1
|
Pucci M, Akıllıoğlu HG, Bevilacqua M, Abate G, Lund MN. Investigation of Maillard reaction products in plant-based milk alternatives. Food Res Int 2024; 198:115418. [PMID: 39643377 DOI: 10.1016/j.foodres.2024.115418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/09/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
Over the past decade, plant-based milk alternatives (PBMAs) have gained increasing popularity. Several processing technologies, including heat treatment, are usually employed during their production in order to replicate the properties of cow's milk. These processes can trigger the Maillard reaction, producing Maillard reaction products (MRPs) and amino acid cross-links, which may alter the nutritional profile and digestibility of PBMAs. This study investigates PBMAs available in the Scandinavian market to assess their MRP and amino acid cross-link concentrations, aiming to understand the relationship between the formation of these heat-induced compounds and the specific chemical composition of individual PBMAs. Two types of UHT-treated cow's milk and ten UHT-processed PBMAs from different brands were analyzed. Quantitative analyses included early-stage MRPs (Amadori products detected as furosine), intermediate MRPs (α-dicarbonyl compounds and furans), advanced glycation end products (AGEs), acrylamide, and amino acid cross-links (lanthionine and lysinoalanine). Protein, carbohydrate, and amino acid profiles were also assessed using LC-MS and HPLC methods. PBMAs were found to differ substantially in carbohydrate and protein content, with soy-based drinks containing higher protein and rice and oat drinks having more carbohydrates. Essential amino acid (EAA) levels were found lower in all PBMAs, impacting their nutritional quality. MRP levels, such as furosine and AGEs, varied across PBMAs, indicating different heat-processing intensities. Specific α-dicarbonyl compounds, like 3-deoxyglucosone, were more concentrated in PBMAs than in UHT-treated cow's milk, and compounds like HMF, furfural, and acrylamide were also found in some PBMAs. Finally, correlations were observed between sugar content, α-dicarbonyls, and AGEs, which offer insights into possible chemical transformations in PBMAs during processing.
Collapse
Affiliation(s)
- Mariachiara Pucci
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Halise Gül Akıllıoğlu
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Marta Bevilacqua
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Giulia Abate
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marianne Nissen Lund
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Wang Y, Sun X, Peng J, Li F, Ali F, Wang Z. Regulation of seed germination: ROS, epigenetic, and hormonal aspects. J Adv Res 2024:S2090-1232(24)00225-X. [PMID: 38838783 DOI: 10.1016/j.jare.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The whole life of a plant is regulated by complex environmental or hormonal signaling networks that control genomic stability, environmental signal transduction, and gene expression affecting plant development and viability. Seed germination, responsible for the transformation from seed to seedling, is a key initiation step in plant growth and is controlled by unique physiological and biochemical processes. It is continuously modulated by various factors including epigenetic modifications, hormone transport, ROS signaling, and interaction among them. ROS showed versatile crucial functions in seed germination including various physiological oxidations to nucleic acid, protein, lipid, or chromatin in the cytoplasm, cell wall, and nucleus. AIM of review: This review intends to provide novel insights into underlying mechanisms of seed germination especially associated with the ROS, and considers how these versatile regulatory mechanisms can be developed as useful tools for crop improvement. KEY SCIENTIFIC CONCEPTS OF REVIEW We have summarized the generation and elimination of ROS during seed germination, with a specific focus on uncovering and understanding the mechanisms of seed germination at the level of phytohormones, ROS, and epigenetic switches, as well as the close connections between them. The findings exhibit that ROS plays multiple roles in regulating the ethylene, ABA, and GA homeostasis as well as the Ca2+ signaling, NO signaling, and MAPK cascade in seed germination via either the signal trigger or the oxidative modifier agent. Further, ROS shows the potential in the nuclear genome remodeling and some epigenetic modifiers function, although the detailed mechanisms are unclear in seed germination. We propose that ROS functions as a hub in the complex network regulating seed germination.
Collapse
Affiliation(s)
- Yakong Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiangyang Sun
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Jun Peng
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China; State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| | - Faiza Ali
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China; State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
3
|
Fu ZW, Li JH, Gao X, Wang SJ, Yuan TT, Lu YT. Pathogen-induced methylglyoxal negatively regulates rice bacterial blight resistance by inhibiting OsCDR1 protease activity. MOLECULAR PLANT 2024; 17:325-341. [PMID: 38178576 DOI: 10.1016/j.molp.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight (BB), a globally devastating disease of rice (Oryza sativa) that is responsible for significant crop loss. Sugars and sugar metabolites are important for pathogen infection, providing energy and regulating events associated with defense responses; however, the mechanisms by which they regulate such events in BB are unclear. As an inevitable sugar metabolite, methylglyoxal (MG) is involved in plant growth and responses to various abiotic stresses, but the underlying mechanisms remain enigmatic. Whether and how MG functions in plant biotic stress responses is almost completely unknown. Here, we report that the Xoo strain PXO99 induces OsWRKY62.1 to repress transcription of OsGLY II genes by directly binding to their promoters, resulting in overaccumulation of MG. MG negatively regulates rice resistance against PXO99: osglyII2 mutants with higher MG levels are more susceptible to the pathogen, whereas OsGLYII2-overexpressing plants with lower MG content show greater resistance than the wild type. Overexpression of OsGLYII2 to prevent excessive MG accumulation confers broad-spectrum resistance against the biotrophic bacterial pathogens Xoo and Xanthomonas oryzae pv. oryzicola and the necrotrophic fungal pathogen Rhizoctonia solani, which causes rice sheath blight. Further evidence shows that MG reduces rice resistance against PXO99 through CONSTITUTIVE DISEASE RESISTANCE 1 (OsCDR1). MG modifies the Arg97 residue of OsCDR1 to inhibit its aspartic protease activity, which is essential for OsCDR1-enhanced immunity. Taken together, these findings illustrate how Xoo promotes infection by hijacking a sugar metabolite in the host plant.
Collapse
Affiliation(s)
- Zheng-Wei Fu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jian-Hui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Shi-Jia Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
4
|
Leonova T, Ihling C, Saoud M, Frolova N, Rennert R, Wessjohann LA, Frolov A. Does filter-aided sample preparation provide sufficient method linearity for quantitative plant shotgun proteomics? FRONTIERS IN PLANT SCIENCE 2022; 13:874761. [PMID: 36507396 PMCID: PMC9728026 DOI: 10.3389/fpls.2022.874761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Due to its outstanding throughput and analytical resolution, gel-free LC-based shotgun proteomics represents the gold standard of proteome analysis. Thereby, the efficiency of sample preparation dramatically affects the correctness and reliability of protein quantification. Thus, the steps of protein isolation, solubilization, and proteolysis represent the principal bottleneck of shotgun proteomics. The desired performance of the sample preparation protocols can be achieved by the application of detergents. However, these compounds ultimately compromise reverse-phase chromatographic separation and disrupt electrospray ionization. Filter-aided sample preparation (FASP) represents an elegant approach to overcome these limitations. Although this method is comprehensively validated for cell proteomics, its applicability to plants and compatibility with plant-specific protein isolation protocols remain to be confirmed. Thereby, the most important gap is the absence of the data on the linearity of underlying protein quantification methods for plant matrices. To fill this gap, we address here the potential of FASP in combination with two protein isolation protocols for quantitative analysis of pea (Pisum sativum) seed and Arabidopsis thaliana leaf proteomes by the shotgun approach. For this aim, in comprehensive spiking experiments with bovine serum albumin (BSA), we evaluated the linear dynamic range (LDR) of protein quantification in the presence of plant matrices. Furthermore, we addressed the interference of two different plant matrices in quantitative experiments, accomplished with two alternative sample preparation workflows in comparison to conventional FASP-based digestion of cell lysates, considered here as a reference. The spiking experiments revealed high sensitivities (LODs of up to 4 fmol) for spiked BSA and LDRs of at least 0.6 × 102. Thereby, phenol extraction yielded slightly better recoveries, whereas the detergent-based method showed better linearity. Thus, our results indicate the very good applicability of FASP to quantitative plant proteomics with only limited impact of the protein isolation technique on the method's overall performance.
Collapse
Affiliation(s)
- Tatiana Leonova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Department of Biochemistry, St Petersburg State University, St Petersburg, Russia
| | - Christian Ihling
- Institute of Pharmacy, Department of Pharmaceutical Chemistry and Bioanalytics, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Mohamad Saoud
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Nadezhda Frolova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Department of Biochemistry, St Petersburg State University, St Petersburg, Russia
| | - Robert Rennert
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Ludger A. Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Department of Biochemistry, St Petersburg State University, St Petersburg, Russia
| |
Collapse
|
5
|
Lund P, Bechshøft MR, Ray CA, Lund MN. Effect of Processing of Whey Protein Ingredient on Maillard Reactions and Protein Structural Changes in Powdered Infant Formula. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:319-332. [PMID: 34967606 DOI: 10.1021/acs.jafc.1c05612] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The most widely used whey protein ingredient in an infant formula (IF) is the whey protein concentrate (WPC). The processing steps used in the manufacturing of both a powdered IF and a WPC introduce protein modifications that may decrease the nutritional quality. A gently processed whey protein ingredient (serum protein concentrate; SPC) was manufactured and used for the production of a powdered IF. The SPC and the SPC-based IF were compared to the WPC and the powdered WPC-based IF. Structural protein modifications were evaluated, and Maillard reaction products, covering furosine, α-dicarbonyls, furans, and advanced glycation end products, were quantified in the IFs and their protein ingredients. IF processing was responsible for higher levels of protein modifications compared to the levels observed in the SPC and WPC. Furosine levels and aggregation were most pronounced in the WPC, but the SPC contained a high level of methylglyoxal, revealing that other processing factors should be considered in addition to thermal processing.
Collapse
Affiliation(s)
- Pernille Lund
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | | | - Colin A Ray
- Arla Foods Ingredients Group P/S, Sønderhøj 10-12, 8260 Viby J, Denmark
| | - Marianne N Lund
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
6
|
Akıllıoğlu HG, Lund MN. Quantification of advanced glycation end products and amino acid cross-links in foods by high-resolution mass spectrometry: Applicability of acid hydrolysis. Food Chem 2021; 366:130601. [PMID: 34298391 DOI: 10.1016/j.foodchem.2021.130601] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022]
Abstract
An analytical method was developed and validated for simultaneous identification and quantification of advanced glycation end products (AGEs), amino acid cross-links, lysine and arginine in foodstuffs based on acid hydrolysis, hydrophilic interaction chromatography and high-resolution mass spectrometry. The method proved to be sensitive, reproducible and accurate for furosine, N-Ɛ-(carboxymethyl)lysine, N-Ɛ-(carboxyethyl)lysine, methylglyoxal and glyoxal-derived hydroimidazolones (MG-H and GO-H isomers, respectively), glyoxal lysine dimer, lysinoalanine, lanthionine, lysine and arginine. LOD and LOQ values in water were found to be 0.9-15.5 ng/mL and 2.8-47 ng/mL, respectively, and increased to 1.4-60 ng/mL and 4.4-182 ng/mL in liquid infant formula. Recovery values ranged from 76 to 118% in four different food matrices. Microwave-assisted hydrolysis for 11 min had similar efficiency as conventional hydrolysis, which requires overnight incubation. Acid stability of each compound was determined during microwave and conventional hydrolysis, and showed that the MG-H1 isomer is partially converted to the MG-H3 isomer during acid hydrolysis.
Collapse
Affiliation(s)
- Halise Gül Akıllıoğlu
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Marianne N Lund
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| |
Collapse
|
7
|
Smolikova G, Leonova T, Vashurina N, Frolov A, Medvedev S. Desiccation Tolerance as the Basis of Long-Term Seed Viability. Int J Mol Sci 2020; 22:E101. [PMID: 33374189 PMCID: PMC7795748 DOI: 10.3390/ijms22010101] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Desiccation tolerance appeared as the key adaptation feature of photoautotrophic organisms for survival in terrestrial habitats. During the further evolution, vascular plants developed complex anatomy structures and molecular mechanisms to maintain the hydrated state of cell environment and sustain dehydration. However, the role of the genes encoding the mechanisms behind this adaptive feature of terrestrial plants changed with their evolution. Thus, in higher vascular plants it is restricted to protection of spores, seeds and pollen from dehydration, whereas the mature vegetative stages became sensitive to desiccation. During maturation, orthodox seeds lose up to 95% of water and successfully enter dormancy. This feature allows seeds maintaining their viability even under strongly fluctuating environmental conditions. The mechanisms behind the desiccation tolerance are activated at the late seed maturation stage and are associated with the accumulation of late embryogenesis abundant (LEA) proteins, small heat shock proteins (sHSP), non-reducing oligosaccharides, and antioxidants of different chemical nature. The main regulators of maturation and desiccation tolerance are abscisic acid and protein DOG1, which control the network of transcription factors, represented by LEC1, LEC2, FUS3, ABI3, ABI5, AGL67, PLATZ1, PLATZ2. This network is complemented by epigenetic regulation of gene expression via methylation of DNA, post-translational modifications of histones and chromatin remodeling. These fine regulatory mechanisms allow orthodox seeds maintaining desiccation tolerance during the whole period of germination up to the stage of radicle protrusion. This time point, in which seeds lose desiccation tolerance, is critical for the whole process of seed development.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Tatiana Leonova
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia; (T.L.); (N.V.); (A.F.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Natalia Vashurina
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia; (T.L.); (N.V.); (A.F.)
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia; (T.L.); (N.V.); (A.F.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
8
|
Smolikova G, Gorbach D, Lukasheva E, Mavropolo-Stolyarenko G, Bilova T, Soboleva A, Tsarev A, Romanovskaya E, Podolskaya E, Zhukov V, Tikhonovich I, Medvedev S, Hoehenwarter W, Frolov A. Bringing New Methods to the Seed Proteomics Platform: Challenges and Perspectives. Int J Mol Sci 2020; 21:E9162. [PMID: 33271881 PMCID: PMC7729594 DOI: 10.3390/ijms21239162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, crop plants have represented the basis of the daily human diet. Among them, cereals and legumes, accumulating oils, proteins, and carbohydrates in their seeds, distinctly dominate modern agriculture, thus play an essential role in food industry and fuel production. Therefore, seeds of crop plants are intensively studied by food chemists, biologists, biochemists, and nutritional physiologists. Accordingly, seed development and germination as well as age- and stress-related alterations in seed vigor, longevity, nutritional value, and safety can be addressed by a broad panel of analytical, biochemical, and physiological methods. Currently, functional genomics is one of the most powerful tools, giving direct access to characteristic metabolic changes accompanying plant development, senescence, and response to biotic or abiotic stress. Among individual post-genomic methodological platforms, proteomics represents one of the most effective ones, giving access to cellular metabolism at the level of proteins. During the recent decades, multiple methodological advances were introduced in different branches of life science, although only some of them were established in seed proteomics so far. Therefore, here we discuss main methodological approaches already employed in seed proteomics, as well as those still waiting for implementation in this field of plant research, with a special emphasis on sample preparation, data acquisition, processing, and post-processing. Thereby, the overall goal of this review is to bring new methodologies emerging in different areas of proteomics research (clinical, food, ecological, microbial, and plant proteomics) to the broad society of seed biologists.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Daria Gorbach
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Gregory Mavropolo-Stolyarenko
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alena Soboleva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Ekaterina Romanovskaya
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Ekaterina Podolskaya
- Institute of Analytical Instrumentation, Russian Academy of Science; 190103 St. Petersburg, Russia;
- Institute of Toxicology, Russian Federal Medical Agency; 192019 St. Petersburg, Russia
| | - Vladimir Zhukov
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
- Department of Genetics and Biotechnology, St. Petersburg State University; 199034 St. Petersburg, Russia
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| |
Collapse
|
9
|
Arakawa S, Suzuki R, Kurosaka D, Ikeda R, Hayashi H, Kayama T, Ohno RI, Nagai R, Marumo K, Saito M. Mass spectrometric quantitation of AGEs and enzymatic crosslinks in human cancellous bone. Sci Rep 2020; 10:18774. [PMID: 33139851 PMCID: PMC7606603 DOI: 10.1038/s41598-020-75923-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Advanced glycation end-products (AGEs) deteriorate bone strength. Among over 40 species identified in vivo, AGEs other than pentosidine were roughly estimated as total fluorescent AGEs (tfAGEs) due to technical difficulties. Using LC-QqTOF-MS, we established a system that enabled the quantitation of five AGEs (CML, CEL, MG-H1, CMA and pentosidine) as well as two mature and three immature enzymatic crosslinks. Human bone samples were collected from 149 patients who underwent total knee arthroplasty. Their clinical parameters were collected to investigate parameters that may be predictive of AGE accumulation. All the analytes were quantitated and showed significant linearity with high sensitivity and precision. The results showed that MG-H1 was the most abundant AGE, whereas pentosidine was 1/200-1/20-fold less abundant than the other four AGEs. The AGEs were significantly and strongly correlated with pentosidine, while showing moderate correlation with tfAGEs. Interestingly, multiple linear regression analysis revealed that gender contributed most to the accumulation of all the AGEs, followed by age, tartrate-resistant acid phosphatase-5b and HbA1c. Furthermore, the AGEs were negatively correlated with immature crosslinks. Mass spectrometric quantitation of AGEs and enzymatic crosslinks is crucial to a better understanding of ageing- and disease-related deterioration of bone strength.
Collapse
Affiliation(s)
- Shoutaro Arakawa
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
- Laboratory of Food and Regulation Biology, School of Agriculture, Tokai University, 9-1-1, Toroku, Higashi-ku, Kumamoto, 862-8652, Japan.
| | - Ryusuke Suzuki
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
- Laboratory of Food and Regulation Biology, School of Agriculture, Tokai University, 9-1-1, Toroku, Higashi-ku, Kumamoto, 862-8652, Japan
| | - Daisaburo Kurosaka
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Ryo Ikeda
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hiroteru Hayashi
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Tomohiro Kayama
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Rei-Ichi Ohno
- Laboratory of Food and Regulation Biology, School of Agriculture, Tokai University, 9-1-1, Toroku, Higashi-ku, Kumamoto, 862-8652, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, School of Agriculture, Tokai University, 9-1-1, Toroku, Higashi-ku, Kumamoto, 862-8652, Japan
| | - Keishi Marumo
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
10
|
Shvachko NА, Khlestkina EK. Molecular genetic bases of seed resistance to oxidative stress during storage. Vavilovskii Zhurnal Genet Selektsii 2020; 24:451-458. [PMID: 33659828 PMCID: PMC7716554 DOI: 10.18699/vj20.47-o] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Conservation of plant genetic diversity, including economically important crops, is the foundation
for food safety. About 90 % of the world’s crop genetic diversity is stored as seeds in genebanks. During storage
seeds suffer physiological stress consequences, one of which is the accumulation of free radicals, primarily reactive
oxygen species (ROS). An increase in ROS leads to oxidative stress, which negatively affects the quality of
seeds and can lead to a complete loss of their viability. The review summarizes data on biochemical processes
that affect seed longevity. The data on the destructive effect of free radicals towards plant cell macromolecules
are analyzed, and the ways to eliminate excessive ROS in plants, the most important of which is the glutathioneascorbate
pathway, are discussed. The relationship between seed dormancy and seed longevity is examined.
Studying seeds of different plant species revealed a negative correlation between seed dormancy and longevity,
while various authors who researched Arabidopsis seeds reported both positive and negative correlations
between dormancy and seed longevity. A negative correlation between seed dormancy and viability probably
means that seeds are able to adapt to changing environmental conditions. This review provides a summary of
Arabidopsis genes associated with seed viability. By now, a significant number of loci and genes affecting seed
longevity have been identified. This review contains a synopsis of modern studies on the viability of barley
seeds. QTLs associated with barley seed longevity were identified on chromosomes 2H, 5H and 7H. In the QTL
regions studied, the Zeo1, Ale, nud, nadp-me, and HvGR genes were identified. However, there is still no definite
answer as to which genes would serve as markers of seed viability in a certain plant species.
Collapse
Affiliation(s)
- N А Shvachko
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - E K Khlestkina
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| |
Collapse
|
11
|
Nausch H, Dorn M, Frolov A, Hoedtke S, Wolf P, Broer I. Direct Delivery of Health Promoting β-Asp-Arg Dipeptides via Stable Co-expression of Cyanophycin and the Cyanophycinase CphE241 in Tobacco Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:842. [PMID: 32636862 PMCID: PMC7318851 DOI: 10.3389/fpls.2020.00842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Feed supplementation with β-arginine-aspartate dipeptides (β-Asp-Arg DP) shows growth promoting effects in feeding trials with fish and might also be beneficial for pig and poultry farming. Currently, these DPs are generated from purified cyanophycin (CGP), with the help of the CGP-degrading enzyme cyanophycinase (CGPase). As alternative to an in vitro production, the DPs might be directly produced in feed crops. We already demonstrated that CGP can be produced in plastids of tobacco and potato, yielding up to 9.4% of the dry weight (DW). We also transiently co-expressed CGPases in the cytosol without degrading CGP in intact cells, while degradation occurs in the homogenized plant tissue. However, transient co-expression is not feasible for field-grown CGP plants, which is necessary for bulk production. In the present study, we proved that stable co-expression of the CGPase CphE241 in CGP-producing tobacco is sufficient to degrade 2.0% CGP/DW nearly completely within 3 h after homogenization of the leaves. In intact senescing leaves, CGP is partially released to the cytosol and degraded into DPs which limits the overall accumulation of CGP but not the level of the stable DPs. Even after 48 h, 54 μmol β-Asp-Arg DP/g DW could be detected in the extract, which correspond to 1.5% DP/DW and represents 84% of the expected amount. Thus, we developed a system for the production of β-Asp-Arg DP in field-grown plants.
Collapse
Affiliation(s)
- Henrik Nausch
- Department of Agrobiotechnology and Risk Assessment for Bio- und Gene Technology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Mandy Dorn
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Department of Biochemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Sandra Hoedtke
- Department of Nutrition Physiology and Animal Nutrition, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Petra Wolf
- Department of Nutrition Physiology and Animal Nutrition, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Inge Broer
- Department of Agrobiotechnology and Risk Assessment for Bio- und Gene Technology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
12
|
Leonova T, Popova V, Tsarev A, Henning C, Antonova K, Rogovskaya N, Vikhnina M, Baldensperger T, Soboleva A, Dinastia E, Dorn M, Shiroglasova O, Grishina T, Balcke GU, Ihling C, Smolikova G, Medvedev S, Zhukov VA, Babakov V, Tikhonovich IA, Glomb MA, Bilova T, Frolov A. Does Protein Glycation Impact on the Drought-Related Changes in Metabolism and Nutritional Properties of Mature Pea ( Pisum sativum L.) Seeds? Int J Mol Sci 2020; 21:E567. [PMID: 31952342 PMCID: PMC7013545 DOI: 10.3390/ijms21020567] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/24/2022] Open
Abstract
Protein glycation is usually referred to as an array of non-enzymatic post-translational modifications formed by reducing sugars and carbonyl products of their degradation. The resulting advanced glycation end products (AGEs) represent a heterogeneous group of covalent adducts, known for their pro-inflammatory effects in mammals, and impacting on pathogenesis of metabolic diseases and ageing. In plants, AGEs are the markers of tissue ageing and response to environmental stressors, the most prominent of which is drought. Although water deficit enhances protein glycation in leaves, its effect on seed glycation profiles is still unknown. Moreover, the effect of drought on biological activities of seed protein in mammalian systems is still unstudied with respect to glycation. Therefore, here we address the effects of a short-term drought on the patterns of seed protein-bound AGEs and accompanying alterations in pro-inflammatory properties of seed protein in the context of seed metabolome dynamics. A short-term drought, simulated as polyethylene glycol-induced osmotic stress and applied at the stage of seed filling, resulted in the dramatic suppression of primary seed metabolism, although the secondary metabolome was minimally affected. This was accompanied with significant suppression of NF-kB activation in human SH-SY5Y neuroblastoma cells after a treatment with protein hydrolyzates, isolated from the mature seeds of drought-treated plants. This effect could not be attributed to formation of known AGEs. Most likely, the prospective anti-inflammatory effect of short-term drought is related to antioxidant effect of unknown secondary metabolite protein adducts, or down-regulation of unknown plant-specific AGEs due to suppression of energy metabolism during seed filling.
Collapse
Affiliation(s)
- Tatiana Leonova
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Veronika Popova
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Christian Henning
- Institute of Chemistry - Food Chemistry, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Kristina Antonova
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Nadezhda Rogovskaya
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, 188663 Leningrad Oblast, Russia
| | - Maria Vikhnina
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Tim Baldensperger
- Institute of Chemistry - Food Chemistry, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Alena Soboleva
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Ekaterina Dinastia
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
- Postovsky Institute of Organic Synthesis of Ural Division of Russian Academy of Sciences, 620137 Yekaterinburg, Russia
| | - Mandy Dorn
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Olga Shiroglasova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Tatiana Grishina
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
| | - Gerd U Balcke
- Department of Metabolic and Cell Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Vladimir A Zhukov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
| | - Vladimir Babakov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, 188663 Leningrad Oblast, Russia
| | - Igor A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Marcus A Glomb
- Institute of Chemistry - Food Chemistry, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Tatiana Bilova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| |
Collapse
|