1
|
Yuan P, Tian J, Wei Y, Wang M, Song C, Jiao J, Wang M, Zhang K, Hao P, Zheng X, Bai T. The MdCo gene encodes a putative 2OG-Fe (II) oxygenase that positively regulates salt tolerance in transgenic tomato and apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112267. [PMID: 39278570 DOI: 10.1016/j.plantsci.2024.112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Salinity stress is a significant environmental factor that impacts the growth, development, quality, and yield of crops. The 2OG-Fe (II) oxygenase family of enzyme proteins plays crucial roles in plant growth and stress responses. Previously, we identified and characterized MdCo, which encodes a putative 2OG-Fe (II) oxygenase, a key gene for controlling the columnar growth habit of apples. In this study, we explored the role of MdCo in salt stress tolerance. Expression analysis suggested that MdCo exhibits high expression in roots and is significantly induced by NaCl stress. Ectopic expression of MdCo exhibited enhanced salt stress tolerance in transgenic tomatoes, and these plants were characterized by better growth performance, and higher chlorophyll content, but lower electrolyte leakage and malondialdehyde (MDA), and less hydrogen peroxide (H2O2) and superoxide radicals (O2-) under salt stress. Overexpression of MdCo can effectively scavenge reactive oxygen species (ROS) by enhancing the activities of antioxidant enzymes and up-regulating the expression of stress-associated genes under salt stress, thereby enhancing salt tolerance in apple calli. Collectively, these findings provide new insights into the function of MdCo in salt stress tolerance as well as future potential application for apple breeding aimed at improving salt stress tolerance.
Collapse
Affiliation(s)
- Penghao Yuan
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianwen Tian
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuyao Wei
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China
| | - Meige Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China
| | - Chunhui Song
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center for Apple Germplasm Innovation and Utilization, Zhengzhou 450046, China
| | - Jian Jiao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center for Apple Germplasm Innovation and Utilization, Zhengzhou 450046, China
| | - Miaomiao Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center for Apple Germplasm Innovation and Utilization, Zhengzhou 450046, China
| | - Kunxi Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center for Apple Germplasm Innovation and Utilization, Zhengzhou 450046, China
| | - Pengbo Hao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center for Apple Germplasm Innovation and Utilization, Zhengzhou 450046, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center for Apple Germplasm Innovation and Utilization, Zhengzhou 450046, China.
| | - Tuanhui Bai
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center for Apple Germplasm Innovation and Utilization, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Wei H, Xu T, Luo C, Ma D, Yang F, Yang P, Zhou X, Liu G, Lian B, Zhong F, Zhang J. Salix matsudana fatty acid desaturases: Identification, classification, evolution, and expression profiles for development and stress tolerances. Int J Biol Macromol 2024; 278:134574. [PMID: 39122077 DOI: 10.1016/j.ijbiomac.2024.134574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Fatty acid desaturases (FADs) are enzymes that transform carbon‑carbon single bonds into carbon‑carbon double bonds within acyl chains, resulting in the production of unsaturated FAs (UFAs). They are crucial for plant growth, development, and adaptation to environmental stress. In our research, we identified 40 FAD candidates in the Salix matsudana genome, grouping them into seven categories. Exon-intron structures and conserved motifs of SmFADs within the same group showed significant conservation. Cis-element analysis revealed SmFADs are responsive to hormones and stress. Additionally, GO and KEGG analyses linked SmFADs closely with lipid biosynthesis and UFA biosynthesis, which were crucial for the plant's response to environmental stresses. Notably, the SmFAB2.4, SmADS1, SmFAD7.5, and SmFAD8.2 were predicted to participate in submergence tolerance, whereas SmFAD8.1 and SmFAD7.1 played an essential role in salt stress response. The diverse expression profiles of SmFADs across willow varieties, in various tissues, and throughout the willow bud development stages revealed a spectrum of functional diversity for these genes. Moreover, specific SmFADs might play a crucial role in callus development and the response to culturing conditions in various willow cultivars. This research underscored the importance of SmFAD profiles and functions and identified potential genes for enhancing forest resilience.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Tiantian Xu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Chunying Luo
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Duojin Ma
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Fan Yang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Peijian Yang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Xiaoxi Zhou
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Bolin Lian
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| |
Collapse
|
3
|
Striesow J, Welle M, Busch LM, Bekeschus S, Wende K, Stöhr C. Hypoxia increases triacylglycerol levels and unsaturation in tomato roots. BMC PLANT BIOLOGY 2024; 24:909. [PMID: 39350052 PMCID: PMC11441241 DOI: 10.1186/s12870-024-05578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Plants are designed to endure stress, but increasingly extreme weather events are testing the limits. Events like flooding result in submergence of plant organs, triggering an energy crisis due to hypoxia and threaten plant growth and productivity. Lipids are relevant as building blocks and energy vault and are substantially intertwined with primary metabolism, making them an ideal readout for plant stress. RESULTS By high resolution mass spectrometry, a distinct, hypoxia-related lipid composition of Solanum lycopersicum root tissue was observed. Out of 491 lipid species, 11 were exclusively detected in this condition. Among the lipid classes observed, glycerolipids and glycerophospholipids dominated by far (78%). Differences between the lipidomic profiles of both analyzed conditions were significantly driven by changes in the abundance of triacylglycerols (TGs) whereas sitosterol esters, digalactosyldiacylglycerols, and phosphatidylcholine play a significantly negligible role in separation. Alongside, an increased level of polyunsaturation was observed in the fatty acid chains, with 18:2 and 18:3 residues showing a significant increase. Of note, hexadecatetraenoic acid (16:4) was identified in hypoxia condition samples. Changes in gene expression of enzymes related to lipid metabolism corroborate the above findings. CONCLUSION To our knowledge, this is the first report on a hypoxia-induced increase in TG content in tomato root tissue, closing a knowledge gap in TG abiotic stress response. The results suggest that the increase in TGs and TG polyunsaturation degree are common features of hypoxic response in plant roots.
Collapse
Affiliation(s)
- Johanna Striesow
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Marcel Welle
- Institute of Botany & Landscape Ecology, Greifswald University, Soldmannstr. 15, 17489, Greifswald, Germany.
| | - Larissa Milena Busch
- Department of Functional Genomics, Greifswald University Medical Center, Felix-Hausdorff- Str. 8, 17489, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| | - Christine Stöhr
- Institute of Botany & Landscape Ecology, Greifswald University, Soldmannstr. 15, 17489, Greifswald, Germany
| |
Collapse
|
4
|
Pang B, Li J, Zhang R, Luo P, Wang Z, Shi S, Gao W, Li S. RNA-Seq and WGCNA Analyses Reveal Key Regulatory Modules and Genes for Salt Tolerance in Cotton. Genes (Basel) 2024; 15:1176. [PMID: 39336767 PMCID: PMC11431110 DOI: 10.3390/genes15091176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The problem of soil salinization has seriously hindered agricultural development. Cotton is a pioneering salinity-tolerant crop, so harvesting its key salinity-tolerant genes is important for improving crop salt tolerance. In this study, we analyzed changes in the transcriptome expression profiles of the salt-tolerant cultivar Lu Mian 28 (LM) and the salt-sensitive cultivar Zhong Mian Suo 12 (ZMS) after applying salt stress, and we constructed weighted gene co-expression networks (WGCNA). The results indicated that photosynthesis, amino acid biosynthesis, membrane lipid remodeling, autophagy, and ROS scavenging are key pathways in the salt stress response. Plant-pathogen interactions, plant hormone signal transduction, the mitogen-activated protein kinase (MAPK) signaling pathway, and carotenoid biosynthesis are the regulatory networks associated with these metabolic pathways that confer cotton salt tolerance. The gene-weighted co-expression network was used to screen four modules closely related to traits, identifying 114 transcription factors, including WRKYs, ERFs, NACs, bHLHs, bZIPs, and MYBs, and 11 hub genes. This study provides a reference for acquiring salt-tolerant cotton and abundant genetic resources for molecular breeding.
Collapse
Affiliation(s)
- Bo Pang
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Jing Li
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Ru Zhang
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Ping Luo
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Zhengrui Wang
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Shunyu Shi
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Wenwei Gao
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Shengmei Li
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
- College of Biotechnology, Xinjiang Agricultural Vocational and Technical University, Changji 831100, China
| |
Collapse
|
5
|
Kalisz A, Kornaś A, Gil J, Rudolphi-Szydło E, Gawrońska K, Sieprawska A, Jafari H, Mahdavinia GR, Kulak M, Gohari G, Fotopoulos V. Foliar spraying with amino acids and their chitosan nanocomposites as promising way to alleviate abiotic stress in iceberg lettuce grown at different temperatures. Sci Rep 2024; 14:17208. [PMID: 39060430 PMCID: PMC11282281 DOI: 10.1038/s41598-024-68005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
We analyzed the effects of foliar spraying with amino acids, chitosan (CHS) and nanocomposites (NCs) of chitosan with the amino acids proline, L-cysteine and glycine betaine (CHS-Pro NCs; CHS-Cys NCs, CHS-GB NCs, respectively) on the changes in the physiological and biochemical parameters of iceberg lettuce grown at the control temperature (20 °C) and under chilling conditions (4 °C). The physicochemical parameters of the phospholipid monolayers (PLs) extracted from plants showed the effects of the treatments on the properties of the monolayers, namely, the packing density and flexibility. We observed increased accumulation of proline at 4 °C, and differences in the concentrations of sugars in most of the analyzed variants were a consequence of the lowered temperature and/or the use of organic compounds. A temperature of 4 °C caused a significant increase in the L-ascorbic acid level compared with that at 20 °C. Differences were also found in glutathione (GSH) content depending on the temperature and treatment with the tested organic compounds. CHS NCs loaded with Pro and GB were effective at increasing the amount of phenols under stress temperature conditions. We noted that a significant increase in the antioxidant activity of plants at 4 °C occurred after priming with Cys, CHS-Cys NCs, Pro and CHS-Pro NCs, and the CHS nanocomposites were more effective in this respect. Both low-temperature stress and foliar spraying of lettuce with various organic compounds caused changes in the activity of antioxidant enzymes. Two forms of dismutase (SOD), iron superoxide dismutase (FeSOD) and copper/zinc superoxide dismutase (Cu/ZnSOD), were identified in extracts from the leaves of iceberg lettuce seedlings. The application of the tested organic compounds, alone or in combination with CHS, increased the amount of malondialdehyde (MDA) in plants grown under controlled temperature conditions. Chilling caused an increase in the content of MDA, but some organic compounds mitigated the impact of low temperature. Compared with that of plants subjected to 20 °C, the fresh weight of plants exposed to chilling decreased. However, the tested compounds caused a decrease in fresh weight at 4 °C compared with the corresponding control samples. An interesting exception was the use of Cys, for which the difference in the fresh weight of plants grown at 20 °C and 4 °C was not statistically significant. After Cys application, the dry weight of the chilled plants was greater than that of the chilled control plants but was also greater than that of the other treated plants in this group. To our knowledge, this is the first report demonstrating that engineered chitosan-amino acid nanocomposites could be applied as innovative protective agents to mitigate the effects of chilling stress in crop plants.
Collapse
Affiliation(s)
- Andrzej Kalisz
- Department of Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425, Kraków, Poland.
| | - Andrzej Kornaś
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Podchorążych 2, 30-084, Kraków, Poland.
| | - Joanna Gil
- Department of Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425, Kraków, Poland
| | - Elżbieta Rudolphi-Szydło
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Podchorążych 2, 30-084, Kraków, Poland
| | - Katarzyna Gawrońska
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Podchorążych 2, 30-084, Kraków, Poland
| | - Apolonia Sieprawska
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Podchorążych 2, 30-084, Kraków, Poland
| | - Hessam Jafari
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Gholam Reza Mahdavinia
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, Iğdır, Turkey
| | - Gholamreza Gohari
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
6
|
Valitova J, Renkova A, Beckett R, Minibayeva F. Stigmasterol: An Enigmatic Plant Stress Sterol with Versatile Functions. Int J Mol Sci 2024; 25:8122. [PMID: 39125690 PMCID: PMC11311414 DOI: 10.3390/ijms25158122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Sterols play important structural and regulatory roles in numerous intracellular processes. Unlike animals, plants contain a distinctive and diverse variety of sterols. Recently, information has emerged showing that stigmasterol is a "stress sterol". Stigmasterol is synthesized via the mevalonate biosynthesis pathway and has structural similarity to β-sitosterol but differs in the presence of a trans-oriented double bond in the side chain. In plants, the accumulation of stigmasterol has been observed in response to various stresses. However, the precise ways that stigmasterol is involved in the stress responses of plants remain unclear. This comprehensive review provides an update on the biology of stigmasterol, particularly the physicochemical properties of this ethylsterol, its biosynthesis, and its occurrence in higher plants and extremophilic organisms, e.g., mosses and lichens. Special emphasis is given to the evolutionary aspects of stigmasterol biosynthesis, particularly the variations in the gene structure of C22-sterol desaturase, which catalyzes the formation of stigmasterol from β-sitosterol, in a diversity of evolutionarily distant organisms. The roles of stigmasterol in the tolerance of plants to hostile environments and the prospects for its biomedical applications are also discussed. Taken together, the available data suggest that stigmasterol plays important roles in plant metabolism, although in some aspects, it remains an enigmatic compound.
Collapse
Affiliation(s)
- Julia Valitova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, Kazan 420111, Russia; (J.V.); (A.R.)
| | - Albina Renkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, Kazan 420111, Russia; (J.V.); (A.R.)
| | - Richard Beckett
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa;
| | - Farida Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, Kazan 420111, Russia; (J.V.); (A.R.)
| |
Collapse
|
7
|
Gao ZW, Ding J, Ali B, Nawaz M, Hassan MU, Ali A, Rasheed A, Khan MN, Ozdemir FA, Iqbal R, Çiğ A, Ercisli S, Sabagh AE. Putting Biochar in Action: A Black Gold for Efficient Mitigation of Salinity Stress in Plants. Review and Future Directions. ACS OMEGA 2024; 9:31237-31253. [PMID: 39072056 PMCID: PMC11270719 DOI: 10.1021/acsomega.3c07921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 07/30/2024]
Abstract
Soil salinization is a serious concern across the globe that is negatively affecting crop productivity. Recently, biochar received attention for mitigating the adverse impacts of salinity. Salinity stress induces osmotic, ionic, and oxidative damages that disturb physiological and biochemical functioning and nutrient and water uptake, leading to a reduction in plant growth and development. Biochar maintains the plant function by increasing nutrient and water uptake and reducing electrolyte leakage and lipid peroxidation. Biochar also protects the photosynthetic apparatus and improves antioxidant activity, gene expression, and synthesis of protein osmolytes and hormones that counter the toxic effect of salinity. Additionally, biochar also improves soil organic matter, microbial and enzymatic activities, and nutrient and water uptake and reduces the accumulation of toxic ions (Na+ and Cl), mitigating the toxic effects of salinity on plants. Thus, it is interesting to understand the role of biochar against salinity, and in the present Review we have discussed the various mechanisms through which biochar can mitigate the adverse impacts of salinity. We have also identified the various research gaps that must be addressed in future study programs. Thus, we believe that this work will provide new suggestions on the use of biochar to mitigate salinity stress.
Collapse
Affiliation(s)
- Zhan-Wu Gao
- Tourism
and Geographical Science Institute, Baicheng
Normal University, Baicheng, Jilin 137000, China
| | - Jianjun Ding
- Jiaxiang
Vocational Secondary Technical School, Jiaxiang, Shandong 272400, China
| | - Basharat Ali
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan, Punjab 62400, Pakistan
| | - Muhammad Nawaz
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan, Punjab 62400, Pakistan
| | - Muhammad Umair Hassan
- Research
Center of Ecological Sciences, Jiangxi Agricultural
University, Nanchang, Jiangxi 330029, China
| | - Abid Ali
- Department
of Agricultural and Food Sciences-DISTAL, University of Bologna, 40127 Bologna, Italy
| | - Adnan Rasheed
- College
of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Muhammad Nauman Khan
- Department
of Botany, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
- University
Public School, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Fethi Ahmet Ozdemir
- Department
of Molecular Biology and Genetics, Faculty of Science and Art, Bingol University, 12000 Bingol, Turkey
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Arzu Çiğ
- Faculty
of Agriculture, Department of Horticulture, Siirt University, 56100 Siirt, Turkey
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Ayman El Sabagh
- Faculty
of Agriculture, Department of Field Crops, Siirt University, 56100 Siirt, Turkey
- Department
of Agronomy, Faculty of Agriculture, Kafrelsheikh
University, Kafr al-Sheik 6860404, Egypt
| |
Collapse
|
8
|
Ma N, Han L, Hou S, Gui L, Yuan Z, Sun S, Wang Z, Yang B, Yang C. Insights into the effects of saline forage on the meat quality of Tibetan sheep by metabolome and multivariate analysis. Food Chem X 2024; 22:101411. [PMID: 38756473 PMCID: PMC11096943 DOI: 10.1016/j.fochx.2024.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
This work aimed to investigate how two different types of forage (saline and alkaline) impact the meat quality and muscle metabolism of Tibetan sheep. An integrative multi-omics analysis of meat quality and different metabolites was performed using untargeted and targeted metabolomics approaches. The research results indicated that GG grass (saline and alkaline forage) possessed superior characteristics in terms of apparent quality and secondary metabolite content compared with HG grass (Non saline alkali forage), regardless of the targeted metabolites or non-targeted ones. Simultaneously, under stress conditions, the carbohydrates-rich salt-alkali grass play a significant role in slowing down the decline in pH, increasing the unsaturated fatty acid content and reducing the thawing loss in Tibetan sheep. This study provides an understanding of the impact of different salt-alkali grass on the quality of Tibetan sheep meat, while providing a scientific basis for the future development of salt-alkali livestock industry.
Collapse
Affiliation(s)
- Nana Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Lijuan Han
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Zhenzhen Yuan
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Shengnan Sun
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Zhiyou Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Baochun Yang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Chao Yang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| |
Collapse
|
9
|
Matzner M, Launhardt L, Barth O, Humbeck K, Goss R, Heilmann I. Inter-Organellar Effects of Defective ER-Localized Linolenic Acid Formation on Thylakoid Lipid Composition, Non-Photochemical Quenching of Chlorophyll Fluorescence and Xanthophyll Cycle Activity in the Arabidopsis fad3 Mutant. PLANT & CELL PHYSIOLOGY 2024; 65:958-974. [PMID: 37991227 DOI: 10.1093/pcp/pcad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Monogalactosyldiacylglycerol (MGDG) is the main lipid constituent of thylakoids and a structural component of photosystems and photosynthesis-related proteo-lipid complexes in green tissues. Previously reported changes in MGDG abundance upon stress treatments are hypothesized to reflect mobilization of MGDG-based polyunsaturated lipid intermediates to maintain extraplastidial membrane integrity. While exchange of lipid intermediates between compartmental membranes is well documented, physiological consequences of mobilizing an essential thylakoid lipid, such as MGDG, for an alternative purpose are not well understood. Arabidopsis seedlings exposed to mild (50 mM) salt treatment displayed significantly increased abundance of both MGDG and the extraplastidial lipid, phosphatidylcholine (PC). Interestingly, similar increases in MGDG and PC were observed in Arabidopsis fad3 mutant seedlings defective in endoplasmic reticulum (ER)-localized linolenic acid formation, in which compensatory plastid-to-ER-directed mobilization of linolenic acid-containing intermediates takes place. The postulated (salt) or evident (fad3) plastid-ER exchange of intermediates concurred with altered thylakoid function according to parameters of photosynthetic performance. While salt treatment of wild-type seedlings inhibited photosynthetic parameters in a dose-dependent manner, interestingly, untreated fad3 mutants did not show overall reduced photosynthetic quantum yield. By contrast, we observed a reduction specifically of non-photochemical quenching (NPQ) under high light, representing only part of observed salt effects. The decreased NPQ in the fad3 mutant was accompanied by reduced activity of the xanthophyll cycle, leading to a reduced concentration of the NPQ-effective pigment zeaxanthin. The findings suggest that altered ER-located fatty acid unsaturation and ensuing inter-organellar compensation impacts on the function of specific thylakoid enzymes, rather than globally affecting thylakoid function.
Collapse
Affiliation(s)
- Monique Matzner
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Science Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, Halle (Saale) 06120, Germany
| | - Larissa Launhardt
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Science Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, Halle (Saale) 06120, Germany
| | - Olaf Barth
- Department of Plant Physiology, Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale) 06120, Germany
| | - Klaus Humbeck
- Department of Plant Physiology, Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale) 06120, Germany
| | - Reimund Goss
- Department of Plant Physiology, Institute of Biology, University of Leipzig, Johannisallee 23, Leipzig 04103, Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Science Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, Halle (Saale) 06120, Germany
| |
Collapse
|
10
|
Sah SK, Fan J, Blanford J, Shanklin J, Xu C. Physiological Functions of Phospholipid:Diacylglycerol Acyltransferases. PLANT & CELL PHYSIOLOGY 2024; 65:863-871. [PMID: 37702708 DOI: 10.1093/pcp/pcad106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Triacylglycerol (TAG) is among the most energy dense storage forms of reduced carbon in living systems. TAG metabolism plays critical roles in cellular energy balance, lipid homeostasis, cell growth and stress responses. In higher plants, microalgae and fungi, TAG is assembled by acyl-CoA-dependent and acyl-CoA-independent pathways catalyzed by diacylglycerol (DAG) acyltransferase and phospholipid:DAG acyltransferase (PDAT), respectively. This review contains a summary of the current understanding of the physiological functions of PDATs. Emphasis is placed on their role in lipid remodeling and lipid homeostasis in response to abiotic stress or perturbations in lipid metabolism.
Collapse
Affiliation(s)
- Saroj Kumar Sah
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jantana Blanford
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
11
|
Li J, Ackah M, Amoako FK, Cui Z, Sun L, Li H, Tsigbey VE, Zhao M, Zhao W. Metabolomics and physio-chemical analyses of mulberry plants leaves response to manganese deficiency and toxicity reveal key metabolites and their pathways in manganese tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1349456. [PMID: 38911982 PMCID: PMC11192020 DOI: 10.3389/fpls.2024.1349456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/10/2024] [Indexed: 06/25/2024]
Abstract
Introduction Manganese (Mn) plays a pivotal role in plant growth and development. Aside aiding in plant growth and development, Mn as heavy metal (HM) can be toxic in soil when applied in excess. Morus alba is an economically significant plant, capable of adapting to a range of environmental conditions and possessing the potential for phytoremediation of contaminated soil by HMs. The mechanism by which M. alba tolerates Mn stresses remains obscure. Methods In this study, Mn concentrations comprising sufficiency (0.15 mM), higher regimes (1.5 mM and 3 mM), and deficiency (0 mM and 0.03 mM), were applied to M. alba in pot treatment for 21 days to understand M. alba Mn tolerance. Mn stress effects on the net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), intercellular CO2 concentration (Ci), chlorophyll content, plant morphological traits, enzymatic and non-enzymatic parameters were analyzed as well as metabolome signatures via non-targeted LC-MS technique. Results Mn deficiency and toxicity decrease plant biomass, Pn, Ci, Gs, Tr, and chlorophyll content. Mn stresses induced a decline in the activities of catalase (CAT) and superoxide dismutase (SOD), while peroxidase (POD) activity, and leaf Mn content, increased. Soluble sugars, soluble proteins, malondialdehyde (MDA) and proline exhibited an elevation in Mn deficiency and toxicity concentrations. Metabolomic analysis indicates that Mn concentrations induced 1031 differentially expressed metabolites (DEMs), particularly amino acids, lipids, carbohydrates, benzene and derivatives and secondary metabolites. The DEMs are significantly enriched in alpha-linolenic acid metabolism, biosynthesis of unsaturated fatty acids, galactose metabolism, pantothenate and CoA biosynthesis, pentose phosphate pathway, carbon metabolism, etc. Discussion and conclusion The upregulation of Galactinol, Myo-inositol, Jasmonic acid, L-aspartic acid, Coproporphyrin I, Trigonelline, Pantothenol, and Pantothenate and their significance in the metabolic pathways makes them Mn stress tolerance metabolites in M. alba. Our findings reveal the fundamental understanding of DEMs in M. alba's response to Mn nutrition and the metabolic mechanisms involved, which may hold potential significance for the advancement of M. alba genetic improvement initiatives and phytoremediation programs.
Collapse
Affiliation(s)
- Jianbin Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | | | - Zipei Cui
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - LongWei Sun
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Haonan Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Victor Edem Tsigbey
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Mengdi Zhao
- Department of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
12
|
Li N, Shao T, Xu L, Long X, Rengel Z, Zhang Y. Transcriptome analysis reveals the molecular mechanisms underlying the enhancement of salt-tolerance in Melia azedarach under salinity stress. Sci Rep 2024; 14:10981. [PMID: 38745099 PMCID: PMC11094156 DOI: 10.1038/s41598-024-61907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Melia azedarach demonstrates strong salt tolerance and thrives in harsh saline soil conditions, but the underlying mechanisms are poorly understood. In this study, we analyzed gene expression under low, medium, and high salinity conditions to gain a deeper understanding of adaptation mechanisms of M. azedarach under salt stress. The GO (gene ontology) analysis unveiled a prominent trend: as salt stress intensified, a greater number of differentially expressed genes (DEGs) became enriched in categories related to metabolic processes, catalytic activities, and membrane components. Through the analysis of the category GO:0009651 (response to salt stress), we identified four key candidate genes (CBL7, SAPK10, EDL3, and AKT1) that play a pivotal role in salt stress responses. Furthermore, the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis revealed that DEGs were significantly enriched in the plant hormone signaling pathways and starch and sucrose metabolism under both medium and high salt exposure in comparison to low salt conditions. Notably, genes involved in JAZ and MYC2 in the jasmonic acid (JA) metabolic pathway were markedly upregulated in response to high salt stress. This study offers valuable insights into the molecular mechanisms underlying M. azedarach salt tolerance and identifies potential candidate genes for enhancing salt tolerance in M. azedarach.
Collapse
Affiliation(s)
- Na Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianyun Shao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Li Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaohua Long
- Institute of Crop sciences, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, 010031, China.
| | - Zed Rengel
- Soil Science and Plant Nutrition, UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Institute for Adriatic Crops and Karst Reclamation, 21000, Split, Croatia
| | - Yu Zhang
- Institute of Crop sciences, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, 010031, China
| |
Collapse
|
13
|
Kobylińska A, Bernat P, Posmyk MM. Melatonin Mitigates Lead-Induced Oxidative Stress and Modifies Phospholipid Profile in Tobacco BY-2 Suspension Cells. Int J Mol Sci 2024; 25:5064. [PMID: 38791101 PMCID: PMC11121664 DOI: 10.3390/ijms25105064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Many studies have shown that melatonin (an indoleamine) is an important molecule in plant physiology. It is known that this indoleamine is crucial during plant stress responses, especially by counteracting secondary oxidative stress (efficient direct and indirect antioxidant) and switching on different defense plant strategies. In this report, we present exogenous melatonin's potential to protect lipid profile modification and membrane integrity in Nicotiana tabacum L. line Bright Yellow 2 (BY-2) cell culture exposed to lead. There are some reports of the positive effect of melatonin on animal cell membranes; ours is the first to report changes in the lipid profile in plant cells. The experiments were performed in the following variants: LS: cells cultured on unmodified LS medium-control; (ii) MEL: BY-2 cells cultured on LS medium with melatonin added from the beginning of culture; (iii) Pb: BY-2 cells cultured on LS medium with Pb2+ added on the 4th day of culture; (iv) MEL+Pb: BY-2 cells cultured on LS medium with melatonin added from the start of culture and stressed with Pb2+ added on the 4th day of culture. Lipidomic analysis of BY-2 cells revealed the presence of 40 different phospholipids. Exposing cells to lead led to the overproduction of ROS, altered fatty acid composition and increased PLD activity and subsequently elevated the level of phosphatidic acid at the cost of dropping the phosphatidylcholine. In the presence of lead, double-bond index elevation, mainly by higher quantities of linoleic (C18:2) and linolenic (C18:3) acids in the log phase of growth, was observed. In contrast, cells exposed to heavy metal but primed with melatonin showed more similarities with the control. Surprisingly, the overproduction of ROS caused of lipid peroxidation only in the stationary phase of growth, although considerable changes in lipid profiles were observed in the log phase of growth-just 4 h after lead administration. Our results indicate that the pretreatment of BY-2 with exogenous melatonin protected tobacco cells against membrane dysfunctions caused by oxidative stress (lipid oxidation), but also findings on a molecular level suggest the possible role of this indoleamine in the safeguarding of the membrane lipid composition that limited lead-provoked cell death. The presented research indicates a new mechanism of the defense strategy of plant cells generated by melatonin.
Collapse
Affiliation(s)
- Agnieszka Kobylińska
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Małgorzata Maria Posmyk
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| |
Collapse
|
14
|
Demircan N, Sonmez MC, Akyol TY, Ozgur R, Turkan I, Dietz KJ, Uzilday B. Alternative electron sinks in chloroplasts and mitochondria of halophytes as a safety valve for controlling ROS production during salinity. PHYSIOLOGIA PLANTARUM 2024; 176:e14397. [PMID: 38894507 DOI: 10.1111/ppl.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 06/21/2024]
Abstract
Electron flow through the electron transport chain (ETC) is essential for oxidative phosphorylation in mitochondria and photosynthesis in chloroplasts. Electron fluxes depend on environmental parameters, e.g., ionic and osmotic conditions and endogenous factors, and this may cause severe imbalances. Plants have evolved alternative sinks to balance the reductive load on the electron transport chains in order to avoid overreduction, generation of reactive oxygen species (ROS), and to cope with environmental stresses. These sinks act primarily as valves for electron drainage and secondarily as regulators of tolerance-related metabolism, utilizing the excess reductive energy. High salinity is an environmental stressor that stimulates the generation of ROS and oxidative stress, which affects growth and development by disrupting the redox homeostasis of plants. While glycophytic plants are sensitive to high salinity, halophytic plants tolerate, grow, and reproduce at high salinity. Various studies have examined the ETC systems of glycophytic plants, however, information about the state and regulation of ETCs in halophytes under non-saline and saline conditions is scarce. This review focuses on alternative electron sinks in chloroplasts and mitochondria of halophytic plants. In cases where information on halophytes is lacking, we examined the available knowledge on the relationship between alternative sinks and gradual salinity resilience of glycophytes. To this end, transcriptional responses of involved components of photosynthetic and respiratory ETCs were compared between the glycophyte Arabidopsis thaliana and the halophyte Schrenkiella parvula, and the time-courses of these transcripts were examined in A. thaliana. The observed regulatory patterns are discussed in the context of reactive molecular species formation in halophytes and glycophytes.
Collapse
Affiliation(s)
- Nil Demircan
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | | | - Turgut Yigit Akyol
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | - Ismail Turkan
- Department of Soil and Plant Nutrition, Faculty of Agricultural Sciences and Technologies, Yasar University, İzmir, Türkiye
| | - Karl-Josef Dietz
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| |
Collapse
|
15
|
Xue Y, Zhou C, Feng N, Zheng D, Shen X, Rao G, Huang Y, Cai W, Liu Y, Zhang R. Transcriptomic and Lipidomic Analysis Reveals Complex Regulation Mechanisms Underlying Rice Roots' Response to Salt Stress. Metabolites 2024; 14:244. [PMID: 38668372 PMCID: PMC11052231 DOI: 10.3390/metabo14040244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Rice (Oryza sativa L.), a crucial food crop that sustains over half the world's population, is often hindered by salt stress during various growth stages, ultimately causing a decrease in yield. However, the specific mechanism of rice roots' response to salt stress remains largely unknown. In this study, transcriptomics and lipidomics were used to analyze the changes in the lipid metabolism and gene expression profiles of rice roots in response to salt stress. The results showed that salt stress significantly inhibited rice roots' growth and increased the roots' MDA content. Furthermore, 1286 differentially expressed genes including 526 upregulated and 760 downregulated, were identified as responding to salt stress in rice roots. The lipidomic analysis revealed that the composition and unsaturation of membrane lipids were significantly altered. In total, 249 lipid molecules were differentially accumulated in rice roots as a response to salt stress. And most of the major phospholipids, such as phosphatidic acid (PA), phosphatidylcholine (PC), and phosphatidylserine (PS), as well as major sphingolipids including ceramide (Cer), phytoceramide (CerP), monohexose ceramide (Hex1Cer), and sphingosine (SPH), were significantly increased, while the triglyceride (TG) molecules decreased. These results suggested that rice roots mitigate salt stress by altering the fluidity and integrity of cell membranes. This study enhances our comprehension of salt stress, offering valuable insights into changes in the lipids and adaptive lipid remodeling in rice's response to salt stress.
Collapse
Affiliation(s)
- Yingbin Xue
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Y.X.); (C.Z.); (N.F.); (D.Z.); (X.S.); (G.R.); (Y.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Chenyu Zhou
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Y.X.); (C.Z.); (N.F.); (D.Z.); (X.S.); (G.R.); (Y.H.)
| | - Naijie Feng
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Y.X.); (C.Z.); (N.F.); (D.Z.); (X.S.); (G.R.); (Y.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Y.X.); (C.Z.); (N.F.); (D.Z.); (X.S.); (G.R.); (Y.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Xuefeng Shen
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Y.X.); (C.Z.); (N.F.); (D.Z.); (X.S.); (G.R.); (Y.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Gangshun Rao
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Y.X.); (C.Z.); (N.F.); (D.Z.); (X.S.); (G.R.); (Y.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Yongxiang Huang
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Y.X.); (C.Z.); (N.F.); (D.Z.); (X.S.); (G.R.); (Y.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Wangxiao Cai
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Ying Liu
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Y.X.); (C.Z.); (N.F.); (D.Z.); (X.S.); (G.R.); (Y.H.)
| | - Rui Zhang
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Y.X.); (C.Z.); (N.F.); (D.Z.); (X.S.); (G.R.); (Y.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| |
Collapse
|
16
|
Poulsen BE, Warrier T, Barkho S, Bagnall J, Romano KP, White T, Yu X, Kawate T, Nguyen PH, Raines K, Ferrara K, Golas A, Fitzgerald M, Boeszoermenyi A, Kaushik V, Serrano-Wu M, Shoresh N, Hung DT. "Multiplexed screen identifies a Pseudomonas aeruginosa -specific small molecule targeting the outer membrane protein OprH and its interaction with LPS". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.16.585348. [PMID: 38559044 PMCID: PMC10980007 DOI: 10.1101/2024.03.16.585348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The surge of antimicrobial resistance threatens efficacy of current antibiotics, particularly against Pseudomonas aeruginosa , a highly resistant gram-negative pathogen. The asymmetric outer membrane (OM) of P. aeruginosa combined with its array of efflux pumps provide a barrier to xenobiotic accumulation, thus making antibiotic discovery challenging. We adapted PROSPECT 1 , a target-based, whole-cell screening strategy, to discover small molecule probes that kill P. aeruginosa mutants depleted for essential proteins localized at the OM. We identified BRD1401, a small molecule that has specific activity against a P. aeruginosa mutant depleted for the essential lipoprotein, OprL. Genetic and chemical biological studies identified that BRD1401 acts by targeting the OM β-barrel protein OprH to disrupt its interaction with LPS and increase membrane fluidity. Studies with BRD1401 also revealed an interaction between OprL and OprH, directly linking the OM with peptidoglycan. Thus, a whole-cell, multiplexed screen can identify species-specific chemical probes to reveal novel pathogen biology.
Collapse
|
17
|
Liu T, Xu H, Amanullah S, Du Z, Hu X, Che Y, Zhang L, Jiang Z, Zhu L, Wang D. Deciphering the Enhancing Impact of Exogenous Brassinolide on Physiological Indices of Melon Plants under Downy Mildew-Induced Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:779. [PMID: 38592782 PMCID: PMC10974236 DOI: 10.3390/plants13060779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Melon (Cucumis melo L.) is a valuable horticultural crop of the Cucurbitaceae family. Downy mildew (DM), caused by Pseudoperonospora cubensis, is a significant inhibitor of the production and quality of melon. Brassinolide (BR) is a new type of phytohormone widely used in cultivation for its broad spectrum of resistance- and defense-mechanism-improving activity. In this study, we applied various exogenous treatments (0.5, 1.0, and 2.0 mg·L-1) of BR at four distinct time periods (6 h, 12 h, 24 h, and 48 h) and explored the impact of BR on physiological indices and the genetic regulation of melon seedling leaves infected by downy-mildew-induced stress. It was mainly observed that a 2.0 mg·L-1 BR concentration effectively promoted the enhanced photosynthetic activity of seedling leaves, and quantitative real-time polymerase chain reaction (qRT-PCR) analysis similarly exhibited an upregulated expression of the predicted regulatory genes of photosystem II (PSII) CmHCF136 (MELO3C023596.2) and CmPsbY (MELO3C010708.2), thus indicating the stability of the PSII reaction center. Furthermore, 2.0 mg·L-1 BR resulted in more photosynthetic pigments (nearly three times more than the chlorophyll contents (264.52%)) as compared to the control and other treatment groups and similarly upregulated the expression trend of the predicted key enzyme genes CmLHCP (MELO3C004214.2) and CmCHLP (MELO3C017176.2) involved in chlorophyll biosynthesis. Meanwhile, the maximum contents of soluble sugars and starch (186.95% and 164.28%) were also maintained, which were similarly triggered by the upregulated expression of the predicted genes CmGlgC (MELO3C006552.2), CmSPS (MELO3C020357.2), and CmPEPC (MELO3C018724.2), thereby maintaining osmotic adjustment and efficiency in eliminating reactive oxygen species. Overall, the exogenous 2.0 mg·L-1 BR exhibited maintained antioxidant activities, plastid membranal stability, and malondialdehyde (MDA) content. The chlorophyll fluorescence parameter values of F0 (42.23%) and Fv/Fm (36.67%) were also noticed to be higher; however, nearly three times higher levels of NPQ (375.86%) and Y (NPQ) (287.10%) were observed at 48 h of treatment as compared to all other group treatments. Increased Rubisco activity was also observed (62.89%), which suggested a significant role for elevated carbon fixation and assimilation and the upregulated expression of regulatory genes linked with Rubisco activity and the PSII reaction process. In short, we deduced that the 2.0 mg·L-1 BR application has an enhancing effect on the genetic modulation of physiological indices of melon plants against downy mildew disease stress.
Collapse
Affiliation(s)
- Tai Liu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Huichun Xu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Zhiqiang Du
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Xixi Hu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Ye Che
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Ling Zhang
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Zeyu Jiang
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Lei Zhu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Di Wang
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| |
Collapse
|
18
|
Zuzunaga-Rosas J, Calone R, Mircea DM, Shakya R, Ibáñez-Asensio S, Boscaiu M, Fita A, Moreno-Ramón H, Vicente O. Mitigation of salt stress in lettuce by a biostimulant that protects the root absorption zone and improves biochemical responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1341714. [PMID: 38434431 PMCID: PMC10906269 DOI: 10.3389/fpls.2024.1341714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Horticultural crops constantly face abiotic stress factors such as salinity, which have intensified in recent years due to accelerated climate change, significantly affecting their yields and profitability. Under these conditions, it has become necessary to implement effective and sustainable solutions to guarantee agricultural productivity and food security. The influence of BALOX®, a biostimulant of plant origin, was tested on the responses to salinity of Lactuca sativa L. var. longifolia plants exposed to salt concentrations up to 150 mM NaCl, evaluating different biometric and biochemical properties after 25 days of treatment. Control plants were cultivated under the same conditions but without the biostimulant treatment. An in situ analysis of root characteristics using a non-destructive, real-time method was also performed. The salt stress treatments inhibited plant growth, reduced chlorophyll and carotenoid contents, and increased the concentrations of Na+ and Cl- in roots and leaves while reducing those of Ca2+. BALOX® application had a positive effect because it stimulated plant growth and the level of Ca2+ and photosynthetic pigments. In addition, it reduced the content of Na+ and Cl- in the presence and the absence of salt. The biostimulant also reduced the salt-induced accumulation of stress biomarkers, such as proline, malondialdehyde (MDA), and hydrogen peroxide (H2O2). Therefore, BALOX® appears to significantly reduce osmotic, ionic and oxidative stress levels in salt-treated plants. Furthermore, the analysis of the salt treatments' and the biostimulant's direct effects on roots indicated that BALOX®'s primary mechanism of action probably involves improving plant nutrition, even under severe salt stress conditions, by protecting and stimulating the root absorption zone.
Collapse
Affiliation(s)
- Javier Zuzunaga-Rosas
- Department of Plant Production, Universitat Politècnica de València, Valencia, Spain
- Innovak Global S. A. de C. V., La Concordia, Chihuahua, Mexico
| | - Roberta Calone
- Council for Agricultural Research and Economics (CREA), Research Centre for Agriculture and Environment, Bologna, Rome, Italy
| | - Diana M. Mircea
- Department of Forestry, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
| | - Rashmi Shakya
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
- Department of Botany, Miranda House, University of Delhi, Delhi, India
| | - Sara Ibáñez-Asensio
- Department of Plant Production, Universitat Politècnica de València, Valencia, Spain
| | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Valencia, Spain
| | - Ana Fita
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
| | - Héctor Moreno-Ramón
- Department of Plant Production, Universitat Politècnica de València, Valencia, Spain
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
19
|
Ghafari H, Hassanpour H, Motafakkerazad R. Post-harvest ultraviolet irradiation induces changes in physical-chemical properties and levels of polycyclic aromatic hydrocarbons and gene expression in mulberry fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1008-1019. [PMID: 37718501 DOI: 10.1002/jsfa.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Earlier studies reported that post-harvest ultraviolet (UV) irradiation could increase the health-promoting compounds in fruit but the effects of UV irradiation on the reduction of the polycyclic aromatic hydrocarbon (PAH) content in mulberries remain less known. Black mulberry fruit were exposed to two UV illumination dosages (3.5 and 7 kJ m-2 ) and were stored for 4, 8, and 12 days. RESULTS Mulberries treated in this way displayed higher antioxidant enzyme activity and phenolic compound content in comparison with a control condition. The transcription factors (TFs) MdoMYB121, MdoMYB155, MdbZIP2, and MdbZIP48 were strongly expressed in two UV illumination dosages (about 45-95% higher than the control). The fluorine (Flu) and naphthalene (Nap) content in treated fruit decreased by 21-85% in comparison with the control condition. CONCLUSION The findings of this study indicate that UV irradiation can be considered as a promising technique to remove some PAHs in black mulberries, to increase their health-promoting potential, and indirectly to improve their aesthetic quality due to the resulting desirable color parameters. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hajar Ghafari
- Department of Horticultural Sciences, Faculty of Agricultural Sciences, Urmia University, Urmia, Iran
| | - Hamid Hassanpour
- Department of Horticultural Sciences, Faculty of Agricultural Sciences, Urmia University, Urmia, Iran
| | | |
Collapse
|
20
|
Nicolas-Espinosa J, Yepes-Molina L, Martinez-Bernal F, Fernandez-Pozurama M, Carvajal M. Deciphering the effect of salinity and boron stress on broccoli plants reveals that membranes phytosterols and PIP aquaporins facilitate stress adaptation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111923. [PMID: 37972760 DOI: 10.1016/j.plantsci.2023.111923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/05/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Abiotic stresses, such as salinity and boron toxicity/deficiency, are prevalent in arid and semi-arid regions where broccoli is largely cultivated. This study aimed to investigate the physiological response of broccoli leaves to these stresses, focusing on parameters such as growth, relative water content, stomatal conductance, and mineral concentration after 15 days of treatment application. The effects of individual and combined stresses of salinity and boron (deficiency and toxicity) were examined. Additionally, the study explored the molecular aspects of PIP aquaporins in relation to their presence in the plasma membrane and their interaction with the lipid environment. The results showed that the combined stress of salinity and boron deficiency resulted in a significant reduction in plant biomass, suggesting a specific adaptation to this stress combination. Changes in stomatal conductance and mineral nutrient levels indicated that the adaptation mechanisms were associated with water and boron concentration in the leaves. The expression patterns of PIP aquaporins varied among the different stress treatments, either individually or in combination. Furthermore, the presence of aquaporins in the plasma membrane and microsomal fraction highlighted the potential regulatory roles of trafficking along with the membrane composition, particularly the concentration of phytosterols. The results underscore the importance of water transport by aquaporins and their interaction with the sterol composition in the membranes, in facilitating salinity-boron stress adaptation mechanisms.
Collapse
Affiliation(s)
- Juan Nicolas-Espinosa
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain
| | - Lucia Yepes-Molina
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain
| | - Fuensanta Martinez-Bernal
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain
| | - Miriam Fernandez-Pozurama
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain
| | - Micaela Carvajal
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain.
| |
Collapse
|
21
|
Bai Y, Yu H, Chen L, Meng Y, Ma Y, Wang D, Qian Y, Zhang D, Feng X, Zhou Y. Time-Course Transcriptome Analysis of Aquilegia vulgaris Root Reveals the Cell Wall's Roles in Salinity Tolerance. Int J Mol Sci 2023; 24:16450. [PMID: 38003641 PMCID: PMC10671252 DOI: 10.3390/ijms242216450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Salt stress has a considerable impact on the development and growth of plants. The soil is currently affected by salinisation, a problem that is becoming worse every year. This means that a significant amount of salt-tolerant plant material needs to be added. Aquilegia vulgaris has aesthetically pleasing leaves, unique flowers, and a remarkable tolerance to salt. In this study, RNA-seq technology was used to sequence and analyse the transcriptome of the root of Aquilegia vulgaris seedlings subjected to 200 mM NaCl treatment for 12, 24, and 48 h. In total, 12 Aquilegia vulgaris seedling root transcriptome libraries were constructed. At the three time points of salt treatment compared with the control, 3888, 1907, and 1479 differentially expressed genes (DEGs) were identified, respectively. Various families of transcription factors (TFs), mainly AP2, MYB, and bHLH, were identified and might be linked to salt tolerance. Gene Ontology (GO) analysis of DEGs revealed that the structure and composition of the cell wall and cytoskeleton may be crucial in the response to salt stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the DEGs showed a significant enrichment of the pentose and glucuronate interconversion pathway, which is associated with cell wall metabolism after 24 and 48 h of salt treatment. Based on GO and KEGG analyses of DEGs, the pentose and glucuronate interconversion pathway was selected for further investigation. AP2, MYB, and bHLH were found to be correlated with the functional genes in this pathway based on a correlation network. This study provides the groundwork for understanding the key pathways and gene networks in response to salt stress, thereby providing a theoretical basis for improving salt tolerance in Aquilegia vulgaris.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yunwei Zhou
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (Y.B.); (H.Y.); (L.C.); (Y.M.); (Y.M.); (D.W.); (Y.Q.); (D.Z.); (X.F.)
| |
Collapse
|
22
|
Seleiman MF, Ahmad A, Tola E, Alhammad BA, Almutairi KF, Madugundu R, Al-Gaadi KA. Exogenous Application of 24-Epibrassinolide Confers Saline Stress and Improves Photosynthetic Capacity, Antioxidant Defense, Mineral Uptake, and Yield in Maize. PLANTS (BASEL, SWITZERLAND) 2023; 12:3559. [PMID: 37896022 PMCID: PMC10609825 DOI: 10.3390/plants12203559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Salinity is one of the major environmental stresses threatening crop production, the natural ecosystem, global food security, and the socioeconomic health of humans. Thus, the development of eco-friendly strategies to mitigate saline stress and/or enhance crop tolerance is an important issue worldwide. Therefore, this study was conducted during the summer of 2022 to investigate the potential of 24-Epibrassinolide (EBL) for mitigating saline stress and improving photosynthetic capacity, antioxidant defense systems, mineral uptake, and yield in maize (Zea mays L.) grown under a controlled hydroponic system. Three saline stress levels-S1 (control/no added NaCl), S2 (60 mM NaCl), and S3 (120 mM NaCl)-were continuously applied with nutrient solution, whereas exogenous EBL (i.e., control, 0.1 µM and 0.2 µM) was applied as exogenous application three times (i.e., 40, 55, 70 days after sowing). The experiment was designed as a split-plot in a randomized complete block design (RCBD) in which saline stress was the main factor and EBL treatment was the sub-factor. Results showed that saline stress significantly affected plant growth, physiological performance, biochemistry, antioxidant activity, and yield attributes. However, the exogenous application of EBL at 0.2 µM significantly mitigated the salt stress and thus improved plant performance even under 120 mM NaCl saline stress. For instance, as compared to untreated plants (control), 0.2 µM EBL application improved plant height (+18%), biomass (+19%), SPAD (+32%), Fv/Fm (+28%), rate of photosynthesis (+11%), carboxylation efficiency (+6%), superoxide dismutase (SOD +14%), catalase (CAT +18%), ascorbate peroxidase (APX +20%), K+ (+24%), 100-grain weight (+11%), and grain yield (+47%) of maize grown under salt stress. Additionally, it resulted in a 23% reduction in Na+ accumulation in leaves and a 25% reduction in for Na+/K+ ratio under saline stress as compared to control. Furthermore, the Pearson's correlation and principal component analysis (PCA) highlighted the significance of exogenous EBL as saline stress mitigator in maize. Overall, our results indicated the protective effects of EBL application to the alleviation of saline stress in crop plants. However, further exploration of its mechanism of action and crop-specific response is suggested prior to commercial use in agriculture.
Collapse
Affiliation(s)
- Mahmoud F. Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt
| | - Awais Ahmad
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - ElKamil Tola
- Precision Agriculture Research Chair, Deanship of Scientific Research, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bushra Ahmed Alhammad
- Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al Kharj Box 292, Riyadh 11942, Saudi Arabia
| | - Khalid F. Almutairi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Rangaswamy Madugundu
- Precision Agriculture Research Chair, Deanship of Scientific Research, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid A. Al-Gaadi
- Precision Agriculture Research Chair, Deanship of Scientific Research, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Sänger CS, Cernakova M, Wietecha MS, Garau Paganella L, Labouesse C, Dudaryeva OY, Roubaty C, Stumpe M, Mazza E, Tibbitt MW, Dengjel J, Werner S. Serine protease 35 regulates the fibroblast matrisome in response to hyperosmotic stress. SCIENCE ADVANCES 2023; 9:eadh9219. [PMID: 37647410 PMCID: PMC10468140 DOI: 10.1126/sciadv.adh9219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Hyperosmotic stress occurs in several diseases, but its long-term effects are largely unknown. We used sorbitol-treated human fibroblasts in 3D culture to study the consequences of hyperosmotic stress in the skin. Sorbitol regulated many genes, which help cells cope with the stress condition. The most robustly regulated gene encodes serine protease 35 (PRSS35). Its regulation by hyperosmotic stress was dependent on the kinases p38 and JNK and the transcription factors NFAT5 and ATF2. We identified different collagens and collagen-associated proteins as putative PRSS35 binding partners. This is functionally important because PRSS35 affected the extracellular matrix proteome, which limited cell proliferation. The in vivo relevance of these findings is reflected by the coexpression of PRSS35 and its binding partners in human skin wounds, where hyperosmotic stress occurs as a consequence of excessive water loss. These results identify PRSS35 as a key regulator of the matrisome under hyperosmotic stress conditions.
Collapse
Affiliation(s)
- Catharina S. Sänger
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Martina Cernakova
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Mateusz S. Wietecha
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Lorenza Garau Paganella
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
- Institute for Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Céline Labouesse
- Institute for Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Oksana Y. Dudaryeva
- Institute for Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Carole Roubaty
- Faculty of Science and Medicine, Department of Biology, University of Fribourg, Ch. du Musée 10, 1700 Fribourg, Switzerland
| | - Michael Stumpe
- Faculty of Science and Medicine, Department of Biology, University of Fribourg, Ch. du Musée 10, 1700 Fribourg, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Mark W. Tibbitt
- Institute for Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Jörn Dengjel
- Faculty of Science and Medicine, Department of Biology, University of Fribourg, Ch. du Musée 10, 1700 Fribourg, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| |
Collapse
|
24
|
Zuo ZF, Li Y, Mi XF, Li YL, Zhai CY, Yang GF, Wang ZY, Zhang K. Physiological and lipidomic response of exogenous choline chloride alleviating salt stress injury in Kentucky bluegrass ( Poa pratensis). FRONTIERS IN PLANT SCIENCE 2023; 14:1269286. [PMID: 37719216 PMCID: PMC10501137 DOI: 10.3389/fpls.2023.1269286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023]
Abstract
Introduction Choline participates in plant stress tolerance through glycine betaine (GB) and phospholipid metabolism. As a salt-sensitive turfgrass species, Kentucky bluegrass (Poa pratensis) is the main turfgrass species in cool-season areas. Methods To improve salinity tolerance and investigate the effects of choline on the physiological and lipidomic responses of turfgrass plants under salinity stress conditions, exogenous choline chloride was applied to Kentucky bluegrass exposed to salt stress. Results From physiological indicators, exogenous choline chloride could alleviate salt stress injury in Kentucky bluegrass. Lipid analysis showed that exogenous choline chloride under salt-stress conditions remodeled the content of phospholipids, glycolipids, and lysophospholipids. Monogalactosyl diacylglycerol, digalactosyl diacylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and lysophosphatidylcholine content were increased and phosphatidic acid content were decreased in plants after exogenous choline chloride under salt treatment. Plant leaf choline content increased, but GB was not detected in exogenous choline chloride treatment plants under nonstress or salt-stress conditions. Discussion GB synthesis pathway related genes showed no clear change to choline chloride treatment, whereas cytidyldiphosphate-choline (CDP-choline) pathway genes were upregulated by choline chloride treatment. These results reveal that lipid remodeling through choline metabolism plays an important role in the salt tolerance mechanism of Kentucky bluegrass. Furthermore, the lipids selected in this study could serve as biomarkers for further improvement of salt-sensitive grass species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kun Zhang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
25
|
Liu T, Amanullah S, Xu H, Gao P, Du Z, Hu X, Han M, Che Y, Zhang L, Qi G, Wang D. RNA-Seq Identified Putative Genes Conferring Photosynthesis and Root Development of Melon under Salt Stress. Genes (Basel) 2023; 14:1728. [PMID: 37761868 PMCID: PMC10530605 DOI: 10.3390/genes14091728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Melon is an important fruit crop of the Cucurbitaceae family that is being cultivated over a large area in China. Unfortunately, salt stress has crucial effects on crop plants and damages photosynthesis, membranal lipid components, and hormonal metabolism, which leads to metabolic imbalance and retarded growth. Herein, we performed RNA-seq analysis and a physiological parameter evaluation to assess the salt-induced stress impact on photosynthesis and root development activity in melon. The endogenous quantification analysis showed that the significant oxidative damage in the membranal system resulted in an increased ratio of non-bilayer/bilayer lipid (MGDG/DGDG), suggesting severe irregular stability in the photosynthetic membrane. Meanwhile, root development was slowed down by a superoxidized membrane system, and downregulated genes showed significant contributions to cell wall biosynthesis and IAA metabolism. The comparative transcriptomic analysis also exhibited that major DEGs were more common in the intrinsic membrane component, photosynthesis, and metabolism. These are all processes that are usually involved in negative responses. Further, the WGCN analysis revealed the involvement of two main network modules: the thylakoid membrane and proteins related to photosystem II. The qRT-PCR analysis exhibited that two key genes (MELO3C006053.2 and MELO3C023596.2) had significant variations in expression profiling at different time intervals of salt stress treatments (0, 6, 12, 24, and 48 h), which were also consistent with the RNA-seq results, denoting the significant accuracy of molecular dataset analysis. In summary, we performed an extensive molecular and metabolic investigation to check the salt-stress-induced physiological changes in melon and proposed that the PSII reaction centre may likely be the primary stress target.
Collapse
Affiliation(s)
- Tai Liu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (M.H.); (Y.C.); (L.Z.); (G.Q.)
| | - Sikandar Amanullah
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (S.A.); (P.G.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Huichun Xu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (M.H.); (Y.C.); (L.Z.); (G.Q.)
| | - Peng Gao
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (S.A.); (P.G.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zhiqiang Du
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (M.H.); (Y.C.); (L.Z.); (G.Q.)
| | - Xixi Hu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (M.H.); (Y.C.); (L.Z.); (G.Q.)
| | - Mo Han
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (M.H.); (Y.C.); (L.Z.); (G.Q.)
| | - Ye Che
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (M.H.); (Y.C.); (L.Z.); (G.Q.)
| | - Ling Zhang
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (M.H.); (Y.C.); (L.Z.); (G.Q.)
| | - Guochao Qi
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (M.H.); (Y.C.); (L.Z.); (G.Q.)
| | - Di Wang
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (M.H.); (Y.C.); (L.Z.); (G.Q.)
| |
Collapse
|
26
|
Liu Y, Wu G, Ke X, Zheng Z, Zheng Y. Loss-of-Function of ATS1 Enhances Arabidopsis Salt Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:2646. [PMID: 37514260 PMCID: PMC10385056 DOI: 10.3390/plants12142646] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Despite the importance of lipid metabolism in various biological processes, little is known about the functionality of ATS1, a plastid glycerol-3-phosphate acyltransferase catalyzing the initial step of the prokaryotic glycerolipids biosynthetic pathway, in plant response to salt stress. In this study, both the loss-of-function mutants and the overexpression lines of ATS1 were analyzed for salt tolerance properties. The results showed that ATS1 overexpression lines had lower seed germination, shoot biomass, chlorophyll content, the proportion of relatively normal pod, and higher root/shoot ratio and anthocyanidin content compared with the wild type. Physiological and biochemical analysis revealed that ats1 mutants had more unsaturated fatty acids to stabilize the plasma membrane under salt damage. Additionally, less induction of three main antioxidant enzymes activity and lower MDA content in ats1 mutants indicated that mutation of the ATS1 gene could reduce the damage extent. Furthermore, the ats1 mutants maintained the K+/Na+ homeostasis by upregulating HAK5 expression to increase K+ absorption and down-regulating HKT1 expression to prevent Na+ uptake. This study suggested that the ATS1 gene negatively affects salt resistance in Arabidopsis.
Collapse
Affiliation(s)
- Yakun Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Guifen Wu
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xingxing Ke
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhifu Zheng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yueping Zheng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
27
|
Pan L, Hu X, Liao L, Xu T, Sun Q, Tang M, Chen Z, Wang Z. Lipid metabolism and antioxidant system contribute to salinity tolerance in halophytic grass seashore paspalum in a tissue-specific manner. BMC PLANT BIOLOGY 2023; 23:337. [PMID: 37353755 DOI: 10.1186/s12870-023-04358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023]
Abstract
Soil salinization is a growing issue that limits agriculture globally. Understanding the mechanism underlying salt tolerance in halophytic grasses can provide new insights into engineering plant salinity tolerance in glycophytic plants. Seashore paspalum (Paspalum vaginatum Sw.) is a halophytic turfgrass and genomic model system for salt tolerance research in cereals and other grasses. However, the salt tolerance mechanism of this grass largely unknown. To explore the correlation between Na+ accumulation and salt tolerance in different tissues, we utilized two P. vaginatum accessions that exhibit contrasting tolerance to salinity. To accomplish this, we employed various analytical techniques including ICP-MS-based ion analysis, lipidomic profiling analysis, enzyme assays, and integrated transcriptomic and metabolomic analysis. Under high salinity, salt-tolerant P. vaginatum plants exhibited better growth and Na+ uptake compared to salt-sensitive plants. Salt-tolerant plants accumulated heightened Na+ accumulation in their roots, leading to increased production of root-sourced H2O2, which in turn activated the antioxidant systems. In salt-tolerant plants, metabolome profiling revealed tissue-specific metabolic changes, with increased amino acids, phenolic acids, and polyols in roots, and increased amino acids, flavonoids, and alkaloids in leaves. High salinity induced lipidome adaptation in roots, enhancing lipid metabolism in salt-tolerant plants. Moreover, through integrated analysis, the importance of amino acid metabolism in conferring salt tolerance was highlighted. This study significantly enhances our current understanding of salt-tolerant mechanisms in halophyte grass, thereby offering valuable insights for breeding and genetically engineering salt tolerance in glycophytic plants.
Collapse
Affiliation(s)
- Ling Pan
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, 58 Renmin Avenue, , Haikou, 570228, Hainan, China
- College of Animal Science and Technology, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, Jiangsu, China
| | - Xu Hu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, 58 Renmin Avenue, , Haikou, 570228, Hainan, China
- College of Tropical Crops, Hainan University, 58 Renmin Avenue, Haikou, 570228, Hainan, China
| | - Li Liao
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, 58 Renmin Avenue, , Haikou, 570228, Hainan, China
- College of Tropical Crops, Hainan University, 58 Renmin Avenue, Haikou, 570228, Hainan, China
| | - Tingchen Xu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, 58 Renmin Avenue, , Haikou, 570228, Hainan, China
| | - Quanquan Sun
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, 58 Renmin Avenue, , Haikou, 570228, Hainan, China
- College of Tropical Crops, Hainan University, 58 Renmin Avenue, Haikou, 570228, Hainan, China
| | - Minqiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, 58 Renmin Avenue, , Haikou, 570228, Hainan, China
| | - Zhenbang Chen
- Department of Crop and Soil Sciences, University of Georgia, 1109 Experiment Street, Georgia Station, Griffin, GA, 30223, USA
| | - Zhiyong Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, 58 Renmin Avenue, , Haikou, 570228, Hainan, China.
| |
Collapse
|
28
|
Wu Y, Wang X, Zhang L, Zheng Y, Liu X, Zhang Y. The critical role of biochar to mitigate the adverse impacts of drought and salinity stress in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1163451. [PMID: 37223815 PMCID: PMC10200947 DOI: 10.3389/fpls.2023.1163451] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/23/2023] [Indexed: 05/25/2023]
Abstract
Drought stress (DS) is a potential abiotic stress that is substantially reducing crop productivity across the globe. Likewise, salinity stress (SS) is another serious abiotic stress that is also a major threat to global crop productivity. The rapid climate change increased the intensity of both stresses which pose a serious threat to global food security; therefore, it is urgently needed to tackle both stresses to ensure better crop production. Globally, different measures are being used to improve crop productivity under stress conditions. Among these measures, biochar (BC) has been widely used to improve soil health and promote crop yield under stress conditions. The application of BC improves soil organic matter, soil structure, soil aggregate stability, water and nutrient holding capacity, and the activity of both beneficial microbes and fungi, which leads to an appreciable increase in tolerance to both damaging and abiotic stresses. BC biochar protects membrane stability, improves water uptake, maintains nutrient homeostasis, and reduces reactive oxygen species production (ROS) through enhanced antioxidant activities, thereby substantially improving tolerance to both stresses. Moreover, BC-mediated improvements in soil properties also substantially improve photosynthetic activity, chlorophyll synthesis, gene expression, the activity of stress-responsive proteins, and maintain the osmolytes and hormonal balance, which in turn improve tolerance against osmotic and ionic stresses. In conclusion, BC could be a promising amendment to bring tolerance against both drought and salinity stresses. Therefore, in the present review, we have discussed various mechanisms through which BC improves drought and salt tolerance. This review will help readers to learn more about the role of biochar in causing drought and salinity stress in plants, and it will also provide new suggestions on how this current knowledge about biochar can be used to develop drought and salinity tolerance.
Collapse
Affiliation(s)
- Yanfang Wu
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Xiaodong Wang
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Long Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yongjie Zheng
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Xinliang Liu
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Yueting Zhang
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| |
Collapse
|
29
|
Dutta D. Interplay between membrane proteins and membrane protein-lipid pertaining to plant salinity stress. Cell Biochem Funct 2023. [PMID: 37158622 DOI: 10.1002/cbf.3798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
High salinity in agricultural lands is one of the predominant issues limiting agricultural yields. Plants have developed several mechanisms to withstand salinity stress, but the mechanisms are not effective enough for most crops to prevent and persist the salinity stress. Plant salt tolerance pathways involve membrane proteins that have a crucial role in sensing and mitigating salinity stress. Due to a strategic location interfacing two distinct cellular environments, membrane proteins can be considered checkpoints to the salt tolerance pathways in plants. Related membrane proteins functions include ion homeostasis, osmosensing or ion sensing, signal transduction, redox homeostasis, and small molecule transport. Therefore, modulating plant membrane proteins' function, expression, and distribution can improve plant salt tolerance. This review discusses the membrane protein-protein and protein-lipid interactions related to plant salinity stress. It will also highlight the finding of membrane protein-lipid interactions from the context of recent structural evidence. Finally, the importance of membrane protein-protein and protein-lipid interaction is discussed, and a future perspective on studying the membrane protein-protein and protein-lipid interactions to develop strategies for improving salinity tolerance is proposed.
Collapse
Affiliation(s)
- Debajyoti Dutta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
30
|
Liang Y, Huang Y, Liu C, Chen K, Li M. Functions and interaction of plant lipid signalling under abiotic stresses. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:361-378. [PMID: 36719102 DOI: 10.1111/plb.13507] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Lipids are the primary form of energy storage and a major component of plasma membranes, which form the interface between the cell and the extracellular environment. Several lipids - including phosphoinositide, phosphatidic acid, sphingolipids, lysophospholipids, oxylipins, and free fatty acids - also serve as substrates for the generation of signalling molecules. Abiotic stresses, such as drought and temperature stress, are known to affect plant growth. In addition, abiotic stresses can activate certain lipid-dependent signalling pathways that control the expression of stress-responsive genes and contribute to plant stress adaptation. Many studies have focused either on the enzymatic production and metabolism of lipids, or on the mechanisms of abiotic stress response. However, there is little information regarding the roles of plant lipids in plant responses to abiotic stress. In this review, we describe the metabolism of plant lipids and discuss their involvement in plant responses to abiotic stress. As such, this review provides crucial background for further research on the interactions between plant lipids and abiotic stress.
Collapse
Affiliation(s)
- Y Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, College of Life Science, Guilin, China
| | - Y Huang
- Guilin University of Electronic Technology, School of Mechanical and Electrical Engineering, Guilin, China
| | - C Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, College of Life Science, Guilin, China
| | - K Chen
- Department of Biotechnology, Huazhong University of Science and Technology, College of Life Science and Technology, Wuhan, China
| | - M Li
- Department of Biotechnology, Huazhong University of Science and Technology, College of Life Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Zhang Q, Ackah M, Wang M, Amoako FK, Shi Y, Wang L, Dari L, Li J, Jin X, Jiang Z, Zhao W. The impact of boron nutrient supply in mulberry (Morus alba) response to metabolomics, enzyme activities, and physiological parameters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107649. [PMID: 37267755 DOI: 10.1016/j.plaphy.2023.107649] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 06/04/2023]
Abstract
Boron (B) is essential for normal and healthy plant growth. Therefore, Boron stress is a common abiotic stress that limits plant growth and productivity. However, how mulberry copes with boron stress remains unclear. In this study, seedlings of the Morus alba cultivar, Yu-711, were treated with five different concentrations of boric acid (H3BO3), including deficient (0 and 0.02 mM), sufficient (0.1 mM) and toxic (0.5 and 1 mM) levels. Physiological parameters, enzymatic activities and non-targeted liquid chromatography-mass spectrometry (LC-MS) technique were employed to evaluate the effects of boron stress on the net photosynthetic rate (Pn), chlorophyll content, stomatal conductance (Gs), transpiration rate (Tr), intercellular CO2 concentration (Ci) and metabolome signatures. Physiological analysis revealed that Boron deficiency and toxicity induced a decline in Pn, Ci, Gs, Tr, and chlorophyll content. Also, enzymatic activities, including catalase (CAT) and superoxide dismutase (SOD), decreased, while POD activity increased in response to Boron stress. Osmotic substances such as soluble sugars, soluble proteins, and proline (PRO) presented elevated levels under all Boron concentrations. Metabolome analysis indicated that differential metabolites, including amino acids, secondary metabolites, carbohydrates, and lipids, played a key role in Yu-711's response to Boron stress. These metabolites were mainly involved in amino acid metabolism, biosynthesis of other secondary metabolites, lipid metabolism, metabolism of cofactors and vitamins, and metabolism of other amino acids pathways. Our findings reveal the various metabolites pathways in mulberry response to boron nutrient supply and may serve as fundamental knowledge in breeding resistance mulberry plants, so that it can cope with climate changes.
Collapse
Affiliation(s)
- Qiaonan Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China.
| | - Mingzhu Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China
| | - Frank Kwarteng Amoako
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, Kiel, 24118, Germany
| | - Yisu Shi
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China
| | - Lei Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China
| | - Linda Dari
- School of Engineering, Department of Agricultural Engineering, University for Development Studies, Nyankpala, Tamale, NL-1142-5954, Ghana
| | - Jianbin Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China
| | - Xin Jin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China
| | - Zijie Jiang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China.
| |
Collapse
|
32
|
Emerging Roles of Salicylic Acid in Plant Saline Stress Tolerance. Int J Mol Sci 2023; 24:ijms24043388. [PMID: 36834798 PMCID: PMC9961897 DOI: 10.3390/ijms24043388] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
One of the most important phytohormones is salicylic acid (SA), which is essential for the regulation of plant growth, development, ripening, and defense responses. The role of SA in plant-pathogen interactions has attracted a lot of attention. Aside from defense responses, SA is also important in responding to abiotic stimuli. It has been proposed to have great potential for improving the stress resistance of major agricultural crops. On the other hand, SA utilization is dependent on the dosage of the applied SA, the technique of application, and the status of the plants (e.g., developmental stage and acclimation). Here, we reviewed the impact of SA on saline stress responses and the associated molecular pathways, as well as recent studies toward understanding the hubs and crosstalk between SA-induced tolerances to biotic and saline stress. We propose that elucidating the mechanism of the SA-specific response to various stresses, as well as SA-induced rhizosphere-specific microbiome modeling, may provide more insights and support in coping with plant saline stress.
Collapse
|
33
|
Zhang L, Freschi G, Rouphael Y, De Pascale S, Lucini L. The differential modulation of secondary metabolism induced by a protein hydrolysate and a seaweed extract in tomato plants under salinity. FRONTIERS IN PLANT SCIENCE 2023; 13:1072782. [PMID: 36726679 PMCID: PMC9884811 DOI: 10.3389/fpls.2022.1072782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Climate change and abiotic stress challenges in crops are threatening world food production. Among others, salinity affects the agricultural sector by significantly impacting yield losses. Plant biostimulants have received increasing attention in the agricultural industry due to their ability to improve health and resilience in crops. The main driving force of these products lies in their ability to modulate plant metabolic processes involved in the stress response. This study's purpose was to investigate the effect of two biostimulant products, including a protein hydrolysate (Clever HX®) and a seaweed extract with high amino acids content (Ascovip®), and their combination, on the metabolomics profile of tomato crops grown under salt stress (150 mM NaCl). Several stress indicators (leaf relative water content, membrane stability index, and photosynthesis activity) and leaf mineral composition after salinity stress exposure were assessed to evaluate stress mitigation, together with growth parameters (shoot and root biomasses). After that, an untargeted metabolomics approach was used to investigate the mechanism of action of the biostimulants and their link with the increased resilience to stress. The application of the biostimulants used reduced the detrimental effect of salinity. In saline conditions, protein hydrolysate improved shoot dry weight while seaweed extracts improved root dry weight. Regarding stress indicators, the application of the protein hydrolysate was found to alleviate the membrane damage caused by salinity stress compared to untreated plants. Surprisingly, photosynthetic activity significantly improved after treatment with seaweed extracts, suggesting a close correlation between root development, root water assimilation capacity and photosynthetic activity. Considering the metabolic reprogramming after plant biostimulants application, protein hydrolysates and their combination with seaweed extracts reported a distinctive metabolic profile modulation, mainly in secondary metabolite, lipids and fatty acids, and phytohormones biosynthetic pathways. However, treatment with seaweed extract reported a similar metabolic reprogramming trend compared to salinity stress. Our findings indicate a different mechanism of action modulated by protein hydrolysate and seaweed extract, suggesting stronger activity as a stress mitigator of protein hydrolysate in tomato crops under salinity stress.
Collapse
Affiliation(s)
- Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
34
|
Nokhsorov VV, Senik SV, Sofronova VE, Kotlova ER, Misharev AD, Chirikova NK, Dudareva LV. Role of Lipids of the Evergreen Shrub Ephedra monosperma in Adaptation to Low Temperature in the Cryolithozone. PLANTS (BASEL, SWITZERLAND) 2022; 12:15. [PMID: 36616144 PMCID: PMC9823733 DOI: 10.3390/plants12010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Lipids are the fundamental components of cell membranes and they play a significant role in their integrity and fluidity. The alteration in lipid composition of membranes has been reported to be a major response to abiotic environmental stresses. Seasonal dynamics of membrane lipids in the shoots of Ephedra monosperma J.G. Gmel. ex C.A. Mey. growing in natural conditions of permafrost ecosystems was studied using HPTLC, GC-MS and ESI-MS. An important role of lipid metabolism was established during the autumn-winter period when the shoots of the evergreen shrub were exposed to low positive (3.6 °C), negative (-8.3 °C) and extremely low temperatures (-38.4 °C). Maximum accumulation of phosphatidic acid (PA), the amount of which is times times greater than the sum of phosphatidylcholine and phosphatidylethanolamine (PC + PE) was noted in shoots of E. monosperma in the summer-autumn period. The autumn hardening period (3.6 °C) is accompanied by active biosynthesis and accumulation of membrane lipids, a decrease of saturated 34:1 PCs, 34:1 PEs and 34:1 PAs, and an increase in unsaturated long-chain 38:5 PEs, 38:6 PEs, indicating that the adaptation of E. monosperma occurs not at the level of lipid classes but at the level of molecular species. At a further decrease of average daily air temperature in October (-8.3 °C) a sharp decline of PA level was registered. At an extreme reduction of environmental temperature (-38.4 °C) the content of non-bilayer PE and PA increases, the level of unsaturated fatty acids (FA) rises due to the increase of C18:2(Δ9,12) and C18:3(Δ9,12,15) acids and the decrease of C16:0 acids. It is concluded that changes in lipid metabolism reflect structural and functional reorganization of cell membranes and are an integral component of the complex process of plant hardening to low temperatures, which contributes to the survival of E. monosperma monocotyledonous plants in the extreme conditions of the Yakutia cryolithozone.
Collapse
Affiliation(s)
- Vasiliy V. Nokhsorov
- Institute for Biological Problems of Cryolithozone, Siberian Branch of Russian Academy of Sciences, 41 Lenina Av., 677000 Yakutsk, Russia
| | - Svetlana V. Senik
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov str., 197376 St. Petersburg, Russia
| | - Valentina E. Sofronova
- Institute for Biological Problems of Cryolithozone, Siberian Branch of Russian Academy of Sciences, 41 Lenina Av., 677000 Yakutsk, Russia
| | - Ekaterina R. Kotlova
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov str., 197376 St. Petersburg, Russia
| | - Alexander D. Misharev
- Chemical Analysis and Materials Research Centre, Saint-Petersburg State University, 198504 St. Petersburg, Russia
| | - Nadezhda K. Chirikova
- Institute of Natural Science, North-Eastern Federal University, 58 Belinsky str., 677027 Yakutsk, Russia
| | - Lyubov V. Dudareva
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences, 132 Lermontova str., 664033 Irkutsk, Russia
| |
Collapse
|
35
|
Sokolov SS, Popova MM, Pohl P, Horner A, Akimov SA, Kireeva NA, Knorre DA, Batishchev OV, Severin FF. Structural Role of Plasma Membrane Sterols in Osmotic Stress Tolerance of Yeast Saccharomyces cerevisiae. MEMBRANES 2022; 12:1278. [PMID: 36557185 PMCID: PMC9781751 DOI: 10.3390/membranes12121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Yeast S. cerevisiae has been shown to suppress a sterol biosynthesis as a response to hyperosmotic stress. In the case of sodium stress, the failure to suppress biosynthesis leads to an increase in cytosolic sodium. The major yeast sterol, ergosterol, is known to regulate functioning of plasma membrane proteins. Therefore, it has been suggested that the suppression of its biosynthesis is needed to adjust the activity of the plasma membrane sodium pumps and channels. However, as the sterol concentration is in the range of thirty to forty percent of total plasma membrane lipids, it is believed that its primary biological role is not regulatory but structural. Here we studied how lowering the sterol content affects the response of a lipid bilayer to an osmotic stress. In accordance with previous observations, we found that a decrease of the sterol fraction increases a water permeability of the liposomal membranes. Yet, we also found that sterol-free giant unilamellar vesicles reduced their volume during transient application of the hyperosmotic stress to a greater extent than the sterol-rich ones. Furthermore, our data suggest that lowering the sterol content in yeast cells allows the shrinkage to prevent the osmotic pressure-induced plasma membrane rupture. We also found that mutant yeast cells with the elevated level of sterol accumulated propidium iodide when exposed to mild hyperosmotic conditions followed by hypoosmotic stress. It is likely that the decrease in a plasma membrane sterol content stimulates a drop in cell volume under hyperosmotic stress, which is beneficial in the case of a subsequent hypo-osmotic one.
Collapse
Affiliation(s)
- Svyatoslav S. Sokolov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskie Gory, 119991 Moscow, Russia
| | - Marina M. Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiyprospekt, 119071 Moscow, Russia
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiyprospekt, 119071 Moscow, Russia
| | - Natalia A. Kireeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskie Gory, 119991 Moscow, Russia
| | - Dmitry A. Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskie Gory, 119991 Moscow, Russia
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiyprospekt, 119071 Moscow, Russia
| | - Fedor F. Severin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
36
|
Liu Y, Bao Z, Lin Z, Xue Q. Transcriptomic identification of key genes in Pacific oysters Crassostrea gigas responding to major abiotic and biotic stressors. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1027-1039. [PMID: 36372203 DOI: 10.1016/j.fsi.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/09/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Oysters are commercially important intertidal filter-feeding species. Mass mortality events of oysters often occur due to environmental stresses, such as exposure to fluctuating temperatures, salinity, and air, as well as to metal pollution and pathogen infection. Here, RNA-seq data were used to identify shared and specific responsive genes by differential gene expression analysis and weighted gene co-expression network analysis. A total of 18 up-regulated and 10 down-regulated shared responsive genes were identified corresponding to five different stressors. Total 27 stressor-specific genes for temperature, 11 for salinity, 80 for air exposure, 51 for metal pollution, and 636 for Vibrio mediterranei pathogen stress were identified in oysters. Elongin-β was identified as a crucial gene for thermal stress response. Some HSP70s were determined to be shared responsive genes while others were specific to thermal tolerance. The proteins encoded by these stress-related genes should be further investigated to characterize their physiological functions. In addition, the uncharacterized proteins and ncRNAs that were identified may be involved in species-specific stress-response and regulatory mechanisms. This study identified specific genes related to stressors relevant to oyster cultivation. These findings provide useful information for new selective breeding strategies using a data driven method.
Collapse
Affiliation(s)
- Youli Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, 315604, China; Zhejiang Key Laboratory of Aquatic Germplasm Resource, Zhejiang Wanli University, Ningbo, 315100, China; College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China
| | - Zhenmin Bao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China
| | - Zhihua Lin
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, 315604, China; Zhejiang Key Laboratory of Aquatic Germplasm Resource, Zhejiang Wanli University, Ningbo, 315100, China.
| | - Qinggang Xue
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, 315604, China; Zhejiang Key Laboratory of Aquatic Germplasm Resource, Zhejiang Wanli University, Ningbo, 315100, China.
| |
Collapse
|
37
|
Comprehensive Analysis of Transcriptome and Metabolome Elucidates the Molecular Regulatory Mechanism of Salt Resistance in Roots of Achnatherum inebrians Mediated by Epichloë gansuensis. J Fungi (Basel) 2022; 8:jof8101092. [PMID: 36294657 PMCID: PMC9605608 DOI: 10.3390/jof8101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/15/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Salinization of soil is a major environmental risk factor to plant functions, leading to a reduction of productivity of crops and forage. Epichloë gansuensis, seed-borne endophytic fungi, establishes a mutualistic symbiotic relationship with Achnatherum inebrians and confers salt tolerance in the host plants. In this study, analysis of transcriptome and metabolome was used to explore the potential molecular mechanism underlying the salt-adaptation of A. inebrians roots mediated by E. gansuensis. We found that E. gansuensis played an important role in the gene expression of the host’s roots and regulated multiple pathways involved in amino acid metabolism, carbohydrate metabolism, TCA cycle, secondary metabolism, and lipid metabolism in the roots of A. inebrians. Importantly, E. gansuensis significantly induced the biological processes, including exocytosis, glycolytic process, fructose metabolic process, and potassium ion transport in roots of host plants at transcriptional levels, and altered the pathways, including inositol phosphate metabolism, galactose metabolism, starch, and sucrose metabolism at metabolite levels under NaCl stress. These findings provided insight into the molecular mechanism of salt resistance in roots of A. inebrians mediated by E. gansuensis and could drive progress in the cultivation of new salt-resistance breeds with endophytes.
Collapse
|
38
|
Sperotto RA, Hrmova M, Graether SP, Timmers LFSM. Editorial: Structural bioinformatics and biophysical approaches for understanding the plant responses to biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1012584. [PMID: 36161033 PMCID: PMC9507305 DOI: 10.3389/fpls.2022.1012584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Raul A. Sperotto
- Graduate Program in Biotechnology, University of Taquari Valley – Univates, Lajeado, Brazil
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - Maria Hrmova
- Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, SA, Australia
- School of Life Science, Huaiyin Normal University, Huaian, China
| | - Steffen P. Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Luis Fernando S. M. Timmers
- Graduate Program in Biotechnology, University of Taquari Valley – Univates, Lajeado, Brazil
- Graduate Program in Medical Sciences, University of Taquari Valley – Univates, Lajeado, Brazil
| |
Collapse
|
39
|
Verma L, Bhadouria J, Bhunia RK, Singh S, Panchal P, Bhatia C, Eastmond PJ, Giri J. Monogalactosyl diacylglycerol synthase 3 affects phosphate utilization and acquisition in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5033-5051. [PMID: 35526193 DOI: 10.1093/jxb/erac192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Galactolipids are essential to compensate for the loss of phospholipids by 'membrane lipid remodelling' in plants under phosphorus (P) deficiency conditions. Monogalactosyl diacylglycerol (MGDG) synthases catalyse the synthesis of MGDG which is further converted into digalactosyl diacylglycerol (DGDG), later replacing phospholipids in the extraplastidial membranes. However, the roles of these enzymes are not well explored in rice. In this study, the rice MGDG synthase 3 gene (OsMGD3) was identified and functionally characterized. We showed that the plant phosphate (Pi) status and the transcription factor PHOSPHATE STARVATION RESPONSE 2 (OsPHR2) are involved in the transcriptional regulation of OsMGD3. CRISPR/Cas9 knockout and overexpression lines of OsMGD3 were generated to explore its potential role in rice adaptation to Pi deficiency. Compared with the wild type, OsMGD3 knockout lines displayed a reduced Pi acquisition and utilization while overexpression lines showed an enhancement of the same. Further, OsMGD3 showed a predominant role in roots, altering lateral root growth. Our comprehensive lipidomic analysis revealed a role of OsMGD3 in membrane lipid remodelling, in addition to a role in regulating diacylglycerol and phosphatidic acid contents that affected the expression of Pi transporters. Our study highlights the role of OsMGD3 in affecting both internal P utilization and P acquisition in rice.
Collapse
Affiliation(s)
- Lokesh Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Jyoti Bhadouria
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Rupam Kumar Bhunia
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Plant Science Department, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Shweta Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Poonam Panchal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Chitra Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Peter J Eastmond
- Plant Science Department, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
40
|
Loo EPI, Tajima Y, Yamada K, Kido S, Hirase T, Ariga H, Fujiwara T, Tanaka K, Taji T, Somssich IE, Parker JE, Saijo Y. Recognition of Microbe- and Damage-Associated Molecular Patterns by Leucine-Rich Repeat Pattern Recognition Receptor Kinases Confers Salt Tolerance in Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:554-566. [PMID: 34726476 DOI: 10.1094/mpmi-07-21-0185-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In plants, a first layer of inducible immunity is conferred by pattern recognition receptors (PRRs) that bind microbe- and damage-associated molecular patterns to activate pattern-triggered immunity (PTI). PTI is strengthened or followed by another potent form of immunity when intracellular receptors recognize pathogen effectors, termed effector-triggered immunity. Immunity signaling regulators have been reported to influence abiotic stress responses as well, yet the governing principles and mechanisms remain ambiguous. Here, we report that PRRs of a leucine-rich repeat ectodomain also confer salt tolerance in Arabidopsis thaliana, following recognition of cognate ligands such as bacterial flagellin (flg22 epitope) and elongation factor Tu (elf18 epitope), and the endogenous Pep peptides. Pattern-triggered salt tolerance (PTST) requires authentic PTI signaling components; namely, the PRR-associated kinases BAK1 and BIK1 and the NADPH oxidase RBOHD. Exposure to salt stress induces the release of Pep precursors, pointing to the involvement of the endogenous immunogenic peptides in developing plant tolerance to high salinity. Transcriptome profiling reveals an inventory of PTST target genes, which increase or acquire salt responsiveness following a preexposure to immunogenic patterns. In good accordance, plants challenged with nonpathogenic bacteria also acquired salt tolerance in a manner dependent on PRRs. Our findings provide insight into signaling plasticity underlying biotic or abiotic stress cross-tolerance in plants conferred by PRRs.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Eliza P-I Loo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Yuri Tajima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Kohji Yamada
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829 Germany
| | - Shota Kido
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Taishi Hirase
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Hirotaka Ariga
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Tadashi Fujiwara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Imre E Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829 Germany
| | - Jane E Parker
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829 Germany
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Germany
| | - Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829 Germany
- JST PRESTO, Kawaguchi, 332-0012 Japan
| |
Collapse
|
41
|
Bittencourt CB, Carvalho da Silva TL, Rodrigues Neto JC, Vieira LR, Leão AP, de Aquino Ribeiro JA, Abdelnur PV, de Sousa CAF, Souza MT. Insights from a Multi-Omics Integration (MOI) Study in Oil Palm (Elaeis guineensis Jacq.) Response to Abiotic Stresses: Part One—Salinity. PLANTS 2022; 11:plants11131755. [PMID: 35807707 PMCID: PMC9269341 DOI: 10.3390/plants11131755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
Oil palm (Elaeis guineensis Jacq.) is the number one source of consumed vegetable oil nowadays. It is cultivated in areas of tropical rainforest, where it meets its natural condition of high rainfall throughout the year. The palm oil industry faces criticism due to a series of practices that was considered not environmentally sustainable, and it finds itself under pressure to adopt new and innovative procedures to reverse this negative public perception. Cultivating this oilseed crop outside the rainforest zone is only possible using artificial irrigation. Close to 30% of the world’s irrigated agricultural lands also face problems due to salinity stress. Consequently, the research community must consider drought and salinity together when studying to empower breeding programs in order to develop superior genotypes adapted to those potential new areas for oil palm cultivation. Multi-Omics Integration (MOI) offers a new window of opportunity for the non-trivial challenge of unraveling the mechanisms behind multigenic traits, such as drought and salinity tolerance. The current study carried out a comprehensive, large-scale, single-omics analysis (SOA), and MOI study on the leaves of young oil palm plants submitted to very high salinity stress. Taken together, a total of 1239 proteins were positively regulated, and 1660 were negatively regulated in transcriptomics and proteomics analyses. Meanwhile, the metabolomics analysis revealed 37 metabolites that were upregulated and 92 that were downregulated. After performing SOA, 436 differentially expressed (DE) full-length transcripts, 74 DE proteins, and 19 DE metabolites underwent MOI analysis, revealing several pathways affected by this stress, with at least one DE molecule in all three omics platforms used. The Cysteine and methionine metabolism (map00270) and Glycolysis/Gluconeogenesis (map00010) pathways were the most affected ones, each one with 20 DE molecules.
Collapse
Affiliation(s)
- Cleiton Barroso Bittencourt
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras 37200-000, Brazil; (C.B.B.); (T.L.C.d.S.); (L.R.V.)
| | - Thalliton Luiz Carvalho da Silva
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras 37200-000, Brazil; (C.B.B.); (T.L.C.d.S.); (L.R.V.)
| | | | - Letícia Rios Vieira
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras 37200-000, Brazil; (C.B.B.); (T.L.C.d.S.); (L.R.V.)
| | - André Pereira Leão
- Embrapa Agroenergia, Brasília 70770-901, Brazil; (J.C.R.N.); (A.P.L.); (J.A.d.A.R.); (P.V.A.)
| | | | | | | | - Manoel Teixeira Souza
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras 37200-000, Brazil; (C.B.B.); (T.L.C.d.S.); (L.R.V.)
- Embrapa Agroenergia, Brasília 70770-901, Brazil; (J.C.R.N.); (A.P.L.); (J.A.d.A.R.); (P.V.A.)
- Correspondence: ; Tel.: +55-61-3448-3210
| |
Collapse
|
42
|
Li J, Ma M, Sun Y, Lu P, Shi H, Guo Z, Zhu H. Comparative Physiological and Transcriptome Profiles Uncover Salt Tolerance Mechanisms in Alfalfa. FRONTIERS IN PLANT SCIENCE 2022; 13:931619. [PMID: 35755671 PMCID: PMC9218637 DOI: 10.3389/fpls.2022.931619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Salinity is a major limiting factor that affects crop production. Understanding of the mechanisms of plant salt tolerance is critical for improving crop yield on saline land. Alfalfa (Medicago sativa L.) is the most important forage crop, while its salt tolerance mechanisms are largely unknown. The physiological and transcriptomic responses in two contrasting salt tolerant cultivars to salinity stress were investigated in the present study. "Magnum Salt" showed higher salt tolerance than "Adrenalin," with higher relative germination rate, survival rate, biomass and K+/Na+ ratio after salt treatment. Activities of antioxidant enzymes SOD, CAT and GR, and proline concentrations were upregulated to higher levels in roots and shoots in Magnum Salt than in Adrenalin after salinity stress, except for no difference in GR activity in shoots, and lower levels of O2 ⋅- and H2O2 were accumulated in leaves. It was interesting to find that salinity caused a decrease in total unsaturated fatty acid in Adrenalin other than Magnum Salt, C18:2 was increased significantly after salinity in Magnum Salt, while it was unaltered in Adrenalin. High quality RNA sequencing (RNA-seq) data was obtained from samples of Magnum Salt and Adrenalin at different time points (0, 2, and 26 h). Generally, "phagosome," "TCA cycle" and "oxidative phosphorylation" pathways were inhibited by salinity stress. Upregulated DEGs in Magnum Salt were specifically enriched in "fatty acid metabolism," "MAPK signaling" and "hormone signal transduction" pathways. The DEGs involved in ionic homeostasis, reactive oxygen species (ROS) scavenging and fatty acid metabolism could partially explain the difference in salt tolerance between two cultivars. It is suggested that salt tolerance in alfalfa is associated with regulation of ionic homeostasis, antioxidative enzymes and fatty acid metabolism at both transcriptional and physiological level.
Collapse
|
43
|
Guo Q, Liu L, Rupasinghe TWT, Roessner U, Barkla BJ. Salt stress alters membrane lipid content and lipid biosynthesis pathways in the plasma membrane and tonoplast. PLANT PHYSIOLOGY 2022; 189:805-826. [PMID: 35289902 PMCID: PMC9157097 DOI: 10.1093/plphys/kiac123] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/22/2022] [Indexed: 05/25/2023]
Abstract
Plant cell membranes are the sites of sensing and initiation of rapid responses to changing environmental factors including salinity stress. Understanding the mechanisms involved in membrane remodeling is important for studying salt tolerance in plants. This task remains challenging in complex tissue due to suboptimal subcellular membrane isolation techniques. Here, we capitalized on the use of a surface charge-based separation method, free flow electrophoresis, to isolate the tonoplast (TP) and plasma membrane (PM) from leaf tissue of the halophyte ice plant (Mesembryanthemum crystallinum L.). Results demonstrated a membrane-specific lipidomic remodeling in this plant under salt conditions, including an increased proportion of bilayer forming lipid phosphatidylcholine in the TP and an increase in nonbilayer forming and negatively charged lipids (phosphatidylethanolamine and phosphatidylserine) in the PM. Quantitative proteomics showed salt-induced changes in proteins involved in fatty acid synthesis and desaturation, glycerolipid, and sterol synthesis, as well as proteins involved in lipid signaling, binding, and trafficking. These results reveal an essential plant mechanism for membrane homeostasis wherein lipidome remodeling in response to salt stress contributes to maintaining the physiological function of individual subcellular compartments.
Collapse
Affiliation(s)
- Qi Guo
- Faculty of Science and Engineering, Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - Thusitha W T Rupasinghe
- School of BioSciences, The University of Melbourne, Parkville 3010, Australia
- Sciex, Mulgrave, VIC 3170, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville 3010, Australia
| | - Bronwyn J Barkla
- Faculty of Science and Engineering, Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
44
|
Song C, Zhang Y, Chen R, Zhu F, Wei P, Pan H, Chen C, Dai J. Label-Free Quantitative Proteomics Unravel the Impacts of Salt Stress on Dendrobium huoshanense. FRONTIERS IN PLANT SCIENCE 2022; 13:874579. [PMID: 35646023 PMCID: PMC9134114 DOI: 10.3389/fpls.2022.874579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/27/2022] [Indexed: 05/12/2023]
Abstract
Salt stress is a constraint on crop growth and productivity. When exposed to high salt stress, metabolic abnormalities that disrupt reactive oxygen species (ROS) homeostasis result in massive oxygen radical deposition. Dendrobium huoshanense is a perennial orchid herb that thrives in semi-shade conditions. Although lots of studies have been undertaken on abiotic stresses (high temperature, chilling, drought, etc.) of model plants, few studies were reported on the mechanism of salt stress in D. huoshanense. Using a label-free protein quantification method, a total of 2,002 differential expressed proteins were identified in D. huoshanense. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment indicated that proteins involved in vitamin B6 metabolism, photosynthesis, spliceosome, arginine biosynthesis, oxidative phosphorylation, and MAPK signaling were considerably enriched. Remarkably, six malate dehydrogenases (MDHs) were identified from deferentially expressed proteins. (NAD+)-dependent MDH may directly participate in the biosynthesis of malate in the nocturnal crassulacean acid metabolism (CAM) pathway. Additionally, peroxidases such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as antioxidant enzymes involved in glutathione biosynthesis and some vitamins biosynthesis were also identified. Taken together, these results provide a solid foundation for the investigation of the mechanism of salt stress in Dendrobium spp.
Collapse
Affiliation(s)
- Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Yunpeng Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Rui Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Fucheng Zhu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Peipei Wei
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Haoyu Pan
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Cunwu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Jun Dai
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| |
Collapse
|
45
|
Soil Amendment with Arbuscular Mycorrhizal Fungi and Biochar Improves Salinity Tolerance, Growth, and Lipid Metabolism of Common Wheat (Triticum aestivum L.). SUSTAINABILITY 2022. [DOI: 10.3390/su14063210] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Salt stress in soils impacts grain crop yield. Soil amendment with biochar and arbuscular mycorrhizal alone has been analyzed to improve the growth of several crops under salinity stress. However, the combined application of biochar and arbuscular mycorrhizal fungi for the remediation of salinity and improvement of crop productivity in wheat are rarely discussed and have remained unclear. Therefore, this experiment was performed to investigate the effect with biochar (150 g biochar per each treated pot containing 3 kg soil) and/or arbuscular mycorrhizal fungi (20 g AMF inoculum containing 80% mycorrhizal roots, 100–160 spores, and extraradical hyphae per each treated pot) on the productivity of wheat (Triticum aestivum L.) under four salt stress gradients; 0, 50, 100, and 150 mM NaCl. The results show salinity significantly reduced plant height (9.9% to 22.9%), shoot fresh weight (35.6% to 64.4%), enzymatic activities (34.1% to 39.3%), and photosynthetic pigments—i.e., total chlorophyll contents (75.0%) and carotenoids contents (56.2%) of plants—as compared with control. Under exclusive biochar application, the plants were moderately tolerant to salinity stress, which was evident in their growth, moderately reduced fatty acid content, partially impaired enzymatic activity, and photosynthetic pigments, while under the exclusive AMF application, the wheat plants were relatively sensitive to salinity stress, resulting in impaired growth rate, decreased unsaturated fatty acid composition, enzymatic activity, and photosynthetic pigments. Conversely, under the co-application of biochar and AMF, wheat plants partially increased plant height (14.1%), shoot fresh biomass (75.7%), root fresh biomass (24.9%), partially increased enzymatic activity (49.5%), and unimpaired photosynthetic pigments (30.2% to 54.8%) of wheat under salinity stress. Current findings concluded that exclusive incorporation of biochar, and the synergistic application of AMF and biochar, could be utilized as a promising way to reduce the deleterious effects of salinity stress in wheat production.
Collapse
|
46
|
Du Y, Fu X, Chu Y, Wu P, Liu Y, Ma L, Tian H, Zhu B. Biosynthesis and the Roles of Plant Sterols in Development and Stress Responses. Int J Mol Sci 2022; 23:ijms23042332. [PMID: 35216448 PMCID: PMC8875669 DOI: 10.3390/ijms23042332] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/01/2023] Open
Abstract
Plant sterols are important components of the cell membrane and lipid rafts, which play a crucial role in various physiological and biochemical processes during development and stress resistance in plants. In recent years, many studies in higher plants have been reported in the biosynthesis pathway of plant sterols, whereas the knowledge about the regulation and accumulation of sterols is not well understood. In this review, we summarize and discuss the recent findings in the field of plant sterols, including their biosynthesis, regulation, functions, as well as the mechanism involved in abiotic stress responses. These studies provide better knowledge on the synthesis and regulation of sterols, and the review also aimed to provide new insights for the global role of sterols, which is liable to benefit future research on the development and abiotic stress tolerance in plant.
Collapse
Affiliation(s)
- Yinglin Du
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Xizhe Fu
- The College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310012, China;
| | - Yiyang Chu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Peiwen Wu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Ye Liu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Lili Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Huiqin Tian
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
- Correspondence:
| |
Collapse
|
47
|
Dias MC, Santos C, Araújo M, Barros PM, Oliveira M, de Oliveira JMPF. Quercus suber Roots Activate Antioxidant and Membrane Protective Processes in Response to High Salinity. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040557. [PMID: 35214887 PMCID: PMC8875824 DOI: 10.3390/plants11040557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 05/27/2023]
Abstract
Cork oak (Quercus suber) is a species native to Mediterranean areas and its adaptation to the increasingly prevalent abiotic stresses, such as soil salinization, remain unknown. In sequence with recent studies on salt stress response in the leaf, it is fundamental to uncover the plasticity of roots directly exposed to high salinity to better understand how Q. suber copes with salt stress. In the present study we aimed to unveil the antioxidants and key-genes involved in the stress-responses (early vs. later responses) of Q. suber roots exposed to high salinity. Two-month-old Q. suber plants were watered with 300 mM NaCl solution and enzymatic and non-enzymatic antioxidants, lipid peroxidation and the relative expression of genes related to stress response were analysed 8 h and 6 days after salt treatment. After an 8 h of exposure, roots activated the expression of QsLTI30 and QsFAD7 genes involved in stress membrane protection, and QsRAV1 and QsCZF1 genes involved in tolerance and adaptation. As a result of the continued salinity stress (6 days), lipid peroxidation increased, which was associated with an upregulation of QsLTI30 gene. Moreover, other protective mechanisms were activated, such as the upregulation of genes related to antioxidant status, QsCSD1 and QsAPX2, and the increase of the antioxidant enzyme activities of superoxide dismutase, catalase, and ascorbate peroxidase, concomitantly with total antioxidant activity and phenols. These data suggest a response dependent on the time of salinity exposure, leading Q. suber roots to adopt protective complementary strategies to deal with salt stress.
Collapse
Affiliation(s)
- Maria Celeste Dias
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (M.C.D.); (M.A.)
| | - Conceição Santos
- LAQV, REQUIMTE, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
- IB2 Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Márcia Araújo
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (M.C.D.); (M.A.)
- IB2 Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Pedro M. Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress, Av. da República, 2780-157 Oeiras, Portugal; (P.M.B.); (M.O.)
| | - Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress, Av. da República, 2780-157 Oeiras, Portugal; (P.M.B.); (M.O.)
| | - José Miguel P. Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
48
|
Nizam A, Meera SP, Kumar A. Genetic and molecular mechanisms underlying mangrove adaptations to intertidal environments. iScience 2022; 25:103547. [PMID: 34988398 PMCID: PMC8693430 DOI: 10.1016/j.isci.2021.103547] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mangroves are halophytic plants belonging to diverse angiosperm families that are adapted to highly stressful intertidal zones between land and sea. They are special, unique, and one of the most productive ecosystems that play enormous ecological roles and provide a large number of benefits to the coastal communities. To thrive under highly stressful conditions, mangroves have innovated several key morphological, anatomical, and physio-biochemical adaptations. The evolution of the unique adaptive modifications might have resulted from a host of genetic and molecular changes and to date we know little about the nature of these genetic and molecular changes. Although slow, new information has accumulated over the last few decades on the genetic and molecular regulation of the mangrove adaptations, a comprehensive review on it is not yet available. This review provides up-to-date consolidated information on the genetic, epigenetic, and molecular regulation of mangrove adaptive traits.
Collapse
Affiliation(s)
- Ashifa Nizam
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| | - Suraj Prasannakumari Meera
- Department of Biotechnology and Microbiology, Dr. Janaki Ammal Campus, Kannur University, Palayad, Kerala 670661, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| |
Collapse
|
49
|
Bundó M, Martín-Cardoso H, Pesenti M, Gómez-Ariza J, Castillo L, Frouin J, Serrat X, Nogués S, Courtois B, Grenier C, Sacchi GA, San Segundo B. Integrative Approach for Precise Genotyping and Transcriptomics of Salt Tolerant Introgression Rice Lines. FRONTIERS IN PLANT SCIENCE 2022; 12:797141. [PMID: 35126422 PMCID: PMC8813771 DOI: 10.3389/fpls.2021.797141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 05/24/2023]
Abstract
Rice is the most salt sensitive cereal crop and its cultivation is particularly threatened by salt stress, which is currently worsened due to climate change. This study reports the development of salt tolerant introgression lines (ILs) derived from crosses between the salt tolerant indica rice variety FL478, which harbors the Saltol quantitative trait loci (QTL), and the salt-sensitive japonica elite cultivar OLESA. Genotyping-by-sequencing (GBS) and Kompetitive allele specific PCR (KASPar) genotyping, in combination with step-wise phenotypic selection in hydroponic culture, were used for the identification of salt-tolerant ILs. Transcriptome-based genotyping allowed the fine mapping of indica genetic introgressions in the best performing IL (IL22). A total of 1,595 genes were identified in indica regions of IL22, which mainly located in large introgressions at Chromosomes 1 and 3. In addition to OsHKT1;5, an important number of genes were identified in the introgressed indica segments of IL22 whose expression was confirmed [e.g., genes involved in ion transport, callose synthesis, transcriptional regulation of gene expression, hormone signaling and reactive oxygen species (ROS) accumulation]. These genes might well contribute to salt stress tolerance in IL22 plants. Furthermore, comparative transcript profiling revealed that indica introgressions caused important alterations in the background gene expression of IL22 plants (japonica cultivar) compared with its salt-sensitive parent, both under non-stress and salt-stress conditions. In response to salt treatment, only 8.6% of the salt-responsive genes were found to be commonly up- or down-regulated in IL22 and OLESA plants, supporting massive transcriptional reprogramming of gene expression caused by indica introgressions into the recipient genome. Interactions among indica and japonica genes might provide novel regulatory networks contributing to salt stress tolerance in introgression rice lines. Collectively, this study illustrates the usefulness of transcriptomics in the characterization of new rice lines obtained in breeding programs in rice.
Collapse
Affiliation(s)
- Mireia Bundó
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | | | - Michele Pesenti
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy – DiSAA, University of Milan, Milan, Italy
| | - Jorge Gómez-Ariza
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Laia Castillo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Julien Frouin
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Xavier Serrat
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| | - Salvador Nogués
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| | - Brigitte Courtois
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Cécile Grenier
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Gian Attilio Sacchi
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy – DiSAA, University of Milan, Milan, Italy
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
50
|
Understanding the Various Strategies for the Management of Fungal Pathogens in Crop Plants in the Current Scenario. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|