1
|
Wang T, Huang Y, Jiang P, Yuan X, Long Q, Yan X, Huang Y, Wang Z, Li C. Research progress on anti-inflammatory drugs for preventing colitis-associated colorectal cancer. Int Immunopharmacol 2025; 144:113583. [PMID: 39580861 DOI: 10.1016/j.intimp.2024.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide. Inflammatory bowel diseases (IBD) encompass a group of chronic intestinal inflammatory disorders, including ulcerative colitis (UC) and Crohn's disease (CD). As a chronic inflammatory bowel disease, UC may persist and elevate the risk of malignancy, thereby contributing to the development of colorectal cancer, known as colitis-associated colorectal cancer (CAC). Chronic intestinal inflammation is a significant risk factor for colorectal cancer, and the incidence of colitis-associated colorectal cancer continues to rise. Current studies indicate that therapeutic agents targeting inflammation and key molecules or signaling pathways involved in the inflammatory process may effectively prevent and treat CAC. Mechanistically, drugs with anti-inflammatory or modulatory effects on inflammation-related pathways may exert preventive or therapeutic roles in CAC through multiple molecules or signaling pathways implicated in tumor development. Moreover, the development or discovery of novel drugs with anti-inflammatory properties to prevent or delay CAC progression is becoming an emerging field in fighting against CRC. Therefore, this review aims to summarize drugs that prevent or delay CAC through modulating anti-inflammatory pathways. First, we categorize the published studies exploring the role of anti-inflammatory in CAC prevention. Second, we highlight the specific molecular mechanisms underlying the anti-inflammatory effect of the above-mentioned drugs. Finally, we discuss the potential and challenges associated with clinical application of these drugs. It is hoped that this review offers new insights for further drug development and mechanism exploration.
Collapse
Affiliation(s)
- Tong Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | | | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xin Yuan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Qian Long
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xiaochen Yan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Yuwei Huang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China.
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China.
| |
Collapse
|
2
|
Das A, Sonar S, Kalele K, Subramaniyan V. Fruit exosomes: a sustainable green cancer therapeutic. SUSTAINABLE FOOD TECHNOLOGY 2025. [DOI: 10.1039/d4fb00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2024]
Abstract
Fruit exosomes are the source of natural cancer therapeutic tools.
Collapse
Affiliation(s)
- Asmit Das
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Swarup Sonar
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ketki Kalele
- Department of Oncology, Neuron Institute of Applied Research, Amravati, Maharashtra, India
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
3
|
Obaidur Rab S, Altalbawy FMA, Chandra M, Ariffin IA, Kaur P, Rathore G, Rizaev J, Aloraibi F, Najeeb MA, Abdulhussain MA, Zwamel AH. Targeting the lung tumor microenvironment by phytochemicals and their nanoformulations. Pathol Res Pract 2024; 264:155679. [PMID: 39500198 DOI: 10.1016/j.prp.2024.155679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
Lung malignancies are among the most prevalent and foremost causes of tumor-related deaths. Despite significant advancements in the understanding and management of lung cancer, resistance to traditional treatments remains a significant challenge. Understanding and targeting tumor microenvironment (TME) have attracted interest in the recent decade for eliminating various solid tumors. The lung TME has a crucial position in tumor expansion and therapy failure, driving it an engaging target for novel medicinal interventions. Plant-derived products offer a promising avenue for targeting TME due to their diverse chemical structures and biological activities. However, their clinical use is hindered by insufficient bioavailability and also possible systemic toxicity. The use of nanoparticles as delivery vehicles for natural products can overcome these challenges and enhance their therapeutic efficacy. This review article explores the potential of plant-derived products as medicinal agents for targeting lung TME. We provide an outline of the present knowledge of lung TME and explain the mechanisms by which plant-derived products can modulate key components of this microenvironment. The promising impacts and properties of nanoparticles for the delivery of these derivatives into lung tumors will also be discussed. We also review the preclinical and clinical findings for supporting the usefulness of these agents in targeting lung TME. Additionally, we highlight the challenges and forthcoming trends in the development of plant-derived products as targeted therapies for lung cancer, with a particular focus on combination therapies.
Collapse
Affiliation(s)
- Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | - Muktesh Chandra
- Department of Bioinformatics, Marwadi University Research Center, Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat 360003, India
| | - I A Ariffin
- Management and Science University, Shah Alam, Selangor, Malaysia
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - Gulshan Rathore
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Farah Aloraibi
- Department of Density, Al-Manara College for Medical Sciences, Maysan, Iraq
| | - Maryam Ali Najeeb
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Ahmed Hussein Zwamel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
4
|
YIN YUAN, WANG ZHENGYIN, HU YUJIE, WANG JIA, WANG YI, LU QUN. Caffeic acid hinders the proliferation and migration through inhibition of IL-6 mediated JAK-STAT-3 signaling axis in human prostate cancer. Oncol Res 2024; 32:1881-1890. [PMID: 39574470 PMCID: PMC11576972 DOI: 10.32604/or.2024.048007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/26/2024] [Indexed: 11/24/2024] Open
Abstract
Background Caffeic acid (CA) is considered a promising phytochemical that has inhibited numerous cancer cell proliferation. Therefore, it is gaining increasing attention due to its safe and pharmacological applications. In this study, we investigated the role of CA in inhibiting the Interleukin-6 (IL-6)/Janus kinase (JAK)/Signal transducer and activator of transcription-3 (STAT-3) mediated suppression of the proliferation signaling in human prostate cancer cells. Materials and Methods The role of CA in proliferation and colony formation abilities was studied using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and colony formation assays. Tumour cell death and cell cycle arrest were identified using flow cytometry techniques. CA treatment-associated protein expression of mitogen-activated protein kinase (MAPK) families, IL-6/JAK/STAT-3, proliferation, and apoptosis protein expressions in PC-3 and LNCaP cell lines were measured using Western blot investigation. Results We have obtained that treatment with CA inhibits prostate cancer cells (PC-3 and LNCaP) proliferation and induces reactive oxygen species (ROS), cell cycle arrest, and apoptosis cell death in a concentration-dependent manner. Moreover, CA treatment alleviates the expression phosphorylated form of MAPK families, i.e., extracellular signal-regulated kinase 1 (ERK1), c-Jun N-terminal kinase (JNK), and p38 in PC-3 cells. IL-6 mediated JAK/STAT3 expressions regulate the proliferation and antiapoptosis that leads to prostate cancer metastasis and migration. Therefore, to mitigate the expression of IL-6/JAK/STAT-3 is considered an important target for the treatment of prostate cancer. In this study, we have observed that CA inhibits the expression of IL-6, JAK1, and phosphorylated STAT-3 in both PC-3 and LNCaP cells. Due to the inhibitory effect of IL-6/JAK/STAT-3, it resulted in decreased expression of cyclin-D1, cyclin-D2, and CDK1 in both PC-3 cells. In addition, CA induces apoptosis by enhancing the expression of Bax and caspase-3; and decreased expression of Bcl-2 in prostate cancer cells. Conclusions Thus, CA might act as a therapeutical application against prostate cancer by targeting the IL-6/JAK/STAT3 signaling axis.
Collapse
Affiliation(s)
- YUAN YIN
- Department of Laboratory Medicine, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - ZHENGYIN WANG
- Department of Laboratory Medicine, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - YUJIE HU
- Department of Laboratory Medicine, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - JIA WANG
- Department of Laboratory Medicine, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - YI WANG
- Department of Acupuncture and Moxibustion, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - QUN LU
- Department of Laboratory Medicine, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| |
Collapse
|
5
|
Shaharudin NS, Surindar Singh GK, Kek TL, Sultan S. Targeting signaling pathways with andrographolide in cancer therapy (Review). Mol Clin Oncol 2024; 21:81. [PMID: 39301125 PMCID: PMC11411607 DOI: 10.3892/mco.2024.2779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/10/2024] [Indexed: 09/22/2024] Open
Abstract
Terpenoids are a large group of naturally occurring organic compounds with a wide range of components. A phytoconstituent in this group, andrographolide, which is derived from a plant called Andrographis paniculate, offers a number of advantages, including anti-inflammatory, anticancer, anti-angiogenesis and antioxidant effects. The present review elucidates the capacity of andrographolide to inhibit signaling pathways, namely the nuclear factor-κB (NF-κB), hypoxia-inducible factor 1 (HIF-1), the Janus kinase (JAK)/signal transducer and activator of transcription (STAT), phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR), Wnt/β-catenin and mitogen-activated protein kinase (MAPK) pathways, which are involved in cellular processes and responses such as the inflammatory response, apoptosis and angiogenesis. Inhibiting pathways enables andrographolide to exhibit its anticancer effects against breast, colorectal and lung cancer. The present review focuses on the anticancer effects of andrographolide, specifically in breast, colorectal and lung cancer through the NF-κB, HIF-1 and JAK/STAT signaling pathways. Therefore, the Google Scholar, PubMed and ScienceDirect databases were used to search for references to these prevalent types of cancer and the anticancer mechanisms of andrographolide associated with them. The following key words were used: Andrographolide, anticancer, JAK/STAT, HIF-1, NF-κB, PI3K/AKT/mTOR, Wnt/β-catenin and MAPK pathways, and the literature was limited to studies published between 2010 to 2023. The present review article provides details about the different involvements of signaling pathways in the anticancer mechanisms of andrographolide.
Collapse
Affiliation(s)
- Nur Shahirah Shaharudin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
| | - Gurmeet Kaur Surindar Singh
- Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
- Faculty of Pharmacy, Brain Degeneration and Therapeutics Research Center, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia
| | - Teh Lay Kek
- Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
| | - Sadia Sultan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
- Faculty of Pharmacy, Biotransformation Research Center, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia
| |
Collapse
|
6
|
Goleij P, Sanaye PM, Alam W, Zhang J, Tabari MAK, Filosa R, Jeandet P, Cheang WS, Efferth T, Khan H. Unlocking daidzein's healing power: Present applications and future possibilities in phytomedicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155949. [PMID: 39217652 DOI: 10.1016/j.phymed.2024.155949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cancer is one of the leading causes of death and a great threat to people around the world. Cancer treatment modalities include surgery, radiotherapy, chemotherapy, radiochemotherapy, hormone therapy, and immunotherapy. The best approach is to use a combination of several types. Among the treatment methods mentioned above, chemotherapy is frequently used, but its activity is hampered by the development of drug resistance and many side effects. In this regard, the use of medicinal plants has been discussed, and in recent decades, the use of isolated phytochemicals came into the focus of interest. By critically evaluating the available evidence and emphasizing the unique perspective offered by this review, we provide insights into the potential of daidzein as a promising therapeutic agent, as well as outline future research directions to optimize its efficacy in clinical settings. PURPOSE To summarized the therapeutic potential of daidzein, an isoflavone phytoestrogen in the management of several human diseases with the focuses on the current status and future prospects as a therapeutic agent. METHODS Several search engines, including PubMed, GoogleScholar, and ScienceDirect, were used, with the search terms "daidzein", "daidzein therapeutic potential", or individual effects. The study included all peer-reviewed articles. However, the most recent publications were given priority. RESULTS Daidzein showed protective effects against malignant diseases such as breast cancer, prostate cancer but also non-malignant diseases such as diabetes, osteoporosis, and cardiovascular diseases. Daidzein activates multiple signaling pathways leading to cell cycle arrest and apoptosis as well as antioxidant and anti-metastatic effects in malignant cells. Moreover, the anticancer effects against different cancer cells were more prominent and discussed in detail. CONCLUSIONS In short, daidzein represents a promising compound for drug development. The comprehensive potential anticancer activities of daidzein through various molecular mechanisms and its therapeutic/clinical status required further detail studies.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran.
| | - Pantea Majma Sanaye
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Waqas Alam
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mohammad Amin Khazeei Tabari
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| | - Philippe Jeandet
- Département de Biologie et Biochimie Faculté des Sciences Exactes et Naturelles Université de Reims BP 1039 51687, Reims CEDEX 02, France
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
7
|
Biswal S, Panda M, Biswal BK. Shikonin Stimulates Mitochondria-Mediated Apoptosis by Enhancing Intracellular Reactive Oxygen Species Production and DNA Damage in Oral Cancer Cells. J Cell Biochem 2024:e30671. [PMID: 39485022 DOI: 10.1002/jcb.30671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024]
Abstract
Phytotherapy has rendered a new insight towards the treatment of various cancers, including oral cancer with fewer side effects, over the traditional chemotherapeutic drugs to overcome chemoresistance. Shikonin (Shk) is a natural biologically active alkaloid found in the Lithospermum erythrorhizon plant's root. It has potent cytotoxic activities against various cancers. Our study revealed the release time and anticancer potential of Shk on the SCC9 and H357 oral cancer cell lines. We investigated the antiproliferative, antimigratory, cell cycle arresting and apoptosis promoting activity of Shk in oral cancer cells by performing MTT and morphological assay, colony, and tumor sphere formation assay, AO/EtBr and DAPI staining, Annexin V-FITC/PI staining, assay for reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) measurement, comet assay, qRT-PCR, and western blot analysis. We also checked the interaction of DNA and Shk by docking and CD spectroscopy and EtBr displacement assay. As a result, we found that Shk reduced the viability, proliferation, and tumorigenicity of SCC9 and H357 cells in a time and concentration-dependent manner. We obtained half-maximal inhibitory concentration (IC50) at 0.5 µM for SCC9 and 1.25 µM for H357. It promotes apoptosis via overexpressing proapoptotic Bax and caspase 3 via enhancing ROS that leads to MMP depletion and DNA damage and arrests cells at the G2/M & G2/S phase. The antimigratory activity of Shk was performed by analyzing the expression of markers of epithelial-mesenchymal transition like E-cadherin, ZO-1, N-cadherin, and vimentin. These overall results recommended that Shk shows potent anticancer activity against oral cancer cell lines in both in vitro and ex vivo conditions. So, it could be an excellent agent for the treatment of oral cancer.
Collapse
Affiliation(s)
- Stuti Biswal
- Department of Life Science, Cancer Drug Resistance Laboratory, NIT Rourkela, Rourkela, Odisha, India
| | - Munmun Panda
- Department of Life Science, Cancer Drug Resistance Laboratory, NIT Rourkela, Rourkela, Odisha, India
| | - Bijesh Kumar Biswal
- Department of Life Science, Cancer Drug Resistance Laboratory, NIT Rourkela, Rourkela, Odisha, India
| |
Collapse
|
8
|
Adetunji TL, Olisah C, Acho MA, Oyetunde-Joshua F, Amoo SO. Global Research Trends and Recent Advances in Medicinal Plant-Synthesized Nanoparticles for Cancer Treatment. PLANTS (BASEL, SWITZERLAND) 2024; 13:2836. [PMID: 39458783 PMCID: PMC11511196 DOI: 10.3390/plants13202836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Worldwide, cancer ranks among the foremost contributors to mortality despite recent medical progress. Alternative approaches in controlling various forms of cancer are being highly explored by researchers. This study provides the global research trends in the utilization of medicinal plant-synthesized nanoparticles for cancer treatment over the span of 18 years using scientometric analysis. Recent research advances on medicinal plant-derived nanoparticles for cancer treatment and their possible mechanisms of action were described. Relevant articles published between 2005 and 2023 were retrieved from Scopus and Web of Science and analyzed using RStudio and VOSViewer. Scientometric indicators were employed to analyze the results. The initial search returned 5695 articles, with a publication growth rate of 3.71% annually. Countries from Asia contributed the most (61.37%) to the total number of publications. The therapeutic effects of nanoparticles derived from medicinal plants can be attributed to various mechanistic pathways, including induced apoptosis from reactive oxygen species generation, as well as mitochondrial and cell membrane disruption, amongst others. Although some reported studies demonstrated promising safety and efficacy against certain cancer cells in vivo and in vitro, the little to no clinical data on medicinal plant-synthesized nanoparticles hinder the ability to make informed decisions about their clinical potential in cancer treatment.
Collapse
Affiliation(s)
- Tomi Lois Adetunji
- Agricultural Research Council—Vegetables, Industrial and Medicinal Plants, Private Bag X293, Pretoria 0001, South Africa;
- Unit for Environmental Sciences and Management (UESM), Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, P.O. Box 77000, Gqeberha 6031, South Africa;
| | | | - Funsho Oyetunde-Joshua
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa;
| | - Stephen O. Amoo
- Agricultural Research Council—Vegetables, Industrial and Medicinal Plants, Private Bag X293, Pretoria 0001, South Africa;
- Unit for Environmental Sciences and Management (UESM), Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
9
|
Irshad N, Naeem H, Shahbaz M, Imran M, Mujtaba A, Hussain M, Al Abdulmonem W, Alsagaby SA, Yehuala TF, Abdelgawad MA, Ghoneim MM, Mostafa EM, Selim S, Al Jaouni SK. Mangiferin: An effective agent against human malignancies. Food Sci Nutr 2024; 12:7137-7157. [PMID: 39479608 PMCID: PMC11521646 DOI: 10.1002/fsn3.4434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 11/02/2024] Open
Abstract
Mangiferin is a bioactive substance present in high concentration in mangoes and also in some other fruits. Owing to its potential as a chemopreventive and chemotherapeutic agent against several types of cancer, this unique, significant, and well-researched polyphenol has received a lot of attention recently. It possesses the ability to treat cancers, including rectal cancer, prostate cancer, ovarian cancer, leukemia, gastric cancer, liver cancer, chronic pancreatitis, and lung cancer. It can control/regulate multiple key signaling pathways, such as signal transducer and activator of transcription 3 (STAT3), second mitochondria-derived activator of caspases/direct inhibitor of apoptosis (IAP)-binding protein with low propidium iodide (pl) (Smac/DIABLO) nuclear factor kappa B (NF-κB), phosphatidylinositol 3 kinase/protein 3 kinase (PI3K/Akt), transforming growth factor beta/suppressor of mothers against decapentaplegic (TGF-β/SMAD), c-jun N-terminal kinase/p38 mitogen-activated protein kinase (JNK/p38-MAPK), and phosphor-I kappa B kinase (p-IκB), which are crucial to the development of cancers. By triggering apoptotic signals and halting the advancement of the cell cycle, it can also prevent some cancer cell types from proliferating and developing. It has been revealed that mangiferin targets a variety of adhesion molecules, cytokines, pro-inflammatory transcription factors, kinases, chemokines, growth factors, and cell-cycle proteins. By means of preventing the onset, advancement, and metastasis of cancer, these targets may mediate the chemopreventive and therapeutic effects of mangiferin. Mangiferin has confirmed potential benefits in lung, cervical, breast, brain, and prostate cancers as well as leukemia whether administered alone or in combination with recognized anticancer compounds. More clinical trials and research investigations are required to completely unleash the potential of mangiferin, which may lower the risk of cancer onset and act as a preventive and therapeutic alternative for a number of cancers.
Collapse
Affiliation(s)
- Nimra Irshad
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of Agriculture, MultanMultanPakistan
| | - Hammad Naeem
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of Agriculture, MultanMultanPakistan
- Post‐Harvest Research CentreAyub Agricultural Research Institute, FaisalabadFaisalabadPakistan
| | - Muhammad Shahbaz
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of Agriculture, MultanMultanPakistan
| | - Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Ahmed Mujtaba
- Department of Food Sciences and Technology, Faculty of Engineering Sciences and TechnologyHamdard University Islamabad CampusIslamabadPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraidahSaudi Arabia
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAL‐MajmaahSaudi Arabia
| | - Tadesse Fenta Yehuala
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of TechnologyBahir Dar UniversityBahir darEthiopia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversitySakakaAljoufSaudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of PharmacyAlMaarefa UniversityAd DiriyahRiyadhSaudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of PharmacyJouf UniversitySakakaSaudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys)Al‐Azhar UniversityCairoEgypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
10
|
Alkandahri MY, Sadino A, Pamungkas BT, Oktoba Z, Arfania M, Yuniarsih N, Wahyuningsih ES, Dewi Y, Winarti SA, Dinita ST. Potential Nephroprotective Effect of Kaempferol: Biosynthesis, Mechanisms of Action, and Clinical Prospects. Adv Pharmacol Pharm Sci 2024; 2024:8907717. [PMID: 39377015 PMCID: PMC11458287 DOI: 10.1155/2024/8907717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
Kidney is an essential organ that is highly susceptible to cellular injury caused by various toxic substances in the blood. Several studies have shown that untreated injuries to this organ can cause glomerulosclerosis, tubulointerstitial fibrosis, and tubular cell apoptosis, leading to kidney failure. Despite significant advancements in modern treatment, there is no fully effective drug for repairing its function, providing complete protection, and assisting in cell regeneration. Furthermore, some available medications have been reported to exacerbate injuries, showing the need to explore alternative treatments. Natural drugs are currently being explored as a new therapeutic strategy for managing kidney diseases. Kaempferol, a polyphenol found in plants, including vegetables, legumes, and fruits, has been extensively studied in various nephrotoxicity protocols. The compound has been reported to have potential as a nephroprotective agent with beneficial effects on various physiological pathways, such as CPL-induced kidney injury, DOX, LPO, ROS, RCC, and diabetic nephropathy. Therefore, this study aims to provide a brief overview of the current nephroprotective effects of kaempferol, as well as its molecular mechanisms of action, biosynthesis pathways, and clinical prospects.
Collapse
Affiliation(s)
- Maulana Yusuf Alkandahri
- Department of Pharmacology and Clinical PharmacyFaculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Asman Sadino
- Department of PharmacyFaculty of Mathematics and Natural ScienceUniversitas Garut, Garut, West Java, Indonesia
| | - Barolym Tri Pamungkas
- Department of Pharmaceutical BiologyFaculty of PharmacyUniversitas Mulawarman, Samarinda, East Kalimantan, Indonesia
| | - Zulpakor Oktoba
- Department of PharmacyFaculty of MedicineUniversitas Lampung, Bandar Lampung, Indonesia
| | - Maya Arfania
- Department of Pharmacology and Clinical PharmacyFaculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Nia Yuniarsih
- Department of Pharmaceutical TechnologyFaculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Eko Sri Wahyuningsih
- Department of Pharmaceutical BiologyFaculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Yuliani Dewi
- Faculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Sri Ayu Winarti
- Faculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Sri Tantia Dinita
- Faculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| |
Collapse
|
11
|
Patel S, Rana K, Arya P, Nelson J, Hernandez V, Minakova V. Anticancer Activity of Phytochemicals of the Papaya Plant Assessed: A Narrative Review. J Cancer Prev 2024; 29:58-68. [PMID: 39398111 PMCID: PMC11467756 DOI: 10.15430/jcp.24.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 10/15/2024] Open
Abstract
Cancer remains to be a pervasive disease as traditional treatments have plateaued in efficacy. Anticancer research continues to grow in an effort to find novel preventive and treatment measures for cancers. The papaya plant produces several biologically active phytochemicals, which exhibit anti-inflammatory, antibacterial, and anti-oxidative properties. This review explores studies examining these phytochemicals derived from the papaya plant as a potential chemopreventive agent and a cancer therapeutic. Further studies must be done to establish the papaya plant and its phytochemicals as an alternative to traditional cancer treatments.
Collapse
Affiliation(s)
- Shachi Patel
- Saint James School of Medicine, Chicago, IL, USA
| | | | - Param Arya
- Saint James School of Medicine, Chicago, IL, USA
| | | | | | | |
Collapse
|
12
|
Gupta DS, Gupta DS, Abjani NK, Dave Y, Apte K, Kaur G, Kaur D, Saini AK, Sharma U, Haque S, Tuli HS. Vaccine-based therapeutic interventions in lung cancer management: A recent perspective. Med Oncol 2024; 41:249. [PMID: 39316239 DOI: 10.1007/s12032-024-02489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/24/2024] [Indexed: 09/25/2024]
Abstract
The incidence of lung cancer continues to grow globally, contributing to an ever-increasing load on healthcare systems. Emerging evidence has indicated lowered efficacy of conventional treatment strategies, such as chemotherapy, surgical interventions and radiotherapy, prompting the need for exploring alternative interventions. A growing focus on immunotherapy and the development of personalized medicine has paved the way for vaccine-based delivery in lung cancer. With various prominent targets such as CD8+T cells and PD-L1, immune-targeted, anti-cancer vaccines have been evaluated in both, pre-clinical and clinical settings, to improve therapeutic outcomes. However, there are a number of challenges that must be addressed, including the scalability of such delivery systems, heterogeneity of lung cancers, and long-term safety as well as efficacy. In addition to this, natural compounds, in combination with immunotherapy, have gained considerable research interest in recent times. This makes it necessary to explore their role in synergism with immune-targeted agents. The authors of this review aim to offer an overview of recent advances in our understanding of lung cancer pathogenesis, detection and management strategies, and the emergence of immunotherapy with a special focus on vaccine delivery. This finding is supported with evidence from testing in non-human and human models, showcasing promising results. Prospects for phytotherapy have also been discussed, in order to combat some pitfalls and limitations. Finally, the future perspectives of vaccine usage in lung cancer management have also been discussed, to offer a holistic perspective to readers, and to prompt further research in the domain.
Collapse
Affiliation(s)
- Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Daksh Sanjay Gupta
- Vivekanand Education Society's College of Pharmacy, Chembur, Mumbai, Maharashtra, 400074, India
| | - Nosheen Kamruddin Abjani
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Yash Dave
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Ketaki Apte
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India.
| | - Damandeep Kaur
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Adesh Kumar Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
13
|
Şeker Karatoprak G, Dumlupınar B, Celep E, Kurt Celep I, Küpeli Akkol E, Sobarzo-Sánchez E. A comprehensive review on the potential of coumarin and related derivatives as multi-target therapeutic agents in the management of gynecological cancers. Front Pharmacol 2024; 15:1423480. [PMID: 39364049 PMCID: PMC11447453 DOI: 10.3389/fphar.2024.1423480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Current treatments for gynecological cancers include surgery, radiotherapy, and chemotherapy. However, these treatments often have significant side effects. Phytochemicals, natural compounds derived from plants, offer promising anticancer properties. Coumarins, a class of benzopyrone compounds found in various plants like tonka beans, exhibit notable antitumor effects. These compounds induce cell apoptosis, target PI3K/Akt/mTOR signaling pathways, inhibit carbonic anhydrase, and disrupt microtubules. Additionally, they inhibit tumor multidrug resistance and angiogenesis and regulate reactive oxygen species. Specific coumarin derivatives, such as auraptene, praeruptorin, osthole, and scopoletin, show anti-invasive, anti-migratory, and antiproliferative activities by arresting the cell cycle and inducing apoptosis. They also inhibit metalloproteinases-2 and -9, reducing tumor cell migration, invasion, and metastasis. These compounds can sensitize tumor cells to radiotherapy and chemotherapy. Synthetic coumarin derivatives also demonstrate potent antitumor and anticancer activities with minimal side effects. Given their diverse mechanisms of action and minimal side effects, coumarin-class phytochemicals hold significant potential as therapeutic agents in gynecological cancers, potentially improving treatment outcomes and reducing side effects. This review will aid in the synthesis and development of novel coumarin-based drugs for these cancers.
Collapse
Affiliation(s)
| | - Berrak Dumlupınar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Okan University, İstanbul, Türkiye
| | - Engin Celep
- Department of Pharmacognosy, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, Türkiye
| | - Inci Kurt Celep
- Department of Biotechnology, Faculty of Pharmacy, Istanbul Okan University, Istanbul, Türkiye
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado Facultad de Ciencias de la Salud Universidad Central de Chile, Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
14
|
Acikgul FC, Duran N, Kutlu T, Ay E, Tek E, Bayraktar S. The therapeutic potential and molecular mechanism of Alpha-pinene, Gamma-terpinene, and P-cymene against melanoma cells. Heliyon 2024; 10:e36223. [PMID: 39281661 PMCID: PMC11402455 DOI: 10.1016/j.heliyon.2024.e36223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
The purpose of this study is to investigate the potential anticarcinogenic effects of three phytochemicals, namely Alpha-pinene (AP), Gamma-terpinene (GT), and P-cymene (PC), on melanoma cells (A2058 cell line). Additionally, the study aims to explore the synergistic activities of these phytochemicals with Dacarbazine, a chemotherapy drug. To understand the molecular mechanism involved in apoptosis induction in the A-2058 cell line, it was used AO/EB staining for apoptosis detection and cell cycle analysis, monitored through flow cytometry. It also determined the mRNA expression levels of different apoptosis-regulatory genes, including p53, Bax, NF-kB, Bcl-2, Bcl-xl, and caspase-3. The antitumor activities of these phytochemicals and their combinations were investigated in a subcutaneous mouse tumor model. The tumor diameter was 21.4 ± 1.1 mm in the Dacarbazine treatment group and 42.4 ± 3.1 mm in the control group. The antitumoral activities of AP and PC in the tumor model were similar to those of Dacarbazine. On the other hand, GT exhibited remarkable antitumoral activity, with a 1.75-fold reduction in tumor diameter compared to the Dacarbazine group. When different combinations of phytochemicals and Dacarbazine were used, the GT plus Dacarbazine treatment group was found to have a 3.5-fold reduction in tumor diameter compared to the Dacarbazine group. The tumor diameters in the Dacarbazine, AP plus GT, GT plus Dacarbazine, and AP plus Dacarbazine treatment groups were 21.4 ± 1.1, 7.6 ± 2.2, 8.6 ± 0.5, and 6.2 ± 1.9 mm, respectively.
Collapse
Affiliation(s)
- Funda Cimen Acikgul
- Department of Medical Microbiology, Medical Faculty, Mustafa Kemal University, Antakya-Hatay, 31060, Turkey
- Department of Medical Microbiology, Medical Faculty, Agri İbrahim Cecen University, Agri 04100, Turkiye
| | - Nizami Duran
- Department of Medical Microbiology, Medical Faculty, Mustafa Kemal University, Antakya-Hatay, 31060, Turkey
| | - Tuncer Kutlu
- Department of Pathology, Veterinary Faculty, Mustafa Kemal University, Antakya-Hatay, 31060, Turkey
| | - Emrah Ay
- Department of Medical Microbiology, Medical Faculty, Mustafa Kemal University, Antakya-Hatay, 31060, Turkey
| | - Erhan Tek
- Department of Medical Microbiology, Medical Faculty, Mustafa Kemal University, Antakya-Hatay, 31060, Turkey
| | - Suphi Bayraktar
- Department of Medical Microbiology, Medical Faculty, Mustafa Kemal University, Antakya-Hatay, 31060, Turkey
| |
Collapse
|
15
|
Nie W, Wang Y, Tian X, Liu J, Jin Z, Xu J, He M, Shen Q, Guo H, Luan T. Cucurbitacin B and Its Derivatives: A Review of Progress in Biological Activities. Molecules 2024; 29:4193. [PMID: 39275042 PMCID: PMC11397067 DOI: 10.3390/molecules29174193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
The emergence of natural products has provided extremely valuable references for the treatment of various diseases. Cucurbitacin B, a tetracyclic triterpenoid compound isolated from cucurbitaceae and other plants, is the most abundant member of the cucurbitin family and exhibits a wide range of biological activities, including anti-inflammatory, anti-cancer, and even agricultural applications. Due to its high toxicity and narrow therapeutic window, structural modification and dosage form development are necessary to address these issues with cucurbitacin B. This paper reviews recent research progress in the pharmacological action, structural modification, and application of cucurbitacin B. This review aims to enhance understanding of advancements in this field and provide constructive suggestions for further research on cucurbitacin B.
Collapse
Affiliation(s)
- Wenzhe Nie
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Yalan Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Xinlu Tian
- Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Jinying Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Zhanhui Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Junjie Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Miaohai He
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Qingkun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Hongyan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Tian Luan
- Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
16
|
Görmez G, Yüksek V, Usta A, Dede S, Gümüş S. Phenolic Contents, Antioxidant Activities, LCMS Profiles of Mespilus germanica Leaf Extract and Effects on mRNA Transcription Levels of Apoptotic, Autophagic, and Necrotic Genes in MCF7 and A549 Cancer Cell Lines. Cell Biochem Biophys 2024; 82:2141-2155. [PMID: 38850406 DOI: 10.1007/s12013-024-01321-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/10/2024]
Abstract
Cancer, defined by the continuous, uncontrollable proliferation of cells in the human body, is a disease with a rapidly increasing incidence and mortality rate. Scientists are looking for novel ways to cure and prevent this sneaky disease because of the toxicity of contemporary chemotherapy and the cancer cells' resilience to anticancer drugs. Determining the effect of herbal medicines, which do not have as harmful side effects as synthetic drugs, on cancer cell lines is an essential preliminary study in the production of effective drugs against cancer. In this study, the phenolic acid profile, antioxidant capacity, and cytotoxicity of the medicinal plant Mespilus germanica (MG) leaf extract were determined, and its effects on the expression of some apoptotic, necrotic, and autophagic pathway genes of MCF7 (Human breast cancer line) and A549 (Human lung cancer line) and healthy HDF (Human Dermal Fibroblasts) cells were investigated for the first time. The LCMS device detected many important phenolic compounds previously reported to act against cancer cells in Mespilus germanica leaf extract. DPPH and total phenolic content showed high antioxidant capacity. The cytotoxicity of MG was determined by the MTT method. The levels of mRNA transcription for Atg5, Atg3, Rıpk1, Bcl2, Bax, Apaf1, Caspase-8, Caspase-7, Caspase-3, and Caspase-9, as well as the expression patterns of the DNA damage markers P53 and Parp-1 genes, were assessed. MG leaf extract did not cause significant toxicity against healthy HDF cells. However, it had a cytotoxic effect on A549 and MCF7 cancer cell lines, increasing the transcription levels of essential genes involved in cell death mechanisms. This research is the first to analyze the phenolic components and antioxidant capabilities of leaf extracts from Mespilus germanica. Additionally, it investigates the impact of these extracts on crucial genes involved in cell death pathways of A549 lung cancer, MCF7 breast cancer, and non-cancerous HDF (Human Dermal Fibroblasts) cells.
Collapse
Affiliation(s)
- Gül Görmez
- Faculty of Health Sciences, Nutrition and Dietetics Department, Van Yuzuncu Yıl University, Van, Turkey.
| | - Veysel Yüksek
- Özalp Vocational High School, Department of Medical Laboratory, Van Yuzuncu Yıl University, Van, Turkey
| | - Ayşe Usta
- Faculty of Sciences, Department of Chemistry, Van Yuzuncu Yıl University, Van, Turkey
| | - Semiha Dede
- Faculty of Veterinary Medicine, Department of Biochemistry, Van Yuzuncu Yil University, Van, Turkey
| | - Selçuk Gümüş
- Faculty of Engineering Architecture and Design, Department of Basic Sciences, Bartin University, Bartin, Turkey
| |
Collapse
|
17
|
Rathi A, Chaudhury A, Anjum F, Ahmad S, Haider S, Khan ZF, Taiyab A, Chakrabarty A, Islam A, Hassan MI, Haque MM. Targeting prostate cancer via therapeutic targeting of PIM-1 kinase by Naringenin and Quercetin. Int J Biol Macromol 2024; 276:133882. [PMID: 39019373 DOI: 10.1016/j.ijbiomac.2024.133882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
PIM-1 kinase belongs to the Ser/Thr kinases family, an attractive therapeutic target for prostate cancer. Here, we screened about 100 natural substances to find potential PIM-1 inhibitors. Two natural compounds, Naringenin and Quercetin, were finally selected based on their PIM-1 inhibitory potential and binding affinities. The docking score of Naringenin and Quercetin with PIM-1 is -8.4 and - 8.1 kcal/mol, respectively. Fluorescence binding studies revealed a strong affinity (Ka values, 3.1 × 104 M-1 and 4.6 × 107 M-1 for Naringenin and Quercetin, respectively) with excellent IC50 values for Naringenin and Quercetin (28.6 μM and 34.9 μM, respectively). Both compounds inhibited the growth of prostate cancer cells (LNCaP) in a dose-dependent manner, with the IC50 value of Naringenin at 17.5 μM and Quercetin at 8.88 μM. To obtain deeper insights into the PIM-1 inhibitory effect of Naringenin and Quercetin, we performed extensive molecular dynamics simulation studies, which provided insights into the binding mechanisms of PIM-1 inhibitors. Finally, Naringenin and Quercetin were suggested to serve as potent PIM-1 inhibitors, offering targeted treatments of prostate cancer. In addition, our findings may help to design novel Naringenin and Quercetin derivatives that could be effective in therapeutic targeting of prostate cancer.
Collapse
Affiliation(s)
- Aanchal Rathi
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Arunabh Chaudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, 21944 Taif, Saudi Arabia
| | - Shahbaz Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shaista Haider
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Zeba Firdos Khan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anindita Chakrabarty
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
18
|
Li Z, Zhao Q, Liu X, Zhou X, Wang Y, Zhao M, Wu F, Zhao G, Guo X. Capsaicin combined with cisplatin inhibits TGF-β1-induced EMT and TSCC cells migration via the Claudin-1/PI3K/AKT/mTOR signaling pathway. Cancer Cell Int 2024; 24:300. [PMID: 39198820 PMCID: PMC11360848 DOI: 10.1186/s12935-024-03485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is one of the most common malignant tumors among oral cancers, and its treatment is based on radio-chemotherapy and surgery, which always produces more serious side effects and sequelae. Traditional medicine can compensate for the shortcomings of modern medical treatments and play a better therapeutic role. Currently, active ingredients derived from plants are attracting the attention of researchers and clinical professionals. We examined capsaicin (CAP), an active ingredient isolated from Capsicum annuum (family Solanaceae), and explored the effect of CAP combined with cisplatin (DDP) on epithelial-mesenchymal transition (EMT) and TSCC cells migration. Our results demonstrated that Transforming growth factor-β1(TGF-β1) induced EMT and promoted cell migration in TSCC cells. CAP combined with DDP inhibits non-TGF-β1-induced or TGF-β1-induced EMT and migration. Mechanistically, the inhibition of non-TGF-β1-induced EMT and migration by CAP combined with DDP was mediated by the AMPK/mTOR pathway, whereas TGF-β1-induced EMT and migration were regulated by the Claudin-1/PI3K/AKT/mTOR pathway. A nude lung metastasis mouse model was established for in vivo validation. These results support our hypothesis that the combination of CAP and DDP inhibits TSCC metastasis. These data set the stage for further studies aimed at validating CAP as an effective active ingredient for enhancing chemotherapy efficacy and reducing the dosage and toxicity of chemotherapeutic drugs, ultimately paving the way for translational research and clinical trials for TSCC eradication.
Collapse
Affiliation(s)
- Zhuang Li
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China
| | - Qiwei Zhao
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China
| | - Xiayang Liu
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China
| | - Xinyue Zhou
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China
| | - Yu Wang
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China
| | - Min Zhao
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China
| | - Fenghua Wu
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China
| | - Gang Zhao
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
| | - Xiaohong Guo
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China.
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China.
| |
Collapse
|
19
|
Luan M, Zhang B, Wei Y, Liu F, Zhao Y, Yu Y, Wu Q. MAFF mediates PEITC-induced enhancement of sensitivity to carboplatin in ovarian cancer cell lines via activating ZNF711 transcription in vivo and invitro. Chem Biol Interact 2024; 399:111116. [PMID: 38908812 DOI: 10.1016/j.cbi.2024.111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Enhanced drug resistance poses a significant challenge in treating ovarian cancer (OC). Phenylethyl isothiocyanate (PEITC) is involved in drug resistance in OC, but the mechanism remains unclear. In this study, we investigated the molecular regulatory mechanism of carboplatin sensitivity in OC associated with PEITC, MAF BZIP Transcription Factor F (MAFF), and Zinc finger proteins (ZNF) 711. The carboplatin sensitivity was significantly increased in OC cells after PEITC treatment. Knockdown of MAFF significantly enhanced the carboplatin sensitivity of OC cells, promoted apoptosis, inhibited colony-forming efficiency in vitro, and suppressed tumor growth in vivo. The binding site of MAFF to the ZNF711 promoter was predicted, and the knockdown of MAFF significantly increased the ZNF711 expression. Results of the dual luciferase assay and ChIP-PCR confirmed the binding of MAFF to the ZNF711 promoter. Immunofluorescence and CoIP results demonstrated the colocalization and the binding of MAFF and its interacting protein, BZIP Transcription Factor ATF-like 3 (BATF3). Similarly, we confirmed the binding of BATF3 to the ZNF711 promoter. Knockdown of BATF3 alone and simultaneous knockdown of BATF3 and MAFF showed similar regulatory effects on ZNF711 transcription and apoptosis. These suggested that the binding of MAFF to BATF3 inhibited ZNF711 transcription and reduced carboplatin sensitivity in OC.
Collapse
Affiliation(s)
- Meng Luan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bijun Zhang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yifan Wei
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fanghua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yalian Yu
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, China.
| | - Qijun Wu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
20
|
Zou Y, He Y, Tan L, Xu X, Qi C, Zhang Y. Discovery of Cytotoxic Nitric Oxide-Releasing Piperlongumine Derivatives Targeting Wnt/β-Catenin in Colon Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2024; 87:1893-1902. [PMID: 39045852 DOI: 10.1021/acs.jnatprod.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Piperlongumine (1) increases reactive oxygen species (ROS) levels and induces apoptosis in cancer cells through various pathways. Nitric oxide (NO) donors have demonstrated potent anticancer activities with exogenous NO being oxidized by ROS in the tumor microenvironment to form highly reactive N-oxides (RNOS). This amplifies oxidative stress cascade reactions, ultimately inducing cancer cell apoptosis. To exploit this synergy, a series of NO-releasing piperlongumine derivatives (2-5) were designed and synthesized. These compounds were expected to release NO in cancer cells, simultaneously generating piperlongumine derivative fragments to enhance the anticancer effects. Compound 6, structurally similar to compounds 2-5 but not releasing NO, served as a control. Among these derivatives, compound 5 exhibited the most potent antiproliferative activity against HCT-116 cells and efficiently released NO in this cell line. Further investigation revealed that compound 5 inhibited colon cancer cell proliferation by modulating β-catenin expression, which is a pivotal protein in the Wnt/β-catenin signaling pathway. These findings highlight compound 5 as a promising candidate for colon cancer treatment targeting the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yu Zou
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
| | - Yuying He
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
| | - Lijuan Tan
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
| | - Xiaofei Xu
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
21
|
Tripathi SK, Sahoo RK, Biswal BK. Exposure of piperlongumine attenuates stemness and epithelial to mesenchymal transition phenotype with more potent anti-metastatic activity in SOX9 deficient human lung cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5631-5647. [PMID: 38280008 DOI: 10.1007/s00210-024-02965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
Phytocompounds have shown hopeful results in cancer therapy. Piperlongumine (PIP), a naturally derived bioactive alkaloid found in our dietary spice, exhibits promising pharmacological relevance including anticancer activity. This study reconnoitred the anti-lung cancer effect of PIP and the allied mechanisms, in vitro and ex vivo. The cytotoxic, anti-proliferative, and apoptotic effects of PIP on lung cancer cells (LCC) were checked via cell viability, colony formation, cell migration, invasion, comet assay, and various staining techniques. Further, multicellular spheroids assay explored the anti-lung cancer potential of PIP, ex vivo. Preliminary results explored that PIP exerts selective cytotoxic and anti-proliferative effects on LCC by DNA damage and cell cycle arrest. PIP remarkably escalated the cellular and mitochondrial reactive oxygen species (ROS) generation and promoted dissipation of mitochondrial membrane potential (MMP), which triggers activation of caspase-dependent apoptotic pathway in LCC. Mechanistically, PIP showed F-actin deformation mediated significant anti-migratory and anti-invasive activity against LCC. Herein, we also found that F-actin dis-organization modulates the expression of epithelial to mesenchymal transition (EMT) markers and inhibits the expression of stemness marker proteins, like SOX9, CD-133, and CD-44. Moreover, PIP effectively reduced the size of spheroids with strong apoptotic and cytotoxic effects, ex vivo. This has been the first study to discover the high expression of SOX9 supporting the survival of LCC, whereas its inhibition induces higher sensitivity to PIP treatment. This study concludes a newer therapeutic agent (PIP) with promising anticancer activity against LCC by escalating ROS and attenuating MMP, stemness, and EMT.
Collapse
Affiliation(s)
- Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
- Lineberger Comprehensive Cancer Centre, University of North Carolina, Chapel Hill, 27514, NC, USA
| | - Rajeev Kumar Sahoo
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India.
| |
Collapse
|
22
|
Aboul Hosn S, El Ahmadieh C, Thoumi S, Sinno A, Al Khoury C. Cimicifugoside H-2 as an Inhibitor of IKK1/Alpha: A Molecular Docking and Dynamic Simulation Study. Biomolecules 2024; 14:860. [PMID: 39062574 PMCID: PMC11274867 DOI: 10.3390/biom14070860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
One of the most challenging issues scientists face is finding a suitable non-invasive treatment for cancer, as it is widespread around the world. The efficacy of phytochemicals that target oncogenic pathways appears to be quite promising and has gained attention over the past few years. We investigated the effect of docking phytochemicals isolated from the rhizomes of the Cimicifuga foetida plant on different domains of the IκB kinase alpha (IKK1/alpha) protein. The Cimicifugoside H-2 phytochemical registered a high docking score on the activation loop of IKK1/alpha amongst the other phytochemicals compared to the positive control. The interaction of the protein with Cimicifugoside H-2 was mostly stabilized by hydrogen bonds and hydrophobic interactions. A dynamic simulation was then performed with the Cimicifugoside H-2 phytochemical on the activation loop of IKK1/alpha, revealing that Cimicifugoside H-2 is a possible inhibitor of this protein. The pharmacokinetic properties of the drug were also examined to assess the safety of administering the drug. Therefore, in this in silico study, we discovered that the Cimicifugoside H-2 phytochemical inhibits the actively mutated conformation of IKK1/alpha, potentially suppressing the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) pathway.
Collapse
Affiliation(s)
- Shahd Aboul Hosn
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut Campus, P.O. Box 13-5053, Chouran, Beirut 1102 2801, Lebanon (C.E.A.)
| | - Christina El Ahmadieh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut Campus, P.O. Box 13-5053, Chouran, Beirut 1102 2801, Lebanon (C.E.A.)
| | - Sergio Thoumi
- Department of Computer Science and Mathematics, Lebanese American University, Beirut Campus, P.O. Box 13-5053, Chouran, Beirut 1102 2801, Lebanon
| | - Aia Sinno
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut Campus, P.O. Box 13-5053, Chouran, Beirut 1102 2801, Lebanon (C.E.A.)
| | - Charbel Al Khoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut Campus, P.O. Box 13-5053, Chouran, Beirut 1102 2801, Lebanon (C.E.A.)
| |
Collapse
|
23
|
Saadh MJ, Mustafa MA, Malathi H, Ahluwalia G, Kaur S, Al-Dulaimi MAAH, Alubiady MHS, Zain Al-Abdeen SH, Shakier HG, Ali MS, Ahmad I, Abosaoda MK. Targeting the pancreatic tumor microenvironment by plant-derived products and their nanoformulations. Med Oncol 2024; 41:201. [PMID: 39001987 DOI: 10.1007/s12032-024-02443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024]
Abstract
Pancreatic cancer remains a significant health issue with limited treatment options. The tumor stroma, a complex environment made up of different cells and proteins, plays a crucial role in tumor growth and chemoresistance. Targeting tumor stroma, consisting of diverse non-tumor cells such as fibroblasts, extracellular matrix (ECM), immune cells, and also pre-vascular cells is encouraging for remodeling solid cancers, such as pancreatic cancer. Remodeling the stroma of pancreas tumors can be suggested as a strategy for reducing resistance to chemo/immunotherapy. Several studies have shown that phytochemicals from plants can affect the tumor environment and have anti-cancer properties. By targeting key pathways involved in stromal activation, phytochemicals may disrupt communication between the tumor and stroma and make tumor cells more sensitive to different treatments. Additionally, phytochemicals have immunomodulatory and anti-angiogenic properties, all of which contribute to their potential in treating pancreatic cancer. This review will provide a detailed look at how phytochemicals impact the tumor stroma and their effects on pancreatic tumor growth, spread, and response to treatment. It will also explore the potential of combining phytochemicals with other treatment options like chemotherapy, immunotherapy, and radiation.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Gunveen Ahluwalia
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, 303012, Rajasthan, India
| | - Sumeet Kaur
- Department of Applied Sciences, Chandigarh Engineering Colleges, Chandigarh Group of Colleges, Jhanjeri, 140307, Mohali, Punjab, India
| | | | | | | | | | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
24
|
Iranpanah A, Majnooni MB, Biganeh H, Amirian R, Rastegari-Pouyani M, Filosa R, Cheang WS, Fakhri S, Khan H. Exploiting new strategies in combating head and neck carcinoma: A comprehensive review on phytochemical approaches passing through PI3K/Akt/mTOR signaling pathway. Phytother Res 2024; 38:3736-3762. [PMID: 38776136 DOI: 10.1002/ptr.8228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 07/12/2024]
Abstract
Recently, malignant neoplasms have growingly caused human morbidity and mortality. Head and neck cancer (HNC) constitutes a substantial group of malignancies occurring in various anatomical regions of the head and neck, including lips, mouth, throat, larynx, nose, sinuses, oropharynx, hypopharynx, nasopharynx, and salivary glands. The present study addresses the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway as a possible therapeutic target in cancer therapy. Finding new multitargeting agents capable of modulating PI3K/Akt/mTOR and cross-linked mediators could be viewed as an effective strategy in combating HNC. Recent studies have introduced phytochemicals as multitargeting agents and rich sources for finding and developing new therapeutic agents. Phytochemicals have exhibited immense anticancer effects, including targeting different stages of HNC through the modulation of several signaling pathways. Moreover, phenolic/polyphenolic compounds, alkaloids, terpenes/terpenoids, and other secondary metabolites have demonstrated promising anticancer activities because of their diverse pharmacological and biological properties like antiproliferative, antineoplastic, antioxidant, and anti-inflammatory activities. The current review is mainly focused on new therapeutic strategies for HNC passing through the PI3K/Akt/mTOR pathway as new strategies in combating HNC.
Collapse
Affiliation(s)
- Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Hossein Biganeh
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roshanak Amirian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Rastegari-Pouyani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
25
|
Stone J, Mason R, Mitrofanis J, Johnstone DM. Trace Toxins: The Key Component of a Healthful Diet. Dose Response 2024; 22:15593258241271692. [PMID: 39114768 PMCID: PMC11301730 DOI: 10.1177/15593258241271692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
Although it is well established that a vegetable-rich (Mediterranean) diet is associated with health benefits in later life, the mechanisms and biological origins of this benefit are not well established. This review seeks to identify the components a healthful diet that reduce the individual's suffering from non-communicable disease and extend longevity. We note the difference between the claims made for an essential diet (that prevents deficiency syndromes) and those argued for a diet that also prevents or delays non-communicable diseases and ask: what chemicals in our food induce this added resilience, which is effective against cardiovascular and neurodegenerative diseases, diabetes and even cancer? Working in the framework of acquired resilience (tissue resilience induced by a range of stresses), we arguethat the toxins evolved by plants as part of allelopathy (the competition between plant species) are key in making the 'healthful difference'. We further suggest the recognition of a category of micronutrients additional to the established 'micro' categories of vitamins and trace elements and suggest also that the new category be called 'trace toxins'. Implications of these suggestions are discussed.
Collapse
Affiliation(s)
| | - Rebecca Mason
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - John Mitrofanis
- Université Grenoble Alpes, Fonds de Dotation, Clinatec, Grenoble and Institute of Ophthalmology, University College London, London, UK
| | - Daniel M. Johnstone
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
26
|
Abutayeh RF, Altah M, Mehdawi A, Al-Ataby I, Ardakani A. Chemopreventive Agents from Nature: A Review of Apigenin, Rosmarinic Acid, and Thymoquinone. Curr Issues Mol Biol 2024; 46:6600-6619. [PMID: 39057035 PMCID: PMC11276303 DOI: 10.3390/cimb46070393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer, a major challenge to global health and healthcare systems, requires the study of alternative and supportive treatments due to the limitations of conventional therapies. This review examines the chemopreventive potential of three natural compounds: rosmarinic acid, apigenin, and thymoquinone. Derived from various plants, these compounds have demonstrated promising chemopreventive properties in in vitro, in vivo, and in silico studies. Specifically, they have been shown to inhibit cancer cell growth, induce apoptosis, and modulate key signaling pathways involved in cancer progression. The aim of this review is to provide a comprehensive overview of the current research on these phytochemicals, elucidating their mechanisms of action, therapeutic efficacy, and potential as adjuncts to traditional cancer therapies. This information serves as a valuable resource for researchers and healthcare providers interested in expanding their knowledge within the field of alternative cancer therapies.
Collapse
Affiliation(s)
- Reem Fawaz Abutayeh
- Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan;
| | - Maram Altah
- School of Pharmacy, Al-Qadisiyah College, Amman 11118, Jordan;
| | - Amani Mehdawi
- School of Pharmacy, Al-Qadisiyah College, Amman 11118, Jordan;
| | - Israa Al-Ataby
- Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan;
| | - Adel Ardakani
- College of Pharmacy, Amman Arab University, Amman 11953, Jordan;
| |
Collapse
|
27
|
Amirkhosravi A, Mehrabani M, Fooladi S, Norouzmahani ME, Vasei S, Mir Y, Malekoladi Z, Faramarz S, Nematollahi MH, Mehrabani M. Rheum khorasanicum. Hydroalcoholic root extract induces cell death in human colorectal adenocarcinoma: An in vitro and in silico study. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:685-697. [PMID: 38408722 DOI: 10.1016/j.pharma.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Colorectal cancer (CRC) is the second greatest cause of cancer-related death in the world and chemotherapy, as an important part of CRC treatment, has some drawbacks, including systemic toxicity. Therefore, it is crucial to discover new and more effective CRC treatment plans. Rheum khorasanicum (R. khorasanicum) is a medicinal plant with high flavonoids, stilbenes, and anthraquinone contents, so it can be a potential source of antioxidants and can be used for therapeutic purposes and trigger apoptosis in cancer cells. In this study, we investigated the effects of hydroalcoholic root extract of R. khorasanicum treatment on inducing mitochondrial apoptosis of HT-29 and Caco-2 human colorectal adenocarcinoma cells. Firstly, the total phenolic and flavonoid content was determined. Then, the cytotoxic effects of R. khorasanicum on cells of three different types, including HT-29 and Caco-2 colon cancer cells as well as normal 3T3 cells were assessed using the MTT assay. To investigate the characteristics of cellular death, flow cytometry, and western blotting were performed. The results of this study indicated considerable phenolic (356.4±9.4 GAE/gDW) and flavonoid (934.55±17.1 QE/gDW) contents in R. khorasanicum. MTT assay's finding indicated that 100, 60, and 30μg/mL concentrations of R. khorasanicum reduce cell viability in HT-29 and Caco-2 cell lines significantly (P<0.05). It has been also revealed that R. khorasanicum extract induces apoptosis rather than necrosis in these cell lines. Moreover, Bcl-2 expression was significantly reduced in both HT-29 and Caco-2 cell lines, while Bax and cleaved caspase-3 expression soared considerably in the groups under R. khorasanicum treatment (P<0.05). In conclusion, our findings have suggested that high phenol and flavonoid contents of R. khorasanicum root extract possibly play an important role in cell cytotoxicity and apoptosis induction in HT-29 and Caco-2 colon cancer cells.
Collapse
Affiliation(s)
- Arian Amirkhosravi
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Mehrnaz Mehrabani
- Centre de recherche en physiologie, institut de neuropharmacologie, université des sciences médicales de Kerman, Kerman, Iran
| | - Saba Fooladi
- Yale Cardiovascular Research Center, section de médecine cardiovasculaire, département de médecine interne, Yale School of Medicine, New Haven, CT 06511, USA
| | - Mohammad-Erfan Norouzmahani
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Saeedeh Vasei
- Centre de recherche sur les plantes médicinales et la médecine traditionnelle, université des sciences médicales de Kerman, Kerman, Iran
| | - Yousof Mir
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Zahra Malekoladi
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Sanaz Faramarz
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Centre de recherche sur les plantes médicinales et la médecine traditionnelle, université des sciences médicales de Kerman, Kerman, Iran.
| | - Mitra Mehrabani
- Centre de recherche sur les plantes médicinales et la médecine traditionnelle, université des sciences médicales de Kerman, Kerman, Iran.
| |
Collapse
|
28
|
Sun J, Wei Y, Wang J, Hou M, Su L. Treatment of colorectal cancer by traditional Chinese medicine: prevention and treatment mechanisms. Front Pharmacol 2024; 15:1377592. [PMID: 38783955 PMCID: PMC11112518 DOI: 10.3389/fphar.2024.1377592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Colorectal cancer (CRC) is a significant global health burden, with high morbidity and mortality rates. It is often diagnosed at middle to advanced stage, affecting approximately 35% of patients at the time of diagnosis. Currently, chemotherapy has been used to improve patient prognosis and increase overall survival. However, chemotherapy can also have cytotoxic effects and lead to adverse reactions, such as inhibiting bone marrow hematopoiesis, causing digestive dysfunction, hand-foot syndrome, and even life-threatening conditions. In response to these adverse effects, researchers have proposed using Traditional Chinese Medicine (TCM) as an option to treat cancer. TCM research focuses on prescriptions, herbs, and components, which form essential components of the current research in Chinese medicine. The study and implementation of TCM prescriptions and herbs demonstrate its distinctive holistic approach to therapy, characterized by applying multi-component and multi-target treatment. TMC components have advantages in developing new drugs as they consist of single ingredients, require smaller medication dosages, have a precise measure of pharmacodynamic effects, and have a clear mechanism of action compared to TCM prescriptions and herbs. However, further research is still needed to determine whether TMC components can fully substitute the therapeutic efficacy of TCM prescriptions. This paper presents a comprehensive analysis of the research advancements made in TCM prescriptions, herbs, and components. The findings of this study can serve as a theoretical basis for researchers who are interested in exploring the potential of TCM for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Jiaxin Sun
- Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Medical Cell Biology, Hohhot, Inner Mongolia, China
| | - Ying Wei
- Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Medical Cell Biology, Hohhot, Inner Mongolia, China
| | - Jia Wang
- Department of Gynaecology, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Mingxing Hou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Liya Su
- Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Medical Cell Biology, Hohhot, Inner Mongolia, China
| |
Collapse
|
29
|
Pinheiro MSDS, Moysés DA, Galucio NCR, Santos WO, Pina JRS, Oliveira LC, Silva SYS, Silva SDC, Frazão NF, Marinho PSB, Novais ALF, Khayat AS, Marinho AMDR. Cytotoxic and molecular evaluation of spilanthol obtained from Acmella oleracea (L.) R. K. Jansen (jambu) in human gastric cancer cells. Nat Prod Res 2024; 38:1806-1811. [PMID: 37300460 DOI: 10.1080/14786419.2023.2222220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/12/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Acmella oleracea (L.) is a plant popularly known as jambu in the Brazilian Amazon. This species has several biological properties, such as anaesthetic, antioxidant and anti-inflammatory activities, among others. However, there is limited information on its anticancer activity. In this context, this study aims to evaluate the effects of the hydroethanolic extract of jambu and its active compound (spilanthol) on gastric cancer cells. Hydroethanolic jambu inflorescence extract was obtained, and spilanthol was isolated by HPLC. Biological cytotoxicity assays were determined using MTT tests. In addition, an in silico study using molecular docking evaluated the inhibitory properties of spilanthol against JAK1 and JAK2 proteins. The results showed that the hydroethanolic extract and the isolated compound spilanthol exhibited cytotoxicity against cancer cells. Molecular docking revealed that spilanthol has inhibitory potential for JAK1 and JAK2 proteins. Thus, extract of jambu and spilanthol can be a possible candidate for the treatment of gastric carcinoma.
Collapse
Affiliation(s)
| | - Daniele A Moysés
- Nucleus of Research in Oncology (NPO), Federal University of Pará, Belém, Brazil
| | - Natasha C R Galucio
- Nucleus of Research in Oncology (NPO), Federal University of Pará, Belém, Brazil
| | | | | | - Luana C Oliveira
- Postgraduate Program in Chemistry, Federal University of Pará, Belém, Brazil
| | | | | | | | - Patrícia Santana B Marinho
- Chemistry, Federal University of Sul and Sudeste of Pará, Marabá, Brazil
- Postgraduate Program in Chemistry, Federal University of Pará, Belém, Brazil
| | - Andrea L F Novais
- Chemistry, Federal University of Sul and Sudeste of Pará, Marabá, Brazil
| | - André S Khayat
- Nucleus of Research in Oncology (NPO), Federal University of Pará, Belém, Brazil
| | - Andrey Moacir do Rosário Marinho
- Chemistry, Federal University of Sul and Sudeste of Pará, Marabá, Brazil
- Postgraduate Program in Chemistry, Federal University of Pará, Belém, Brazil
| |
Collapse
|
30
|
Hu X, Li J, Yu L, Ifejola J, Guo Y, Zhang D, Khosravi Z, Zhang K, Cui H. Screening of anti-melanoma compounds from Morus alba L.: Sanggenon C promotes melanoma cell apoptosis by disrupting intracellular Ca 2+ homeostasis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117759. [PMID: 38219884 DOI: 10.1016/j.jep.2024.117759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Morus alba L. is a widespread plant that has long been considered to have remarkable medical values, including anti-inflammation in Traditional Chinese Medicine (TCM). The components of Morus Alba L. constituents have been extensively studied and have been shown to have high prospects for cancer therapy. However, limited investigations have been done on the bioactive compounds in Morus alba L. AIM OF THE STUDY This study aimed to systematically examine the anticancer properties of 28 commercially available compounds from Morus alba L. against melanoma cells in vitro. Additionally, the anticancer mechanisms of the bioactive compound exhibiting the most significant potential were further studied. MATERIALS AND METHODS The anti-proliferative effects of Morus alba L.-derived compounds on melanoma cells were determined by colony formation assays. Their effects on cell viability and apoptosis were determined using the CCK8 assay and flow cytometry, respectively. The binding affinity of identified Morus alba L. compounds with anticancer activities towards melanoma targets was analyzed via molecular docking. The molecular mechanism of Sanggenon C was explored using soft agar assays, EdU incorporation assays, flow cytometry, western blotting, transcriptome analysis, and xenograft assays. RESULTS Based on colony formation assays, 11 compounds at 20 μM significantly inhibited colony growth on a panel of melanoma cells. These compounds displayed IC50 values (half maximal inhibitory concentrations) ranging from 5 μM to 30 μM. Importantly, six compounds were identified as novel anti-melanoma agents, including Sanggenon C, 3'-Geranyl-3-prenyl-2',4',5,7-tetrahydroxyflavone, Moracin P, Moracin O, Kuwanon A, and Kuwanon E. Among them, Sanggenon C showed the most potent effects, with an IC50 of about 5 μM, significantly reducing proliferation and inducing apoptosis in melanoma cells. Based on the xenograft model assay, Sanggenon C significantly inhibited melanoma cell proliferation in vivo. Sanggenon C triggered ER stress in a dose-dependent manner, which further disrupted cellular calcium ion (Ca2+) homeostasis. The Ca2+ chelator BAPTA partially restored cell apoptosis induced by Sanggenon C, confirming that Ca2+ signaling contributed to the anticancer activity of Sanggenon C against melanoma. CONCLUSIONS In our study, 11 compounds demonstrated anti-melanoma properties. Notably, Sanggenon C was found to promote apoptosis by disrupting the intracellular calcium homeostasis in melanoma cells. This study provides valuable information for the future development of novel cancer therapeutic agents from Morus alba L.
Collapse
Affiliation(s)
- Xin Hu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| | - Jing Li
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| | - Lang Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| | - Jemirade Ifejola
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| | - Yan Guo
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 401329, China.
| | - Dandan Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| | - Zahra Khosravi
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| | - Kui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| |
Collapse
|
31
|
Xu Y, Jiang C. Astaxanthin suppresses the malignant behaviors of nasopharyngeal carcinoma cells by blocking PI3K/AKT and NF-κB pathways via miR-29a-3p. Genes Environ 2024; 46:10. [PMID: 38649975 PMCID: PMC11036637 DOI: 10.1186/s41021-024-00304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND As a natural extraction, astaxanthin is gaining increasing attention because of its safety and anti-tumor properties. It has been reported to participate in the progression of various types of cancer such as gastric cancer and ovarian cancer. Nevertheless, the role of astaxanthin in nasopharyngeal carcinoma (NPC) has not been investigated. OBJECT The study aimed to explore the anticancer mechanism of astaxanthin in regulating NPC cell proliferation, cell cycle progression, apoptosis, migration, and invasion. METHODS Human NPC cells (C666-1) were treated with different concentrations of astaxanthin (0, 1, 10, 20 mg/mL) followed by detection of cell viability. Then, C666-1 cell proliferation, apoptosis, cell cycle progression, invasion, and migration in response to 10 mg/mL astaxanthin, LY294002 (PI3K/AKT inhibitor) or parthenolide (PTL; NF-κB inhibitor) treatment were measured using cell counting kit-8 assay, colony forming assay, flow cytometry analyses, Transwell assay, and wound healing assay, respectively. Western blotting was performed to quantify protein levels of factors involved in PI3K/AKT and NF-κB signaling pathways, cell cycle phase markers (Cyclin D1, p21) and apoptotic markers (Bcl-2 and Bax). RESULTS C666-1 cell proliferation, invasion, and migration were significantly suppressed by astaxanthin while cell apoptosis and cell cycle arrest at G1 phase were effectively enhanced in the context of 10 mg/mL astaxanthin. Protein levels of p-AKT, p-P65 and p-IκB levels were suppressed by astaxanthin treatment. After LY294002 or PTL treatment, the suppressive impact of astaxanthin on C666-1 cell process was strengthened, accompanied by the more obvious decrease in cell activity and cell colony number, more enhanced cell apoptosis and G1 phase arrest, and further inhibited cell migration and invasion. Moreover, the inhibitory effect of astaxanthin on Cyclin D1 and Bcl-2 protein levels as well as the promoting impact of astaxanthin on p21 and Bax were also amplified in combination with LY294002 or PTL treatment. CONCLUSIONS Astaxanthin significantly suppresses NPC cell proliferation, cell cycle arrest, migration, invasion while promoting cell apoptosis by inactivating PI3K/AKT and NF-κB pathways. The study first reveals the anticancer role of astaxanthin in NPC, providing a potential candidate for NPC treatment.
Collapse
Affiliation(s)
- Yajia Xu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, No.287 Changhuai Road, 233000, Bengbu, Anhui, China
| | - Chengyi Jiang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, No.287 Changhuai Road, 233000, Bengbu, Anhui, China.
| |
Collapse
|
32
|
Mishra N, Sharma M, Mishra P, Nisha R, Singh P, Pal RR, Singh N, Singh S, Maurya P, Pant S, Mishra PR, Saraf SA. Transporter targeted-carnitine modified pectin-chitosan nanoparticles for inositol hexaphosphate delivery to the colon: An in silico and in vitro approach. Int J Biol Macromol 2024; 263:130517. [PMID: 38423444 DOI: 10.1016/j.ijbiomac.2024.130517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Orally targeted delivery systems have attracted ample interest in colorectal cancer management. In this investigation, we developed Inositol hexaphosphate (IHP) loaded Tripolyphosphate (Tr) crosslinked Pectin (Pe) Chitosan (Ch) nanoparticles (IHP@Tr*Pe-Ch-NPs) and modified them with l-Carnitine (CE) (CE-IHP@Tr*Pe-Ch-NPs) to improve uptake in colon cells. The formulated CE-IHP@Tr*Pe-Ch-NPs displayed a monodisperse distribution with 219.3 ± 5.5 nm diameter and 30.17 mV surface charge. Cell-line studies revealed that CE-IHP@Tr*Pe-Ch-NPs exhibited excellent biocompatibility in J774.2 and decreased cell viability in DLD-1, HT-29, and MCF7 cell lines. More cell internalization was seen in HT-29 and MCF7 due to overexpression of the OCTN2 and ATB0,+ transporter (CE transporters) compared to DLD-1. The cell cycle profile, reactive oxygen species, apoptosis, and mitochondrial membrane potential assays were performed to explore the chemo-preventive mechanism of CE-IHP@Tr*Pe-Ch-NPs. Moreover, the in-silico docking studies revealed enhanced interactive behavior of CE-IHP@Tr*Pe-Ch-NPs, thereby proving their targeting ability. All the findings suggested that CE-IHP@Tr*Pe-Ch-NPs could be a promising drug delivery approach for colon cancer targeting.
Collapse
Affiliation(s)
- Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Pooja Mishra
- Department of Horticulture, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Raquibun Nisha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Samipta Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Priyanka Maurya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Suyash Pant
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India.
| |
Collapse
|
33
|
Almilaibary A. Phyto-therapeutics as anti-cancer agents in breast cancer: Pathway targeting and mechanistic elucidation. Saudi J Biol Sci 2024; 31:103935. [PMID: 38327657 PMCID: PMC10847379 DOI: 10.1016/j.sjbs.2024.103935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
Cancer of the breast is the mainly prevalent class of cancer in females diagnosed over the globe. It also happens to be the 2nd most prevalent reason of cancer-related deaths among females worldwide. Some of the most common type's therapies for carcinoma of the breast involve radiation therapy, chemotherapy, and resection. Many studies are being conducted to develop new therapeutic strategies for better diagnosis of breast cancer. An enormous number of anticancer medications have been developed as a result of growing understanding of the molecular pathways behind the advancement of cancer. Over the past few decades, the general survival rate has not greatly increased due to the usage of chemically manufactured medications. Therefore, in order to increase the effectiveness of current cancer treatments, new tactics and cutting-edge chemoprevention drugs are required. Phytochemicals, which are naturally occurring molecules derived from plants, are important sources for both cancer therapy and innovative medication development. These phytochemicals frequently work by controlling molecular pathways linked to the development and spread of cancer. Increasing antioxidant status, inactivating carcinogens, preventing proliferation, causing cell cycle arrest and apoptosis, and immune system control are some of the specific ways. This primary objective of this review is to provide an overview of the active ingredients found in natural goods, including information on their pharmacologic action, molecular targets, and current state of knowledge. We have given a thorough description of a number of natural substances that specifically target the pathways linked to breast carcinoma in this study. We've conducted a great deal of study on a few natural compounds that may help us identify novel targets for the detection of breast carcinoma.
Collapse
Affiliation(s)
- Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Albaha University, Albaha, Saudi Arabia
| |
Collapse
|
34
|
Zhang Q, Yang C, Gao X, Dong J, Zhong C. Phytochemicals in regulating PD-1/PD-L1 and immune checkpoint blockade therapy. Phytother Res 2024; 38:776-796. [PMID: 38050789 DOI: 10.1002/ptr.8082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 12/06/2023]
Abstract
Clinical treatment and preclinical studies have highlighted the role of immune checkpoint blockade in cancer treatment. Research has been devoted to developing immune checkpoint inhibitors in combination with other drugs to achieve better efficacy or reduce adverse effects. Phytochemicals sourced from vegetables and fruits have demonstrated antiproliferative, proapoptotic, anti-migratory, and antiangiogenic effects against several cancers. Phytochemicals also modulate the tumor microenvironment such as T cells, regulatory T cells, and cytokines. Recently, several phytochemicals have been reported to modulate immune checkpoint proteins in in vivo or in vitro models. Phytochemicals decreased programmed cell death ligand-1 expression and synergized programmed cell death receptor 1 (PD-1) monoclonal antibody to suppress tumor growth. Combined administration of phytochemicals and PD-1 monoclonal antibody enhanced the tumor growth inhibition as well as CD4+ /CD8+ T-cell infiltration. In this review, we discuss immune checkpoint molecules as potential therapeutic targets of cancers. We further assess the impact of phytochemicals including carotenoids, polyphenols, saponins, and organosulfur compounds on cancer PD-1/programmed cell death ligand-1 immune checkpoint molecules and document their combination effects with immune checkpoint inhibitors on various malignancies.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenying Yang
- Yinzhou Center for Disease Control and Prevention, Ningbo, China
| | - Xingsu Gao
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ju Dong
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Li J, Zhong X, Zhao Y, Shen J, Xiao Z, Pilapong C. Acacetin inhibited non-small-cell lung cancer (NSCLC) cell growth via upregulating miR-34a in vitro and in vivo. Sci Rep 2024; 14:2348. [PMID: 38287075 PMCID: PMC10824707 DOI: 10.1038/s41598-024-52896-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Acacetin, one of the flavonoid compounds, is a natural product found in various plants, including Silver birch, and Damiana. Previous studies showed that acacetin has anti-cancer effects on many kinds of cancer cells, however, the role of and the mechanisms of actions of acacetin on non-small cell lung cancer (NSCLC) cells is still not fully understood. Herein, we found that, in vitro, acacetin inhibited the proliferation, invasion, and migration of NSCLC cells, A549 and H460, in a dose-dependent manner. Meanwhile, flow cytometry assay results showed that acacetin induced G2/M phase cell cycle arrest, and apoptosis of NSCLC cells. In vivo, acacetin suppressed tumor formation of A549-xenografted nude mice model with no obvious toxicities. Western blotting results showed that the protein levels of cell cycle-related proteins cyclin B1, cyclin D, and anti-apoptotic protein Bcl-2 had decreased, while the apoptosis-related protein Bak had increased both in NSCLC cells and in A549-xenografted tumor tissues. For investigating the molecular mechanism behind the biological effects of acacetin on NSCLC, we found that acacetin induced the expression levels of tumor suppressor p53 both in vitro and in vivo. MicroRNA, miR-34a, the direct target of p53, has been shown anti-NSCLC proliferation effects by suppressing the expression of its target gene programmed death ligand 1 (PD-L1). We found that acacetin upregulated the expression levels of miR-34a, and downregulated the expression levels of PD-L1 of NSCLC cells in vitro and of tumors in vivo. In vitro, knockdown p53 expression by siRNAs reversed the induction effects of acacetin on miR34a expression and abolished the inhibitory activity of acacetin on NSCLC cell proliferation. Furthermore, using agomir and antagomir to overexpress and suppress the expression miR-34a in NSCLC cells was also examined. We found that miR-34a agomir showed similar effects as acacetin on A549 cells, while miR-34a antagomir could partially or completely reverse acacetin's effects on A549 cells. In vivo, intratumor injection of miR-34a antagomir could drastically suppress the anti-tumor formation effects of acacetin in A549-xenografted nude mice. Overall, our results showed that acacetin inhibits cell proliferation and induces cell apoptosis of NSCLC cells by regulating miR-34a.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of BioMolecular Imaging, Molecular and Cellular Biology, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xianmei Zhong
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Department of Pharmacy, People's Hospital of Nanbu County, Nanchong, 637300, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Chalermchai Pilapong
- Laboratory of BioMolecular Imaging, Molecular and Cellular Biology, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
36
|
Rosell M, Fadnes LT. Vegetables, fruits, and berries - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2024; 68:10455. [PMID: 38327994 PMCID: PMC10845895 DOI: 10.29219/fnr.v68.10455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/20/2022] [Accepted: 12/20/2023] [Indexed: 02/09/2024] Open
Abstract
Vegetables, fruits, and berries comprise a large variety of foods and are recognised to play an important role in preventing chronic diseases. Many observational studies have been published during the last decade, and the aim of this scoping review is to describe the overall evidence for the role of vegetables, fruits, and berries for health-related outcomes as a basis for setting and updating food-based dietary guidelines. A scoping review was conducted according to the protocol developed within the Nordic Nutrition Recommendations 2023 project. Current available evidence strengthens the role of consuming vegetables, fruits, and berries in preventing chronic diseases. The most robust evidence is found for cancer in the gastric system and lung cancer, cardiovascular disease, and all-cause mortality. Steeper risk reductions are generally seen at the lower intake ranges, but further reductions have been seen for higher intakes for cardiovascular disease. Weaker associations are seen for type 2 diabetes. There is evidence that suggests a beneficial role also for outcomes such as osteoporosis, depression, cognitive disorders, and frailty in the elderly. The observed associations are supported by several mechanisms, indicting causal effects. Some subgroups of vegetables, fruits, and berries may have greater benefits than other subgroups, supporting a recommendation to consume a variety of these foods.
Collapse
Affiliation(s)
- Magdalena Rosell
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Lars T. Fadnes
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Bergen Addiction Research, Department of Addiction Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
37
|
Wagle S, Lee JA, Rupasinghe HPV. Synergistic Cytotoxicity of Extracts of Chaga Mushroom and Microalgae against Mammalian Cancer Cells In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:7944378. [PMID: 38268969 PMCID: PMC10807943 DOI: 10.1155/2024/7944378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/17/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024]
Abstract
Chaga mushroom (Inonotus obliquus) contains bioactive metabolites and has been used to treat various ailments, including cancer. Similarly, marine microalgae are considered a sustainable food supplement with anticancer and antioxidant properties. This study investigated the cytotoxicity of different extracts prepared from I. obliquus and microalgae using cultured human and canine cancer cell lines (MCF-7, HepG2, HOS, D-17, and DH-82). MTS cell viability assay was used to study the cytotoxicity of I. obliquus and microalgae extracts, and a synergy matrix effect was used to study the combined effect of the extracts. Isobologram analysis and the highest single agent synergy model were applied to study and validate the synergy between the extracts from I. obliquus and microalgae. Ethanol-based extraction and supercritical water extract significantly inhibited the growth of various mammalian cancer cells compared to aqueous extracts. Osteosarcoma cells were more susceptible to the supercritical extracts of I. obliquus and chlorophyll-free and sugar-free ethanol extracts of microalgae. A combination of ethanol-based I. obliquus extract and chlorophyll-free microalgae extract resulted in a synergistic interaction with various tested cancer cells. This study provides experimental evidence supporting the potential therapeutic application of I. obliquus and microalgae extracts with a synergistic effect to inhibit the growth of various mammalian cancer cells. Additional in vivo studies are required to fully explore possible therapeutic applications of these unique mixtures to be used in treating cancers.
Collapse
Affiliation(s)
- Sajeev Wagle
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro NS B2N 5E3, Canada
| | - Julie Anne Lee
- Adored Beast Apothecary, 77 Rooney Crescent, Moncton NB E1E 4M4, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro NS B2N 5E3, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax NS B3H 4H7, Canada
| |
Collapse
|
38
|
Sailo BL, Liu L, Chauhan S, Girisa S, Hegde M, Liang L, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Harnessing Sulforaphane Potential as a Chemosensitizing Agent: A Comprehensive Review. Cancers (Basel) 2024; 16:244. [PMID: 38254735 PMCID: PMC10814109 DOI: 10.3390/cancers16020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Recent advances in oncological research have highlighted the potential of naturally derived compounds in cancer prevention and treatment. Notably, sulforaphane (SFN), an isothiocyanate derived from cruciferous vegetables including broccoli and cabbage, has exhibited potent chemosensitizing capabilities across diverse cancer types of bone, brain, breast, lung, skin, etc. Chemosensitization refers to the enhancement of cancer cell sensitivity to chemotherapy agents, counteracting the chemoresistance often developed by tumor cells. Mechanistically, SFN orchestrates this sensitization by modulating an array of cellular signaling pathways (e.g., Akt/mTOR, NF-κB, Wnt/β-catenin), and regulating the expression and activity of pivotal genes, proteins, and enzymes (e.g., p53, p21, survivin, Bcl-2, caspases). When combined with conventional chemotherapeutic agents, SFN synergistically inhibits cancer cell proliferation, invasion, migration, and metastasis while potentiating drug-induced apoptosis. This positions SFN as a potential adjunct in cancer therapy to augment the efficacy of standard treatments. Ongoing preclinical and clinical investigations aim to further delineate the therapeutic potential of SFN in oncology. This review illuminates the multifaceted role of this phytochemical, emphasizing its potential to enhance the therapeutic efficacy of anti-cancer agents, suggesting its prospective contributions to cancer chemosensitization and management.
Collapse
Affiliation(s)
- Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; (B.L.S.); (S.C.); (S.G.); (M.H.)
| | - Le Liu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen 518001, China;
| | - Suravi Chauhan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; (B.L.S.); (S.C.); (S.G.); (M.H.)
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; (B.L.S.); (S.C.); (S.G.); (M.H.)
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; (B.L.S.); (S.C.); (S.G.); (M.H.)
| | - Liping Liang
- Guangzhou Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China;
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; (B.L.S.); (S.C.); (S.G.); (M.H.)
| |
Collapse
|
39
|
Ali M, Mishra D, Singh RP. Cancer Pathways Targeted by Berberine: Role of microRNAs. Curr Med Chem 2024; 31:5178-5198. [PMID: 38303534 DOI: 10.2174/0109298673275121231228124031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024]
Abstract
Cancer is a complex and heterogeneous malignant disease. Due to its multifactorial nature, including progressive changes in genetic, epigenetic, transcript, and protein levels, conventional therapeutics fail to save cancer patients. Evidence indicates that dysregulation of microRNA (miRNA) expression plays a crucial role in tumorigenesis, metastasis, cell proliferation, differentiation, metabolism, and signaling pathways. Moreover, miRNAs can be used as diagnostic and prognostic markers and therapeutic targets in cancer. Berberine, a naturally occurring plant alkaloid, has a wide spectrum of biological activities in different types of cancers. Inhibition of cell proliferation, metastasis, migration, invasion, and angiogenesis, as well as induction of cell cycle arrest and apoptosis in cancer cells, is reported by berberine. Recent studies suggested that berberine regulates many oncogenic and tumor suppressor miRNAs implicated in different phases of cancer. This review discussed how berberine inhibits cancer growth and propagation and regulates miRNAs in cancer cells. And how berberine-mediated miRNA regulation changes the landscape of transcripts and proteins that promote or suppress cancer progression. Overall, the underlying molecular pathways altered by berberine and miRNA influencing the tumor pathophysiology will enhance our understanding to combat the malignancy.
Collapse
Affiliation(s)
- Mansoor Ali
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Deepali Mishra
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana Pratap Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
40
|
Lekhak N, Bhattarai HK. Phytochemicals in Cancer Chemoprevention: Preclinical and Clinical Studies. Cancer Control 2024; 31:10732748241302902. [PMID: 39629692 PMCID: PMC11615997 DOI: 10.1177/10732748241302902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024] Open
Abstract
Phytochemicals, chemicals from plants, have garnered huge attention for their potential ability to prevent cancer. In vivo and preclinical models show that they do so often by affecting the hallmarks of cancer. Phytochemicals affect key pathways involved in the survival, genome maintenance, proliferation, senescence, and transendothelial migration of cancer cells. Some phytochemicals, namely antioxidants, can scavenge and quench reactive oxygen species (ROS) to prevent lipid peroxidation and DNA damage. They also trigger apoptosis by stopping the cell cycle at checkpoints to initiate the DNA damage response. Numerous in vitro and in vivo studies suggest that phytochemicals hinder cancer onset and progression by modifying major cell signaling pathways such as JAK/STAT, PI3K/Akt, Wnt, NF-kB, TGF-β, and MAPK. It is a well-known fact that the occurrence of cancer is in itself a very intricate process involving multiple mechanisms concurrently. Cancer prevention using phytochemicals is also an equally complex process that requires investigation and understanding of a myriad of processes going on in the cells and tissues. While many in vitro and preclinical studies have established that phytochemicals may be potential chemopreventive agents of cancer, their role in clinical randomized control trials needs to be established. This paper aims to shed light on the dynamics of chemoprevention using phytochemicals.
Collapse
Affiliation(s)
- Nitish Lekhak
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | | |
Collapse
|
41
|
Lagarda-Clark EA, Goulet C, Duarte-Sierra A. Biochemical dynamics during postharvest: Highlighting the interplay of stress during storage and maturation of fresh produce. Biomol Concepts 2024; 15:bmc-2022-0048. [PMID: 38587059 DOI: 10.1515/bmc-2022-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
The lifecycle of fresh produce involves a sequence of biochemical events during their ontology, and these events are particularly significant for climacteric fruits. A high demand during ripening is observed in these plant products, which is reflected in a high rate of respiration and ethylene production. Increased respiratory demand triggers the activation of secondary pathways such as alternate oxidase, which do not experience critical increases in energy consumption in non-climacteric fruit. In addition, biochemical events produced by external factors lead to compensatory responses in fresh produce to counteract the oxidative stress caused by the former. The dynamics of these responses are accompanied by signaling, where reactive oxygen species play a pivotal role in fresh product cell perception. This review aims to describe the protection mechanisms of fresh produce against environmental challenges and how controlled doses of abiotic stressors can be used to improve quality and prolong their shelf-life through the interaction of stress and defense mechanisms.
Collapse
Affiliation(s)
- Ernesto Alonso Lagarda-Clark
- Food Science Department, Laval University, Quebec, QC G1V 0A6, Canada
- Center for Research in Plant Innovation (CRIV), Laval University, Quebec, QC G1V 6 0A6, Canada
- Institute on Nutrition and Functional Foods (INAF), Laval University, Quebec, QC G1V 8 0A6, Canada
| | - Charles Goulet
- Food Science Department, Laval University, Quebec, QC G1V 0A6, Canada
- Center for Research in Plant Innovation (CRIV), Laval University, Quebec, QC G1V 6 0A6, Canada
- Department of Phytology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Arturo Duarte-Sierra
- Food Science Department, Laval University, Quebec, QC G1V 0A6, Canada
- Center for Research in Plant Innovation (CRIV), Laval University, Quebec, QC G1V 6 0A6, Canada
- Institute on Nutrition and Functional Foods (INAF), Laval University, Quebec, QC G1V 8 0A6, Canada
| |
Collapse
|
42
|
Kumari R, Syeda S, Shrivastava A. Nature's Elixir for Cancer Treatment: Targeting Tumor-induced Neovascularization. Curr Med Chem 2024; 31:5281-5304. [PMID: 38425113 DOI: 10.2174/0109298673282525240222050051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Angiogenesis, a multistep process, involves sprouting of new vessels from the pre-existing vessels in response to a stimulus in its microenvironment. Normally, angiogenesis is important for tissue maintenance and homeostasis, however it is also known to be associated with various pathologies, including cancer. Importantly, neovascularization is very crucial for tumors to grow and metastasize since it allows delivery of oxygen and nutrients as well as promotes tumor cell dissemination to distant sites. Activation of angiogenic switch is a consequence of imbalance in pro- as well as anti-angiogenic factors, that are immensely impacted by reactive oxygen species and epigenetic regulation. Several reports have suggested that angiogenic inhibitors significantly inhibit tumor growth. Therefore, anti-angiogenic therapy has gained substantial attention and has been considered a rational approach in cancer therapeutics. In this line, several anti- angiogenic drugs have been approved, however, their long term usage caused several side effects. In view of this, researchers switched to plant-based natural compounds for identifying safe and cost-effective anti-angiogenic drugs. Of note, various phytochemicals have been evaluated to reduce tumor growth by inhibiting tumor-induced angiogenesis. Moreover, the implication of nano-carriers to enhance the bioavailability of phytochemicals has proven to be more efficient anti-cancer agents. The present review highlights the existing knowledge on tumor-induced neovascularization and its regulation at the epigenetic level. Further, we emphasize the inhibitory effect of phytochemicals on tumor- induced angiogenesis that will open up new avenues in cancer therapeutics.
Collapse
Affiliation(s)
- Rani Kumari
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Saima Syeda
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, Delhi, 110007, India
| |
Collapse
|
43
|
Ajmeera D, Ajumeera R. Drug repurposing: A novel strategy to target cancer stem cells and therapeutic resistance. Genes Dis 2024; 11:148-175. [PMID: 37588226 PMCID: PMC10425757 DOI: 10.1016/j.gendis.2022.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023] Open
Abstract
Chemotherapy is an effortless and frequently used approach in cancer therapy. However, in most cases, it can only prolong life expectancy and does not guarantee a complete cure. Furthermore, chemotherapy is associated with severe adverse effects, one of the major complications of effective cancer therapy. In addition, newly published research outputs show that cancer stem cells are involved in cancer disease progression, drug resistance, metastasis, and recurrence and that they are functional in the trans-differentiation capacity of cancer stem cells to cancer cells in response to treatments. Novel strategies are therefore required for better management of cancer therapy. The prime approach would be to synthesize and develop novel drugs that need extensive resources, time, and endurance to be brought into therapeutic use. The subsequent approach would be to screen the anti-cancer activity of available non-cancerous drugs. This concept of repurposing non-cancer drugs as an alternative to current cancer therapy has become popular in recent years because using existing anticancer drugs has several adverse effects. Micronutrients have also been investigated for cancer therapy due to their significant anti-cancer effects with negligible or no side effects and availability in food sources. In this paper, we discuss an ideal hypothesis for screening available non-cancerous drugs with anticancer activity, with a focus on cancer stem cells and their clinical application for cancer treatment. Further, drug repurposing and the combination of micronutrients that can target both cancers and cancer stem cells may result in a better therapeutic approach leading to maximum tumor growth control.
Collapse
Affiliation(s)
- Divya Ajmeera
- Cell Biology Department, ICMR-National Institute of Nutrition (NIN), Hyderabad, Telangana 500007, India
| | - Rajanna Ajumeera
- Cell Biology Department, ICMR-National Institute of Nutrition (NIN), Hyderabad, Telangana 500007, India
| |
Collapse
|
44
|
Silva CA, Véras JH, Ventura JA, de Melo Bisneto AV, de Oliveira MG, Cardoso Bailão EFL, E Silva CR, Cardoso CG, da Costa Santos S, Chen-Chen L. Chemopreventive effect and induction of DNA repair by oenothein B ellagitannin isolated from leaves of Eugenia uniflora in Swiss Webster treated mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:929-941. [PMID: 37728073 DOI: 10.1080/15287394.2023.2259425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Oenothein B (OeB) is a dimeric ellagitannin with potent antioxidative, antitumor, immunomodulatory, and anti-inflammatory properties. Despite the promising activities of OeB, studies examining the genotoxic or protective effects of this ellagitannin on DNA are scarce. Therefore, to further comprehensively elucidate the chemopreventive profile of OeB, the aim of this study was to evaluate the mutagenic and antimutagenic actions of OeB using Salmonella typhimurium strains with the Ames test. The micronucleus (MN) test and comet assay were used to assess the anticytotoxic and antigenotoxic effects of OeB on mouse bone marrow cells following differing treatments (pre-, co-, and post-treatment) in response to cyclophosphamide (CPA)-induced DNA damage. In addition, histopathological analyses were performed to assess liver and kidney tissues of Swiss Webster treated mice. Our results did not detect mutagenic or antimutagenic activity attributed to OeB at any concentration in the Ames test. Regarding the MN test, data showed that this ellagitannin exerted antigenotoxic and anticytotoxic effects against CPA-induced DNA damage under all treatment conditions. However, no anticytotoxic action was observed in MN test after pre-treatment with the highest doses of OeB. In addition, OeB demonstrated antigenotoxic effects in the comet assay for all treatments. Histopathological analyses indicated that OeB attenuated the toxic effects of CPA in mouse liver and kidneys. These findings suggest that OeB exerted a chemoprotective effect following pre- and co-treatments and a DNA repair action in post-treatment experiments. Our findings indicate that OeB protects DNA against CPA-induced damaging agents and induces post-damage DNA repair.
Collapse
Affiliation(s)
| | | | - Joyce Aves Ventura
- Institute of Biological Sciences, Federal University of Goiás, Goiânia-GO, Brazil
| | | | | | | | | | - Clever Gomes Cardoso
- Institute of Biological Sciences, Federal University of Goiás, Goiânia-GO, Brazil
| | | | - Lee Chen-Chen
- Institute of Biological Sciences, Federal University of Goiás, Goiânia-GO, Brazil
| |
Collapse
|
45
|
Gavia-García G, Rosado-Pérez J, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM. The consumption of Sechium edule (chayote) has antioxidant effect and prevents telomere attrition in older adults with metabolic syndrome. Redox Rep 2023; 28:2207323. [PMID: 37140004 PMCID: PMC10165935 DOI: 10.1080/13510002.2023.2207323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
OBJECTIVE To determine the effect of the consumption of Sechium edule (1.5 g/day) for six months on oxidative stress (OxS) and inflammation markers and its association with telomere length (TL) in older adults with metabolic syndrome (MetS). METHODS The study was conducted in a sample of 48 older adults: placebo (EP) and experimental (EG) groups. Lipoperoxides, protein carbonylation, 8-OHdG, total oxidant status (TOS), SOD, GPx, H2O2 inhibition, total antioxidant status (TAS), inflammatory cytokines (IL6, IL10, TNF-α), and TL were measured before and six months post-treatment. RESULTS We found a significant decrease in the levels of lipoperoxides, protein carbonylation, 8-OHdG, TOS in the EG in comparison PG. Likewise, a significante increase of TAS, IL-6, and IL-10 levels was found at six months post-treatment in EG in comparison with PG. TL showed a statistically significant decrease in PG compared to post-treatment EG. CONCLUSIONS Our findigns showed that the supplementation of Sechium edule has antioxidant, and anti-inflammatory effects, and diminushion of shortening of telomeric DNA in older adults with MetS. This would be the first study that shows that the intervention with Sechium edule has a possible geroprotective effect by preventing telomeres from shortening as usually happens in these patients. Therefore, suggesting a protection of telomeric DNA and genomic DNA.
Collapse
Affiliation(s)
- Graciela Gavia-García
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City, Mexico
| | - Juana Rosado-Pérez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City, Mexico
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City, Mexico
| | | |
Collapse
|
46
|
WAHI ABHISHEK, BISHNOI MAMTA, RAINA NEHA, SINGH MEGHNAAMRITA, VERMA PIYUSH, GUPTA PIYUSHKUMAR, KAUR GINPREET, TULI HARDEEPSINGH, GUPTA MADHU. Recent updates on nano-phyto-formulations based therapeutic intervention for cancer treatment. Oncol Res 2023; 32:19-47. [PMID: 38188681 PMCID: PMC10767243 DOI: 10.32604/or.2023.042228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/27/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer is a leading cause of death globally, with limited treatment options and several limitations. Chemotherapeutic agents often result in toxicity which long-term conventional treatment. Phytochemicals are natural constituents that are more effective in treating various diseases with less toxicity than the chemotherapeutic agents providing alternative therapeutic approaches to minimize the resistance. These phytoconstituents act in several ways and deliver optimum effectiveness against cancer. Nevertheless, the effectiveness of phyto-formulations in the management of cancers may be constrained due to challenges related to inadequate solubility, bioavailability, and stability. Nanotechnology presents a promising avenue for transforming current cancer treatment methods through the incorporation of phytochemicals into nanosystems, which possess a range of advantageous characteristics such as biocompatibility, targeted and sustained release capabilities, and enhanced protective effects. This holds significant potential for future advancements in cancer management. Herein, this review aims to provide intensive literature on diverse nanocarriers, highlighting their applications as cargos for phytocompounds in cancer. Moreover, it offers an overview of the current advancements in the respective field, emphasizing the characteristics that contribute to favourable outcomes in both in vitro and in vivo settings. Lastly, clinical development and regulatory concerns are also discussed to check on the transformation of the concept as a promising strategy for combination therapy of phytochemicals and chemotherapeutics that could lead to cancer management in the future.
Collapse
Affiliation(s)
- ABHISHEK WAHI
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi, 110017, India
| | - MAMTA BISHNOI
- Department of Pharmaceutical Sciences, Gurugram University, Haryana, 122003, India
| | - NEHA RAINA
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi, 110017, India
| | - MEGHNA AMRITA SINGH
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi, 110017, India
| | - PIYUSH VERMA
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi, 110017, India
| | - PIYUSH KUMAR GUPTA
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - GINPREET KAUR
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, Vile Parle (West), Mumbai, 400056, India
| | - HARDEEP SINGH TULI
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - MADHU GUPTA
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi, 110017, India
| |
Collapse
|
47
|
Tanaka T, Aoki R, Terasaki M. Potential Chemopreventive Effects of Dietary Combination of Phytochemicals against Cancer Development. Pharmaceuticals (Basel) 2023; 16:1591. [PMID: 38004456 PMCID: PMC10674766 DOI: 10.3390/ph16111591] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer remains a major cause of cancer-related death worldwide. Over 70% of epithelial malignancies are sporadic and are related to lifestyle. Epidemiological studies suggest an inverse correlation between cancer incidence and fruit and vegetable intake. Numerous preclinical studies using in vitro (cell lines) and in vivo animal models of oncogenesis have reported the chemopreventive effects of dietary phytochemical agents through alterations in different biomarkers and signaling pathways. However, there is contrasting evidence from preclinical studies and clinical trials. To date, the most studied compounds include curcumin, resveratrol, isoflavones, green tea extract (epigallocatechin gallate), black raspberry powder (anthocyanins and ellagitannins), bilberry extract (anthocyanins), ginger extract (gingerol derivatives), and pomegranate extract (ellagitannins and ellagic acid). Overall, the clinical evidence of the preventive effects of dietary phytochemicals against cancer development is still weak, and the amount of these phytochemicals needed to exert chemopreventive effects largely exceeds the common dietary doses. Therefore, we propose a combination treatment of natural compounds that are used clinically for another purpose in order to obtain excess inhibitory efficacy via low-dose administration and discuss the possible reasons behind the gap between preclinical research and clinical trials.
Collapse
Affiliation(s)
- Takuji Tanaka
- Department of Diagnostic Pathology, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu 500-8513, Japan;
| | - Ryogo Aoki
- Department of Diagnostic Pathology, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu 500-8513, Japan;
| | - Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| |
Collapse
|
48
|
Sa P, Mohapatra P, Swain SS, Khuntia A, Sahoo SK. Phytochemical-Based Nanomedicine for Targeting Tumor Microenvironment and Inhibiting Cancer Chemoresistance: Recent Advances and Pharmacological Insights. Mol Pharm 2023; 20:5254-5277. [PMID: 37596986 DOI: 10.1021/acs.molpharmaceut.3c00286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Cancer remains the leading cause of death and rapidly evolving disease worldwide. The understanding of disease pathophysiology has improved through advanced research investigation, and several therapeutic strategies are being used for better cancer treatment. However, the increase in cancer relapse and metastatic-related deaths indicate that available therapies and clinically approved chemotherapy drugs are not sufficient to combat cancer. Further, the constant crosstalk between tumor cells and the tumor microenvironment (TME) is crucial for the development, progression, metastasis, and therapeutic response to tumors. In this regard, phytochemicals with multimodal targeting abilities can be used as an alternative to current cancer therapy by inhibiting cancer survival pathways or modulating TME. However, due to their poor pharmacokinetics and low bioavailability, the success of phytochemicals in clinical trials is limited. Therefore, developing phytochemical-based nanomedicine or phytonanomedicine can improve the pharmacokinetic profile of these phytochemicals. Herein, the molecular characteristics and pharmacological insights of the proposed phytonanomedicine in cancer therapy targeting tumor tissue and altering the characteristics of cancer stem cells, chemoresistance, TME, and cancer immunity are well discussed. Further, we have highlighted the clinical perspective and challenges of phytonanomedicine in filling the gap in potential cancer therapeutics using various nanoplatforms. Overall, we have discussed how clinical success and pharmacological insights could make it more beneficial to boost the concept of nanomedicine in the academic and pharmaceutical fields to counter cancer metastases and drug resistance.
Collapse
Affiliation(s)
- Pratikshya Sa
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, NCR Delhi, India
| | - Priyanka Mohapatra
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, NCR Delhi, India
| | | | - Auromira Khuntia
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, NCR Delhi, India
| | | |
Collapse
|
49
|
Dong H, Chang CD, Gao F, Zhang N, Yan XJ, Wu X, Wang YH. The anti-leukemia activity and mechanisms of shikonin: a mini review. Front Pharmacol 2023; 14:1271252. [PMID: 38026987 PMCID: PMC10651754 DOI: 10.3389/fphar.2023.1271252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Leukemia encompasses a group of highly heterogeneous diseases that pose a serious threat to human health. The long-term outcome of patients with leukemia still needs to be improved and new effective therapeutic strategies continue to be an unmet clinical need. Shikonin (SHK) is a naphthoquinone derivative that shows multiple biological function includes anti-tumor, anti-inflammatory, and anti-allergic effects. Numerous studies have reported the anti-leukemia activity of SHK during the last 3 decades and there are studies showing that SHK is particularly effective towards various leukemia cells compared to solid tumors. In this review, we will discuss the anti-leukemia effect of SHK and summarize the underlying mechanisms. Therefore, SHK may be a promising agent to be developed as an anti-leukemia drug.
Collapse
Affiliation(s)
- Han Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Chun-Di Chang
- Department of Neurology, Jilin Province People’s Hospital, Changchun, China
| | - Fei Gao
- Endocrine Department, Qian Wei Hospital of Jilin Province, Changchun, China
| | - Na Zhang
- Electrodiagnosis Department, Jilin Province FAW General Hospital, Changchun, China
| | - Xing-Jian Yan
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xue Wu
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yue-Hui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
50
|
Burcher JT, DeLiberto LK, Allen AM, Kilpatrick KL, Bishayee A. Bioactive phytocompounds for oral cancer prevention and treatment: A comprehensive and critical evaluation. Med Res Rev 2023; 43:2025-2085. [PMID: 37143373 DOI: 10.1002/med.21969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
The high incidence of oral cancer combined with excessive treatment cost underscores the need for novel oral cancer preventive and therapeutic options. The value of natural agents, including plant secondary metabolites (phytochemicals), in preventing carcinogenesis and representing expansive source of anticancer drugs have been established. While fragmentary research data are available on antioral cancer effects of phytochemicals, a comprehensive and critical evaluation of the potential of these agents for the prevention and intervention of human oral malignancies has not been conducted according to our knowledge. This study presents a complete and critical analysis of current preclinical and clinical results on the prevention and treatment of oral cancer using phytochemicals. Our in-depth analysis highlights anticancer effects of various phytochemicals, such as phenolics, terpenoids, alkaloids, and sulfur-containing compounds, against numerous oral cancer cells and/or in vivo oral cancer models by antiproliferative, proapoptotic, cell cycle-regulatory, antiinvasive, antiangiogenic, and antimetastatic effects. Bioactive phytochemicals exert their antineoplastic effects by modulating various signaling pathways, specifically involving the epidermal growth factor receptor, cytokine receptors, toll-like receptors, and tumor necrosis factor receptor and consequently alter the expression of downstream genes and proteins. Interestingly, phytochemicals demonstrate encouraging effects in clinical trials, such as reduction of oral lesion size, cell growth, pain score, and development of new lesions. While most phytochemicals displayed minimal toxicity, concerns with bioavailability may limit their clinical application. Future directions for research include more in-depth mechanistic in vivo studies, administration of phytochemicals using novel formulations, investigation of phytocompounds as adjuvants to conventional treatment, and randomized clinical trials.
Collapse
Affiliation(s)
- Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Lindsay K DeLiberto
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Andrea M Allen
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Kaitlyn L Kilpatrick
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|