1
|
Acevedo JM, Kahn LG, Pierce KA, Carrasco A, Rosenberg MS, Trasande L. Temporal and geographic variability of bisphenol levels in humans: A systematic review and meta-analysis of international biomonitoring data. ENVIRONMENTAL RESEARCH 2025; 264:120341. [PMID: 39522874 DOI: 10.1016/j.envres.2024.120341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Bisphenols are endocrine-disrupting chemicals known to contribute to chronic disease across the lifespan. With increased awareness of their health effects, changes in regulation and health behaviors have contributed to reductions in urinary bisphenol A (BPA) levels in the United States, Canada, and Europe. However, global trends in bisphenols outside these regions, especially bisphenol S (BPS) exposure, have been less studied. AIM We examine trends in urinary BPA and BPS concentration in non-occupationally exposed populations, where representative data at a country level is unavailable. METHODS We systematically reviewed studies published between 2000 and 2023 that included urinary bisphenol concentrations. We examined BPA and BPS concentration changes by sampling year, controlling for region, age, and pregnancy status, with and without a quadratic term and geometric mean, via mixed-effects meta-regression models with a random intercept and sensitivity analysis. We identified heterogeneity using Cochran's Q-statistic, I2 index, and funnel plots. RESULTS The final analytic sample consisted of 164 studies. We observed positive non-linear associations between time and BPA concentration internationally (beta: 0.02 ng/mL/year2, 95% CI: [0.01, 0.03]) and in Eastern and Pacific Asia (beta: 0.03 ng/mL/year2, 95% CI: [0.02, 0.05]). We also observed non-linear associations of time with both BPA and BPS concentrations in the Middle East and South Asia (beta: 0.13 ng/mL/year2, 95% CI: [0.01, 0.25] and beta: 0.29 ng/mL/year2, 95% CI: [-0.50, -0.08], respectively). In the sensitivity analyses excluding studies with geometric or arithmetic mean values, each displayed significant shifts from the main findings with some consistent outcomes occurring internationally and/or in specific regions. Heterogeneity was high across studies, suggesting possible bias in our estimations. CONCLUSIONS Our findings provide evidence for concern about increasing population exposure to BPA and BPS. Further studies estimating attributable disease burden and costs at regional and global levels are warranted to show these chemicals' impact on population health and economies.
Collapse
Affiliation(s)
- Jonathan M Acevedo
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA.
| | - Linda G Kahn
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Kristyn A Pierce
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Anna Carrasco
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Wagner School of Public Service, New York University, New York, NY, USA
| |
Collapse
|
2
|
Merret PE, Sparfel L, Lavau C, Lagadic-Gossmann D, Martin-Chouly C. Extracellular vesicles as a potential source of biomarkers for endocrine disruptors in MASLD: A short review on the case of DEHP. Biochimie 2025; 228:127-137. [PMID: 39307409 DOI: 10.1016/j.biochi.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Metabolic dysfunction-Associated Steatotic Liver Disease (MASLD) is a chronic disease with increasing prevalence and for which non-invasive biomarkers are needed. Environmental endocrine disruptors (EDs) are known to be involved in the onset and progression of MASLD and assays to monitor their impact on the liver are being developed. Extracellular vesicles (EVs) mediate cell communication and their content reflects the pathophysiological state of the cells from which they are released. They can thus serve as biomarkers of the pathological state of the liver and of exposure to EDs. In this review, we present the relationships between DEHP (Di(2-ethylhexyl) phthalate) and MASLD and highlight the potential of EVs as biomarkers of DEHP exposure and the resulting progression of MASLD.
Collapse
Affiliation(s)
- Pierre-Etienne Merret
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Catherine Lavau
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France.
| | - Corinne Martin-Chouly
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
3
|
Pacyga DC, Jolly L, Whalen J, Calafat AM, Braun JM, Schantz SL, Strakovsky RS. Exploring diet as a source of plasticizers in pregnancy and implications for maternal second-trimester metabolic health. ENVIRONMENTAL RESEARCH 2024; 263:120198. [PMID: 39427938 DOI: 10.1016/j.envres.2024.120198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND AND OBJECTIVES Diet plays critical roles in modulating maternal metabolic health in pregnancy, but is also a source of metabolic-disrupting phthalates and their replacements. We aimed to evaluate whether the effects of better diet quality on favorable maternal metabolic outcomes could be partially explained by lower exposure to phthalates/replacements. METHODS At 13 weeks gestation, 295 Illinois women (enrolled 2015-2018) completed a three-month food frequency questionnaire that we used to calculate the Alternative Healthy Eating Index (AHEI)-2010 to assess diet quality. We quantified 19 metabolites, reflecting exposure to 10 phthalates/replacements, in a pool of five first-morning urine samples collected monthly across pregnancy. We measured 15 metabolic biomarkers in fasting plasma samples collected at 17 weeks gestation, which we reduced to five uncorrelated principal components (PCs), representing adiposity, lipids, cholesterol, inflammation, and growth. We used linear regression to estimate associations of diet quality with [1] phthalates/replacements and [2] metabolic PCs, as well as [3] associations of phthalates/replacements with metabolic PCs. We estimated the proportion of associations between diet quality and metabolic outcomes explained by phthalates/replacements using a causal mediation framework. RESULTS Overall, every 10-point improvement in AHEI-2010 score was associated with -0.15 (95% CI: -0.27, -0.04) lower adiposity scores, reflecting lower glucose, insulin, C-peptide, leptin, C-reactive protein, but higher adiponectin biomarker levels. Every 10-point increase in diet quality was also associated with 18% (95%CI: 7%, 28%) lower sum of di-2-ethylhexyl terephthalate urinary metabolites (∑DEHTP). Correspondingly, each 18% increase in ∑DEHTP was associated with 0.03 point (95% CI: 0.01, 0.05) higher adiposity PC scores. In mediation analyses, 21% of the inverse relationship between diet quality and adiposity PC scores was explained by lower ∑DEHTP. CONCLUSIONS The favorable impact of diet quality on maternal adiposity biomarkers may be partially attributed to lower metabolite concentrations of DEHTP, a plasticizer allowed to be used in food packaging materials.
Collapse
Affiliation(s)
- Diana C Pacyga
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Luca Jolly
- Lyman Briggs College, Michigan State University, East Lansing, MI, USA; Honors College, Michigan State University, East Lansing, MI, USA
| | - Jason Whalen
- Michigan Diabetes Research Center Chemistry Laboratory, University of Michigan, Ann Arbor, MI, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Susan L Schantz
- The Beckman Institute, University of Illinois, Urbana-Champaign, IL, USA; Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, IL, USA
| | - Rita S Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
4
|
Almeida-Toledano L, Navarro-Tapia E, Sebastiani G, Ferrero-Martínez S, Ferrer-Aguilar P, García-Algar Ó, Andreu-Fernández V, Gómez-Roig MD. Effect of prenatal phthalate exposure on fetal development and maternal/neonatal health consequences: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175080. [PMID: 39079634 DOI: 10.1016/j.scitotenv.2024.175080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
The ubiquitous presence of phthalate compounds in cosmetics, personal care products and plastics commonly used in toys, food packaging or household products, results in human exposure with adverse effects on reproductive health and fetal development. Following the PRISMA methodology, this systematic review analyzes the effect of prenatal phthalate exposure on major pregnancy complications, such as gestational diabetes, pregnancy-induced hypertension, fetal growth restriction and preterm birth, and its role in fetal neurodevelopment. This review includes >100 articles published in the last 10 years, showing an association between maternal exposure to phthalates and the risk of developing pregnancy complications. Phthalates are negatively associated with motor skills and memory, and also increase the risk of delayed language acquisition, autism spectrum disorder traits, and behavioral deficits, such as attention deficit hyperactivity disorder in children prenatally exposed to phthalates. Di (2-ethylhexyl) phthalate and its metabolites (mono(2-ethylhexyl) phthalate, mono(3-carboxypropyl) phthalate, mono(2-ethyl-5-hydroxyhexyl) phthalate, mono(2-ethyl-5-oxohexyl) phthalate) are the main compounds associated with the above-mentioned pregnancy complications and fetal neurodevelopmental disorders. In addition, this review discusses the molecular mechanisms responsible for various pregnancy complications and neurodevelopmental disorders, and the critical window of exposure, in order to clarify these aspects. Globally, the most common molecular mechanisms involved in the effects of phthalates are endocrine disruption, oxidative stress induction, intrauterine inflammation, and DNA methylation disorders. In general, the critical window of exposure varies depending on the pathophysiology of the complication being studied, although the first trimester is considered an important period because some of the most vulnerable processes (embryogenesis and placentation) begin early in pregnancy. Future research should aim to understand the specific mechanism of the disruptive effect of each component and to establish the toxic dose of phthalates, as well as to elucidate the most critical period of pregnancy for exposure and the long-term consequences for human health.
Collapse
Affiliation(s)
- Laura Almeida-Toledano
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain.
| | - Elisabet Navarro-Tapia
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Faculty of Health Sciences, Valencian International University (VIU), 46002, Valencia, Spain.
| | - Giorgia Sebastiani
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain.
| | - Sílvia Ferrero-Martínez
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain.
| | - Patricia Ferrer-Aguilar
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain.
| | - Óscar García-Algar
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain; Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain.
| | - Vicente Andreu-Fernández
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Biosanitary Research Institute, Valencian International University (VIU), 46002, Valencia, Spain.
| | - María Dolores Gómez-Roig
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain.
| |
Collapse
|
5
|
Zhao W, Zheng X, Jiang F, Liu J, Wang S, Ou J. Safe concentration, unsafe effects: Impact of BPA on antioxidant function in the hepatopancreas and ovarian gene expression in oriental river prawns (Macrobrachium nipponense). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107103. [PMID: 39305710 DOI: 10.1016/j.aquatox.2024.107103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 11/12/2024]
Abstract
This study investigated the effects of Bisphenol A (BPA), a common endocrine-disrupting chemical, on the antioxidant enzyme activities in the hepatopancreas and the expression of genes related to ovarian development in oriental river prawns (Macrobrachium nipponense). The 24hLC50 and 48hLC50 values for BPA were 80.59 mg/L and 63.90 mg/L, respectively, with a safe concentration of 12.06 mg/L. Prawns were exposed to low (4.85 mg/L), safe (12.06 mg/L), and high (30.00 mg/L) concentrations of BPA for 10 days to measure enzyme activities, and for 20 days followed by 7 days in BPA-free water to measure gene expression. Short-term exposure (12 h, 1d, 3d) to low concentration BPA did not significantly affect superoxide dismutase (SOD) activity in the hepatopancreas (P > 0.05), but long-term exposure (6d, 10d) significantly reduced SOD activity (P < 0.05). Catalase (CAT) activity showed no significant changes throughout the low concentration exposure period (P > 0.05). At safe and high concentrations, SOD and CAT activities significantly decreased after 12 h of exposure (P < 0.05). BPA affected heat shock protein 90 (HSP90) expression in the ovary, with low concentration BPA significantly upregulating HSP90 after 1 day (P < 0.05), but returning to normal levels after 10 and 20 days. At the safe concentration, HSP90 was significantly upregulated at all three sampling points (1d, 10d, 20d) (P < 0.05), while high concentration exposure led to significant upregulation only on day 10 (P < 0.05). Low concentration BPA had no significant effect on Cathepsin B (CB) and Cathepsin L (CL) gene expression in the ovaries (P > 0.05). However, safe concentration exposure promoted CB expression on days 1, 10, and 20 (P < 0.05), while high concentration exposure significantly increased CB expression on day 1 (P < 0.05), with levels returning to normal on days 10 and 20. CL expression significantly increased after 20 days of exposure to both safe and high concentrations (P < 0.05). Gene expression levels in the ovaries returned to normal after transfer to BPA-free water, with HSP90 and CB normalizing by day 1, and CL by day 7. These results indicate that even safe concentrations of BPA impose stress on the hepatopancreas and increase the expression of HSP90, CB, and CL genes in the ovaries, affecting ovarian development. And, these effects are reversible within a certain period after the removal of BPA.
Collapse
Affiliation(s)
- Weihong Zhao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Xirui Zheng
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Fengjuan Jiang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jintao Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Shuhao Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jiangtao Ou
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
6
|
He L, Wang X, Chen X. Unveiling the role of microRNAs in metabolic dysregulation of Gestational Diabetes Mellitus. Reprod Biol 2024; 24:100924. [PMID: 39013209 DOI: 10.1016/j.repbio.2024.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 07/18/2024]
Abstract
Gestational Diabetes Mellitus (GDM) presents a significant health concern globally, necessitating a comprehensive understanding of its metabolic intricacies for effective management. MicroRNAs (miRNAs) have emerged as pivotal regulators in GDM pathogenesis, influencing glucose metabolism, insulin signaling, and lipid homeostasis during pregnancy. Dysregulated miRNA expression, both upregulated and downregulated, contributes to GDM-associated metabolic abnormalities. Ethnic and temporal variations in miRNA expression underscore the multifaceted nature of GDM susceptibility. This review examines the dysregulation of miRNAs in GDM and their regulatory functions in metabolic disorders. We discuss the involvement of specific miRNAs in modulating key pathways implicated in GDM pathogenesis, such as glucose metabolism, insulin signaling, and lipid homeostasis. Furthermore, we explore the potential diagnostic and therapeutic implications of miRNAs in GDM management, highlighting the promise of miRNA-based interventions for mitigating the adverse consequences of GDM on maternal and offspring health.
Collapse
Affiliation(s)
- Ling He
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Wang
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyi Chen
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Li X, Chen Q, Wu D, Xiao Z, Shi C, Dong Y, Jia L. High Levels of BPA and BPF Exposure during Pregnancy Are Associated with Lower Birth Weight in Shenyang in Northeast China. Chem Res Toxicol 2024; 37:1199-1209. [PMID: 38953537 DOI: 10.1021/acs.chemrestox.4c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Animal studies indicate that bisphenol A (BPA) has obesogenic effects. Recent experiments reported similar endocrine-disrupting effects of bisphenol F (BPF) and bisphenol S (BPS), which are substitutes of BPA. The aim of this study was to investigate the exposure levels of these bisphenols in pregnant women and their effects on the physical development of infants aged 0-12 months. This study recruited pregnant women who gave birth at a hospital between February 2019 and September 2020. Urine samples from these pregnant women in the third trimester of pregnancy were detected by using ultrahigh-performance liquid chromatography-triple quadruple mass spectrometry. Follow-ups at 6 and 12 months of age were conducted by telephone by pediatricians using a structured questionnaire. Multiple linear regressions were used to determine the associations between bisphenol concentrations and infant weight. A total of 113 mother-child pairs had complete questionnaires and urine samples as well as data on newborns aged 6 months and 12 months. The detection rates of urinary BPA, BPF, and BPS in pregnant women were 100, 62.83, and 46.02%, respectively. Their median levels are 5.84, 0.54, and 0.07 μg/L, respectively. Increased urinary BPA and BPF concentrations during pregnancy were significantly associated with lower birth weight (standardized regression coefficients [β] = -0.081 kg, 95% confidence interval [CI]: -0.134 to -0.027; β = -0.049 kg, 95% CI: -0.097 to -0.001). In addition, urinary BPA and BPF concentrations during pregnancy were positively associated with weight growth rate from 0 to 6 months (β = 0.035 kg/mouth, 95% CI: 0.00-0.064; β = 0.028 kg/mouth, 95% CI: 0.006-0.050), especially in female infants (β = 0.054 kg/mouth, 95% CI: 0.015-0.093; β = 0.035 kg/mouth, 95% CI: 0.005-0.065). Therefore, maternal BPA and BPF levels during pregnancy were negatively correlated with birth weight and positively correlated with the growth rate of infant weight at 0-6 months of age, especially in female infants.
Collapse
Affiliation(s)
- Xuening Li
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
- Department of Pediatrics, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Qi Chen
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China
- Environmental Health Department of Xiqing District Center for Disease Control and Prevention, Tianjin 300380, China
| | - Dan Wu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China
| | - Zhe Xiao
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China
| | - Ce Shi
- Department of Pediatrics, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Youdan Dong
- Department of Rheumatology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, China
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China
| |
Collapse
|
8
|
Mitra T, Gulati R, Ramachandran K, Rajiv R, Enninga EAL, Pierret CK, Kumari R S, Janardhanan R. Endocrine disrupting chemicals: gestational diabetes and beyond. Diabetol Metab Syndr 2024; 16:95. [PMID: 38664841 PMCID: PMC11046910 DOI: 10.1186/s13098-024-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Gestational Diabetes Mellitus (GDM) has been on the rise for the last two decades along with the growing incidence of obesity. The ubiquitous use of Endocrine-Disrupting Chemicals (EDCs) worldwide has been associated with this increase in GDM incidence. Epigenetic modifications such as DNA methylation, histone acetylation, and methylation have been associated with prenatal exposure to EDCs. EDC exposure can also drive a sustained disruption of the hypothalamus-pituitary-thyroid axis and various other signaling pathways such as thyroid signaling, PPARγ signaling, PI3K-AKT signaling. This disruption leads to impaired glucose metabolism, insulin resistance as well as β-cell dysfunction, which culminate into GDM. Persistent EDC exposure in pregnant women also increases adipogenesis, which results in gestational weight gain. Importantly, pregnant mothers transfer these EDCs to the fetus via the placenta, thus leading to other pregnancy-associated complications such as intrauterine growth restriction (IUGR), and large for gestational age neonates. Furthermore, this early EDC exposure of the fetus increases the susceptibility of the infant to metabolic diseases in early life. The transgenerational impact of EDCs is also associated with higher vascular tone, cognitive aberrations, and enhanced susceptibility to lifestyle disorders including reproductive health anomalies. The review focuses on the impact of environmental toxins in inducing epigenetic alterations and increasing the susceptibility to metabolic diseases during pregnancy needs to be extensively studied such that interventions can be developed to break this vicious cycle. Furthermore, the use of EDC-associated ExomiRs from the serum of patients can help in the early diagnosis of GDM, thereby leading to triaging of patients based on increasing risk factor of the clinicopathological condition.
Collapse
Affiliation(s)
- Tridip Mitra
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Richa Gulati
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Krithika Ramachandran
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Rohan Rajiv
- Dietrich School of Arts and Sciences, University of Pittsburgh, 15260, Pittsburgh, PA, USA
| | | | - Chris K Pierret
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Sajeetha Kumari R
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Rajiv Janardhanan
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
9
|
Martínez-Ibarra A, Cerbón M, Martínez-Razo LD, Morales-Pacheco M, Torre-Villalvazo I, Kawa S, Rodríguez-Dorantes M. Impact of DEHP exposure on female reproductive health: Insights into uterine effects. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104391. [PMID: 38367918 DOI: 10.1016/j.etap.2024.104391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Several endocrine disrupting compounds released from plastics, including polyfluoroalkyl substances, bisphenols, flame retardants, phthalates and others, are of great concern to human health due to their high toxicity. This review discusses the effects of di-(2-ethylhexyl) phthalate (DEHP), the most common member of the phthalate family, on female reproduction. In vitro and in vivo studies link DEHP exposure to impaired hypothalamic-pituitary-ovarian s (HPO) axis function, alteration of steroid-hormone levels and dysregulation of their receptors, and changes in uterine morphophysiology. In addition, high urinary DEPH levels have been associated with several reproductive disorders in women, including endometriosis, fibromyoma, fetal growth restriction and pregnancy loss. These data suggest that DEHP may be involved in the pathophysiology of various female reproductive diseases. Therefore, exposure to these compounds should be considered a concern in clinician surveillance practices for women at reproductive age and should be regulated to protect their health and that of their progeny.
Collapse
Affiliation(s)
| | - Marco Cerbón
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | | | - Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| | - Iván Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Simón Kawa
- Dirección General del Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico.
| | | |
Collapse
|
10
|
Liu X, Na J, Liu X, Jia X, Ren M, Chen J, Han B, Xu J, Li N, Li Z, Wang B. Co-exposure to phthalates and polycyclic aromatic hydrocarbons and the risk of gestational hypertension in Chinese women. ENVIRONMENT INTERNATIONAL 2024; 185:108562. [PMID: 38460239 DOI: 10.1016/j.envint.2024.108562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Phthalates (PAEs) and polycyclic aromatic hydrocarbons (PAHs) are frequently detected in females of reproductive age. Many studies have found that environmental PAE and PAH levels are independent risk factors for gestational hypertension. However, exposure to both components is a more realistic scenario. To better assess the health effects of PAEs and PAHs in pregnant women, we explored the associations of exposure to both individual and combined PAEs and PAHs with gestational hypertension. This nested case-control study was a component of a prospective cohort study conducted in Beijing, China. We included 206 women with gestational hypertension and 214 pregnant controls. We used gas chromatography/tandem mass spectrometry (GC-MS/MS) to detect 8 PAEs and 13 PAHs in > 80 % of all collected hair samples. Multiple linear regression models were employed to test the individual associations between each component and gestational hypertension. A quantile-based g-computation (qgcomp) model and a weighted quantile sum (WQS) regression model were used to estimate whether exposure to both PAEs and PAHs increased the risk of gestational hypertension. The individual exposure analyses revealed that diethyl phthalate (DEP), diisobutyl phthalate (DIBP) (both PAEs), benzo(k)fluoranthene (BKF), anthracene, (ANT), and benzo(a)pyrene (BAP) (all PAHs) were positively associated with increased risk of gestational hypertension. In mixed-effect analyses, the qgcomp model indicated that co-exposure to PAEs and PAHs increased the risk of gestational hypertension (odds ratio = 2.01; 95 % confidence interval: 1.02, 3.94); this finding was verified by the WQS regression model. Our findings support earlier evidence that both PAEs and PAHs increase the risk of gestational hypertension, both individually and in combination. This suggests that reductions in exposure to endocrine system-disrupting chemicals such as PAEs and PAHs might reduce the risk of gestational hypertension.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
| | - Jigen Na
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Xiaojing Liu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
| | - Xiaoqian Jia
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
| | - Mengyuan Ren
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
| | - Junxi Chen
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Nan Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China.
| | - Zhiwen Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
| | - Bin Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, China
| |
Collapse
|
11
|
Kunysz M, Cieśla M, Darmochwał-Kolarz D. Evaluation of miRNA Expression in Patients with Gestational Diabetes Mellitus: Investigating Diagnostic Potential and Clinical Implications. Diabetes Metab Syndr Obes 2024; 17:881-891. [PMID: 38414865 PMCID: PMC10898488 DOI: 10.2147/dmso.s443755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Purpose Gestational diabetes mellitus (GDM) is common pregnancy complication (8%), characterized by hyperglycemia resulting from pathological homeostatic mechanisms. There's a concerning trend of increasing GDM prevalence. New markers, particularly epigenetic ones, are sought for early detection and enhanced care. miRNA are small non-coding RNA molecules. The main goal was to investigate the potential role of miRNA (miR-16-5p, miR-222-3p, miR-21-5p) in GDM and their association with clinical features. Patients and Methods The study included 72 pregnant patients, with 42 having GDM and 30 in the control group. miRNA expression was measured using ELISA. Results There were no significant differences in miR-222-3p expression between GDM patients and the control group. The GDM group exhibited a positive correlation between miR-16-5p expression and miR-21-5p expression as well as between miR-16-5p expression and insulin resistance. In the GDM group, a positive correlation was observed between miR-21-5p expression and fasting glucose levels. Conclusion Results do not confirm the role of miR-222-3p in GDM pathogenesis or as a diagnostic marker. Additionally, a role for miR-16-5p in GDM pathogenesis was observed. Furthermore, a potential role for miR-21-5p in monitoring GDM treatment is indicated.
Collapse
Affiliation(s)
- Mateusz Kunysz
- Department of Obstetrics & Gynecology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, Rzeszow, 35-959, Poland
| | - Marek Cieśla
- College of Medical Sciences, University of Rzeszow, Rzeszow, 35-959, Poland
| | - Dorota Darmochwał-Kolarz
- Department of Obstetrics & Gynecology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, Rzeszow, 35-959, Poland
| |
Collapse
|
12
|
Wang X, He C, Wu N, Tian Y, An S, Chen W, Liu X, Zhang H, Xiong S, Liu Y, Li Q, Zhou Y, Shen X. Establishment and validation of a prediction model for gestational diabetes. Diabetes Obes Metab 2024; 26:663-672. [PMID: 38073424 DOI: 10.1111/dom.15356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024]
Abstract
AIM To develop a visual prediction model for gestational diabetes (GD) in pregnant women and to establish an effective and practical tool for clinical application. METHODS To establish a prediction model, the modelling set included 1756 women enrolled in the Zunyi birth cohort, the internal validation set included 1234 enrolled women, and pregnant women in the Wuhan cohort were included in the external validation set. We established a demographic-lifestyle factor model (DLFM) and a demographic-lifestyle-environmental pollution factor model (DLEFM) based on whether the women were exposed to environmental pollutants. The least absolute shrinkage and selection lasso-logistic regression analyses were used to identify the independent predictors of GD and construct a nomogram for predicting its occurrence. RESULTS The DLEFM regression analysis showed that a family history of diabetes (odd ratio [OR] 2.28; 95% confidence interval [CI] 1.05-4.71), a history of GD in pregnant women (OR 4.22; 95% CI 1.89-9.41), being overweight or obese before pregnancy (OR 1.71; 95% CI 1.27-2.29), a history of hypertension (OR 2.61; 95% CI 1.41-4.72), sedentary time (h/day) (OR 1.16; 95% CI 1.08-1.24), monobenzyl phthalate (OR 1.95; 95% CI 1.45-2.67) and Q4 mono-ethyl phthalate concentration (OR 1.85; 95% CI 1.26-2.73) were independent predictors. The area under the receiver operating curves for the internal validation of the DLEFM and the DLFM constructed using these seven factors was 0.827 and 0.783, respectively. The calibration curve of the DLEFM was close to the diagonal line. The DLEFM was thus the more optimal model, and the one which we chose. CONCLUSIONS A nomogram based on preconception factors was constructed to predict the occurrence of GD in the second and third trimesters. It provided an effective tool for the early prediction and timely management of GD.
Collapse
Affiliation(s)
- Xia Wang
- School of Public Health, Zunyi Medical University, Zunyi, China
- Department of Non-Communicable Disease Management, Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Caidie He
- School of Public Health, Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
| | - Nian Wu
- School of Public Health, Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
| | - Yingkuan Tian
- School of Public Health, Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
| | - Songlin An
- School of Public Health, Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
| | - Wei Chen
- School of Public Health, Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
| | - Xiang Liu
- School of Public Health, Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
| | - Haonan Zhang
- School of Public Health, Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
| | - Shimin Xiong
- School of Public Health, Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
| | - Yijun Liu
- School of Public Health, Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
| | - Quan Li
- Department of Obstetrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
| |
Collapse
|
13
|
Aguilar-Aguilar A, de León-Martínez LD, Forgionny A, Acelas Soto NY, Mendoza SR, Zárate-Guzmán AI. A systematic review on the current situation of emerging pollutants in Mexico: A perspective on policies, regulation, detection, and elimination in water and wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167426. [PMID: 37774864 DOI: 10.1016/j.scitotenv.2023.167426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Emerging pollutants (EPs) emerged as a group of new compounds whose presence in the environment has been widely detected in Mexico. In this country, different concentrations of pharmaceutical compounds, pesticides, dyes, and microplastics have been reported, which vary depending on the region and the analyzed matrix (i.e., wastewater, surface water, groundwater). The evidence of the EPs' presence focuses on the detection of them, but there is a gap in information regarding is biomonitoring and their effects in health in Mexico. The presence of these pollutants in the country associated with lack of proper regulations in the discharge and disposal of EPs. Therefore, this review aims to provide a comprehensive view of the current environmental status, policies, and frameworks regarding Mexico's situation. The review also highlights the lack of information about biomonitoring since EPs are present in water even after their treatment, leading to a critical situation, which is high exposure to humans and animals. Although, technologies to efficiently eliminate EPs are available, their application has been reported only at a laboratory scale thus far. Here, an overview of health and environmental impacts and a summary of the research works reported in Mexico from 2014 to 2023 were presented. This review concludes with a concrete point of view and perspective on the status of the EPs' research in Mexico as an alert for government entities about the necessity of measures to control the EPs disposal and treatment.
Collapse
Affiliation(s)
- Angélica Aguilar-Aguilar
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | | | - Angélica Forgionny
- Grupo de Materiales con Impacto, Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín 55450, Colombia
| | - Nancy Y Acelas Soto
- Grupo de Materiales con Impacto, Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín 55450, Colombia
| | - Sergio Rosales Mendoza
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 201, San Luis Potosí 78210, Mexico
| | - Ana I Zárate-Guzmán
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico.
| |
Collapse
|
14
|
Merrill AK, Sobolewski M, Susiarjo M. Exposure to endocrine disrupting chemicals impacts immunological and metabolic status of women during pregnancy. Mol Cell Endocrinol 2023; 577:112031. [PMID: 37506868 PMCID: PMC10592265 DOI: 10.1016/j.mce.2023.112031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Affiliation(s)
- Alyssa K Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA.
| |
Collapse
|
15
|
Płotka-Wasylka J, Mulkiewicz E, Lis H, Godlewska K, Kurowska-Susdorf A, Sajid M, Lambropoulou D, Jatkowska N. Endocrine disrupting compounds in the baby's world - A harmful environment to the health of babies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163350. [PMID: 37023800 DOI: 10.1016/j.scitotenv.2023.163350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023]
Abstract
Globally, there has been a significant increase in awareness of the adverse effects of chemicals with known or suspected endocrine-acting properties on human health. Human exposure to endocrine disrupting compounds (EDCs) mainly occurs by ingestion and to some extent by inhalation and dermal uptake. Although it is difficult to assess the full impact of human exposure to EDCs, it is well known that timing of exposure is of importance and therefore infants are more vulnerable to EDCs and are at greater risk compared to adults. In this regard, infant safety and assessment of associations between prenatal exposure to EDCs and growth during infancy and childhood has been received considerable attention in the last years. Hence, the purpose of this review is to provide a current update on the evidence from biomonitoring studies on the exposure of infants to EDCs and a comprehensive view of the uptake, the mechanisms of action and biotransformation in baby/human body. Analytical methods used and concentration levels of EDCs in different biological matrices (e.g., placenta, cord plasma, amniotic fluid, breast milk, urine, and blood of pregnant women) are also discussed. Finally, key issues and recommendations were provided to avoid hazardous exposure to these chemicals, taking into account family and lifestyle factors related to this exposure.
Collapse
Affiliation(s)
- Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland; BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Hanna Lis
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Klaudia Godlewska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | | | - Muhammad Sajid
- Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Dimitra Lambropoulou
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Natalia Jatkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| |
Collapse
|
16
|
Maitre L, Jedynak P, Gallego M, Ciaran L, Audouze K, Casas M, Vrijheid M. Integrating -omics approaches into population-based studies of endocrine disrupting chemicals: A scoping review. ENVIRONMENTAL RESEARCH 2023; 228:115788. [PMID: 37004856 DOI: 10.1016/j.envres.2023.115788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 05/16/2023]
Abstract
Health effects of endocrine disrupting chemicals (EDCs) are challenging to detect in the general population. Omics technologies become increasingly common to identify early biological changes before the apparition of clinical symptoms, to explore toxic mechanisms and to increase biological plausibility of epidemiological associations. This scoping review systematically summarises the application of omics in epidemiological studies assessing EDCs-associated biological effects to identify potential gaps and priorities for future research. Ninety-eight human studies (2004-2021) were identified through database searches (PubMed, Scopus) and citation chaining and focused on phthalates (34 studies), phenols (19) and PFASs (17), while PAHs (12) and recently-used pesticides (3) were less studied. The sample sizes ranged from 10 to 12,476 (median = 159), involving non-pregnant adults (38), pregnant women (11), children/adolescents (15) or both latter populations studied together (23). Several studies included occupational workers (10) and/or highly exposed groups (11) focusing on PAHs, PFASs and pesticides, while studies on phenols and phthalates were performed in the general population only. Analysed omics layers included metabolic profiles (30, including 14 targeted analyses), miRNA (13), gene expression (11), DNA methylation (8), microbiome (5) and proteins (3). Twenty-one studies implemented targeted multi-assays focusing on clinical routine blood lipid traits, oxidative stress or hormones. Overall, DNA methylation and gene expression associations with EDCs did not overlap across studies, while some EDC-associated metabolite groups, such as carnitines, nucleotides and amino acids in untargeted metabolomic studies, and oxidative stress markers in targeted studies, were consistent across studies. Studies had common limitations such as small sample sizes, cross-sectional designs and single sampling for exposure biomonitoring. In conclusion, there is a growing body of evidence evaluating the early biological responses to exposure to EDCs. This review points to a need for larger longitudinal studies, wider coverage of exposures and biomarkers, replication studies and standardisation of research methods and reporting.
Collapse
Affiliation(s)
- Léa Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Paulina Jedynak
- ISGlobal, Barcelona, Spain; University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Marta Gallego
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura Ciaran
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Karine Audouze
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 Rue des Saints Pères, Paris, France
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
17
|
Elhag DA, Al Khodor S. Exploring the potential of microRNA as a diagnostic tool for gestational diabetes. J Transl Med 2023; 21:392. [PMID: 37330548 PMCID: PMC10276491 DOI: 10.1186/s12967-023-04269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating host gene expression. Recent studies have indicated a role of miRNAs in the pathogenesis of gestational diabetes mellitus (GDM), a common pregnancy-related disorder characterized by impaired glucose metabolism. Aberrant expression of miRNAs has been observed in the placenta and/or maternal blood of GDM patients, suggesting their potential use as biomarkers for early diagnosis and prognosis. Additionally, several miRNAs have been shown to modulate key signaling pathways involved in glucose homeostasis, insulin sensitivity, and inflammation, providing insights into the pathophysiology of GDM. This review summarizes the current knowledge on the dynamics of miRNA in pregnancy, their role in GDM as well as their potential as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Duaa Ahmed Elhag
- Maternal and Child Health Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Souhaila Al Khodor
- Maternal and Child Health Division, Research Branch, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
18
|
Mariana M, Cairrao E. The Relationship between Phthalates and Diabetes: A Review. Metabolites 2023; 13:746. [PMID: 37367903 DOI: 10.3390/metabo13060746] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Since the beginning of their production, in the 1930s, phthalates have been widely used in the plastics industry to provide durability and elasticity to polymers that would otherwise be rigid, or as solvents in hygiene and cosmetic products. Taking into account their wide range of applications, it is easy to understand why their use has been increasing over the years, making them ubiquitous in the environment. This way, all living organisms are easily exposed to these compounds, which have already been classified as endocrine disruptor compounds (EDC), affecting hormone homeostasis. Along with this increase in phthalate-containing products, the incidence of several metabolic diseases has also been rising, namely diabetes. That said, and considering that factors such as obesity and genetics are not enough to explain this substantial increase, it has been proposed that the exposure to environmental contaminants may also be a risk factor for diabetes. Thus, the aim of this work is to review whether there is an association between the exposure to phthalates and the development of the several forms of diabetes mellitus, during pregnancy, childhood, and adulthood.
Collapse
Affiliation(s)
- Melissa Mariana
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique s/n, 6200-506 Covilhã, Portugal
- FCS-UBI-Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique s/n, 6200-506 Covilhã, Portugal
- FCS-UBI-Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
19
|
Yao X, Geng S, Zhu L, Jiang H, Wen J. Environmental pollutants exposure and gestational diabetes mellitus: Evidence from epidemiological and experimental studies. CHEMOSPHERE 2023; 332:138866. [PMID: 37164202 DOI: 10.1016/j.chemosphere.2023.138866] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Except for known sociodemographic factors, long-term exposure to environmental pollutants has been shown to contribute to the development of gestational diabetes mellitus (GDM), but the conclusions remain controversial. To provide a comprehensive overview of the association between environmental pollutants and GDM, we performed a systematic review and meta-analysis. Several electronic databases (PubMed, Embase, Web of Science, Medline and Cochrane) were searched for related epidemiological and experimental studies up to September 2022. For epidemiological studies, a meta-analysis was carried out to appraise the effect of environmental pollutants, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), per- and polyfluoroalkyl substances (PFASs), phenols, phthalates (PAEs), polybrominated diphenyl ethers (PBDEs) and parabens exposure on GDM. Moreover, we also summarized possible biological mechanisms linking pollution exposure and GDM based on the included experimental studies. A total of 80 articles were enrolled, including 38 epidemiological studies and 42 experimental studies. Meta-analysis results showed that exposure to PAEs [OR (95%CI) = 1.07 (1.00, 1.14)], PFASs [OR (95%CI) = 1.10 (1.01, 1.19)], as well as PCBs [OR (95%CI) = 1.18 (1.02, 1.36)] and PBDEs [OR (95%CI) = 1.33 (1.17, 1.50)] significantly increased the risk of GDM, but no significant effects were found for phenols, OCPs, and parabens. In addition, experimental studies suggested that the potential biological mechanisms of environmental pollutants contributing to GDM may involve insulin resistance, β-cell dysfunction, neurohormonal dysfunction, inflammation, oxidative stress, epigenetic modification, and alterations in gut microbiome. In conclusion, long-term environmental pollutants exposure may induce the development of GDM, and there may be a synergistic effect between the homologs. However, studies conducted on the direct biological link between environmental pollutants and GDM were few. More prospective studies and high-quality in vivo and in vitro experiments were needed to investigate the specific effects and mechanisms.
Collapse
Affiliation(s)
- Xiaodie Yao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Shijie Geng
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Lijun Zhu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Hua Jiang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China.
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China.
| |
Collapse
|
20
|
Besaratinia A. The State of Research and Weight of Evidence on the Epigenetic Effects of Bisphenol A. Int J Mol Sci 2023; 24:ijms24097951. [PMID: 37175656 PMCID: PMC10178030 DOI: 10.3390/ijms24097951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Bisphenol A (BPA) is a high-production-volume chemical with numerous industrial and consumer applications. BPA is extensively used in the manufacture of polycarbonate plastics and epoxy resins. The widespread utilities of BPA include its use as internal coating for food and beverage cans, bottles, and food-packaging materials, and as a building block for countless goods of common use. BPA can be released into the environment and enter the human body at any stage during its production, or in the process of manufacture, use, or disposal of materials made from this chemical. While the general population is predominantly exposed to BPA through contaminated food and drinking water, non-dietary exposures through the respiratory system, integumentary system, and vertical transmission, as well as other routes of exposure, also exist. BPA is often classified as an endocrine-disrupting chemical as it can act as a xenoestrogen. Exposure to BPA has been associated with developmental, reproductive, cardiovascular, neurological, metabolic, or immune effects, as well as oncogenic effects. BPA can disrupt the synthesis or clearance of hormones by binding and interfering with biological receptors. BPA can also interact with key transcription factors to modulate regulation of gene expression. Over the past 17 years, an epigenetic mechanism of action for BPA has emerged. This article summarizes the current state of research on the epigenetic effects of BPA by analyzing the findings from various studies in model systems and human populations. It evaluates the weight of evidence on the ability of BPA to alter the epigenome, while also discussing the direction of future research.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
21
|
Dinesen S, El-Faitarouni A, Frisk NLS, Sørensen AE, Dalgaard LT. Circulating microRNA as Biomarkers for Gestational Diabetes Mellitus-A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:6186. [PMID: 37047159 PMCID: PMC10094234 DOI: 10.3390/ijms24076186] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a severe pregnancy complication for both the woman and the child. Women who suffer from GDM have a greater risk of developing Type 2 diabetes mellitus (T2DM) later in life. Identification of any potential biomarkers for the early prediction of gestational diabetes can help prevent the disease in women with a high risk. Studies show microRNA (miRNA) as a potential biomarker for the early discovery of GDM, but there is a lack of clarity as to which miRNAs are consistently altered in GDM. This study aimed to perform a systematic review and meta-analysis to investigate miRNAs associated with GDM by comparing GDM cases with normoglycemic controls. The systematic review was performed according to PRISMA guidelines with searches in PubMed, Web of Science, and ScienceDirect. The primary search resulted in a total of 849 articles, which were screened according to the prior established inclusion and exclusion criteria. Following the screening of articles, the review was based on the inclusion of 35 full-text articles, which were evaluated for risk of bias and estimates of quality, after which data were extracted and relative values for miRNAs were calculated. A meta-analysis was performed for the miRNA species investigated in three or more studies: MiR-29a, miR-330, miR-134, miR-132, miR-16, miR-223, miR-155, miR-122, miR-17, miR-103, miR-125, miR-210, and miR-222. While some miRNAs showed considerable between-study variability, miR-29a, miR-330, miR-134, miR-16, miR-223, and miR-17 showed significant overall upregulation in GDM, while circulating levels of miR-132 and miR-155 were decreased among GDM patients, suggesting further studies of these as biomarkers for early GDM discovery.
Collapse
Affiliation(s)
- Sofie Dinesen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Alisar El-Faitarouni
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | | | - Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Roskilde Hospital, Region Zealand, 4000 Roskilde, Denmark
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| |
Collapse
|
22
|
Chen W, He C, Liu X, An S, Wang X, Tao L, Zhang H, Tian Y, Wu N, Xu P, Liao D, Liao J, Wang L, Fang D, Xiong S, Liu Y, Tian K, Li Q, Huang J, Yuan H, Chen X, Zhang L, Shen X, Zhou Y. Effects of exposure to phthalate during early pregnancy on gestational diabetes mellitus: a nested case-control study with propensity score matching. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33555-33566. [PMID: 36480145 DOI: 10.1007/s11356-022-24454-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Owing to the complexity of phthalates (PAEs) components and the diversity of their sources, the health hazards of their metabolites to pregnant women remain unclear. This study aimed to explore the relationship between exposure to PAEs during early pregnancy and gestational diabetes mellitus (GDM) in rural pregnant women. We assessed pregnant women with (n = 338) or without (n = 3082) GDM from the ongoing Zunyi Birth Cohort. Participants' urine samples were collected to measure the levels of 10 metabolites of PAEs. GDM was diagnosed using the 75-g oral glucose tolerance test at 24-28 weeks of gestation. We adopted propensity score matching based on GDM-related factors and pregnant women's backgrounds to establish two groups of 338 patients: those with or without GDM. In the cohort, we included 5734 pregnant women; 519 of them developed GDM, yielding a GDM incidence rate of 9.05%. Urinary concentrations of monooctyl phthalate (MOP), mono-benzyl phthalate (MBzP), mono(2-ethyl-5-oxyhexyl) phthalate (MEOHP), and mono(2-ethyl-5-carboxypentyl) phthalate (MECPP) during early pregnancy were significantly associated with GDM (P < 0.05). Logistic regression models revealed that MEOHP in the urine was positively associated with GDM (odds ratio [OR] = 1.55; 95% confidence interval [CI]: 1.00-2.39). Furthermore, restricted cubic spline models revealed that urine MEOHP concentrations greater than 15.6 μg/L were positively associated with GDM, and approximately 23.5% pregnant women had urine MEOHP concentrations greater than 15.6 μg/L. Thus, approximately 23.5% of pregnant women were at the risk of developing GDM due to MEOHP, which suggested that pregnant women should reduce the use of packaged food and cosmetics to reduce the risk of GDM. However, further molecular biology experiments are required to confirm these findings and to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Wei Chen
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Caidie He
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xiang Liu
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Songlin An
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xia Wang
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Lin Tao
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Haonan Zhang
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Yingkuan Tian
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Nian Wu
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Pei Xu
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Dengqing Liao
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Juan Liao
- Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Linglu Wang
- The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Derong Fang
- Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shimin Xiong
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Yijun Liu
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Kunming Tian
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Quan Li
- Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | | | - Hongyu Yuan
- Xishui County People's Hospital, Zunyi, China
| | | | - Li Zhang
- Meitan County People's Hospital, Zunyi, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
23
|
Assessing human exposure to phthalate esters in drinking water migrated from various pipe materials and water filter elements during water treatments and storage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47832-47843. [PMID: 36749517 DOI: 10.1007/s11356-023-25633-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/26/2023] [Indexed: 02/08/2023]
Abstract
Plastic water-supply pipes and filter element are frequently used in municipal water supply systems. Leaching of phthalate esters (PAEs) from these pipes and filter elements to drinking water has become a common concern among the public. In this study, the migrations of 16 phthalate esters (PAEs) in seven different kinds of water-supply product materials were investigated. Di-n-butyl phthalate (DBP) had the highest detection frequency of 54.4% in the water leaching samples of various water supply pipes and water filter elements samples, followed by Diisobutyl phthalate (DIBP, 46/90, 51.1%). The maximum detected concentration level for di(2-ethylhexyl) phthalate (DEHP), diethyl phthalate (DEP), and DBP in the leaching experiment was below the regulatory limit values of 8 µg/L, 300 µg/L, and 3 µg/L for each compound in China standards for drinking water quality. The increasing of the water temperature, the lower pH of the water, and the increasing of the leaching time will increase the migration of PAEs from plastic pipes into water. The chronic daily intake of children aged < 1-12 years to PAEs through drinking water was higher than the rest of the population groups. Carcinogenic risks (CR) of DEHP via drinking water were neglectable for most groups of people, while for young children with age of 1-2 years old, the CR is an acceptable risk.
Collapse
|
24
|
Tang P, Liang J, Liao Q, Huang H, Guo X, Lin M, Liu B, Wei B, Zeng X, Liu S, Huang D, Qiu X. Associations of bisphenol exposure with the risk of gestational diabetes mellitus: a nested case-control study in Guangxi, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25170-25180. [PMID: 34837624 DOI: 10.1007/s11356-021-17794-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
A growing number of epidemiologic studies have estimated the associations between endocrine-disrupting chemicals and gestational diabetes mellitus (GDM). However, reports on the association between bisphenol A (BPA) substitutes and GDM are limited. This investigation aimed to explore the associations of maternal serum BPA, bisphenol B (BPB), bisphenol F (BPF), bisphenol S (BPS), and tetrabromobisphenol A (TBBPA) with the risk of GDM. A nested case-control study was performed among 500 pregnant women. In conditional logistic regression models, the OR for BPS was significantly increased in the medium exposure groups (OR = 1.77; 95% CI: 1.01, 3.13) compared with the reference group, while BPA (OR: 0.38, 95%CI: 0.29, 0.50) and TBBPA (OR: 0.67, 95%CI: 0.54, 0.85) were negatively associated with the risk of GDM. In the Bayesian kernel machine regression (BKMR) analysis, the joint effect of bisphenols was positively associated with the risk of GDM. BPS showed positively relationship, while BPA and TBBPA showed negatively relationship, respectively. The quantile g-computation revealed a statistically significant and negative joint effect of the five bisphenols on the risk of GDM (OR: 0.57; 95% CI: 0.46, 0.72) with BPA (70.2%), TBBPA (21.3%), and BPB (8.5%) had positive contribution to the overall effect. These findings suggested that BPS had a positive effect on the risk of GDM, while BPA and TBBPA had negative effect on the risk of GDM. Moreover, exposure to the mixture of the five bisphenols was negatively associated with the risk of GDM.
Collapse
Affiliation(s)
- Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaojing Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Mengrui Lin
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Bihu Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Bincai Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
25
|
Medellín-Garibay SE, Alcántara-Quintana LE, Rodríguez-Báez AS, Sagahón-Azúa J, Rodríguez-Aguilar M, Hernández Cueto MDLA, Muñoz Medina JE, Milán-Segovia RDC, Flores-Ramírez R. Urinary phthalate metabolite and BPA concentrations in women with cervical cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21033-21042. [PMID: 36264455 DOI: 10.1007/s11356-022-23654-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Environmental pollutants are involved in the development and progression of numerous cancers, including cervical cancer (CC). One possible explanation for this is the ability of several pollutants to mimic natural hormones. This study aimed to evaluate the urinary concentrations of monoesters of phthalates and bisphenol A (BPA) in women with CC. A total of 45 women were included: 15 in the control group, 12 with CC diagnosis classified in early stages IA-IIB, and 18 in late stages III-IV. Urine samples were analyzed for BPA, mono-isobutyl phthalate (MiBP), mono-n-butyl phthalate (MBP), monobenzyl phthalate (MBzP), and mono 2-ethylhexyl phthalate (MEHP) using high-performance liquid chromatography coupled to a tandem mass detector. The detection rate of environmental pollutants was 100%, with a median concentration in the control group and early-, and late-stage groups of 10.4, 9.2, 4.3, 38.4, and 12.9 µg L-1; 3.1, 3.1, 151.1, 54.5, and 30.4 µg L-1 and 1.9, 92.8, 3.6, 31.0, and 9.3 µg L-1 for BPA, MEHP, MBzP, MBP, and MiBP, respectively This study reveals high levels of phthalates, particularly MEHP, in urine samples of women with CC associated with human papillomavirus (HPV) infection. Further studies are needed to evaluate the possible role of phthalates in synergy with HPV in progression to CC.
Collapse
Affiliation(s)
| | - Luz Eugenia Alcántara-Quintana
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | | | - Julia Sagahón-Azúa
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - Maribel Rodríguez-Aguilar
- Departamento de Ciencias Básicas, Universidad Autónoma de Quintana Roo, Chetumal, Quintana Roo, México
| | | | - José Esteban Muñoz Medina
- Laboratorio Central de Epidemiología, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | | | - Rogelio Flores-Ramírez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico.
| |
Collapse
|
26
|
Shanmugam DAS, Dhatchanamurthy S, Leela KA, Bhaskaran RS. Maternal exposure to di(2-ethylhexyl) phthalate (DEHP) causes multigenerational adverse effects on the uterus of F 1 and F 2 offspring rats. Reprod Toxicol 2023; 115:17-28. [PMID: 36435455 DOI: 10.1016/j.reprotox.2022.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Phthalates are one of the ubiquitous chemicals found in day-to-day products like food packaging, children's toys, and other consumer commodities. There is rising concern that repeated exposure to phthalates during pregnancy and lactation could have long-term effects on maternal and fetal health. We hypothesize that exposure to DEHP during the developmental windows might affect the expression of molecules that regulate uterine function and that this effect would be passed on to further generations. Rat dams were treated with olive oil (vehicle) or DEHP (100 mg/kg b.wt./day) orally from gestational day 9 (GD 9) to the end of lactation (PND 21). F0 maternal DEHP exposure resulted in multigenerational (F1 and F2) reproductive toxicity, as evidenced by an extended estrous cycle, decreased mating, fertility, and fecundity indices. Serum progesterone and estradiol levels were decreased and their cognate receptors (PR and ERα) in the uterus were decreased in the DEHP-exposed offspring rats. Further analysis of the expression of estrogen and progesterone regulatory genes such as Hox a11, VEGF A, Ihh, LIFR, EP4, PTCH, NR2F2, BMP2, and Wnt4 were reduced in the uteri of adult F1 and F2 generation rats born from DEHP-exposed F0 dams. Decreased expression of these crucial proteins due to DEHP exposure may lead to defects in epithelial proliferation and secretion, uterine receptivity, and decidualization in the uteri of successive generations. This study showed that maternal DEHP exposure impairs the expression of molecules that regulate uterine function and this multigenerational effect is transmitted via maternal lineage.
Collapse
Affiliation(s)
- Dharani Abirama Sundari Shanmugam
- Department of Endocrinology, Dr. ALM. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, India
| | - Sakthivel Dhatchanamurthy
- Department of Endocrinology, Dr. ALM. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, India
| | - Kamakshi Arjunan Leela
- Department of Endocrinology, Dr. ALM. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, India
| | - Ravi Sankar Bhaskaran
- Department of Endocrinology, Dr. ALM. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, India.
| |
Collapse
|
27
|
Ding L, Shen Y, Wang A, Lu C, Gu X, Jiang L. Construction of a novel miRNA regulatory network and identification of target genes in gestational diabetes mellitus by integrated analysis. Front Genet 2022; 13:966296. [PMID: 36544488 PMCID: PMC9762355 DOI: 10.3389/fgene.2022.966296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Backgrounds: Given the roles of microRNA (miRNA) in human diseases and the high incidence of gestational diabetes mellitus (GDM), the aim of the study was to examine miRNA signatures and crucial pathways, as well as possible biomarkers for GDM diagnosis. Methods: We conducted a two-stage study to explore functional miRNA and those target genes. Twelve participants (6 GDM and 6 non-GDM) were first enrolled and performed RNA sequencing analysis. The overlapped candidate genes were further screened in combination with differentially expressed genes (DEGs) of GEO datasets (GSE87295, GSE49524 and GSE19649) and potential target genes of DEMs. Candidate genes, critical pathways, small molecular compounds and regulatory networks were identified using bioinformatic analysis. The potential candidate genes were then investigated using the GEO dataset (GSE103552) of 19 participants in the validation stage (11 GDM and 8 non-GDM women). Results: Briefly, blood samples were sequenced interrogating 50 miRNAs, including 20 upregulated and 30 downregulated differentially expressed microRNAs(DEMs) in our internal screening dataset. After screening GEO databases, 123 upregulated and 70 downregulated genes were overlapped through DEGs of GEO datasets and miRNA-target genes. MiR-29b-1-5p-TGFB2, miR-142-3p-TGFB2, miR-9-5p-FBN2, miR-212-5p-FBN2, miR-542-3p-FBN1, miR-9-5p-FBN1, miR-508-3p-FBN1, miR-493-5p-THBS1, miR-29b-3p-COL4A1, miR-432-5p-COL5A2, miR-9-5p-TGFBI, miR-486-3p-SLC7A5 and miR-6515-5p-SLC1A5 were revealed as thirteen possible regulating pathways by integrative analysis. Conclusion: Overall, thirteen candidate miRNA-target gene regulatory pathways representing potentially novel biomarkers of GDM diseases were revealed. Ten chemicals were identified as putative therapeutic agents for GDM. This study examined a series of DEGs that are associated with epigenetic alternations of miRNA through an integrated approach and gained insight into biological pathways in GDM. Precise diagnosis and therapeutic targets of GDM would be further explored through putative genes in the future.
Collapse
Affiliation(s)
- Liyan Ding
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yi Shen
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Anqi Wang
- Department of Nursing, Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China,School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China,*Correspondence: Liying Jiang, ; Xuefeng Gu,
| | - Liying Jiang
- Shanghai Key Laboratory of Molecular Imaging, Jiading Central Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China,*Correspondence: Liying Jiang, ; Xuefeng Gu,
| |
Collapse
|
28
|
Zhu Y, Hedderson MM, Calafat AM, Alexeeff SE, Feng J, Quesenberry CP, Ferrara A. Urinary Phenols in Early to Midpregnancy and Risk of Gestational Diabetes Mellitus: A Longitudinal Study in a Multiracial Cohort. Diabetes 2022; 71:2539-2551. [PMID: 36227336 PMCID: PMC9750951 DOI: 10.2337/db22-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023]
Abstract
Environmental phenols are ubiquitous endocrine disruptors and putatively diabetogenic. However, data during pregnancy are scant. We investigated the prospective associations between pregnancy phenol concentrations and gestational diabetes mellitus (GDM) risk. In a nested matched case-control study of 111 individuals with GDM and 222 individuals without GDM within the prospective PETALS cohort, urinary bisphenol A (BPA), BPA substitutes (bisphenol F and bisphenol S [BPS]), benzophenone-3, and triclosan were quantified during the first and second trimesters. Cumulative concentrations across the two times were calculated using the area under the curve (AUC). Multivariable conditional logistic regression examined the association of individual phenols with GDM risk. We conducted mixture analysis using Bayesian kernel machine regression. We a priori examined effect modification by Asian/Pacific Islander (A/PI) race/ethnicity resulting from the case-control matching and highest GDM prevalence among A/PIs. Overall, first-trimester urinary BPS was positively associated with increased risk of GDM (adjusted odds ratio comparing highest vs. lowest tertile [aORT3 vs. T1] 2.12 [95% CI 1.00-4.50]). We identified associations among non-A/Ps, who had higher phenol concentrations than A/PIs. Among non-A/PIs, first-trimester BPA, BPS, and triclosan were positively associated with GDM risk (aORT3 vs. T1 2.91 [95% CI 1.05-8.02], 4.60 [1.55-13.70], and 2.88 [1.11-7.45], respectively). Triclosan in the second trimester and AUC were positively associated with GDM risk among non-A/PIs (P < 0.05). In mixture analysis, triclosan was significantly associated with GDM risk. Urinary BPS among all and BPA, BPS, and triclosan among non-A/PIs were associated with GDM risk. Pregnant individuals should be aware of these phenols' potential adverse health effects.
Collapse
Affiliation(s)
- Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA
| | | | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - Stacey E. Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Juanran Feng
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | | | - Assiamira Ferrara
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| |
Collapse
|
29
|
microRNAs in newborns with low birth weight: relation to birth size and body composition. Pediatr Res 2022; 92:829-837. [PMID: 34799665 DOI: 10.1038/s41390-021-01845-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Children with low birth weight (LBW) have a higher risk of developing endocrine-metabolic disorders later in life. Deregulation of specific microRNAs (miRNAs) could underscore the programming of adult pathologies. We analyzed the miRNA expression pattern in both umbilical cord serum samples from LBW and appropriate-for-gestational-age (AGA) newborns and maternal serum samples in the 3rd trimester of gestation, and delineated the relationships with fetal growth, body composition, and markers of metabolic risk. METHODS Serum samples of 12 selected mother-newborn pairs, including 6 LBW and 6 AGA newborns, were used for assessing miRNA profile by RNA-sequencing. The miRNAs with differential expression were validated in a larger cohort [49 maternal samples and 49 umbilical cord samples (24 LBW, 25 AGA)] by RT-qPCR. Anthropometric, endocrine-metabolic markers and body composition (by DXA) in infants were determined longitudinally over 12 months. RESULTS LBW newborns presented reduced circulating concentrations of miR-191-3p (P = 0.015). miR-191-3p levels reliably differentiated LBW from AGA individuals (ROC AUC = 0.76) and were positively associated with anthropometric and body composition measures at birth and weight Z-score at 12 months (P < 0.05). CONCLUSIONS miR-191-3p was reliably different in LBW individuals, and could be a new player in the epigenetic mechanisms linking LBW and future endocrine-metabolic adverse outcomes. IMPACT Children with low birth weight (LBW) have a higher risk of developing endocrine-metabolic disorders. Deregulation of specific microRNAs (miRNAs) could underscore the programming of those pathologies. miR-191-3p is downregulated in serum of LBW newborns, and its concentrations associate positively with neonatal anthropometric measures, with lean mass and bone accretion at age 15 days and with weight Z-score at age 12 months. miR-191-3p was reliably different in individuals with LBW, and could be a new player in the epigenetic mechanisms connecting LBW and future endocrine-metabolic adverse outcomes.
Collapse
|
30
|
Lu W, Hu C. Molecular biomarkers for gestational diabetes mellitus and postpartum diabetes. Chin Med J (Engl) 2022; 135:1940-1951. [PMID: 36148588 PMCID: PMC9746787 DOI: 10.1097/cm9.0000000000002160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Gestational diabetes mellitus (GDM) is a growing public health problem worldwide that threatens both maternal and fetal health. Identifying individuals at high risk for GDM and diabetes after GDM is particularly useful for early intervention and prevention of disease progression. In the last decades, a number of studies have used metabolomics, genomics, and proteomic approaches to investigate associations between biomolecules and GDM progression. These studies clearly demonstrate that various biomarkers reflect pathological changes in GDM. The established markers have potential use as screening and diagnostic tools in GDM and in postpartum diabetes research. In the present review, we summarize recent studies of metabolites, single-nucleotide polymorphisms, microRNAs, and proteins associated with GDM and its transition to postpartum diabetes, with a focus on their predictive value in screening and diagnosis.
Collapse
Affiliation(s)
- Wenqian Lu
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510630, China
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai 201400, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510630, China
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai 201400, China
| |
Collapse
|
31
|
Sabry R, Williams M, Werry N, LaMarre J, Favetta LA. BPA Decreases PDCD4 in Bovine Granulosa Cells Independently of miR-21 Inhibition. Int J Mol Sci 2022; 23:ijms23158276. [PMID: 35955412 PMCID: PMC9368835 DOI: 10.3390/ijms23158276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
microRNAs (miRNAs) are susceptible to environmental factors that might affect cellular function and impose negative effects on female reproduction. miR-21 is the most abundant miRNA in bovine granulosa cells and is widely reported as affected by Bisphenol A (BPA) exposure, yet the cause and consequences are not entirely elucidated. BPA is a synthetic endocrine disruptor associated with poor fertility. miR-21 function in bovine granulosa cells is investigated utilizing locked nucleic acid (LNA) oligonucleotides to suppress miR-21. Before measuring apoptosis and quantifying miR-21 apoptotic targets PDCD4 and PTEN, transfection was optimized and validated. BPA was introduced to see how it affects miR-21 regulation and which BPA-mediated effects are influenced by miR-21. miR-21 knockdown and specificity against additional miRNAs were confirmed. miR-21 was found to have antiapoptotic effects, which could be explained by its effect on the proapoptotic target PDCD4, but not PTEN. Previous findings of miR-21 overexpression were validated using BPA treatments, and the temporal influence of BPA on miR-21 levels was addressed. Finally, BPA effects on upstream regulators, such as VMP1 and STAT3, explain the BPA-dependent upregulation of miR-21 expression. Overall, this research enhances our understanding of miR-21 function in granulosa cells and the mechanisms of BPA-induced reproductive impairment.
Collapse
|
32
|
Bai L, Dong X, Wang F, Ding X, Diao Z, Chen D. A review on the removal of phthalate acid esters in wastewater treatment plants: from the conventional wastewater treatment to combined processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51339-51353. [PMID: 35614357 DOI: 10.1007/s11356-022-20977-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
In the past decades, phthalate acid esters (PAEs), as a new class of recalcitrant environmental contaminant, have attracted increasing concern due to their potential hazards to reproductive system. wastewater treatment plants (WWTPs) are generally regarded as a crucial barrier to prevent a variety of contaminants from introducing into aquatic environment. This paper reviews the occurrence, fate, and removal efficacy of six widely appearing PAEs in conventional wastewater treatment. PAEs removal appears to be compound- and process-dependent. Advanced treatment processes, including activated carbon, advanced oxidation process (AOPs), membrane filtration, and membrane bioreactor, show good performance in PAEs elimination, but many methods have been commercially limited by toxic byproducts, high operation, and maintenance costs. Even though combined processes are qualified as a promising alternative, further studies are required to optimize these processes, especially the competitiveness between technique and economy.
Collapse
Affiliation(s)
- Lin Bai
- Department of Assets and Laboratory Management, Qingdao University of Technology, Qingdao, 266033, China
| | - Xiaowan Dong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Fangshu Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Xiaohan Ding
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Zhikai Diao
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Dong Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| |
Collapse
|
33
|
Zhang T, Wang S, Li L, Zhu A, Wang Q. Associating diethylhexyl phthalate to gestational diabetes mellitus via adverse outcome pathways using a network-based approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153932. [PMID: 35182638 DOI: 10.1016/j.scitotenv.2022.153932] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Gestational diabetes mellitus (GDM) is a common pregnancy complication that is harmful to both the woman and fetus. Several epidemiological studies have found that exposure to diethylhexyl phthalate (DEHP), an endocrine disruptor ubiquitous in the environment, may be associated with GDM. This study aims to investigate the mechanism between DEHP and GDM using the adverse outcome pathway (AOP) framework, which can integrate information from different sources to elucidate the causal pathways between chemicals and adverse outcomes. We applied a network-based workflow to integrate diverse information to generate computational AOPs and accelerate the AOP development. The interactions among DEHP, genes, phenotypes, and GDM were retrieved from several publicly available databases, including the Comparative Toxicogenomics Database (CTD), Computational Toxicology (CompTox) Chemicals Dashboard, DisGeNET, MalaCards, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). Based on the above interactions, a DEHP-Gene-Phenotype-GDM network consisting of 52 nodes and 227 edges was formed to support AOP construction. The filtered genes and phenotypes were assembled as molecular initiating events (MIEs) and key events (KEs) according to the upstream and downstream relationships, generating a computational AOP (cAOP) network. Based on the Organization for Economic Co-operation and Development handbook of AOPs, a cAOP was assessed and applied to determine the effects of DEHP on GDM. DEHP could increase TNF-α, downregulate the glucose uptake process, and lead to GDM. Overall, this study revealed the utility of computational methods in integrating a variety of datasets, supporting AOP development, and facilitating a better understanding of the underlying mechanism of exposure to chemicals on human health.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Shuo Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - An Zhu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Key laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
34
|
Juchnicka I, Kuźmicki M, Niemira M, Bielska A, Sidorkiewicz I, Zbucka-Krętowska M, Krętowski AJ, Szamatowicz J. miRNAs as Predictive Factors in Early Diagnosis of Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:839344. [PMID: 35340328 PMCID: PMC8948421 DOI: 10.3389/fendo.2022.839344] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Circulating miRNAs are important mediators in epigenetic changes. These non-coding molecules regulate post-transcriptional gene expression by binding to mRNA. As a result, they influence the development of many diseases, such as gestational diabetes mellitus (GDM). Therefore, this study investigates the changes in the miRNA profile in GDM patients before hyperglycemia appears. Materials and Methods The study group consisted of 24 patients with GDM, and the control group was 24 normoglycemic pregnant women who were matched for body mass index (BMI), age, and gestational age. GDM was diagnosed with an oral glucose tolerance test between the 24th and 26th weeks of pregnancy. The study had a prospective design, and serum for analysis was obtained in the first trimester of pregnancy. Circulating miRNAs were measured using the NanoString quantitative assay platform. Validation with real time-polymerase chain reaction (RT-PCR) was performed on the same group of patients. Mann-Whitney U-test and Spearman correlation were done to assess the significance of the results. Results Among the 800 miRNAs, 221 miRNAs were not detected, and 439 were close to background noise. The remaining miRNAs were carefully investigated for their average counts, fold changes, p-values, and false discovery rate (FDR) scores. We selected four miRNAs for further validation: miR-16-5p, miR-142-3p, miR-144-3p, and miR-320e, which showed the most prominent changes between the studied groups. The validation showed up-regulation of miR-16-5p (p<0.0001), miR-142-3p (p=0.001), and miR-144-3p (p=0.003). Conclusion We present changes in miRNA profile in the serum of GDM women, which may indicate significance in the pathophysiology of GDM. These findings emphasize the role of miRNAs as a predictive factor that could potentially be useful in early diagnosis.
Collapse
Affiliation(s)
- Ilona Juchnicka
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Mariusz Kuźmicki
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Bielska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, Bialystok, Poland
| | | | - Jacek Szamatowicz
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
35
|
He C, Liu M, Ding Q, Yang F, Xu T. Upregulated miR-9-5p inhibits osteogenic differentiation of bone marrow mesenchymal stem cells under high glucose treatment. J Bone Miner Metab 2022; 40:208-219. [PMID: 34750680 DOI: 10.1007/s00774-021-01280-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Diabetic osteoporosis (DOP) is a chronic diabetic complication, which is attributed to high glucose (HG)-induced dysfunction of bone marrow mesenchymal stem cells (BMSCs). Studies have revealed that microRNAs (miRNAs) play critical roles in osteogenic differentiation of BMSCs in DOP. Here, the role of miR-9-5p in DOP progression was explored. MATERIALS AND METHODS The rat model of DOP was established by intraperitoneal injection of streptozotocin (STZ). BMSCs were treated with high glucose (HG) to establish in vitro models. Gene expression in BMSCs and bone tissues of rats was tested by RT-qPCR. The degree of osteogenic differentiation of BMSCs was examined by Alizarin Red staining and ALP activity analysis. The protein levels of collagen-I (COL1), osteocalcin (OCN), osteopontin (OPN), runt-related transcription factor-2 (RUNX2), and DEAD-Box Helicase 17 (DDX17) in BMSCs were evaluated by western blotting. The interaction between miR-9-5p and DDX17 was identified by luciferase reporter assay. H&E staining was used to test morphological structure of femurs of rats with STZ treatment. RESULTS MiR-9-5p was overexpressed in HG-treated BMSCs, while DDX17 was downregulated. Functionally, miR-9-5p knockdown promoted BMSCs osteogenic differentiation under HG condition. Mechanically, miR-9-5p targeted DDX17. DDX17 knockdown reversed the effect of miR-9-5p silencing on osteogenic differentiation of HG-treated BMSCs. In in vivo studies, miR-9-5p downregulation ameliorated the DOP condition of rats and miR-9-5p expression was negatively correlated with DDX17 expression in bone tissues of rats with STZ treatment. CONCLUSION MiR-9-5p knockdown promotes HG-induced osteogenic differentiation BMSCs in vitro and mitigates the DOP condition of rats in vivo by targeting DDX17.
Collapse
Affiliation(s)
- Chuanmei He
- Department of Nephrology, The Affiliated Lianyungang No.2 Hospital of Bengbu Medical College, Lianyungang, 222000, Jiangsu, China
| | - Mingming Liu
- Department of Orthopedics, The Affiliated Lianyungang No.2 Hospital of Bengbu Medical College, Lianyungang, 222000, Jiangsu, China
| | - Qun Ding
- Department of Endocrinology, The Affiliated Lianyungang No.2 Hospital of Bengbu Medical College, 41 Hailian East Road, Haizhou District, Lianyungang, 222000, Jiangsu, China
| | - Fumeng Yang
- Department of Laboratory, The Affiliated Lianyungang No.2 Hospital of Bengbu Medical College, Lianyungang, 222000, Jiangsu, China
| | - Tongdao Xu
- Department of Endocrinology, The Affiliated Lianyungang No.2 Hospital of Bengbu Medical College, 41 Hailian East Road, Haizhou District, Lianyungang, 222000, Jiangsu, China.
| |
Collapse
|
36
|
Sørensen AE, van Poppel MNM, Desoye G, Simmons D, Damm P, Jensen DM, Dalgaard LT. The Temporal Profile of Circulating miRNAs during Gestation in Overweight and Obese Women with or without Gestational Diabetes Mellitus. Biomedicines 2022; 10:biomedicines10020482. [PMID: 35203692 PMCID: PMC8962411 DOI: 10.3390/biomedicines10020482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Circulating non-coding microRNAs (miRNAs) are important for placentation, but their expression profiles across gestation in pregnancies, which are complicated by gestational diabetes mellitus (GDM), have not been fully established. Investigating a single time point is insufficient, as pregnancy is dynamic, involving several processes, including placenta development, trophoblast proliferation and differentiation and oxygen sensing. Thus, the aim of this study was to compare the temporal expression of serum miRNAs in pregnant women with and without GDM. This is a nested case-control study of longitudinal data obtained from a multicentric European study (the ‘DALI’ study). All women (n = 82) were overweight/obese (BMI ≥ 29 kg/m2) and were normal glucose tolerant (NGT) at baseline (before 20 weeks of gestation). We selected women (n = 41) who were diagnosed with GDM at 24–28 weeks, according to the IADPSG/WHO2013 criteria. They were matched with 41 women who remained NGT in their pregnancy. miRNA (miR-16-5p, -29a-3p, -103-3p, -134-5p, -122-5p, -223-3p, -330-3p and miR-433-3p) were selected based on their suggested importance for placentation, and measurements were performed at baseline and at 24–28 and 35–37 weeks of gestation. Women with GDM presented with overall miRNA levels above those observed for women remaining NGT. In both groups, levels of miR-29a-3p and miR-134-5p increased consistently with progressing gestation. The change over time only differed for miR-29a-3p when comparing women with GDM with those remaining NGT (p = 0.044). Our findings indicate that among overweight/obese women who later develop GDM, miRNA levels are already elevated early in pregnancy and remain above those of women who remain NGT during their pregnancy. Maternal circulating miRNAs may provide further insight into placentation and the cross talk between the maternal and fetal compartments.
Collapse
Affiliation(s)
- Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark;
- Correspondence: ; Tel.: +45-4674-3994
| | - Mireille N. M. van Poppel
- Faculty of Environmental and Regional Sciences and Education, Institute of Human Movement Science, Sport and Health, University of Graz, 8010 Graz, Austria;
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria;
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - David Simmons
- Macarthur Clinical School, School of Medicine, Western Sydney University, Campbelltown, NSE 2560, Australia;
| | - Peter Damm
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dorte Møller Jensen
- Department of Gynecology and Obstetrics, Odense University Hospital, 5000 Odense, Denmark;
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark
- Steno Diabetes Center Odense, Department of Gynecology and Obstetrics, Odense University Hospital, 5000 Odense, Denmark
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark;
| | | |
Collapse
|
37
|
Corbett GA, Lee S, Woodruff TJ, Hanson M, Hod M, Charlesworth AM, Giudice L, Conry J, McAuliffe FM. Nutritional interventions to ameliorate the effect of endocrine disruptors on human reproductive health: A semi-structured review from FIGO. Int J Gynaecol Obstet 2022; 157:489-501. [PMID: 35122246 PMCID: PMC9305939 DOI: 10.1002/ijgo.14126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022]
Abstract
Background Endocrine disrupting chemicals have harmful effects on reproductive, perinatal, and obstetric outcomes. Objective To analyze the evidence on nutritional interventions to reduce the negative effects of endocrine disruptors on reproductive, perinatal, and obstetric outcomes. Search strategy A search of MEDLINE (PubMed), Allied Health Literature (CINAHL), EMBASE, Web of Science, and the Cochrane Database was conducted from inception to May 2021. Selection criteria Experimental studies on human populations. Data collection and analysis Data were collected from eligible studies. Risk of bias assessment was completed using the Cochrane risk of bias tool and the ROBINS‐I Tool. Results Database searches yielded 15 362 articles. Removing 11 181 duplicates, 4181 articles underwent abstract screening, 26 articles were eligible for full manuscript review, and 16 met full inclusion criteria. Several interventions were found to be effective in reducing exposure to endocrine disruptors: avoidance of plastic containers, bottles, and packaging; avoidance of canned food/beverages; consumption of fresh and organic food; avoidance of fast/processed foods; and supplementation with vitamin C, iodine, and folic acid. There were some interventional studies examining therapies to improve clinical outcomes related to endocrine disruptors. Conclusion Dietary alterations can reduce exposure to endocrine disruptors, with limited data on interventions to improve endocrine‐disruptor–related clinical outcomes. This review provides useful instruction to women, their families, healthcare providers, and regulatory bodies. Nutritional interventions shown to reduce exposure to endocrine disruptors include avoidance of canned/processed or plastic‐packaged foods. Consumption of fresh/organic foods and vitamin C, iodine, and folic acid also reduce exposure.
Collapse
Affiliation(s)
- Gillian A Corbett
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Sadhbh Lee
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Tracey J Woodruff
- Program on Reproductive Health and Environment, Department of Obstetrics and Gynecology, Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, CA, USA
| | - Mark Hanson
- International Federation of Gynaecology and Obstetrics (FIGO) Committee on Impact of Pregnancy on Long-term Health.,Institute of Developmental Sciences and NIHR Biomedical Research Centre, University of Southampton and NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Moshe Hod
- International Federation of Gynaecology and Obstetrics (FIGO) Committee on Impact of Pregnancy on Long-term Health.,Mor Comprehensive Women's Health Care Centre, Tel Aviv, Israel
| | - Anne Marie Charlesworth
- Program on Reproductive Health and Environment, Department of Obstetrics and Gynecology, Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, CA, USA
| | - Linda Giudice
- International Federation of Gynecology and Obstetrics (FIGO) Committee on Climate Change and Toxic Environmental Exposures.,Centre for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Jeanne Conry
- Environmental Health and Leadership Foundation, United States
| | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland.,International Federation of Gynaecology and Obstetrics (FIGO) Committee on Impact of Pregnancy on Long-term Health
| | | |
Collapse
|
38
|
MacDonald-Ramos K, Michán L, Martínez-Ibarra A, Cerbón M. Silymarin is an ally against insulin resistance: A review. Ann Hepatol 2022; 23:100255. [PMID: 32950646 DOI: 10.1016/j.aohep.2020.08.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Silymarin is obtained from the Milk thistle plant Silybum marianum and has been used over the centuries to treat principally liver disease, although it has also been studied for its beneficial effects in cardioprotection, neuroprotection, immune modulation, and cancer among others. Importantly, silymarin's active component silybin is a flavonolignan that exhibits different activities such as; scavenger, anti-oxidant, anti-inflammatory, and recently revealed, insulin-sensitizing properties which have been explored in clinical trials in patients with insulin resistance. In this review, we summarize the most relevant research of silymarin's effect on lipid and carbohydrate metabolism, focusing the attention on insulin resistance, which is well known to play a crucial role in metabolic disease progression.
Collapse
Affiliation(s)
- Karla MacDonald-Ramos
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 11000, Mexico
| | - Layla Michán
- Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Alejandra Martínez-Ibarra
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 11000, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 11000, Mexico.
| |
Collapse
|
39
|
Liang QX, Lin Y, Fang XM, Gao YH, Li F. Association Between Phthalate Exposure in Pregnancy and Gestational Diabetes: A Chinese Cross-Sectional Study. Int J Gen Med 2022; 15:179-189. [PMID: 35023956 PMCID: PMC8747708 DOI: 10.2147/ijgm.s335895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Objective The present study aims to explore the association between phthalate exposure and the risk of gestational diabetes mellitus (GDM). Materials and Methods A total of 11 plasticizer metabolites were measured in patient morning urine using high-performance liquid chromatography. Furthermore, fasting blood glucose and fasting insulin were detected in first-trimester blood samples. The chemical concentration was described using the median, the metabolite concentration difference between the GDM and control groups was compared using the bootstrap method, and the correlations of the fasting blood glucose, fasting insulin, insulin resistance index, and phthalic acid ester (PAE) metabolites were analyzed using Spearman correlation analysis. The multivariate logistic regression model and predictive probability map were performed to help assess the linearity and nature of any dose–response relationship. Results Of the 224 women recruited for the present study, 200 met the inclusion criteria. Their measured outcomes and biomonitoring data were examined for the presence of chemicals. The results showed that the patients in the GDM group had higher mono-(2-ethylhexyl) phthalate (MEHP) and methylerythritol cyclophosphane concentrations in their bodies than the patients in the control group. Statistically significant MEHP–GDM associations were also observed (P < 0.001). The GDM and MEHP dose–response relationships were different among pregnant women aged <35 years and those aged >35 years (P < 0.001). Furthermore, gestational age >28 weeks exhibited similar changes to those aged ≤28 weeks (P = 0.059). Conclusion The findings of the present study add to the growing body of evidence supporting phthalate exposure as a GDM risk factor.
Collapse
Affiliation(s)
- Qiu-Xia Liang
- Department of Delivery Room, Guangzhou Women and Children Medical Center, Guangzhou, 510623, People's Republic of China
| | - Yan Lin
- Department of Delivery Room, Guangzhou Women and Children Medical Center, Guangzhou, 510623, People's Republic of China
| | - Xiao-Min Fang
- Fundus Surgery Department, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Yun-He Gao
- Department of Obstetrics Clinic, Guangzhou Women and Children Medical Center, Guangzhou, 510623, People's Republic of China
| | - Fei Li
- Department of Laboratory Medicine, Guangzhou Women and Children Medical Center, Guangzhou, 510623, People's Republic of China
| |
Collapse
|
40
|
Trasande L, Liu B, Bao W. Phthalates and attributable mortality: A population-based longitudinal cohort study and cost analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118021. [PMID: 34654571 PMCID: PMC8616787 DOI: 10.1016/j.envpol.2021.118021] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 05/12/2023]
Abstract
CONTEXT Accelerating evidence of endocrine-related morbidity has raised alarm about the ubiquitous use of phthalates in the human environment, but studies have not directly evaluated mortality in relation to these exposures. OBJECTIVES To evaluate associations of phthalate exposure with mortality, and quantify attributable mortality and lost economic productivity in 2013-4 among 55-64 year olds. DESIGN This nationally representative cohort study included 5303 adults aged 20 years or older who participated in the US National Health and Nutrition Examination Survey 2001-2010 and provided urine samples for phthalate metabolite measurements. Participants were linked to mortality data from survey date through December 31, 2015. Data analyses were conducted in July 2020. MAIN OUTCOME MEASURES Mortality from all causes, cardiovascular disease, and cancer. RESULTS Multivariable models identified increased mortality in relation to high-molecular weight (HMW) phthalate metabolites, especially those of di-2-ethylhexylphthalate (DEHP). Hazard ratios (HR) for continuous HMW and DEHP metabolites were 1.14 (95% CI 1.06-1.23) and 1.10 (95% CI 1.03-1.19), respectively, with consistently higher mortality in the third tertile (1.48, 95% CI 1.19-1.86; and 1.42, 95% CI 1.13-1.78). Cardiovascular mortality was significantly increased in relation to a prominent DEHP metabolite, mono-(2-ethyl-5-oxohexyl)phthalate. Extrapolating to the population of 55-64 year old Americans, we identified 90,761-107,283 attributable deaths and $39.9-47.1 billion in lost economic productivity. CONCLUSIONS In a nationally representative sample, phthalate exposures were associated with all-cause and cardiovascular mortality, with societal costs approximating $39 billion/year or more. While further studies are needed to corroborate observations and identify mechanisms, regulatory action is urgently needed.
Collapse
Affiliation(s)
- Leonardo Trasande
- Department of Pediatrics, USA; Department of Environmental Medicine, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; New York University School of Global Public Health, New York, NY, USA.
| | - Buyun Liu
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
41
|
Yang X, Wu N. MicroRNAs and Exosomal microRNAs May Be Possible Targets to Investigate in Gestational Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:321-330. [PMID: 35140490 PMCID: PMC8820256 DOI: 10.2147/dmso.s330323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as glucose intolerance that occurs during the second or third trimester of pregnancy. As the incidence of GDM rises, so does the risk of maternal and fetal complications with short- and long-term consequences. As a result, early diagnosis and treatment of this condition are important to avoiding adverse pregnancy outcomes. Exosomes are tiny vesicles secreted by living cells which contain a variety of bioactive substances. They are released by cells to facilitate cell-to-cell communication and regulate a variety of biological processes such as cellular immune response, inflammatory response, and apoptosis, among others. Many studies have recently confirmed that changes in the expression and secretion of exosomal miRNAs can be used as novel markers for the diagnosis, prognosis, and treatment of GDM. In this review, we summarized the various roles of exosomal miRNAs and circulating miRNAs in GDM. We found that the changes in the expression of certain miRNAs could be used to diagnosing GDM. Exosomal miRNAs target metabolic pathways, resulting in insulin resistance. We also highlighted the potential for miRNAs and exosomal miRNAs to be used as biomarkers for diagnosis or therapeutic agents.
Collapse
Affiliation(s)
- Xiyao Yang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
- Clinical Skills Practice Teaching Center, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
- Correspondence: Na Wu, Department of Endocrinology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, Liaoning Province, 110004, People’s Republic of China, Tel +86 18940258445, Email
| |
Collapse
|
42
|
|
43
|
Svoboda LK, Ishikawa T, Dolinoy DC. Developmental toxicant exposures and sex-specific effects on epigenetic programming and cardiovascular health across generations. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac017. [PMID: 36325489 PMCID: PMC9600458 DOI: 10.1093/eep/dvac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/12/2022] [Accepted: 10/01/2022] [Indexed: 05/15/2023]
Abstract
Despite substantial strides in diagnosis and treatment, cardiovascular diseases (CVDs) continue to represent the leading cause of death in the USA and around the world, resulting in significant morbidity and loss of productive years of life. It is increasingly evident that environmental exposures during early development can influence CVD risk across the life course. CVDs exhibit marked sexual dimorphism, but how sex interacts with environmental exposures to affect cardiovascular health is a critical and understudied area of environmental health. Emerging evidence suggests that developmental exposures may have multi- and transgenerational effects on cardiovascular health, with potential sex differences; however, further research in this important area is urgently needed. Lead (Pb), phthalate plasticizers, and perfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants with numerous adverse human health effects. Notably, recent evidence suggests that developmental exposure to each of these toxicants has sex-specific effects on cardiovascular outcomes, but the underlying mechanisms, and their effects on future generations, require further investigation. This review article will highlight the role for the developmental environment in influencing cardiovascular health across generations, with a particular emphasis on sex differences and epigenetic mechanisms. In particular, we will focus on the current evidence for adverse multi and transgenerational effects of developmental exposures to Pb, phthalates, and PFAS and highlight areas where further research is needed.
Collapse
Affiliation(s)
- Laurie K Svoboda
- *Correspondence address. Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA. Tel: +734-764-2032; E-mail:
| | - Tomoko Ishikawa
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
44
|
Stepanovic K, Vukovic B, Milanovic M, Milosevic N, Bosic-Zivanovic D, Stojadinovic A, Tomic-Naglic D, Lepic S, Milic N, Medic-Stojanoska M. Is there a difference in the phthalate exposure between adults with metabolic disorders and healthy ones? VOJNOSANIT PREGL 2022. [DOI: 10.2298/vsp200220093s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background/Aim. Phthalates are recognized as endocrine-disrupting compounds and are extensively present in a variety of everyday products. Chronic exposure to phthalates is suspected to be associated with a range of health disorders. The aim of the study was to examine the abundance of phthalate metabolites in the urine samples among adults in the Autonomous Province of Vojvodina, Serbia, and to determine the prevalence of phthalate metabolites in healthy individuals and those with metabolic disorders such as obesity and newly diagnosed type 2 diabetes mellitus (T2DM). Methods. For the study purpose, the first morning urine sample of 308 participants was screened for the presence of 10 phthalate metabolites: mono-ethyl phthalate (MEP), mono-(2-ethylhexyl) phthalate (MEHP), mono-n-butyl phthalate (MBP), mono-iso-allyl phthalate (MiAP), mono-n-allyl phthalate (MnAP), mono-cyclohexyl phthalate (MCHP), mono-benzyl phthalate (MBzP), mono-n-octyl phthalate (MOP), mono-n-propyl phthalate (MPP) and mono-methyl phthalate (MMP). Results. At least one phthalate metabolite was detected in the first morning urine sample in 50.32% of the examined population. The most frequently detected phthalate metabolites were MEP and MEHP. Out of all phthalate-positive participants, 38.3% of them had one, 10.7% had two, while 1.3% of participants had three phthalate metabolites in the first morning urine sample. A significant difference (p < 0.05) between groups was observed on MEP and MMP frequency, while border-line significant difference (p < 0.1) between groups was observed on MEHP and MCHP frequency. Conclusion. In the Vojvodina region, both healthy adults and those with metabolic disorders such as obesity and newly diagnosed T2DM are predominantly exposed to di-ethyl phthalate and di-(2-ethylhexyl)phthalate since MEP and MEHP were the most frequently detected phthalate metabolites. Further re-search is required in order to provide more details of the phthalates influence on the adverse health effects.
Collapse
Affiliation(s)
- Kristina Stepanovic
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia + University Clinical Center of Vojvodina, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Novi Sad, Serbia
| | - Bojan Vukovic
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia + University Clinical Center of Vojvodina, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Novi Sad, Serbia
| | - Maja Milanovic
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
| | | | | | - Aleksandra Stojadinovic
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia + Institute for Children and Youth Health Care of Vojvodina, Novi Sad, Serbia
| | - Dragana Tomic-Naglic
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia + University Clinical Center of Vojvodina, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Novi Sad, Serbia
| | - Sanja Lepic
- Military Medical Academy, Institute for Hygiene, Belgrade, Serbia
| | - Natasa Milic
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
| | - Milica Medic-Stojanoska
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia + University Clinical Center of Vojvodina, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Novi Sad, Serbia
| |
Collapse
|
45
|
Masete M, Dias S, Malaza N, Adam S, Pheiffer C. A Big Role for microRNAs in Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:892587. [PMID: 35957839 PMCID: PMC9357936 DOI: 10.3389/fendo.2022.892587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/24/2022] [Indexed: 12/16/2022] Open
Abstract
Maternal diabetes is associated with pregnancy complications and poses a serious health risk to both mother and child. Growing evidence suggests that pregnancy complications are more frequent and severe in pregnant women with pregestational type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) compared to women with gestational diabetes mellitus (GDM). Elucidating the pathophysiological mechanisms that underlie the different types of maternal diabetes may lead to targeted strategies to prevent or reduce pregnancy complications. In recent years, microRNAs (miRNAs), one of the most common epigenetic mechanisms, have emerged as key players in the pathophysiology of pregnancy-related disorders including diabetes. This review aims to provide an update on the status of miRNA profiling in pregnancies complicated by maternal diabetes. Four databases, Pubmed, Web of Science, EBSCOhost, and Scopus were searched to identify studies that profiled miRNAs during maternal diabetes. A total of 1800 articles were identified, of which 53 are included in this review. All studies profiled miRNAs during GDM, with no studies on miRNA profiling during pregestational T1DM and T2DM identified. Studies on GDM were mainly focused on the potential of miRNAs to serve as predictive or diagnostic biomarkers. This review highlights the lack of miRNA profiling in pregnancies complicated by T1DM and T2DM and identifies the need for miRNA profiling in all types of maternal diabetes. Such studies could contribute to our understanding of the mechanisms that link maternal diabetes type with pregnancy complications.
Collapse
Affiliation(s)
- Matladi Masete
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Stephanie Dias
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
| | - Nompumelelo Malaza
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Sumaiya Adam
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Center for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
- *Correspondence: Carmen Pheiffer,
| |
Collapse
|
46
|
Lorigo M, Cairrao E. Fetoplacental vasculature as a model to study human cardiovascular endocrine disruption. Mol Aspects Med 2021; 87:101054. [PMID: 34839931 DOI: 10.1016/j.mam.2021.101054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence has associated the exposure of endocrine-disrupting chemicals (EDCs) with the cardiovascular (CV) system. This exposure is particularly problematic in a sensitive window of development, pregnancy. Pregnancy exposome can affect the overall health of the pregnancy by dramatic changes in vascular physiology and endocrine activity, increasing maternal susceptibility. Moreover, fetoplacental vascular function is generally altered, increasing the risk of developing pregnancy complications (including cardiovascular diseases, CVD) and predisposing the foetus to adverse health risks later in life. Thus, our review summarizes the existing literature on exposures to EDCs during pregnancy and adverse maternal health outcomes, focusing on the human placenta, vein, and umbilical artery associated with pregnancy complications. The purpose of this review is to highlight the role of fetoplacental vasculature as a model for the study of human cardiovascular endocrine disruption. Therefore, we emphasize that the placenta, together with the umbilical arteries and veins, allows a better characterization of the pregnant woman's exposome. Consequently, it contributes to the protection of the mother and foetus against CV disorders in life.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
47
|
Taheri E, Riahi R, Rafiei N, Fatehizadeh A, Iqbal HMN, Hosseini SM. Bisphenol A exposure and abnormal glucose tolerance during pregnancy: systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62105-62115. [PMID: 34590231 DOI: 10.1007/s11356-021-16691-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
In the present work, a systematic review and meta-analysis were performed to examine the probable relation between maternal exposure to bisphenol A (BPA), as estrogen-disrupting compounds, and gestational diabetes mellitus (GDM), and impaired glucose tolerance (IGT). We comprehensively searched three electronic databases to retrieve published studies on maternal exposure to BPA and GDM/IGT, through February 2021. Cochran's Q test and I2 statistics were employed for testing heterogeneity across studies. DerSimonian and Liard random-effects model was used to determine the pooled estimates. Otherwise, the fixed-effects model with inverse-variance weights was applied. Sensitivity analysis was performed to determine the robustness of the results by excluding each study from the pooled estimate. The potential publication bias was examined using Begg's and Egger's tests. The pooled odds ratio did not show BPA exposure to be a significant risk factor for GDM (OR = 0.90, 95% CI = 0.62-1.33, I2: 50.7%). Also, no significant association was observed between BPA exposure and risk of IGT (OR = 0.93, 95% CI = 0.40-2.18, I2: 11.5%). Based on the findings of this study, no association was found between exposure to BPA during pregnancy and the risk of GDM/IGT. Albeit no heterogeneity was found between studies.
Collapse
Affiliation(s)
- Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Riahi
- Department of Biostatistics & Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Rafiei
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| | - Sayed Mohsen Hosseini
- Department of Biostatistics & Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
48
|
Wu H, Just AC, Colicino E, Calafat AM, Oken E, Braun JM, McRae N, Cantoral A, Pantic I, Pizano-Zárate ML, Tolentino MC, Wright RO, Téllez-Rojo MM, Baccarelli AA, Deierlein AL. The associations of phthalate biomarkers during pregnancy with later glycemia and lipid profiles. ENVIRONMENT INTERNATIONAL 2021; 155:106612. [PMID: 33965768 PMCID: PMC8292182 DOI: 10.1016/j.envint.2021.106612] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/01/2021] [Accepted: 04/28/2021] [Indexed: 06/05/2023]
Abstract
BACKGROUND Pregnancy induces numerous cardiovascular and metabolic changes. Alterations in these sensitive processes may precipitate long-term post-delivery health consequences. Studies have reported associations between phthalates and metabolic complications of pregnancy, but no study has investigated metabolic outcomes beyond pregnancy. OBJECTIVES To examine associations of exposure to phthalates during pregnancy with post-delivery metabolic health. DESIGN We quantified 15 urinary phthalate biomarker concentrations during the second and third trimesters among 618 pregnant women from Mexico City. Maternal metabolic health biomarkers included fasting blood measures of glycemia [glucose, insulin, Homeostatic Model Assessment of Insulin Resistance [HOMA-IR], % hemoglobin A1c (HbA1c%)] and lipids (total, high-density lipoprotein (HDL), low-density lipoprotein (LDL) cholesterol, triglycerides), at 4-5 and 6-8 years post-delivery. To estimate the influence of the phthalates mixture, we used Bayesian weighted quantile sum regression and Bayesian kernel machine regression; for individual biomarkers, we used linear mixed models. RESULTS As a mixture, higher urinary phthalate biomarker concentrations during pregnancy were associated with post-delivery concentrations of plasma glucose (interquartile range [IQR] difference: 0.13 SD, 95%CrI: 0.05, 0.20), plasma insulin (IQR difference: 0.06 SD, 95%CrI: -0.02, 0.14), HOMA-IR (IQR difference: 0.08 SD, 95% CrI: 0.01, 0.16), and HbA1c% (IQR difference: 0.15 SD, 95%CrI: 0.05, 0.24). Associations were primarily driven by mono-2-ethyl-5-carboxypentyl terephthalate (MECPTP) and the sum of dibutyl phthalate biomarkers (∑DBP). The phthalates mixture was associated with lower HDL (IQR difference: -0.08 SD, 95%CrI: -0.16, -0.01), driven by ∑DBP and monoethyl phthalate (MEP), and higher triglyceride levels (IQR difference: 0.15 SD, 95%CrI: 0.08, 0.22), driven by MECPTP and MEP. The overall mixture was not associated with total cholesterol and LDL. However, ∑DBP and MEP were associated with lower and higher total cholesterol, respectively, and MECPTP and ∑DBP were associated with lower LDL. CONCLUSIONS Phthalate exposure during pregnancy is associated with adverse long-term changes in maternal metabolic health. A better understanding of timing of the exact biological changes and their implications on metabolic disease risk is needed.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, NY, USA.
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Joseph M Braun
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
| | - Nia McRae
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, NY, USA
| | | | - Ivan Pantic
- Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City, Mexico
| | - María Luisa Pizano-Zárate
- Division of Community Interventions Research, National Institute of Perinatology, Mexico City, Mexico; UMF 4, 37 South Delegation of the Federal District, Mexican Social Security System (IMSS), Mexico City, Mexico
| | | | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Ministry of Health, Cuernavaca, Mexico
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, NY, USA
| | | |
Collapse
|
49
|
Chorley BN, Atabakhsh E, Doran G, Gautier JC, Ellinger-Ziegelbauer H, Jackson D, Sharapova T, Yuen PST, Church RJ, Couttet P, Froetschl R, McDuffie J, Martinez V, Pande P, Peel L, Rafferty C, Simutis FJ, Harrill AH. Methodological considerations for measuring biofluid-based microRNA biomarkers. Crit Rev Toxicol 2021; 51:264-282. [PMID: 34038674 DOI: 10.1080/10408444.2021.1907530] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA that regulate the expression of messenger RNA and are implicated in almost all cellular processes. Importantly, miRNAs can be released extracellularly and are stable in these matrices where they may serve as indicators of organ or cell-specific toxicity, disease, and biological status. There has thus been great enthusiasm for developing miRNAs as biomarkers of adverse outcomes for scientific, regulatory, and clinical purposes. Despite advances in measurement capabilities for miRNAs, miRNAs are still not routinely employed as noninvasive biomarkers. This is in part due to the lack of standard approaches for sample preparation and miRNA measurement and uncertainty in their biological interpretation. Members of the microRNA Biomarkers Workgroup within the Health and Environmental Sciences Institute's (HESI) Committee on Emerging Systems Toxicology for the Assessment of Risk (eSTAR) are a consortium of private- and public-sector scientists dedicated to developing miRNAs as applied biomarkers. Here, we explore major impediments to routine acceptance and use of miRNA biomarkers and case examples of successes and deficiencies in development. Finally, we provide insight on miRNA measurement, collection, and analysis tools to provide solid footing for addressing knowledge gaps toward routine biomarker use.
Collapse
Affiliation(s)
- Brian N Chorley
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | | | | | - David Jackson
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Peter S T Yuen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rachel J Church
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | - Lauren Peel
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | | | - Alison H Harrill
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
50
|
Retis-Resendiz AM, González-García IN, León-Juárez M, Camacho-Arroyo I, Cerbón M, Vázquez-Martínez ER. The role of epigenetic mechanisms in the regulation of gene expression in the cyclical endometrium. Clin Epigenetics 2021; 13:116. [PMID: 34034824 PMCID: PMC8146649 DOI: 10.1186/s13148-021-01103-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The human endometrium is a highly dynamic tissue whose function is mainly regulated by the ovarian steroid hormones estradiol and progesterone. The serum levels of these and other hormones are associated with three specific phases that compose the endometrial cycle: menstrual, proliferative, and secretory. Throughout this cycle, the endometrium exhibits different transcriptional networks according to the genes expressed in each phase. Epigenetic mechanisms are crucial in the fine-tuning of gene expression to generate such transcriptional networks. The present review aims to provide an overview of current research focused on the epigenetic mechanisms that regulate gene expression in the cyclical endometrium and discuss the technical and clinical perspectives regarding this topic. MAIN BODY The main epigenetic mechanisms reported are DNA methylation, histone post-translational modifications, and non-coding RNAs. These epigenetic mechanisms induce the expression of genes associated with transcriptional regulation, endometrial epithelial growth, angiogenesis, and stromal cell proliferation during the proliferative phase. During the secretory phase, epigenetic mechanisms promote the expression of genes associated with hormone response, insulin signaling, decidualization, and embryo implantation. Furthermore, the global content of specific epigenetic modifications and the gene expression of non-coding RNAs and epigenetic modifiers vary according to the menstrual cycle phase. In vitro and cell type-specific studies have demonstrated that epithelial and stromal cells undergo particular epigenetic changes that modulate their transcriptional networks to accomplish their function during decidualization and implantation. CONCLUSION AND PERSPECTIVES Epigenetic mechanisms are emerging as key players in regulating transcriptional networks associated with key processes and functions of the cyclical endometrium. Further studies using next-generation sequencing and single-cell technology are warranted to explore the role of other epigenetic mechanisms in each cell type that composes the endometrium throughout the menstrual cycle. The application of this knowledge will definitively provide essential information to understand the pathological mechanisms of endometrial diseases, such as endometriosis and endometrial cancer, and to identify potential therapeutic targets and improve women's health.
Collapse
Affiliation(s)
- Alejandra Monserrat Retis-Resendiz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Ixchel Nayeli González-García
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Moisés León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico.
| |
Collapse
|