally, we discuss the different methods for EV isolation and characterization. A better understanding of the specific role of EVs and their ncRNA cargos in the regulation of cardiovascular (dys)function will be of importance for the development of diagnostic and therapeutic tools for cardiovascular disease.
Collapse
Affiliation(s)
- Aida Collado
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lu Gan
- Laboratory of Emergency Medicine, Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - John Tengbom
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Eftychia Kontidou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Allbritton-King JD, García-Cardeña G. Endothelial cell dysfunction in cardiac disease: driver or consequence? Front Cell Dev Biol 2023; 11:1278166. [PMID: 37965580 PMCID: PMC10642230 DOI: 10.3389/fcell.2023.1278166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
The vascular endothelium is a multifunctional cellular system which directly influences blood components and cells within the vessel wall in a given tissue. Importantly, this cellular interface undergoes critical phenotypic changes in response to various biochemical and hemodynamic stimuli, driving several developmental and pathophysiological processes. Multiple studies have indicated a central role of the endothelium in the initiation, progression, and clinical outcomes of cardiac disease. In this review we synthesize the current understanding of endothelial function and dysfunction as mediators of the cardiomyocyte phenotype in the setting of distinct cardiac pathologies; outline existing in vivo and in vitro models where key features of endothelial cell dysfunction can be recapitulated; and discuss future directions for development of endothelium-targeted therapeutics for cardiac diseases with limited existing treatment options.
Collapse
Affiliation(s)
- Jules D. Allbritton-King
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Guillermo García-Cardeña
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
14
|
Liu YK, Wu X, Hadisurya M, Li L, Kaimakliotis H, Iliuk A, Tao WA. One-Pot Analytical Pipeline for Efficient and Sensitive Proteomic Analysis of Extracellular Vesicles. J Proteome Res 2023; 22:3301-3310. [PMID: 37702715 PMCID: PMC10897859 DOI: 10.1021/acs.jproteome.3c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Extracellular vesicle (EV) proteomics emerges as an effective tool for discovering potential biomarkers for disease diagnosis, monitoring, and therapeutics. However, the current workflow of mass spectrometry-based EV proteome analysis is not fully compatible in a clinical setting due to inefficient EV isolation methods and a tedious sample preparation process. To streamline and improve the efficiency of EV proteome analysis, here we introduce a one-pot analytical pipeline integrating a robust EV isolation approach, EV total recovery and purification (EVtrap), with in situ protein sample preparation, to detect urinary EV proteome. By incorporating solvent-driven protein capture and fast on-bead digestion, the one-pot pipeline enabled the whole EV proteome analysis to be completed within one day. In comparison with the existing workflow, the one-pot pipeline was able to obtain better peptide yield and identify the equivalent number of unique EV proteins from 1 mL of urine. Finally, we applied the one-pot pipeline to profile proteomes in urinary EVs of bladder cancer patients. A total of 2774 unique proteins were identified in 53 urine samples using a 15 min gradient library-free data-independent acquisition method. Taken altogether, our novel one-pot analytical pipeline demonstrated its potential for routine and robust EV proteomics in biomedical applications.
Collapse
Affiliation(s)
- Yi-Kai Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaofeng Wu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Li Li
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
| | - Hristos Kaimakliotis
- Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Anton Iliuk
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
15
|
Jiang J, Ni L, Zhang X, Wang H, Liu L, Wei M, Li G, Bei Y. Platelet Membrane-Fused Circulating Extracellular Vesicles Protect the Heart from Ischemia/Reperfusion Injury. Adv Healthc Mater 2023; 12:e2300052. [PMID: 37097199 DOI: 10.1002/adhm.202300052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/10/2023] [Indexed: 04/26/2023]
Abstract
Myocardial ischemia/reperfusion injury (I/RI) may potentiate cardiac remodeling and heart failure, while effective therapies for I/RI remain lacking. Circulating human plasma-derived extracellular vesicles (hEV) have great potential to protect against I/RI. However, the effective delivery of hEV in vivo remains a limiting factor for clinical application. The present study constructs a biomimetic delivery system of platelet membrane-fused hEV (P-hEV), utilizing the natural affinity of platelets for hEV delivery to the injured vascular and myocardial sites. The results show that platelet membrane and hEV membrane fusion can be achieved through repeated extrusion. Compared to non-modified hEV, P-hEV uptake is greatly enhanced in human umbilical vein endothelial cells (HUVECs) stressed by oxygen-glucose deprivation/reperfusion (OGD/R). Functionally, P-hEV inhibits HUVEC and neonatal rat cardiomyocyte (NRCM) apoptosis and promotes HUVECs migration and tube formation under OGD/R stress in vitro. Intravenous delivery of P-hEV more effectively targets and accumulates at injury sites in the heart. Furthermore, P-hEV significantly enhances protection against acute I/RI and attenuates cardiac remodeling at three weeks post-I/RI. In conclusion, the platelet membrane-fused hEV delivery system enhances the target delivery of EV to protect against myocardial I/RI, presenting a novel drug delivery system for ischemic heart diseases.
Collapse
Affiliation(s)
- Jizong Jiang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Lingyan Ni
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xinxin Zhang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Hongyun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Li Liu
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Meng Wei
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Guoping Li
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yihua Bei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
16
|
Abudurexiti M, Zhao Y, Wang X, Han L, Liu T, Wang C, Yuan Z. Bio-Inspired Nanocarriers Derived from Stem Cells and Their Extracellular Vesicles for Targeted Drug Delivery. Pharmaceutics 2023; 15:2011. [PMID: 37514197 PMCID: PMC10386614 DOI: 10.3390/pharmaceutics15072011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
With their seemingly limitless capacity for self-improvement, stem cells have a wide range of potential uses in the medical field. Stem-cell-secreted extracellular vesicles (EVs), as paracrine components of stem cells, are natural nanoscale particles that transport a variety of biological molecules and facilitate cell-to-cell communication which have been also widely used for targeted drug delivery. These nanocarriers exhibit inherent advantages, such as strong cell or tissue targeting and low immunogenicity, which synthetic nanocarriers lack. However, despite the tremendous therapeutic potential of stem cells and EVs, their further clinical application is still limited by low yield and a lack of standardized isolation and purification protocols. In recent years, inspired by the concept of biomimetics, a new approach to biomimetic nanocarriers for drug delivery has been developed through combining nanotechnology and bioengineering. This article reviews the application of biomimetic nanocarriers derived from stem cells and their EVs in targeted drug delivery and discusses their advantages and challenges in order to stimulate future research.
Collapse
Affiliation(s)
- Munire Abudurexiti
- College of Pharmacy, Southwest Minzu University, Chendu 610041, China; (M.A.); (X.W.); (L.H.)
| | - Yue Zhao
- Department of Pharmacy, Sichuan Tianfu New Area People’s Hospital, Chengdu 610213, China;
| | - Xiaoling Wang
- College of Pharmacy, Southwest Minzu University, Chendu 610041, China; (M.A.); (X.W.); (L.H.)
| | - Lu Han
- College of Pharmacy, Southwest Minzu University, Chendu 610041, China; (M.A.); (X.W.); (L.H.)
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia;
| | - Chengwei Wang
- Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhixiang Yuan
- College of Pharmacy, Southwest Minzu University, Chendu 610041, China; (M.A.); (X.W.); (L.H.)
| |
Collapse
|
17
|
Beetler DJ, Di Florio DN, Bruno KA, Ikezu T, March KL, Cooper LT, Wolfram J, Fairweather D. Extracellular vesicles as personalized medicine. Mol Aspects Med 2023; 91:101155. [PMID: 36456416 PMCID: PMC10073244 DOI: 10.1016/j.mam.2022.101155] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles (EVs) are released from all cells in the body, forming an important intercellular communication network that contributes to health and disease. The contents of EVs are cell source-specific, inducing distinct signaling responses in recipient cells. The specificity of EVs and their accumulation in fluid spaces that are accessible for liquid biopsies make them highly attractive as potential biomarkers and therapies for disease. The duality of EVs as favorable (therapeutic) or unfavorable (pathological) messengers is context dependent and remains to be fully determined in homeostasis and various disease states. This review describes the use of EVs as biomarkers, drug delivery vehicles, and regenerative therapeutics, highlighting examples involving viral infections, cancer, and neurological diseases. There is growing interest to provide personalized therapy based on individual patient and disease characteristics. Increasing evidence suggests that EV biomarkers and therapeutic approaches are ideal for personalized medicine due to the diversity and multifunctionality of EVs.
Collapse
Affiliation(s)
- Danielle J Beetler
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Damian N Di Florio
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA; Center for Regenerative Medicine, University of Florida, Gainesville, FL, 32611, USA; Division of Cardiology, University of Florida, Gainesville, FL, 32611, USA
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Keith L March
- Center for Regenerative Medicine, University of Florida, Gainesville, FL, 32611, USA; Division of Cardiology, University of Florida, Gainesville, FL, 32611, USA
| | - Leslie T Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - DeLisa Fairweather
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA; Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
18
|
Patel S, Guo MK, Abdul Samad M, Howe KL. Extracellular vesicles as biomarkers and modulators of atherosclerosis pathogenesis. Front Cardiovasc Med 2023; 10:1202187. [PMID: 37304965 PMCID: PMC10250645 DOI: 10.3389/fcvm.2023.1202187] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 06/13/2023] Open
Abstract
Extracellular vesicles (EVs) are small, lipid bilayer-enclosed structures released by various cell types that play a critical role in intercellular communication. In atherosclerosis, EVs have been implicated in multiple pathophysiological processes, including endothelial dysfunction, inflammation, and thrombosis. This review provides an up-to-date overview of our current understanding of the roles of EVs in atherosclerosis, emphasizing their potential as diagnostic biomarkers and their roles in disease pathogenesis. We discuss the different types of EVs involved in atherosclerosis, the diverse cargoes they carry, their mechanisms of action, and the various methods employed for their isolation and analysis. Moreover, we underscore the importance of using relevant animal models and human samples to elucidate the role of EVs in disease pathogenesis. Overall, this review consolidates our current knowledge of EVs in atherosclerosis and highlights their potential as promising targets for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Sarvatit Patel
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mandy Kunze Guo
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Majed Abdul Samad
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kathryn L. Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
19
|
McKenna JA, Garcia‐Ceron D, Bleackley MR, Yu L, Bulone V, Anderson MA. SUR7 deletion in Candida albicans impacts extracellular vesicle features and delivery of virulence factors. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e82. [PMID: 38938278 PMCID: PMC11080841 DOI: 10.1002/jex2.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) from human fungal pathogens have been implicated in fungal virulence, yet little is known about their role in the host-pathogen interaction. Progress has been hampered by the lack of a specific marker for fungal EVs that can be used to monitor EV isolation and tracking in biological systems. Here we report the effect of a SUR7 gene knockout on the production, properties, and role of EVs in the virulence of Candida albicans. Sur7 is a component of the membrane compartment of Can1 (MCC) complex and is enriched in the EVs from C. albicans and other fungal species. MCC is a plasma membrane complex which together with the eisosome, a cytoplasmic protein complex, is a key regulator in plasma membrane organisation and plasma membrane associated processes. The SUR7 knockout strain produces smaller EVs than the wild-type (WT) with different protein and carbohydrate cargos. Furthermore, proteins with known roles in Candida pathogenesis were present in WT EVs and absent or diminished in the sur7Δ EVs. We demonstrate that the reduced virulence of the sur7Δ cells can be partially restored with EVs from a WT strain. These findings demonstrate the importance of Sur7-like proteins in the biogenesis of EVs in fungi and enhance our understanding of the role of fungal EVs in human pathogenesis.
Collapse
Affiliation(s)
- James A. McKenna
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityVICAustralia
| | - Donovan Garcia‐Ceron
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityVICAustralia
| | - Mark R. Bleackley
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityVICAustralia
| | - Long Yu
- School of Agriculture Food and WineThe University of Adelaide Waite CampusSAAustralia
- Centre for Marine Bioproducts Development, College of Medicine & Public HealthFlinders UniversitySAAustralia
| | - Vincent Bulone
- School of Agriculture Food and WineThe University of Adelaide Waite CampusSAAustralia
- Centre for Marine Bioproducts Development, College of Medicine & Public HealthFlinders UniversitySAAustralia
- Division of GlycoscienceDepartment of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH)AlbaNova University CentreStockholmSweden
| | - Marilyn A. Anderson
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityVICAustralia
| |
Collapse
|
20
|
Scafa Udriște A, Niculescu AG, Iliuță L, Bajeu T, Georgescu A, Grumezescu AM, Bădilă E. Progress in Biomaterials for Cardiac Tissue Engineering and Regeneration. Polymers (Basel) 2023; 15:polym15051177. [PMID: 36904419 PMCID: PMC10007484 DOI: 10.3390/polym15051177] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cardiovascular diseases are one of the leading global causes of morbidity and mortality, posing considerable health and economic burden on patients and medical systems worldwide. This phenomenon is attributed to two main motives: poor regeneration capacity of adult cardiac tissues and insufficient therapeutic options. Thus, the context calls for upgrading treatments to deliver better outcomes. In this respect, recent research has approached the topic from an interdisciplinary perspective. Combining the advances encountered in chemistry, biology, material science, medicine, and nanotechnology, performant biomaterial-based structures have been created to carry different cells and bioactive molecules for repairing and restoring heart tissues. In this regard, this paper aims to present the advantages of biomaterial-based approaches for cardiac tissue engineering and regeneration, focusing on four main strategies: cardiac patches, injectable hydrogels, extracellular vesicles, and scaffolds and reviewing the most recent developments in these fields.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Luminița Iliuță
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Teodor Bajeu
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Adriana Georgescu
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Correspondence:
| | - Elisabeta Bădilă
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cardiology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
21
|
Casajuana Ester M, Day RM. Production and Utility of Extracellular Vesicles with 3D Culture Methods. Pharmaceutics 2023; 15:pharmaceutics15020663. [PMID: 36839984 PMCID: PMC9961751 DOI: 10.3390/pharmaceutics15020663] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
In recent years, extracellular vesicles (EVs) have emerged as promising biomarkers, cell-free therapeutic agents, and drug delivery carriers. Despite their great clinical potential, poor yield and unscalable production of EVs remain significant challenges. When using 3D culture methods, such as scaffolds and bioreactors, large numbers of cells can be expanded and the cell environment can be manipulated to control the cell phenotype. This has been employed to successfully increase the production of EVs as well as to enhance their therapeutic effects. The physiological relevance of 3D cultures, such as spheroids, has also provided a strategy for understanding the role of EVs in the pathogenesis of several diseases and to evaluate their role as tools to deliver drugs. Additionally, 3D culture methods can encapsulate EVs to achieve more sustained therapeutic effects as well as prevent premature clearance of EVs to enable more localised delivery and concentrated exosome dosage. This review highlights the opportunities and drawbacks of different 3D culture methods and their use in EV research.
Collapse
|
22
|
Pathways for Cardioprotection in Perspective: Focus on Remote Conditioning and Extracellular Vesicles. BIOLOGY 2023; 12:biology12020308. [PMID: 36829584 PMCID: PMC9953525 DOI: 10.3390/biology12020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Despite the development of cutting-edge treatments, coronary artery disease (CAD) morbidity and mortality rates remain present at high levels. Therefore, new cardioprotective approaches are crucial to improve the health of patients. To date, experimental investigations of acute ischemia-reperfusion injury (IRI) have generally demonstrated the efficacy of local ischemic preconditioning and postconditioning cardioprotection techniques as well as of remote conditioning. However, application in clinical settings is still highly controversial and debated. Currently, remote ischemic conditioning (RIC) seems to be the most promising method for heart repair. Protective factors are released into the bloodstream, and protection can be transferred within and across species. For a long time, the cross-function and cross-transmission mechanisms of cardioprotection were largely unknown. Recently, it has been shown that small, anuclear, bilayered lipid membrane particles, known as extracellular vesicles (EVs), are the drivers of signal transduction in cardiac IRI and RIC. EVs are related to the pathophysiological processes of cardiovascular diseases (CVDs), according to compelling evidence. In this review, we will first review the current state of knowledge on myocardial IRI and cardioprotective strategies explored over the past 37 years. Second, we will briefly discuss the role of EVs in CVD and the most recent improvements on EVs as prognostic biomarkers, diagnostic, and therapeutic agents. We will discuss how EVs can be used as a new drug delivery mechanism and how they can be employed in cardiac treatment, also from a perspective of overcoming the impasse that results from neglecting confounding factors.
Collapse
|
23
|
Heyn J, Heuschkel MA, Goettsch C. Mitochondrial-Derived Vesicles-Link to Extracellular Vesicles and Implications in Cardiovascular Disease. Int J Mol Sci 2023; 24:ijms24032637. [PMID: 36768960 PMCID: PMC9917113 DOI: 10.3390/ijms24032637] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are dynamic organelles regulating metabolism, cell death, and energy production. Therefore, maintaining mitochondrial health is critical for cellular homeostasis. Mitophagy and mitochondrial reorganization via fission and fusion are established mechanisms for ensuring mitochondrial quality. In recent years, mitochondrial-derived vesicles (MDVs) have emerged as a novel cellular response. MDVs are shed from the mitochondrial surface and can be directed to lysosomes or peroxisomes for intracellular degradation. MDVs may contribute to cardiovascular disease (CVD) which is characterized by mitochondrial dysfunction. In addition, evidence suggests that mitochondrial content is present in extracellular vesicles (EVs). Herein, we provide an overview of the current knowledge on MDV formation and trafficking. Moreover, we review recent findings linking MDV and EV biogenesis and discuss their role in CVD. Finally, we discuss the role of vesicle-mediated mitochondrial transfer and its potential cardioprotective effects.
Collapse
|
24
|
Teixeira M, Martins TS, Gouveia M, Henriques AG, Santos M, Ribeiro F. Effects of Exercise on Circulating Extracellular Vesicles in Cardiovascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:241-258. [PMID: 37603284 DOI: 10.1007/978-981-99-1443-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The evidence that physical exercise has multiple beneficial effects and is essential to a healthy lifestyle is widely accepted for a long-time. The functional and psychological changes promoted by exercise improve clinical outcomes and prognosis in several diseases, by decreasing mortality, disease severity, and hospital admissions. Nonetheless, the mechanisms that regulate the release, uptake, and communication of several factors in response to exercise are still not well defined. In the last years, extracellular vesicles have attracted significant interest in the scientific community due to their ability to carry and deliver proteins, lipids, and miRNA to distant organs in the body, promoting a very exciting crosstalk machinery. Moreover, increasing evidence suggests that exercise can modulate the release of those factors within EVs into the circulation, mediating its systemic adaptations.In this chapter, we summarize the effects of acute and chronic exercise on the extracellular vesicle dynamics in healthy subjects and patients with cardiovascular disease. The understanding of the changes in the cargo and kinetics of extracellular vesicles in response to exercise may open new possibilities of research and encourage the development of novel therapies that mimic the effects of exercise.
Collapse
Affiliation(s)
- Manuel Teixeira
- Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Tânia Soares Martins
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Marisol Gouveia
- Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana Gabriela Henriques
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Mário Santos
- Cardiology Service, Hospital Santo António, Centro Hospitalar Universitário do Porto, and Unit for Multidisciplinary Research In Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Fernando Ribeiro
- Institute of Biomedicine-iBiMED, School of Health Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
25
|
Temporal Changes in Extracellular Vesicle Hemostatic Protein Composition Predict Favourable Left Ventricular Remodeling after Acute Myocardial Infarction. Int J Mol Sci 2022; 24:ijms24010327. [PMID: 36613770 PMCID: PMC9820565 DOI: 10.3390/ijms24010327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The subset of plasma extracellular vesicles (EVs) that coprecipitate with low-density lipoprotein (LDL-EVs) carry coagulation and fibrinolysis pathway proteins as cargo. We investigated the association between LDL-EV hemostatic/fibrinolysis protein ratios and post-acute myocardial infarction (post-AMI) left ventricular (LV) remodeling which precedes heart failure. Protein concentrations of von Willebrand factor (VWF), SerpinC1 and plasminogen were determined in LDL-EVs extracted from plasma samples obtained at baseline (within 72 h post-AMI), 1 month and 6 months post-AMI from 198 patients. Patients were categorized as exhibiting adverse (n = 98) or reverse (n = 100) LV remodeling based on changes in LV end-systolic volume (increased or decreased ≥15) over a 6-month period. Multiple level longitudinal data analysis with structural equation (ML-SEM) model was used to assess predictive value for LV remodeling independent of baseline differences. At baseline, protein levels of VWF, SerpinC1 and plasminogen in LDL-EVs did not differ between patients with adverse versus reverse LV remodeling. At 1 month post-AMI, protein levels of VWF and SerpinC1 decreased whilst plasminogen increased in patients with adverse LV remodeling. In contrast, VWF and plasminogen decreased whilst SerpinC1 remained unchanged in patients with reverse LV remodeling. Overall, compared with patients with adverse LV remodeling, higher levels of SerpinC1 and VWF but lower levels of plasminogen resulted in higher ratios of VWF:Plasminogen and SerpinC1:Plasminogen at both 1 month and 6 months post-AMI in patients with reverse LV remodeling. More importantly, ratios VWF:Plasminogen (AUC = 0.674) and SerpinC1:Plasminogen (AUC = 0.712) displayed markedly better prognostic power than NT-proBNP (AUC = 0.384), troponin-I (AUC = 0.467) or troponin-T (AUC = 0.389) (p < 0.001) to predict reverse LV remodeling post-AMI. Temporal changes in the ratios of coagulation to fibrinolysis pathway proteins in LDL-EVs outperform current standard plasma biomarkers in predicting post-AMI reverse LV remodeling. Our findings may provide clinical cues to uncover the cellular mechanisms underpinning post-AMI reverse LV remodeling.
Collapse
|
26
|
Development of an injectable alginate-collagen hydrogel for cardiac delivery of extracellular vesicles. Int J Pharm 2022; 629:122356. [DOI: 10.1016/j.ijpharm.2022.122356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
|
27
|
Neupane YR, Handral HK, Alkaff SA, Chng WH, Venkatesan G, Huang C, Lee CK, Wang JW, Sriram G, Dienzo RA, Lu WF, Ali Y, Czarny B, Pastorin G. Cell-derived nanovesicles from mesenchymal stem cells as extracellular vesicle-mimetics in wound healing. Acta Pharm Sin B 2022; 13:1887-1902. [DOI: 10.1016/j.apsb.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
|
28
|
Sun K, Zheng X, Jin H, Yu F, Zhao W. Exosomes as CNS Drug Delivery Tools and Their Applications. Pharmaceutics 2022; 14:pharmaceutics14102252. [PMID: 36297688 PMCID: PMC9609403 DOI: 10.3390/pharmaceutics14102252] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Central nervous system (CNS) diseases threaten the health of people all over the world. However, due to the structural and functional particularities of the brain and spinal cord, CNS-targeted drug development is rather challenging. Exosomes are small cellular vesicles with lipid bilayers that can be secreted by almost all cells and play important roles in intercellular communication. The advantages of low immunogenicity, the ability to cross the blood-brain barrier, and the flexibility of drug encapsulation make them stand out among CNS drug delivery tools. Herein, we reviewed the research on exosomes in CNS drug delivery over the past decade and outlined the impact of the drug loading mode, administration route, and engineered modification on CNS targeting. Finally, we highlighted the problems and prospects of exosomes as CNS drug delivery tools.
Collapse
Affiliation(s)
- Ke Sun
- College of Pharmacy, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Xue Zheng
- College of Pharmacy, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Hongzhen Jin
- College of Pharmacy, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
- Correspondence: (H.J.); (F.Y.)
| | - Fan Yu
- College of Life Sciences, Nankai University, Weijin Road, Nankai District, Tianjin 300350, China
- Correspondence: (H.J.); (F.Y.)
| | - Wei Zhao
- College of Pharmacy, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| |
Collapse
|
29
|
Komuro H, Aminova S, Lauro K, Harada M. Advances of engineered extracellular vesicles-based therapeutics strategy. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:655-681. [PMID: 36277506 PMCID: PMC9586594 DOI: 10.1080/14686996.2022.2133342] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of lipid bilayer membrane-bound vesicles which encapsulate bioactive molecules, such as nucleic acids, proteins, and lipids. They mediate intercellular communication through transporting internally packaged molecules, making them attractive therapeutics carriers. Over the last decades, a significant amount of research has implied the potential of EVs servings as drug delivery vehicles for nuclear acids, proteins, and small molecular drugs. However, several challenges remain unresolved before the clinical application of EV-based therapeutics, including lack of specificity, stability, biodistribution, storage, large-scale manufacturing, and the comprehensive analysis of EV composition. Technical development is essential to overcome these issues and enhance the pre-clinical therapeutic effects. In this review, we summarize the current advancements in EV engineering which demonstrate their therapeutic potential.
Collapse
Affiliation(s)
- Hiroaki Komuro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Shakhlo Aminova
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Katherine Lauro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
30
|
Ramasubramanian L, Du S, Gidda S, Bahatyrevich N, Hao D, Kumar P, Wang A. Bioengineering Extracellular Vesicles for the Treatment of Cardiovascular Diseases. Adv Biol (Weinh) 2022; 6:e2200087. [PMID: 35778828 PMCID: PMC9588622 DOI: 10.1002/adbi.202200087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/03/2022] [Indexed: 01/28/2023]
Abstract
Cardiovascular diseases (CVD) remain one of the leading causes of mortality worldwide. Despite recent advances in diagnosis and interventions, there is still a crucial need for new multifaceted therapeutics that can address the complicated pathophysiological mechanisms driving CVD. Extracellular vesicles (EVs) are nanovesicles that are secreted by all types of cells to transport molecular cargo and regulate intracellular communication. EVs represent a growing field of nanotheranostics that can be leveraged as diagnostic biomarkers for the early detection of CVD and as targeted drug delivery vesicles to promote cardiovascular repair and recovery. Though a promising tool for CVD therapy, the clinical application of EVs is limited by the inherent challenges in EV isolation, standardization, and delivery. Hence, this review will present the therapeutic potential of EVs and introduce bioengineering strategies that augment their natural functions in CVD.
Collapse
Affiliation(s)
- Lalithasri Ramasubramanian
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616
| | - Shixian Du
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616
| | - Siraj Gidda
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
| | - Nataliya Bahatyrevich
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
| | - Dake Hao
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817
| | - Priyadarsini Kumar
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616
| |
Collapse
|
31
|
Gingival epithelial cell-derived microvesicles activate mineralization in gingival fibroblasts. Sci Rep 2022; 12:15779. [PMID: 36138045 PMCID: PMC9500071 DOI: 10.1038/s41598-022-19732-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
Soft tissue calcification occurs in many parts of the body, including the gingival tissue. Epithelial cell-derived MVs can control many functions in fibroblasts but their role in regulating mineralization has not been explored. We hypothesized that microvesicles (MVs) derived from gingival epithelial cells could regulate calcification of gingival fibroblast cultures in osteogenic environment. Human gingival fibroblasts (HGFs) were cultured in osteogenic differentiation medium with or without human gingival epithelial cell-derived MV stimulation. Mineralization of the cultures, localization of the MVs and mineral deposits in the HGF cultures were assessed. Gene expression changes associated with MV exposure were analyzed using gene expression profiling and real-time qPCR. Within a week of exposure, epithelial MVs stimulated robust mineralization of HGF cultures that was further enhanced by four weeks. The MVs taken up by the HGF's did not calcify themselves but induced intracellular accumulation of minerals. HGF gene expression profiling after short exposure to MVs demonstrated relative dominance of inflammation-related genes that showed increases in gene expression. In later cultures, OSX, BSP and MMPs were significantly upregulated by the MVs. These results suggest for the first time that epithelial cells maybe associated with the ectopic mineralization process often observed in the soft tissues.
Collapse
|
32
|
Chen H, Sun T, Jiang C. Extracellular vesicle-based macromolecule delivery systems in cancer immunotherapy. J Control Release 2022; 348:572-589. [PMID: 35714733 DOI: 10.1016/j.jconrel.2022.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/08/2023]
Abstract
Great attention has been paid to the impressive role the macromolecules played in cancer immunotherapy, however, the applications were largely limited by their poor circulation stability, low cellular uptake efficiency, and off-target effects. As an important messenger of intercellular communication, extracellular vesicles (EVs) exhibit unique advantages in macromolecule delivery compared to traditional synthetic carriers, offering new possibilities for modern drug delivery. These naturally derived carriers can achieve stable, efficient, and selective delivery of macromolecules and improve the efficacy and potentiality of macromolecular drugs in cancer immunotherapy. This review provides a brief overview of the unique features of EVs related to macromolecule delivery, the strategies and recent advances of using EVs as macromolecule delivery carriers in cancer immunotherapy.
Collapse
Affiliation(s)
- Hongyi Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
33
|
Zhang X, Wu Y, Cheng Q, Bai L, Huang S, Gao J. Extracellular Vesicles in Cardiovascular Diseases: Diagnosis and Therapy. Front Cell Dev Biol 2022; 10:875376. [PMID: 35721498 PMCID: PMC9198246 DOI: 10.3389/fcell.2022.875376] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of global mortality. Therapy of CVDs is still a great challenge since many advanced therapies have been developed. Multiple cell types produce nano-sized extracellular vesicles (EVs), including cardiovascular system-related cells and stem cells. Compelling evidence reveals that EVs are associated with the pathophysiological processes of CVDs. Recently researches focus on the clinical transformation in EVs-based diagnosis, prognosis, therapies, and drug delivery systems. In this review, we firstly discuss the current knowledge about the biophysical properties and biological components of EVs. Secondly, we will focus on the functions of EVs on CVDs, and outline the latest advances of EVs as prognostic and diagnostic biomarkers, and therapeutic agents. Finally, we will introduce the specific application of EVs as a novel drug delivery system and its application in CVDs therapy. Specific attention will be paid to summarize the perspectives, challenges, and applications on EVs’ clinical and industrial transformation.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
- *Correspondence: Xiaojing Zhang, ; Jun Gao,
| | - Yuping Wu
- Department of Scientific Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Qifa Cheng
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Liyang Bai
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Shuqiang Huang
- Department of Clinical Medicine, The Sixth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Jun Gao
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
- *Correspondence: Xiaojing Zhang, ; Jun Gao,
| |
Collapse
|
34
|
Alexandru N, Procopciuc A, Vîlcu A, Comariţa IK, Bӑdilӑ E, Georgescu A. Extracellular vesicles-incorporated microRNA signature as biomarker and diagnosis of prediabetes state and its complications. Rev Endocr Metab Disord 2022; 23:309-332. [PMID: 34143360 DOI: 10.1007/s11154-021-09664-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are small anuclear vesicles, delimited by a lipid bilayer, released by almost all cell types, carrying functionally active biological molecules that can be transferred to the neighbouring or distant cells, inducing phenotypical and functional changes, relevant in various physio-pathological conditions. The microRNAs are the most significant active components transported by EVs, with crucial role in intercellular communication and significant effects on recipient cells. They may also server as novel valuable biomarkers for the diagnosis of metabolic disorders. Moreover, EVs are supposed to mediate type 2 diabetes mellitus (T2DM) risk and its progress. The T2DM development is preceded by prediabetes, a state that is associated with early forms of nephropathy and neuropathy, chronic kidney disease, diabetic retinopathy, and increased risk of macrovascular disease. Although the interest of scientists was focused not only on the pathogenesis of diabetes, but also on the early diagnosis, little is known about EVs-incorporated microRNA involvement in prediabetes state and its microvascular and macrovascular complications. Here, we survey the biogenesis, classification, content, biological functions and the most popular primary isolation methods of EVs, review the EVs-associated microRNA profiling connexion with early stages of diabetes and discuss the role of EVs containing specific microRNAs in prediabetes complications.
Collapse
Affiliation(s)
- Nicoleta Alexandru
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Anastasia Procopciuc
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Alexandra Vîlcu
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Ioana Karla Comariţa
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Elisabeta Bӑdilӑ
- Internal Medicine Clinic, Emergency Clinical Hospital, Bucharest, Romania.
| | - Adriana Georgescu
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania.
| |
Collapse
|
35
|
Lu S, Wang R, Fu W, Si Y. Applications of Extracellular Vesicles in Abdominal Aortic Aneurysm. Front Cardiovasc Med 2022; 9:927542. [PMID: 35711380 PMCID: PMC9194528 DOI: 10.3389/fcvm.2022.927542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a localized expansion of the abdominal aorta which can lead to lethal complication as the rupture of aortic wall. Currently there is still neither competent method to predict the impending rupture of aneurysm, nor effective treatment to arrest the progression of small and asymptomatic aneurysms. Accumulating evidence has confirmed the crucial role of extracellular vesicles (EVs) in the pathological course of AAA, acting as important mediators of intercellular communication. Given the advantages of intrinsic targeting properties, lower toxicity and fair stability, EVs show great potential to serve as biomarkers, therapeutic agents and drug delivery carriers. However, EV therapies still face several major challenges before they can be applied clinically, including off-target effect, low accumulation rate and rapid clearance by mononuclear phagocyte system. In this review, we first illustrate the roles of EV in the pathological process of AAA and evaluate its possible clinical applications. We also identify present challenges for EV applications, highlight different strategies of EV engineering and constructions of EV-like nanoparticles, including EV display technology and membrane hybrid technology. These leading-edge techniques have been recently employed in multiple cardiovascular diseases and their promising application in the field of AAA is discussed.
Collapse
Affiliation(s)
- Shan Lu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Vascular Surgery Institute of Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Ruihan Wang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Vascular Surgery Institute of Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Vascular Surgery Institute of Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Weiguo Fu
| | - Yi Si
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Vascular Surgery Institute of Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- *Correspondence: Yi Si
| |
Collapse
|
36
|
Bone Marrow Mesenchymal Stem Cells and Their Derived Extracellular Vesicles Attenuate Non-Alcoholic Steatohepatitis-Induced Cardiotoxicity via Modulating Cardiac Mechanisms. Life (Basel) 2022; 12:life12030355. [PMID: 35330106 PMCID: PMC8952775 DOI: 10.3390/life12030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular-disease (CVD)-related mortality has been fueled by the upsurge of non-alcoholic steatohepatitis (NASH). Mesenchymal stem cells (MSCs) were extensively studied for their reparative power in ameliorating different CVDs via direct and paracrine effects. Several reports pointed to the importance of bone marrow mesenchymal stem cells (BM-MSCs) as a reliable therapeutic approach for several CVDs. Nevertheless, their therapeutic potential has not yet been investigated in the cardiotoxic state that is induced by NASH. Thus, this study sought to investigate the molecular mechanisms associated with cardiotoxicity that accompany NASH. Besides, we aimed to comparatively study the therapeutic effects of bone-marrow mesenchymal-stem-cell-derived extracellular vesicles (BM-MSCs-EV) and BM-MSCs in a cardiotoxic model that is induced by NASH in rats. Rats were fed with high-fat diet (HFD) for 12 weeks. At the seventh week, BM-MSCs-EV were given a dose of 120 µg/kg i.v., twice a week for six weeks (12 doses per 6 weeks). Another group was treated with BM-MSCs at a dose of 1 × 106 cell i.v., per rat once every 2 weeks for 6 weeks (3 doses per 6 weeks). BM-MSCs-EV demonstrated superior cardioprotective effects through decreasing serum cardiotoxic markers, cardiac hypoxic state (HIF-1) and cardiac inflammation (NF-κB p65, TNF-α, IL-6). This was accompanied by increased vascular endothelial growth factor (VEGF) and improved cardiac histopathological alterations. Both BM-MSCs-EV and BM-MSCs restored the mitochondrial antioxidant state through the upregulation of UCP2 and MnSOD genes. Besides, mitochondrial Parkin-dependent and -independent mitophagies were regained through the upregulation of (Parkin, PINK1, ULK1, BNIP3L, FUNDC1) and (LC3B). These effects were mediated through the regulation of pAKT, PI3K, Hypoxia, VEGF and NF-κB signaling pathways by an array of secreted microRNAs (miRNAs). Our findings unravel the potential ameliorative effects of BM-MSCs-EV as a comparable new avenue for BM-MSCs for modulating cardiotoxicity that is induced by NASH.
Collapse
|
37
|
Mugoni V, Ciani Y, Nardella C, Demichelis F. Circulating RNAs in prostate cancer patients. Cancer Lett 2022; 524:57-69. [PMID: 34656688 DOI: 10.1016/j.canlet.2021.10.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022]
Abstract
Growing bodies of evidence have demonstrated that the identification of prostate cancer (PCa) biomarkers in the patients' blood and urine may remarkably improve PCa diagnosis and progression monitoring. Among diverse cancer-derived circulating materials, extracellular RNA molecules (exRNAs) represent a compelling component to investigate cancer-related alterations. Once outside the intracellular environment, exRNAs circulate in biofluids either in association with protein complexes or encapsulated inside extracellular vesicles (EVs). Notably, EV-associated RNAs (EV-RNAs) were used for the development of several assays (such as the FDA-approved Progensa Prostate Cancer Antigen 3 (PCA3 test) aiming at improving early PCa detection. EV-RNAs encompass a mixture of species, including small non-coding RNAs (e.g. miRNA and circRNA), lncRNAs and mRNAs. Several methods have been proposed to isolate EVs and relevant RNAs, and to perform RNA-Seq studies to identify potential cancer biomarkers. However, EVs in the circulation of a cancer patient include a multitude of diverse populations that are released by both cancer and normal cells from different tissues, thereby leading to a heterogeneous EV-RNA-associated transcriptional signal. Decrypting the complexity of such a composite signal is nowadays the major challenge faced in the identification of specific tumor-associated RNAs. Multiple deconvolution algorithms have been proposed so far to infer the enrichment of cancer-specific signals from gene expression data. However, novel strategies for EVs sorting and sequencing of RNA associated to single EVs populations will remarkably facilitate the identification of cancer-related molecules. Altogether, the studies summarized here demonstrate the high potential of using EV-RNA biomarkers in PCa and highlight the urgent need of improving technologies and computational approaches to characterize specific EVs populations and their relevant RNA cargo.
Collapse
Affiliation(s)
- Vera Mugoni
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Yari Ciani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Caterina Nardella
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| |
Collapse
|
38
|
Jadli AS, Parasor A, Gomes KP, Shandilya R, Patel VB. Exosomes in Cardiovascular Diseases: Pathological Potential of Nano-Messenger. Front Cardiovasc Med 2021; 8:767488. [PMID: 34869682 PMCID: PMC8632805 DOI: 10.3389/fcvm.2021.767488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases (CVDs) represent a major global health problem, due to their continued high incidences and mortality. The last few decades have witnessed new advances in clinical research which led to increased survival and recovery in CVD patients. Nevertheless, elusive and multifactorial pathophysiological mechanisms of CVD development perplexed researchers in identifying efficacious therapeutic interventions. Search for novel and effective strategies for diagnosis, prevention, and intervention for CVD has shifted research focus on extracellular vesicles (EVs) in recent years. By transporting molecular cargo from donor to recipient cells, EVs modulate gene expression and influence the phenotype of recipient cells, thus EVs prove to be an imperative component of intercellular signaling. Elucidation of the role of EVs in intercellular communications under physiological conditions implied the enormous potential of EVs in monitoring and treatment of CVD. The EVs secreted from the myriad of cells in the cardiovascular system such as cardiomyocytes, cardiac fibroblasts, cardiac progenitor cells, endothelial cells, inflammatory cells may facilitate the communication in physiological and pathological conditions. Understanding EVs-mediated cellular communication may delineate the mechanism of origin and progression of cardiovascular diseases. The current review summarizes exosome-mediated paracrine signaling leading to cardiovascular disease. The mechanistic role of exosomes in cardiovascular disease will provide novel avenues in designing diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Anshul S Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Ananya Parasor
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Karina P Gomes
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Ruchita Shandilya
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
39
|
Monfoulet LE, Martinez MC. Dietary modulation of large extracellular vesicles: the good and the bad for human health. Nutr Rev 2021; 80:1274-1293. [PMID: 34875084 DOI: 10.1093/nutrit/nuab106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Extracellular vesicles (EVs) encompassing nanovesicles derived from the endosome system and generated by plasmatic membrane shedding are of increasing interest in view of their ability to sustain cell-to-cell communication and the possibility that they could be used as surrogate biomarkers of healthy and unhealthy trajectories. Nutritional strategies have been developed to preserve health, and the impact of these strategies on circulating EVs is arousing growing interest. Data available from published studies are now sufficient for a first integration to better understand the role of EVs in the relationship between diet and health. Thus, this review focuses on human intervention studies investigating the impact of diet or its components on circulating EVs. Because of analytical bias, only large EVs have been assessed so far. The analysis highlights that poor-quality diets with elevated fat and sugar content increase levels of circulating large EVs, and these can be partly counteracted by healthy food or some food micronutrients and bioactive compounds. However, knowledge of the content and the biological functions of these diet-induced EVs is still missing. It is important to address these aspects in new research in order to state if EVs are mediators of the effects of diet on health.
Collapse
Affiliation(s)
- Laurent-Emmanuel Monfoulet
- L.-E. Monfoulet is with the Université Clermont Auvergne, INRAE, Human Nutrition Unit, Clermont-Ferrand, France M.C. Martinez is with the oxidative stress and metabolic pathologies laboratory (SOPAM), U1063, INSERM, Université Angers, Angers, France
| | - Maria Carmen Martinez
- L.-E. Monfoulet is with the Université Clermont Auvergne, INRAE, Human Nutrition Unit, Clermont-Ferrand, France M.C. Martinez is with the oxidative stress and metabolic pathologies laboratory (SOPAM), U1063, INSERM, Université Angers, Angers, France
| |
Collapse
|
40
|
Gupta P, Neupane YR, Parvez S, Kohli K. Recent advances in targeted nanotherapeutic approaches for breast cancer management. Nanomedicine (Lond) 2021; 16:2605-2631. [PMID: 34854336 DOI: 10.2217/nnm-2021-0281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly occurring tumor disease worldwide. Breast cancer is currently managed by conventional chemotherapy, which is inadequate in curbing this heterogeneous disease and results in off-site toxic effects, suggesting effective treatment approaches with better therapeutic profiles are needed. This review, therefore, focuses on the recent advancements in delivering therapeutics to the target site using passive and/or active targeted nanodrug-delivery systems to ameliorate endolysosomal escape. In addition, recent strategies in targeting breast cancer stem cells are discussed. The role of naturally cell-secreted nanovesicles (exosomes) in the management of triple-negative breast cancer is also discussed.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, Singapore, 117559
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.,Lloyd Institute of Management & Technology (Pharm.), Plot No. 11, Knowledge Park-II, Greater Noida, 201308, Uttar Pradesh, India
| |
Collapse
|
41
|
Mast MP, Modh H, Champanhac C, Wang JW, Storm G, Krämer J, Mailänder V, Pastorin G, Wacker MG. Nanomedicine at the crossroads - A quick guide for IVIVC. Adv Drug Deliv Rev 2021; 179:113829. [PMID: 34174332 DOI: 10.1016/j.addr.2021.113829] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
For many years, nanomedicine is pushing the boundaries of drug delivery. When applying these novel therapeutics, safety considerations are not only a key concern when entering clinical trials but also an important decision point in product development. Standing at the crossroads, nanomedicine may be able to escape the niche markets and achieve wider acceptance by the pharmaceutical industry. While there is a new generation of drug delivery systems, the extracellular vesicles, standing on the starting line, unresolved issues and new challenges emerge from their translation from bench to bedside. Some key features of injectable nanomedicines contribute to the predictability of the pharmacological and toxicological effects. So far, only a few of the physicochemical attributes of nanomedicines can be justified by a direct mathematical relationship between the in vitro and the in vivo responses. To further develop extracellular vesicles as drug carriers, we have to learn from more than 40 years of clinical experience in liposomal delivery and pass on this knowledge to the next generation. Our quick guide discusses relationships between physicochemical characteristics and the in vivo response, commonly referred to as in vitro-in vivo correlation. Further, we highlight the key role of computational methods, lay open current knowledge gaps, and question the established design strategies. Has the recent progress improved the predictability of targeted delivery or do we need another change in perspective?
Collapse
|
42
|
Haney MJ, Zhao Y, Fallon JK, Yue W, Li SM, Lentz EE, Erie D, Smith PC, Batrakova EV. Extracellular Vesicles as Drug Delivery System for Treatment of Neurodegenerative Disorders: Optimization of the Cell Source. ADVANCED NANOBIOMED RESEARCH 2021; 1:2100064. [PMID: 34927169 PMCID: PMC8680291 DOI: 10.1002/anbr.202100064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) represent a next generation drug delivery system that combines nanoparticle size with extraordinary ability to cross biological barriers, reduced immunogenicity, and low offsite toxicity profiles. A successful application of this natural way of delivering biological compounds requires deep understanding EVs intrinsic properties inherited from their parent cells. Herein, we evaluated EVs released by cells of different origin, with respect to drug delivery to the brain for treatment of neurodegenerative disorders. The morphology, size, and zeta potential of EVs secreted by primary macrophages (mEVs), neurons (nEVs), and astrocytes (aEVs) were examined by nanoparticle NTA, DLS, cryoTEM, and AFM. Spherical nanoparticles with average size 110-130 nm and zeta potential around -20 mV were identified for all EVs types. mEVs showed the highest levels of tetraspanins and integrins compared to nEVs and aEVs, suggesting superior adhesion and targeting to the inflamed tissues by mEVs. Strikingly, aEVs were preferentially taken up by neuronal cells in vitro, followed by mEVs and nEVs. Nevertheless, the brain accumulation levels of mEVs in a transgenic mouse model of Parkinson's disease were significantly higher than those of nEVs or aEVs. Therefore, mEVs were suggested as the most promising nanocarrier system for drug delivery to the brain.
Collapse
Affiliation(s)
- Matthew J. Haney
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yuling Zhao
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John K. Fallon
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wang Yue
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Samuel M. Li
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Emily E. Lentz
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dorothy Erie
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Philip C. Smith
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Elena V. Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
43
|
Application of Mesenchymal Stem Cells Derived Artificial Microvesicles for the Treatment of Canine Skin Wound. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Vestad B, Nyman TA, Hove-Skovsgaard M, Stensland M, Hoel H, Trøseid AMS, Aspelin T, Aass HCD, Puhka M, Hov JR, Nielsen SD, Øvstebø R, Trøseid M. Plasma extracellular vesicles in people living with HIV and type 2 diabetes are related to microbial translocation and cardiovascular risk. Sci Rep 2021; 11:21936. [PMID: 34754007 PMCID: PMC8578564 DOI: 10.1038/s41598-021-01334-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022] Open
Abstract
HIV and type 2 diabetes (T2D) are both associated with gut microbiota alterations, low-grade endotoxemia and increased cardiovascular risk. We investigated the potential role of plasma extracellular vesicles (EVs) in relation to these processes. Plasma EVs were isolated by size exclusion chromatography in fasting individuals with HIV and T2D (n = 16), T2D only (n = 14), HIV only (n = 20) or healthy controls (n = 19), and characterized by transmission electron microscopy, western blot, nanoparticle tracking analysis and quantitative proteomics. The findings were compared to gut microbiota alterations, lipopolysaccharide levels and cardiovascular risk profile. Individuals with concomitant HIV and T2D had higher plasma EV concentration, which correlated closely with plasma lipopolysaccharides, triglycerides and Framingham score, but not with gut microbiota alterations. Proteomic analyses identified 558 human proteins, largely related to cardiometabolic disease genes and upstream regulation of inflammatory pathways, including IL-6 and IL-1β, as well as 30 bacterial proteins, mostly from lipopolysaccharide-producing Proteobacteria. Our study supports that EVs are related to microbial translocation processes in individuals with HIV and T2D. Their proteomic content suggests a contributing role in low-grade inflammation and cardiovascular risk development. The present approach for exploring gut-host crosstalk can potentially identify novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Beate Vestad
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Postboks 4590, 0424, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Norwegian Society for Extracellular Vesicles, NOR-EV, Oslo, Norway.
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Malene Hove-Skovsgaard
- Department of Infectious Diseases, University Hospital of Copenhagen Rigshospitalet, Copenhagen, Denmark
| | - Maria Stensland
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Hedda Hoel
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Postboks 4590, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Medical Department, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Anne-Marie Siebke Trøseid
- Norwegian Society for Extracellular Vesicles, NOR-EV, Oslo, Norway.,The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Trude Aspelin
- Norwegian Society for Extracellular Vesicles, NOR-EV, Oslo, Norway.,The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Hans Christian D Aass
- Norwegian Society for Extracellular Vesicles, NOR-EV, Oslo, Norway.,The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Maija Puhka
- Institute for Molecular Medicine Finland FIMM, EV and HiPrep Cores, University of Helsinki, Helsinki, Finland
| | - Johannes R Hov
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Postboks 4590, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Surgery, Inflammatory Medicine and Transplantation, Norwegian PSC Research Center and Section of Gastroenterology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Susanne Dam Nielsen
- Department of Infectious Diseases, University Hospital of Copenhagen Rigshospitalet, Copenhagen, Denmark
| | - Reidun Øvstebø
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Norwegian Society for Extracellular Vesicles, NOR-EV, Oslo, Norway.,The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Postboks 4590, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
45
|
Kumar S, Frid MG, Zhang H, Li M, Riddle S, Brown RD, Yadav SC, Roy MK, Dzieciatkowska ME, D'Alessandro A, Hansen KC, Stenmark KR. Complement-containing small extracellular vesicles from adventitial fibroblasts induce proinflammatory and metabolic reprogramming in macrophages. JCI Insight 2021; 6:e148382. [PMID: 34499621 PMCID: PMC8663554 DOI: 10.1172/jci.insight.148382] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Pulmonary hypertension (PH) is a severe cardiopulmonary disease characterized by complement-dependent, fibroblast-induced perivascular accumulation and proinflammatory activation of macrophages. We hypothesized that, in PH, nanoscale-sized small extracellular vesicles (sEVs), released by perivascular/adventitial fibroblasts, are critical mediators of complement-dependent proinflammatory activation of macrophages. Pulmonary adventitial fibroblasts were isolated from calves with severe PH (PH-Fibs) and age-matched controls (CO-Fibs). PH-Fibs exhibited increased secretion of sEVs, compared with CO-Fibs, and sEV biological activity was tested on mouse and bovine bone marrow-derived macrophages (BMDMs) and showed similar responses. Compared with sEVs derived from CO-Fibs, sEVs derived from PH-Fibs (PH-Fib-sEVs) induced augmented expression of proinflammatory cytokines/chemokines and metabolic genes in BMDMs. Pharmacological blockade of exosome release from PH-Fibs resulted in significant attenuation of proinflammatory activation of BMDMs. "Bottom-up" proteomic analyses revealed significant enrichment of complement and coagulation cascades in PH-Fib-sEVs, including augmented expression of the complement component C3. We therefore examined whether the PH-Fib-sEV-mediated proinflammatory activation of BMDMs was complement C3 dependent. Treatment of PH-Fibs with siC3-RNA significantly attenuated the capacity of PH-Fib-sEVs for proinflammatory activation of BMDMs. PH-Fib-sEVs mediated proglycolytic alterations and complement-dependent activation of macrophages toward a proinflammatory phenotype, as confirmed by metabolomic studies. Thus, fibroblast-released sEVs served as critical mediators of complement-induced perivascular/microenvironmental inflammation in PH.
Collapse
Affiliation(s)
- Sushil Kumar
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Maria G Frid
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Min Li
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - R Dale Brown
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Micaela K Roy
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Monika E Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
46
|
Yousefi-Ahmadipour A, Asadi F, Pirsadeghi A, Nazeri N, Vahidi R, Abazari MF, Afgar A, Mirzaei-Parsa MJ. Current Status of Stem Cell Therapy and Nanofibrous Scaffolds in Cardiovascular Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00230-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Das S, Nam H, Jang J. 3D bioprinting of stem cell-laden cardiac patch: A promising alternative for myocardial repair. APL Bioeng 2021; 5:031508. [PMID: 34368602 PMCID: PMC8318604 DOI: 10.1063/5.0030353] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 06/01/2021] [Indexed: 12/18/2022] Open
Abstract
Stem cell-laden three-dimensional (3D) bioprinted cardiac patches offer an alternative and promising therapeutic and regenerative approach for ischemic cardiomyopathy by reversing scar formation and promoting myocardial regeneration. Numerous studies have reported using either multipotent or pluripotent stem cells or their combination for 3D bioprinting of a cardiac patch with the sole aim of restoring cardiac function by faithfully rejuvenating the cardiomyocytes and associated vasculatures that are lost to myocardial infarction. While many studies have demonstrated success in mimicking cardiomyocytes' behavior, improving cardiac function and providing new hope for regenerating heart post-myocardial infarction, some others have reported contradicting data in apparent ways. Nonetheless, all investigators in the field are speed racing toward determining a potential strategy to effectively treat losses due to myocardial infarction. This review discusses various types of candidate stem cells that possess cardiac regenerative potential, elucidating their applications and limitations. We also brief the challenges of and an update on the implementation of the state-of-the-art 3D bioprinting approach to fabricate cardiac patches and highlight different strategies to implement vascularization and augment cardiac functional properties with respect to electrophysiological similarities to native tissue.
Collapse
Affiliation(s)
- Sanskrita Das
- Department of Convergence IT Engineering, POSTECH, 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Hyoryung Nam
- Department of Convergence IT Engineering, POSTECH, 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Jinah Jang
- Author to whom correspondence should be addressed:
| |
Collapse
|
48
|
Regan B, O'Kennedy R, Collins D. Advances in point-of-care testing for cardiovascular diseases. Adv Clin Chem 2021; 104:1-70. [PMID: 34462053 DOI: 10.1016/bs.acc.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Point-of-care testing (POCT) is a specific format of diagnostic testing that is conducted without accompanying infrastructure or sophisticated instrumentation. Traditionally, such rapid sample-to-answer assays provide inferior analytical performances to their laboratory counterparts when measuring cardiac biomarkers. Hence, their potentially broad applicability is somewhat bound by their inability to detect clinically relevant concentrations of cardiac troponin (cTn) in the early stages of myocardial injury. However, the continuous refinement of biorecognition elements, the optimization of detection techniques, and the fabrication of tailored fluid handling systems to manage the sensing process has stimulated the production of commercial assays that can support accelerated diagnostic pathways. This review will present the latest commercial POC assays and examine their impact on clinical decision-making. The individual elements that constitute POC assays will be explored, with an emphasis on aspects that contribute to economically feasible and highly sensitive assays. Furthermore, the prospect of POCT imparting a greater influence on early interventions for medium to high-risk individuals and the potential to re-shape the paradigm of cardiovascular risk assessments will be discussed.
Collapse
Affiliation(s)
- Brian Regan
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland; Research Complex, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - David Collins
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
49
|
Peng L, Li X, Li Y, Zhao W, Nie S, Yu H, Qi Y, Qin Y, Zhang H. Increased concentrations of myeloperoxidase in serum and serum extracellular vesicles are associated with type 2 diabetes mellitus. Clin Chim Acta 2021; 522:70-76. [PMID: 34390687 DOI: 10.1016/j.cca.2021.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Inflammatory response plays a critical role in the initiation and progression of type 2 diabetes mellitus (T2DM). Myeloperoxidase (MPO), a leukocyte-derived protagonist, exerts its proinflammatory properties in many complications. We explored the associations between serum extracellular vesicle (EV)-derived MPO as well as serum MPO and T2DM. METHODS We performed a cross-sectional study in 151 individuals, including 93 patients with T2DM and 58 non-T2DM controls. The concentrations of serum EV-derived MPO and serum MPO were measured by Luminex Assay. RESULTS Our data showed that serum EV-derived MPO concentrations and serum MPO concentrations were significantly higher in T2DM patients compared with non-T2DM subjects. In addition, multivariate logistic regression analysis revealed that serum EV-derived MPO as well as serum MPO was independently associated with the presence of T2DM even after adjusting for confounding factors (OR = 1.836 /1 ng EV-derived MPO, 95% CI = 1.395-2.417, P < 0.001; OR = 4.135 /10 ng serum MPO, 95% CI = 2.285-7.483, P < 0.001). Furthermore, serum MPO showed marginally higher discriminatory accuracy than serum EV-derived MPO in screening T2DM (AUC = 0.858; AUC = 0.779). CONCLUSION Increased concentrations of the inflammatory marker MPO either in serum or in serum EVs were independently associated with T2DM.
Collapse
Affiliation(s)
- Lu Peng
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xinwei Li
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yu Li
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wen Zhao
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shaoping Nie
- Department of Emergency, Beijing Anzhen Hospital, Capital Medical University, China
| | - Huahui Yu
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yue Qi
- Department of Epidemiology, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yanwen Qin
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Huina Zhang
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
50
|
Escudé Martinez de Castilla P, Tong L, Huang C, Sofias AM, Pastorin G, Chen X, Storm G, Schiffelers RM, Wang JW. Extracellular vesicles as a drug delivery system: A systematic review of preclinical studies. Adv Drug Deliv Rev 2021; 175:113801. [PMID: 34015418 DOI: 10.1016/j.addr.2021.05.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023]
Abstract
During the past decades, extracellular vesicles (EVs) have emerged as an attractive drug delivery system. Here, we assess their pre-clinical applications, in the form of a systematic review. For each study published in the past decade, disease models, animal species, EV donor cell types, active pharmaceutical ingredients (APIs), EV surface modifications, API loading methods, EV size and charge, estimation of EV purity, presence of biodistribution studies and administration routes were quantitatively analyzed in a defined and reproducible way. We have interpreted the trends we observe over the past decade, to define the niches where to apply EVs for drug delivery in the future and to provide a basis for regulatory guidelines.
Collapse
|