1
|
Kazemi F, Sadeghian F, Pirsadeghi A, Asadi F, Javdani H, Yousefi-Ahmadipour A. Adipose mesenchymal stem cell conditioned medium and extract: A promising therapeutic option for regenerative breast cancer therapy. SAGE Open Med 2024; 12:20503121241306606. [PMID: 39691866 PMCID: PMC11650577 DOI: 10.1177/20503121241306606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Breast cancer is the second most common cancer and a leading cause of cancer death in U.S. women. The tumor microenvironment, especially nearby adipocytes, plays a crucial role in its progression. Therefore, this study aimed to investigate the effects of human adipose mesenchymal stem cells-derived conditioned medium (SUP) and extract (CE) from on breast cancer cells. Methods Human adipose-derived mesenchymal stem cells were isolated and characterized by flow cytometry using Cluster of Differentiation (CD) markers (CD34, CD45, CD90, and CD105). The differentiation potential was confirmed via adipogenic and osteogenic induction. MCF-7 and MDA-MB-231 cells were treated with SUP and CE, and cell viability was assessed using the 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay at 24, 48, and 72 h. Doubling time, colony formation, wound healing, and gene expression for key cancer-related genes (TIMP1, TIMP2, MMP2, PDL1, IDO, Bax, caspase 3, and caspase 9) were also evaluated. Results Both SUP and CE significantly inhibited the viability of MCF-7 and MDA-MB-231 cells, reduced their doubling time, and suppressed colony formation. In wound healing assays, cell migration was notably impaired in MDA-MB-231 cells but less so in MCF-7 cells. Real-time polymerase chain reaction revealed downregulation of TIMP1, MMP2, PDL1, and IDO in MDA-MB-231 cells after treatment, while CE increased certain gene expressions in MCF-7 cells. Bax, caspase 3, and caspase 9 expressions were significantly upregulated in MDA-MB-231 cells but not in MCF-7 cells after treatment. Conclusion Human adipose-derived mesenchymal stem cells-derived SUP and CE exhibit antitumor effects on breast cancer cells, suggesting a potential therapeutic strategy to suppress tumor progression. Mesenchymal stem cells-SUP and CE could be a safe and novel regenerative approach for breast reconstruction postmastectomy without tumor recurrence risk.
Collapse
Affiliation(s)
- Faezeh Kazemi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Faculty of Paramedicine, Department of Laboratory Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Sadeghian
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Faculty of Paramedicine, Department of Laboratory Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Pirsadeghi
- Faculty of Paramedicine, Department of Laboratory Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Asadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Javdani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Faculty of Paramedicine, Department of Laboratory Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
2
|
Strecanska M, Sekelova T, Smolinska V, Kuniakova M, Nicodemou A. Automated Manufacturing Processes and Platforms for Large-scale Production of Clinical-grade Mesenchymal Stem/ Stromal Cells. Stem Cell Rev Rep 2024:10.1007/s12015-024-10812-5. [PMID: 39546186 DOI: 10.1007/s12015-024-10812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/17/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs) hold immense potential for regenerative medicine due to their remarkable regenerative and immunomodulatory properties. However, their therapeutic application requires large-scale production under stringent regulatory standards and Good Manufacturing Practice (GMP) guidelines, presenting significant challenges. This review comprehensively evaluates automated manufacturing processes and platforms for the scalable production of clinical-grade MSCs. Various large-scale culture vessels, including multilayer flasks and bioreactors, are analyzed for their efficacy in MSCs expansion. Furthermore, automated MSCs production platforms, such as Quantum® Cell Expansion System, CliniMACS Prodigy®, NANT001/ XL, CellQualia™, Cocoon® Platform, and Xuri™ Cell Expansion System W25 are reviewed and compared as well. We also underscore the importance of optimizing culture media specifically emphasizing the shift from fetal bovine serum to humanized or serum-free alternatives to meet GMP standards. Moreover, advances in alternative cryopreservation methods and controlled-rate freezing systems, that offer promising improvements in MSCs preservation, are discussed as well. In conclusion, advancing automated manufacturing processes and platforms is essential for realizing the full potential of MSCs-based regenerative medicine and accomplishing the increasing demand for cell-based therapies. Collaborative initiatives involving industry, academia, and regulatory bodies are emphasized to accelerate the translation of MSCs-based therapies into clinical practice.
Collapse
Affiliation(s)
- Magdalena Strecanska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava, Bratislava, 811 08, Slovakia
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, Piestany, 921 12, Slovakia
| | - Tatiana Sekelova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava, Bratislava, 811 08, Slovakia
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, Piestany, 921 12, Slovakia
| | - Veronika Smolinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava, Bratislava, 811 08, Slovakia
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, Piestany, 921 12, Slovakia
| | - Marcela Kuniakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava, Bratislava, 811 08, Slovakia
| | - Andreas Nicodemou
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava, Bratislava, 811 08, Slovakia.
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, Piestany, 921 12, Slovakia.
- GAMMA-ZA, Kollarova 8, Trencin, 911 01, Slovakia.
| |
Collapse
|
3
|
Uguten M, van der Sluis N, Vriend L, Coert JH, Harmsen MC, van der Lei B, van Dongen JA. Comparing mechanical and enzymatic isolation procedures to isolate adipose-derived stromal vascular fraction: A systematic review. Wound Repair Regen 2024; 32:1008-1021. [PMID: 39444305 PMCID: PMC11584359 DOI: 10.1111/wrr.13228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
The stromal vascular fraction of adipose tissue has gained popularity as regenerative therapy for tissue repair. Both enzymatic and mechanical intraoperative SVF isolation procedures exist. To date, the quest for the preferred isolation procedure persists, due to the absence of standardised yield measurements and a defined clinical threshold. This systematic review is an update of the systematic review published in 2018, where guidelines were proposed to improve and standardise SVF isolation procedures. An elaborate data search in MEDLINE (PubMed), EMBASE (Ovid) and the Cochrane Central Register of Controlled Trials was conducted from September 2016 to date. A total of 26 full-text articles met inclusion criteria, evaluating 33 isolation procedures (11 enzymatic and 22 mechanical). In general, enzymatic and mechanical SVF isolation procedures yield comparable outcomes concerning cell yield (2.3-18.0 × 105 resp. 0.03-26.7 × 105 cells/ml), and cell viability (70%-99% resp. 46%-97.5%), while mechanical procedures are less time consuming (8-20 min vs. 50-210 min) and cost-efficient. However, as most studies used poorly validated outcome measures on SVF characterisation, it still remains unclear which intraoperative SVF isolation method is preferred. Future studies are recommended to implement standardised guidelines to standardise methods and improve comparability between studies.
Collapse
Affiliation(s)
- Mustafa Uguten
- Department of Plastic, Reconstructive and Hand SurgeryMedical Center LeeuwardenLeeuwardenThe Netherlands
- Department of Plastic, Reconstructive and Hand SurgeryUniversity Medical Center Utrecht, University of UtrechtUtrechtThe Netherlands
| | - Nanouk van der Sluis
- Department of SurgeryErasmus University Medical Center, University Medical Center RotterdamRotterdamThe Netherlands
| | - Linda Vriend
- Department of Pathology & Medical BiologyUniversity of Groningen and University Medical Center GroningenGroningenThe Netherlands
| | - J. H. Coert
- Department of Plastic, Reconstructive and Hand SurgeryUniversity Medical Center Utrecht, University of UtrechtUtrechtThe Netherlands
| | - Martin C. Harmsen
- Department of Pathology & Medical BiologyUniversity of Groningen and University Medical Center GroningenGroningenThe Netherlands
| | - Berend van der Lei
- Department of Plastic SurgeryUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Joris A. van Dongen
- Department of Plastic, Reconstructive and Hand SurgeryUniversity Medical Center Utrecht, University of UtrechtUtrechtThe Netherlands
- Department of Pathology & Medical BiologyUniversity of Groningen and University Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
4
|
Qin J, Cheng C, Huang RL, He J, Zhou S, Tan PC, Zhang T, Fang B, Li Q, Xie Y. Isolation of the Stromal Vascular Fraction Using a New Protocol with All Clinical-Grade Drugs: From Basic Study to Clinical Application. Aesthetic Plast Surg 2024; 48:4702-4711. [PMID: 38987318 DOI: 10.1007/s00266-024-04221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE The purpose of this study was to evaluate the yield, viability, clinical safety, and efficacy of the stromal vascular fraction (SVF) separated with a new protocol with all clinical-grade drugs. MATERIALS AND METHODS SVF cells were isolated from lipoaspirate obtained from 13 participants aged from 30 to 56 years by using a new clinical protocol and the laboratory protocol. The cell yield, viability, morphology, mesenchymal stem cell (MSC) surface marker expression, and differentiation abilities of the SVF cells harvested from the two protocols were compared. Furthermore, three related clinical trials were conducted to verify the safety and efficiency of SVF cells isolated by the new clinical protocol. RESULTS There were no significant differences in the yield, viability, morphology, and differentiation potential of the SVFs isolated with the clinical protocol and laboratory protocol. Adipose-derived mesenchymal stem cell (ASC) surface marker expression, including that of CD14, CD31, CD44, CD90, CD105, and CD133, was consistent between the two protocols. Clinical trials have demonstrated the effectiveness of the SVF isolated with the new clinical protocol in improving skin grafting, promoting mechanical stretch-induced skin regeneration and improving facial skin texture. No complications occurred. CONCLUSION SVF isolated by the new clinical protocol had a noninferior yield and viability to that of the SVF separated by the laboratory protocol. SVFs obtained by the new protocol can be safely and effectively applied to improve skin grafting, promote mechanical stretch-induced skin regeneration, and improve facial skin texture. TRIAL REGISTRATION The trials were registered with the ClinicalTrials.gov (NCT03189628), the Chinese Clinical Trial Registry (ChiCTR2000039317), and the ClinicalTrials.gov (NCT02546882). All the three trials were not patient-funded trials. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Jiaqi Qin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Chen Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jizhou He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shuangbai Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Poh-Ching Tan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Tianyu Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Bin Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Yun Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
5
|
Ye Y, Ma J, Guo BY, Li XJ, Hu KK, Tan MJ, Zhang L. Mechanical force promotes tissue and molecular changes in adipose tissue regeneration post-transplantation. Front Cell Dev Biol 2024; 12:1472575. [PMID: 39359720 PMCID: PMC11445162 DOI: 10.3389/fcell.2024.1472575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Fat grafting often yields inconsistent and suboptimal results, necessitating improved fat processing techniques. A stromal vascular fraction (SVF) gel created using mechanical emulsification demonstrates superior retention rates to conventional Coleman fat grafts. Methods This study investigated the mechanisms at play by transplanting fat aspirates from liposuction patients-either processed as Coleman fat grafts or further refined into an SVF gel via mechanical shear force-onto the backs of nude mice. Results The retention rate of the SVF gel after transplantation surpassed that observed for Coleman fat. Hematoxylin and eosin (HE) staining and immunofluorescence results demonstrated that the SVF gel group could form new adipose tissue characterized by well-organized mature fat structures. Mechanical shear force application induced increased mesenchymal stem cell abundance. Rather than merely surviving regeneration, fat was regenerated after transplantation, and the regenerated cells were mainly from mice, which was supported by microarray analysis. RNA-seq highlighted 601 genes expressed between SVF gel and Coleman fat groups, with 164 genes upregulated (cell cycle processes), and 437 genes downregulated (lipid metabolism). Discussion The application of mechanical shear force reduces the risk of complications and fosters cell proliferation and division, thereby enhancing the retention and regeneration of transplanted fat.
Collapse
Affiliation(s)
- Yuan Ye
- Department of Plastic and Cosmetic Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jian Ma
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Bing-yang Guo
- Department of Plastic and Cosmetic Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xiong-jie Li
- Department of Plastic and Cosmetic Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Kui-kui Hu
- Department of Plastic and Cosmetic Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Mei-jun Tan
- Department of Plastic and Cosmetic Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Liang Zhang
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
6
|
Carstens M, Trujillo J, Dolmus Y, Rivera C, Calderwood S, Lejarza J, López C, Bertram K. Adipose-derived stromal vascular fraction cells to treat long-term pulmonary sequelae of coronavirus disease 2019: 12-month follow-up. Cytotherapy 2024; 26:1076-1083. [PMID: 38639670 DOI: 10.1016/j.jcyt.2024.03.491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND AIMS Long coronavirus disease (COVID) is estimated to occur in up to 20% of patients with coronavirus disease 2019 (COVID-19) infections, with many having persistent pulmonary symptoms. Mesenchymal stromal cells (MSCs) have been shown to have powerful immunomodulatory and anti-fibrotic properties. Autologous adipose-derived (AD) stromal vascular fraction (SVF) contains MSC and other healing cell components and can be obtained by small-volume lipoaspiration and administered on the same day. This study was designed to study the safety of AD SVF infused intravenously to treat the pulmonary symptoms of long COVID. METHODS Five subjects with persistent cough and dyspnea after hospitalization and subsequent discharge for COVID-19 pneumonia were treated with 40 million intravenous autologous AD SVF cells and followed for 12 months, to include with pulmonary function tests and computed tomography scans of the lung. RESULTS SVF infusion was safe, with no significant adverse events related to the infusion out to 12 months. Four subjects had improvements in pulmonary symptoms, pulmonary function tests, and computed tomography scans, with some improvement noted as soon as 1 month after SVF treatment. CONCLUSIONS It is not possible to distinguish between naturally occurring improvement or improvement caused by SVF treatment in this small, uncontrolled study. However, the results support further study of autologous AD SVF as a treatment for long COVID.
Collapse
Affiliation(s)
- Michael Carstens
- Department of Surgery, Hospital Escuela Oscar Danilo Rosale Argüello, León, Nicaragua; Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA.
| | - Jessy Trujillo
- Department of Medicine, Hospital Monte España, Managua, Nicaragua
| | - Yanury Dolmus
- Department of Pediatrics, Hospital Escuela Cesar Amador Molina, Matagalpa, Nicaragua
| | - Carlos Rivera
- Department of Radiology, Hospital Escuela Cesar Amador Molina, Matagalpa, Nicaragua
| | - Santos Calderwood
- Department of Surgery, Hospital Escuela Cesar Amador Molina, Matagalpa, Nicaragua
| | - Judith Lejarza
- Department of Surgery, Hospital Escuela Oscar Danilo Rosale Argüello, León, Nicaragua
| | - Carlos López
- Department of Medicine, Hospital Escuela Oscar Danilo Rosales Argüello, León, Nicaragua
| | - Kenneth Bertram
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
7
|
Gan Y, Du L, Wang H, Li K, Fan Z, Sun P, Zhang J, Hu Z, Miao Y. A Clinical Trial of Treating Androgenic Alopecia with Mesenchymal Stem Cell Suspension Derived from Autologous Hair Follicle. Plast Reconstr Surg 2024; 154:444e-450e. [PMID: 37337324 PMCID: PMC11346703 DOI: 10.1097/prs.0000000000010841] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/22/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Androgenic alopecia (AGA) is characterized by progressive hair follicle miniaturization. Novel treatments are needed to intervene in the miniaturization process. The authors aimed to evaluate the efficacy, safety, effectiveness, and effective population of autologous hair follicle mesenchymal stem cell therapy for the treatment of advanced AGA in Chinese individuals. METHODS Fifty patients ranging in age from 25 to 45 years (average, 32 ± 1.24 years) were included. None of them had ever used minoxidil, finasteride, or other drugs to promote hair growth. Healthy hair follicles were extracted from the occipital area and treated to obtain hair follicle mesenchymal stem cell suspensions. The recipient sites were divided into 2 groups. Nine points were injected in a 1-cm 2 area, and 100 µL of solution containing either 1 × 10 5 cells or normal saline was injected at each point. The follow-up duration was 9 months. Observers were blinded to patient groupings and measurements. RESULTS An increased proportion of terminal hair and hair shaft diameter was observed in the experimental group at 1 month. The effect lasted for 3 months. The hair-thickening effect of advanced miniaturized hair follicles with hair shaft diameter less than 60 µm was more notable than that for above 60 µm. No patient experienced any obvious side effects. CONCLUSIONS Hair follicle mesenchymal stem cells were effective in the treatment of advanced AGA in Chinese individuals. A hair shaft diameter of 60 µm can be used as a key index to predict the effectiveness of the therapy. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, II.
Collapse
Affiliation(s)
- Yuyang Gan
- From the Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University
| | - Lijuan Du
- From the Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University
| | - Hailin Wang
- From the Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University
| | - Kaitao Li
- From the Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University
| | - Zhexiang Fan
- From the Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University
| | - Pingping Sun
- From the Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University
| | - Jiaxian Zhang
- From the Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University
| | - Zhiqi Hu
- From the Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yong Miao
- From the Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University
| |
Collapse
|
8
|
Tran VVT, Jin X, Hong KY, Chang H. Effects of Nanofat in Plastic and Reconstructive Surgery: A Systematic Review. Plast Reconstr Surg 2024; 154:451e-464e. [PMID: 37400953 DOI: 10.1097/prs.0000000000010905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
BACKGROUND Since nanofat was first introduced by Tonnard in 2013, numerous studies have reported positive findings with its use; however, concerns exist regarding its effects and mechanisms, and the various methods used to generate nanofat also remain unclear. The authors conducted a systematic review to evaluate the efficacy of nanofat grafting alone in plastic and reconstructive surgery. METHODS The MEDLINE, Embase, Cochrane Central, Web of Science, and Scopus databases were searched for studies related to the use of nanofat grafting alone in plastic and reconstructive surgery. Outcomes of interest were all clinical results in humans or animals. RESULTS Twelve studies were included. No meta-analysis was conducted due to the clinical heterogeneity of the studies. In general, included studies had a low level of evidence. Six studies ( n = 253 patients) showed significant improvements in scar characteristics based on Patient and Observer Scar Assessment Scale, FACE-Q scale, physician assessment, patient satisfaction, and Vancouver Scar Scale scores. Four studies described the benefits of nanofat in skin rejuvenation (wrinkles, fine rhytides, pigmentation, and discoloration) through photographs, questionnaires, and indentation indices. Histologic evaluation illustrated overall increases in skin thickness, collagen, and elastic fibers. Three experimental studies showed the beneficial effects of nanofat on fat grafting, diabetic wound healing, and hair growth, with compelling histological evidence. No severe complication was reported. CONCLUSIONS Nanofat grafting shows potential benefits in scar and antiaging treatments, with conclusive histological evidence. Clinical studies of fat grafting, wound healing, and hair growth should be conducted, based on the results of this systematic review. Nanofat grafting could be a practical and safe procedure.
Collapse
Affiliation(s)
- Vinh Vuong The Tran
- From the Hi-Tech Center, Vinmec Healthcare System
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine
| | - Xian Jin
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine
| | - Ki Yong Hong
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine
| | - Hak Chang
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine
| |
Collapse
|
9
|
Jeyaraman N, Shrivastava S, Ravi VR, Nallakumarasamy A, Pundkar A, Jeyaraman M. Understanding and controlling the variables for stromal vascular fraction therapy. World J Stem Cells 2024; 16:784-798. [PMID: 39219728 PMCID: PMC11362852 DOI: 10.4252/wjsc.v16.i8.784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 08/26/2024] Open
Abstract
In regenerative medicine, the isolation of mesenchymal stromal cells (MSCs) from the adipose tissue's stromal vascular fraction (SVF) is a critical area of study. Our review meticulously examines the isolation process of MSCs, starting with the extraction of adipose tissue. The choice of liposuction technique, anatomical site, and immediate processing are essential to maintain cell functionality. We delve into the intricacies of enzymatic digestion, emphasizing the fine-tuning of enzyme concentrations to maximize cell yield while preventing harm. The review then outlines the filtration and centrifugation techniques necessary for isolating a purified SVF, alongside cell viability assessments like flow cytometry, which are vital for confirming the efficacy of the isolated MSCs. We discuss the advantages and drawbacks of using autologous vs allogeneic SVF sources, touching upon immunocompatibility and logistical considerations, as well as the variability inherent in donor-derived cells. Anesthesia choices, the selection between hypodermic needles vs liposuction cannulas, and the role of adipose tissue lysers in achieving cellular dissociation are evaluated for their impact on SVF isolation. Centrifugation protocols are also analyzed for their part in ensuring the integrity of the SVF. The necessity for standardized MSC isolation protocols is highlighted, promoting reproducibility and successful clinical application. We encourage ongoing research to deepen the understanding of MSC biology and therapeutic action, aiming to further the field of regenerative medicine. The review concludes with a call for rigorous research, interdisciplinary collaboration, and strict adherence to ethical and regulatory standards to safeguard patient safety and optimize treatment outcomes with MSCs.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Sandeep Shrivastava
- Department of Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
| | - V R Ravi
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Aditya Pundkar
- Department of Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
| | - Madhan Jeyaraman
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
10
|
de Araújo RS, Mussalem MGVB, Carrijo GS, Bani JVDF, Ferreira LM. Adipose Tissue Derivatives in Peripheral Nerve Regeneration after Transection: A Systematic Review. Bioengineering (Basel) 2024; 11:697. [PMID: 39061779 PMCID: PMC11274242 DOI: 10.3390/bioengineering11070697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/08/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION Peripheral nerve injury (PNI) is increasingly prevalent and challenging to treat despite advances in microsurgical techniques. In this context, adipose tissue derivatives, such as adipose-derived stem cells, nanofat, and stromal vascular fraction have been gaining attention as potential allies in peripheral nerve regeneration. OBJECTIVES This study aims to explore the use of adipose tissue derivatives in nerve regeneration following peripheral nerve transection in murine models. Thus, we assess and synthesize the key techniques and methods used for evaluating the obtained nerve regeneration to guide future experimental research and clinical interventions. METHODOLOGY A systematic review was conducted in February 2024, adhering to the Cochrane and PRISMA 2020 guidelines, using the PubMed, SciELO, and LILACS databases. The focus was on experimental studies involving adipose tissue derivatives in nerve regeneration in animal models post-transection. Only experimental trials reporting nerve regeneration outcomes were included; studies lacking a comparator group or evaluation methods were excluded. RESULTS Out of 273 studies initially identified from MEDLINE, 19 were selected for detailed analysis. The average study included 32.5 subjects, with about 10.2 subjects per intervention subgroup. The predominant model was the sciatic nerve injury with a 10 mm gap. The most common intervention involved unprocessed adipose-derived stem cells, utilized in 14 articles. CONCLUSIONS This review underscores the significant potential of current methodologies in peripheral nerve regeneration, particularly highlighting the use of murine models and thorough evaluation techniques.
Collapse
Affiliation(s)
- Rafael Silva de Araújo
- Federal University of São Paulo, Department of Plastic Surgery, São Paulo 04038-001, Brazil; (M.G.V.B.M.); (J.V.d.F.B.); (L.M.F.)
| | | | | | - João Victor de Figueiredo Bani
- Federal University of São Paulo, Department of Plastic Surgery, São Paulo 04038-001, Brazil; (M.G.V.B.M.); (J.V.d.F.B.); (L.M.F.)
| | - Lydia Masako Ferreira
- Federal University of São Paulo, Department of Plastic Surgery, São Paulo 04038-001, Brazil; (M.G.V.B.M.); (J.V.d.F.B.); (L.M.F.)
| |
Collapse
|
11
|
Valente DS, Ely PB, Kieling L, Konzen AT, Steffen LP, Lazzaretti GS, Zanella RK. Breast fat grafting and cancer: a systematic review of the science behind enhancements and concerns. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2024; 5:14. [PMID: 38751673 PMCID: PMC11093078 DOI: 10.21037/tbcr-23-54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/28/2024] [Indexed: 05/18/2024]
Abstract
Background Autologous fat transfer (AFT) is gaining popularity in breast surgery, offering a natural-looking and minimally invasive approach for augmentation, reconstruction, and contouring. However, concerns about its impact on breast cancer necessitate an understanding of the interplay between transplanted adipose-derived stem cells (ADSCs) and the breast tissue microenvironment. Renowned for regeneration, ADSCs raise questions about their role in cancer promotion. This systematic review delves into the complex relationship between AFT and breast cancer, exploring how ADSCs may influence development, growth, and metastasis. Methods A systematic search of electronic databases, including PubMed, Embase, and BVS was conducted to identify relevant studies. The search strategy employed a combination of keywords, including "breast augmentation", "fat grafting", "breast enhancement", "mammoplasty", "cancer", "neoplasm" and related terms. Two reviewers independently screened titles and abstracts. Full-text articles were then retrieved for further evaluation based on their potential contribution to the review objectives. Results Two hundred and forty records were identified. Among these, 104 duplicates were removed, resulting in 136 reports available for title and abstract screening. Subsequently, 54 papers were deemed potentially eligible for inclusion, and all reports were retrieved. Conclusions In vitro studies reveal ADSCs dual role in breast cancer, influencing proliferation, migration, and drug resistance through complex signaling pathways. Animal studies highlight distinct ADSC subpopulations impacting tumor growth via direct interactions and extracellular vesicle cargo. In vivo, ADSC-enriched fat grafting is generally safe, showing no increased cancer recurrence risk compared to other methods. Notably, cases of invasive breast carcinoma warrant special attention. ADSC-enriched fat grafts exhibit potential benefits in graft retention and survival rates. Despite promising evidence, further studies are needed to comprehensively understand the intricate relationship between ADSCs and breast cancer for optimized clinical applications and potential therapeutic innovations.
Collapse
Affiliation(s)
- Denis Souto Valente
- Division of Surgical Clinics, Federal University of Medical Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Pedro Bins Ely
- Division of Surgical Clinics, Federal University of Medical Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Lucas Kieling
- School of Medicine, Federal University of Medical Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Ana Terezinha Konzen
- School of Medicine, Federal University of Medical Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Lucas Pastori Steffen
- Graduate Program in Health Sciences, Federal University of Medical Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Gloria Sulczinski Lazzaretti
- Graduate Program in Health Sciences, Federal University of Medical Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | | |
Collapse
|
12
|
Berkane Y, Oubari H, van Dieren L, Charlès L, Lupon E, McCarthy M, Cetrulo CL, Bertheuil N, Uygun BE, Smadja DM, Lellouch AG. Tissue engineering strategies for breast reconstruction: a literature review of current advances and future directions. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:15. [PMID: 38304901 PMCID: PMC10777243 DOI: 10.21037/atm-23-1724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/15/2023] [Indexed: 02/03/2024]
Abstract
Background and Objective Mastectomy is a primary treatment for breast cancer patients, and both autologous and implant-based reconstructive techniques have shown excellent results. In recent years, advancements in bioengineering have led to a proliferation of innovative approaches to breast reconstruction. This article comprehensively explores the promising perspectives offered by bioengineering and tissue engineering in the field of breast reconstruction. Methods A literature review was conducted between April and June 2023 on PubMed and Google Scholar Databases. All English and French articles related to bioengineering applied to the field of breast reconstruction were included. We used the Evidence-Based Veterinary Medicine Association (EBVM) Toolkit 14 checklist for narrative reviews as a quality assurance measure and the Scale for the Assessment of Narrative Review Articles (SANRA) tool to self-assess our methodology. Key Content and Findings Over 130 references related to breast bioengineering were included. The analysis revealed four key applications: enhancing the quality of the skin envelope, improving the viability of fat grafting, creating breast shape and volume via bio-printing, and optimizing nipple reconstruction through engineering techniques. The primary identified approaches revolved around establishing structural support and enhancing cellular viability. Structural techniques predominantly involved the implementation of 3D printed, decellularized, or biocompatible material scaffolds. Meanwhile, promoting cellular content trophicity primarily focused on harnessing the regenerative potential of adipose-derived stem cells (ADSCs) and increasing the tissue's survivability and cell trophicity. Conclusions Tissue and bioengineering hold immense promise in the field of breast reconstruction, offering a diverse array of approaches. By combining existing techniques with novel advancements, they have the potential to significantly enhance the therapeutic options available to plastic and reconstructive surgeons.
Collapse
Affiliation(s)
- Yanis Berkane
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes, Rennes, France
- Unité Mixte de Recherche UMR 1236 Suivi Immunologique des Thérapeutiques Innovantes, INSERM and University of Rennes, Rennes, France
| | - Haizam Oubari
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Grenoble University Hospital Center, Grenoble, France
| | - Loïc van Dieren
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Plastic Surgery, University of Antwerp, Wilrijk, Belgium
| | - Laura Charlès
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
| | - Elise Lupon
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Plastic and Reconstructive Surgery, Pasteur 2 Hospital, University Côte d’Azur, Sophia Antipolis, Nice, France
| | - Michelle McCarthy
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Curtis L. Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
| | - Nicolas Bertheuil
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes, Rennes, France
- Unité Mixte de Recherche UMR 1236 Suivi Immunologique des Thérapeutiques Innovantes, INSERM and University of Rennes, Rennes, France
| | - Basak E. Uygun
- Shriners Children’s Boston, Boston, MA, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David M. Smadja
- Unité Mixte de Recherche UMR-S 1140 Innovative Therapies in Haemostasis, INSERM and University of Paris, Paris, France
- Department of Hematology, European Georges Pompidou Hospital, Paris, France
| | - Alexandre G. Lellouch
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
- Unité Mixte de Recherche UMR-S 1140 Innovative Therapies in Haemostasis, INSERM and University of Paris, Paris, France
| |
Collapse
|
13
|
Huang RL, Li Q, Ma JX, Atala A, Zhang Y. Body fluid-derived stem cells - an untapped stem cell source in genitourinary regeneration. Nat Rev Urol 2023; 20:739-761. [PMID: 37414959 PMCID: PMC11639537 DOI: 10.1038/s41585-023-00787-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
Somatic stem cells have been obtained from solid organs and tissues, including the bone marrow, placenta, corneal stroma, periosteum, adipose tissue, dental pulp and skeletal muscle. These solid tissue-derived stem cells are often used for tissue repair, disease modelling and new drug development. In the past two decades, stem cells have also been identified in various body fluids, including urine, peripheral blood, umbilical cord blood, amniotic fluid, synovial fluid, breastmilk and menstrual blood. These body fluid-derived stem cells (BFSCs) have stemness properties comparable to those of other adult stem cells and, similarly to tissue-derived stem cells, show cell surface markers, multi-differentiation potential and immunomodulatory effects. However, BFSCs are more easily accessible through non-invasive or minimally invasive approaches than solid tissue-derived stem cells and can be isolated without enzymatic tissue digestion. Additionally, BFSCs have shown good versatility in repairing genitourinary abnormalities in preclinical models through direct differentiation or paracrine mechanisms such as pro-angiogenic, anti-apoptotic, antifibrotic, anti-oxidant and anti-inflammatory effects. However, optimization of protocols is needed to improve the efficacy and safety of BFSC therapy before therapeutic translation.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
14
|
He A, Zheng S, Luan W, Wang L, Qian L, Qi F, Feng Z. Antiphotoaging Effect of Micronized Fat in Ultraviolet B-Induced Human Dermal Fibroblasts. Plast Reconstr Surg 2023; 152:1023-1033. [PMID: 36988447 DOI: 10.1097/prs.0000000000010458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
BACKGROUND Adipose-derived stromal vascular fraction (SVF) and mesenchymal stem cells have been proven to reduce the effects of skin photoaging. However, there is no standardized protocol for their preparation. This study aimed to investigate the skin rejuvenation potential of micronized fat, obtained using a novel device attached with a trifoliate blade, in the ultraviolet B (UV-B)-induced human dermal fibroblast model. METHODS Micronized fat was prepared to obtain adipose-derived SVF, and the adipose-derived mesenchymal stem cell-to-SVF ratio was determined by flow cytometry. The UV-B-induced human dermal fibroblasts model was constructed to identify the characteristics of the human dermal fibroblasts using vimentin and S-100 immunostaining, observe their morphology, and measure the levels of photoaging-related factors. After the previous steps were completed, different cell groups were co-cultured with UV-B-induced human dermal fibroblasts, and the extent of improvement of photoaging was evaluated. RESULTS Micronized fat had a higher adipose-derived mesenchymal stem cell-to-SVF ratio than the control fat preparations. The UV-B-induced human dermal fibroblasts model showed lowered levels of type I collagen and transforming growth factor-β and increased expression of matrix metalloproteinases (MMPs), which are the characteristics of photoaging in normal human dermal fibroblasts. Compared with different cell groups co-cultured with UV-B-induced human dermal fibroblasts, micronized fat could lower the expression of MMPs and increase the level of type I collagen but lower the level of transforming growth factor-β. CONCLUSIONS Obtaining micronized fat is more effortless and clinically safer. Micronized fat has an antiphotoaging effect by inhibiting the expression of MMPs by means of the mitogen-activated protein kinases signaling pathway. CLINICAL RELEVANCE STATEMENT The authors' work has potential clinical applications in fat grafting for facial rejuvenation.
Collapse
Affiliation(s)
- Anqi He
- From the Department of Plastic Surgery, Zhongshan Hospital (Xiamen), Fudan University
| | - Shaoluan Zheng
- From the Department of Plastic Surgery, Zhongshan Hospital (Xiamen), Fudan University
| | - Wenjie Luan
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Lu Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Leqi Qian
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Fazhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Zihao Feng
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| |
Collapse
|
15
|
Ho J, Yue D, Cheema U, Hsia HC, Dardik A. Innovations in Stem Cell Therapy for Diabetic Wound Healing. Adv Wound Care (New Rochelle) 2023; 12:626-643. [PMID: 35176896 PMCID: PMC10468561 DOI: 10.1089/wound.2021.0104] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/22/2022] [Indexed: 12/20/2022] Open
Abstract
Significance: The global burden of diabetic wounds, particularly diabetic foot ulcers, continues to have large economic and social impact throughout the world. Current strategies are not sufficient to overcome this burden of disease. Finding newer, more advanced regenerative cell and tissue-based strategies to reduce morbidity remains paramount. Recent Advances: Recent advances in stem cell therapies are discussed. We also highlight the practical issues of translating these advancing technologies into the clinical setting. Critical Issues: We discuss the use of somatic and induced pluripotent stem cells and the stromal vascular fraction, as well as innovations, including the use of 3D bioprinting of skin. We also explore related issues of using regenerative techniques in clinical practice, including the current regulatory landscape and translatability of in vivo research. Future Directions: Advances in stem cell manipulation showcase the best therapeutic resources available to enhance mechanisms of wound healing such as angiogenesis, cell proliferation, and collagen synthesis; potential methods include changing the scaffold microenvironment, including relative oxygen tension, and the use of gene modification and nanotechnology. Secretome engineering, particularly the use of extracellular vesicles, may be another potential cell-derived therapeutic that may enable use of cell-free translational therapy.
Collapse
Affiliation(s)
- Jasmine Ho
- UCL Centre for 3D Models of Health and Disease, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
- Vascular Biology and Therapeutics Program and The Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dominic Yue
- Plastic Surgery Unit, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom
| | - Umber Cheema
- UCL Centre for 3D Models of Health and Disease, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Henry C. Hsia
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program and The Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
16
|
Gentile P, Cervelli V, De Fazio D, Calabrese C, Scioli MG, Orlandi A. Mechanical and Enzymatic Digestion of Autologous Fat Grafting (A-FG): Fat Volume Maintenance and AD-SVFs Amount in Comparison. Aesthetic Plast Surg 2023; 47:2051-2062. [PMID: 37130992 DOI: 10.1007/s00266-023-03364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/08/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Currently, several techniques for autologous fat graft (A-FG) preparation aimed at obtaining purified tissue exist. Both mechanical digestions via centrifugation, filtration, and enzymatic digestion were considered the most effective with different impacts in terms of adult adipose-derived stromal vascular fraction cells (AD-SVFs) amount that volume maintenance. OBJECTIVES This article aimed to report the in vivo and in vitro results, represented by fat volume maintenance and AD-SVFs amount, obtained by four different procedures of AD-SVFs isolation and A-FG purification based on centrifugation, filtration, centrifugation with filtration, and enzymatic digestion. METHODS A prospective, case-control study was conducted. In total, 80 patients affected by face and breast soft tissue defects were treated with A-FG and divided into four groups: n=20 were treated with A-FG enhanced with AD-SVFs obtained by enzymatic digestion (study group 1 [SG-1]); n=20 were treated with A-FG enhanced with AD-SVFs obtained by centrifugation with filtration (SG-2); n=20 were treated with A-FG enhanced with AD-SVFs obtained by only filtration (SG-3); n=20 were treated with A-FG obtained by only centrifugation according to the Coleman technique (control group [CG]). Twelve months after the last A-FG session, the volume maintenance percentage was analyzed by magnetic resonance imaging (MRI). Isolated AD-SVF populations were counted using a hemocytometer, and cell yield was reported as cell number/mL of fat. RESULTS Starting with the same amount of fat analyzed (20 mL), 50,000 ± 6956 AD-SVFs/mL were obtained in SG-1; 30,250 ± 5100 AD-SVFs/mL in SG-2; 33.333 ± 5650 AD-SVFs/mL in SG-3, while 500 AD-SVFs/mL were obtained in CG. In patients treated with A-FG enhanced with AD-SVFs obtained by automatic enzymatic digestion, a 63% ± 6.2% maintenance of fat volume restoring after 1 year was observed compared with 52% ± 4.6% using centrifugation with filtration, 39% ± 4.4% using only centrifugation (Coleman), and 60% ± 5.0% using only filtration. CONCLUSIONS In vitro AD-SVFs cell analysis indicated that filtration was the most efficient system-between mechanical digestion procedures-thanks to the highest amount of cells obtained with fewer cell structure damage, producing in vivo, the most volume maintenance after 1 year. Enzymatic digestion produced the best number of AD-SVFs and the best fat volume maintenance. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors http://www.springer.com/00266 .
Collapse
Affiliation(s)
- Pietro Gentile
- Surgical Science Department, Plastic and Reconstructive Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00179, Rome, Italy.
| | - Valerio Cervelli
- Surgical Science Department, Plastic and Reconstructive Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00179, Rome, Italy
| | - Domenico De Fazio
- Plastic and Reconstructive Surgery, "Madonnina Clinic", 20122, Milan, Italy
| | | | - Maria Giovanna Scioli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133, Roma, Italy
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133, Roma, Italy
| |
Collapse
|
17
|
Li CW, Young TH, Wang MH, Pei MY, Hsieh TY, Hsu CL, Cheng NC. Low-glucose culture environment can enhance the wound healing capability of diabetic adipose-derived stem cells. Stem Cell Res Ther 2023; 14:236. [PMID: 37667384 PMCID: PMC10478288 DOI: 10.1186/s13287-023-03478-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Application of autologous adipose-derived stem cells (ASC) for diabetic chronic wounds has become an emerging treatment option. However, ASCs from diabetic individuals showed impaired cell function and suboptimal wound healing effects. We proposed that adopting a low-glucose level in the culture medium for diabetic ASCs may restore their pro-healing capabilities. METHODS ASCs from diabetic humans and mice were retrieved and cultured in high-glucose (HG, 4.5 g/L) or low-glucose (LG, 1.0 g/L) conditions. Cell characteristics and functions were investigated in vitro. Moreover, we applied diabetic murine ASCs cultured in HG or LG condition to a wound healing model in diabetic mice to compare their healing capabilities in vivo. RESULTS Human ASCs exhibited decreased cell proliferation and migration with enhanced senescence when cultured in HG condition in vitro. Similar findings were noted in ASCs derived from diabetic mice. The inferior cellular functions could be partially recovered when they were cultured in LG condition. In the animal study, wounds healed faster when treated with HG- or LG-cultured diabetic ASCs relative to the control group. Moreover, higher collagen density, more angiogenesis and cellular retention of applied ASCs were found in wound tissues treated with diabetic ASCs cultured in LG condition. CONCLUSIONS In line with the literature, our study showed that a diabetic milieu exerts an adverse effect on ASCs. Adopting LG culture condition is a simple and effective approach to enhance the wound healing capabilities of diabetic ASCs, which is valuable for the clinical application of autologous ASCs from diabetic patients.
Collapse
Affiliation(s)
- Chun-Wei Li
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Chang Gung University and College of Medicine, Keelung, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Mu-Hui Wang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan
| | - Ming-Ying Pei
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Tsung-Yu Hsieh
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
18
|
Ding JY, Chen MJ, Wu LF, Shu GF, Fang SJ, Li ZY, Chu XR, Li XK, Wang ZG, Ji JS. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: roles, opportunities and challenges. Mil Med Res 2023; 10:36. [PMID: 37587531 PMCID: PMC10433599 DOI: 10.1186/s40779-023-00472-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023] Open
Abstract
Skin wounds are characterized by injury to the skin due to trauma, tearing, cuts, or contusions. As such injuries are common to all human groups, they may at times represent a serious socioeconomic burden. Currently, increasing numbers of studies have focused on the role of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) in skin wound repair. As a cell-free therapy, MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy. Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures, including the regeneration of vessels, nerves, and hair follicles. In addition, MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization, wound angiogenesis, cell proliferation, and cell migration, and by inhibiting excessive extracellular matrix production. Additionally, these structures can serve as a scaffold for components used in wound repair, and they can be developed into bioengineered EVs to support trauma repair. Through the formulation of standardized culture, isolation, purification, and drug delivery strategies, exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair. In conclusion, MSC-derived EVs-based therapies have important application prospects in wound repair. Here we provide a comprehensive overview of their current status, application potential, and associated drawbacks.
Collapse
Affiliation(s)
- Jia-Yi Ding
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Min-Jiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ling-Feng Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Gao-Feng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Shi-Ji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Zhao-Yu Li
- Department of Overseas Education College, Jimei University, Xiamen, 361021, Fujian, China
| | - Xu-Ran Chu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Medicine II, Internal Medicine, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392, Giessen, Germany
- Pulmonary and Critical Care, Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Xiao-Kun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Zhou-Guang Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Jian-Song Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China.
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
19
|
Huerta CT, Ortiz YY, Liu ZJ, Velazquez OC. Methods and Limitations of Augmenting Mesenchymal Stem Cells for Therapeutic Applications. Adv Wound Care (New Rochelle) 2023; 12:467-481. [PMID: 36301919 PMCID: PMC10254976 DOI: 10.1089/wound.2022.0107] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Significance: Given their capacity for self-renewal, multilineage differentiation, and immunomodulatory potential, mesenchymal stem cells (MSCs) represent a promising modality of clinical therapy for both regenerative medicine and immune diseases. In this study, we review the key approaches and popular methods utilized to boost potency and modify functions of MSCs for clinical purposes as well as their associated limitations. Recent Advances: Several major domains of cell modification strategies are currently employed by investigators to overcome these deficits and augment the therapeutic potential of MSCs. Priming MSCs with soluble factors or pharmacologic agents as well as manipulating oxygen availability in culture have been demonstrated to be effective biochemical methods to augment MSC potential. Distinct genetic and epigenetic methods have emerged in recent years to modify the genetic expression of target proteins and factors thereby modulating MSCs capacity for differentiation, migration, and proliferation. Physical methods utilizing three-dimensional culture methods and alternative cell delivery systems and scaffolds can be used to recapitulate the native MSC niche and augment their engraftment and viability for in vivo models. Critical Issues: Unmodified MSCs have demonstrated only modest benefits in many preclinical and clinical studies due to issues with cell engraftment, viability, heterogeneity, and immunocompatibility between donor and recipient. Furthermore, unmodified MSCs can have low inherent therapeutic potential for which intensive research over the past few decades has been dedicated to improving cell functionality and potency.
Collapse
Affiliation(s)
- Carlos Theodore Huerta
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yulexi Y. Ortiz
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Zhao-Jun Liu
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Omaida C. Velazquez
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
20
|
Vingan NR, Wamsley CE, Panton JA, Mangalagiri D, Turer D, Akgul Y, Barillas J, Culver A, Kenkel JM. Investigating the Efficacy of Modified Lipoaspirate Grafting to Improve the Appearance of Atrophic Acne Scars: A Pilot Study. Aesthet Surg J 2023; 43:NP613-NP630. [PMID: 37051925 DOI: 10.1093/asj/sjad102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Processed lipoaspirate grafting describes several techniques theorized to leverage the inflammatory and regenerative capacities of mechanically processed adipocytes to rejuvenate and correct skin pathology. Although lipoaspirate grafting is typically leveraged to fill visible defects such as depressed scars and dermal lines, additional fat processing allows grafts to stimulate mechanisms of wound healing, including the promotion of fibroblast activation, neovascularization, and neocollagenesis. OBJECTIVES This study intends to assess the efficacy and tolerability of processed lipoaspirate grafting monotherapy to improve the clinical appearance of atrophic acne scars. METHODS Patients underwent a single autologous processed lipoaspirate grafting procedure at the site of atrophic acne scars. Objective and subjective scar analysis was performed at 3 and 6 months posttreatment. Scars were assessed with standard photography, topographic analysis, and noninvasive skin measurements. In addition, microbiopsies were obtained before and after treatment to assess histological or genetic changes. Clinical improvement was assessed with patient and clinician Global Aesthetic Improvement Scales (GAIS) and blinded photographic evaluation. RESULTS Ten patients between ages 18 and 60 completed the study. Clinical evaluation demonstrated that fat grafting improved the appearance of atrophic acne scars. Clinician GAIS and patient GAIS scores showed clinical improvement at both 3- and 6-month follow-up compared with baseline (P < .05). Blinded clinician GAIS scores also showed statistically significant improvement when clinicians compared clinical photographs taken at 6-month follow-up to baseline (P < .0001). The attenuation coefficient increased at 6-month follow-up, suggesting collagen remodeling and reorganization over the study period. Patients experienced anticipated posttreatment symptoms including transient erythema and edema; however, no unexpected adverse events were reported. CONCLUSIONS Micronized lipoaspirate injection is a viable and effective option to improve the appearance of facial acne scarring. Favorable improvements in atrophic acne scarring were captured by objective analysis of skin ultrastructure as well as improvement in subjective assessments of scarring. LEVEL OF EVIDENCE: 4
Collapse
|
21
|
Bashir A, Bashir MM, Afzaal S, Ahmad FJ, Choudhery MS. Fat grafts enriched with ex-vivo expanded adipose stem cells improve hyperpigmentation of face. Cell Biol Int 2023; 47:1118-1125. [PMID: 36855962 DOI: 10.1002/cbin.12005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023]
Abstract
Facial contour deformities associated with pigmentary changes are of major concern for plastic surgeons being difficult to treat. No definite ideal treatment option is available to address simultaneously both the contour defects as well as related hyperpigmentation. The aim of the current study is to compare long-term effects of conventional adipose tissue grafting and ex-vivo expanded ASC-enriched adipose tissue grafting for the treatment of contour deformities related pigmentary changes on the face. In this study, 80 patients of contour deformities of face with hyperpigmentation were recruited after informed consent. Two techniques, that is, conventional fat grafting (C-FG) and fat grafts enriched with expanded adipose stem cells (FG-ASCs) were used to address the pigmentation. Both techniques were explained to patients and enrolled patients were divided into two groups, that is, C-FG and FG-ASCs as per patients' choice and satisfaction. Patients of the FG-ASCs group were treated with FG-ASCs while patients of C-FGs group were treated with C-FG (without expanded ASCs). Patients were followed for 12 months and improvement in face pigmentation was assessed clinically as well as measured objectively. Patients' satisfaction was also documented as highly satisfied, satisfied, and unsatisfied. This clinical trial was registered at www.clinicaltrials.gov with ID: NTC03564808. Mean age of patients was 24.42 (±4.49), 66 patients were females. Forehead was involved in 61.20% cases, cheek in 21.20% cases, chin in 11.20% cases, and nose in 6.20% cases. In GF-ASCs group, the integrated color density was decreased (1.08 × 106 ± 4.64 × 105 ) as compared with C-FG group (2.80 × 105 ± 1.69 × 105 ). Patients treated with fat grafts enriched with expanded ASCs were significantly more satisfied as compared with patients treated with C-FG only. In conclusion, ASC-enriched autologous fat grafting is preferred option for improving the contour deformities related increased pigmentation of face skin.
Collapse
Affiliation(s)
- Afzaal Bashir
- Department of Plastic Surgery, King Edward Medical University, Lahore, Pakistan
| | - Muhammad M Bashir
- Department of Plastic Surgery, King Edward Medical University, Lahore, Pakistan
| | | | - Fridoon J Ahmad
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore, Punjab, Pakistan
| | - Mahmood S Choudhery
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore, Punjab, Pakistan
| |
Collapse
|
22
|
Everts PA, Panero AJ. Basic Science of Autologous Orthobiologics. Phys Med Rehabil Clin N Am 2023; 34:25-47. [DOI: 10.1016/j.pmr.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Cicione C, Vadalà G, Di Giacomo G, Tilotta V, Ambrosio L, Russo F, Zampogna B, Cannata F, Papalia R, Denaro V. Micro-fragmented and nanofat adipose tissue derivatives: In vitro qualitative and quantitative analysis. Front Bioeng Biotechnol 2023; 11:911600. [PMID: 36733959 PMCID: PMC9887143 DOI: 10.3389/fbioe.2023.911600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Introduction: Adipose tissue is widely exploited in regenerative medicine thanks to its trophic properties, mainly based on the presence of adipose-derived stromal cells. Numerous devices have been developed to promote its clinical use, leading to the introduction of one-step surgical procedures to obtain minimally manipulated adipose tissue derivatives. However, only a few studies compared their biological properties. This study aimed to characterize micro-fragmented (MAT) and nanofat adipose tissue (NAT) obtained with two different techniques. Methods: MAT, NAT and unprocessed lipoaspirate were collected from surgical specimens. RNA extraction and collagenase isolation of stromal vascular fraction (SVF) were performed. Tissue sections were analysed by histological and immunohistochemical (collagen type I, CD31, CD34 and PCNA) staining to assess tissue morphology and cell content. qPCR was performed to evaluate the expression of stemness-related (SOX2, NANOG and OCT3/4), extracellular matrix (COL1A1) and inflammatory genes (IL1β, IL6 and iNOS). Furthermore, multilineage differentiation was assessed following culture in adipogenic and osteogenic media and staining with Oil Red O and Alizarin red. ASC immunophenotype was assessed by flow cytometric analysis of CD90, CD105, CD73 and CD45. Results: Histological and immunohistochemical results showed an increased amount of stroma and a reduction of adipocytes in MAT and NAT, with the latter displaying the highest content of collagen type I, CD31, CD34 and PCNA. From LA to MAT and NAT, an increasing expression of NANOG, SOX2, OCT3/4, COL1A1 and IL6 was noted, while no significant differences in terms of IL1β and iNOS emerged. No statistically significant differences were noted between NAT and SVF in terms of stemness-related genes, while the latter demonstrated a significantly higher expression of stress-related markers. SVF cells derived from all three samples (LA, MAT, and NAT) showed a similar ASC immunoprofile as well as osteogenic and adipogenic differentiation. Discussion: Our results showed that both MAT and NAT techniques allowed the rapid isolation of ASC-rich grafts with a high anabolic and proliferative potential. However, NAT showed the highest levels of extracellular matrix content, replicating cells, and stemness gene expression. These results may provide precious clues for the use of adipose tissue derivatives in the clinical setting.
Collapse
Affiliation(s)
- Claudia Cicione
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Gianluca Vadalà
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy,Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy,*Correspondence: Gianluca Vadalà,
| | - Giuseppina Di Giacomo
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Veronica Tilotta
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Luca Ambrosio
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy,Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Fabrizio Russo
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy,Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Biagio Zampogna
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy,Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesca Cannata
- Operative Research Unit of Endocrinology and Diabetes, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Rocco Papalia
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy,Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
24
|
Hybrid Stromal Vascular Fraction (Hybrid-SVF): A New Paradigm in Mechanical Regenerative Cell Processing. Plast Reconstr Surg Glob Open 2022; 10:e4702. [PMID: 36601591 PMCID: PMC9803457 DOI: 10.1097/gox.0000000000004702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/11/2022] [Indexed: 01/06/2023]
Abstract
Enzymatic digestion of extracellular matrix (ECM) from lipoaspirate is the conventional form of harvesting stromal vascular fraction (SVF) called enzymatically digested SVF (E-SVF). Mechanical SVF (M-SVF) isolation has emerged as an alternative method, but it has also some limitations in terms of lower cell viability and diminished cell counts. To enhance the SVF qualitatively and quantitatively, we propose a novel concept called "hybrid-SVF," in which we combine M-SVF with the concentrated parts of adipose tissue after centrifugation, which is called stromal vascular matrix (SVM). Methods Hybrid-SVF injection was applied as an adjunctive therapy to fat grafting in 88 patients and 11 samples were evaluated in the laboratory for cell count, viability and cell activity. Results Experimental results determined that SVM part showed higher cellular activity. SVM and M-SVF showed higher cellular potency than E-SVF. Clinically, none of the patients required an additional session for fat grafting since there was no significant graft resorption. However, seven patients asked for further volume augmentation due to their individual preferences. No major complication was encountered. Conclusions The usage of hybrid-SVF has a very high regenerative potential due to the ECM support and exceptionally high cell yield in addition to preserved cell potency. Although there are ongoing studies focusing on optimizing cell counts and further clinical applications, we believe that our preliminary results might create a paradigm shift in the area of regenerative fat grafting.
Collapse
|
25
|
Vargel İ, Tuncel A, Baysal N, Hartuç-Çevik İ, Korkusuz F. Autologous Adipose-Derived Tissue Stromal Vascular Fraction (AD-tSVF) for Knee Osteoarthritis. Int J Mol Sci 2022; 23:13517. [PMID: 36362308 PMCID: PMC9658499 DOI: 10.3390/ijms232113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 07/30/2023] Open
Abstract
Adipose tissue contains adult mesenchymal stem cells that may modulate the metabolism when applied to other tissues. Stromal vascular fraction (SVF) can be isolated from adipose tissue mechanically and/or enzymatically. SVF was recently used to decrease the pain and improve the function of knee osteoarthritis (OA) patients. Primary and/or secondary OA causes inflammation and degeneration in joints, and regenerative approaches that may modify the natural course of the disease are limited. SVF may modulate inflammation and initiate regeneration in joint tissues by initiating a paracrine effect. Chemokines released from SVF may slow down degeneration and stimulate regeneration in joints. In this review, we overviewed articular joint cartilage structures and functions, OA, and macro-, micro-, and nano-fat isolation techniques. Mechanic and enzymatic SVF processing techniques were summarized. Clinical outcomes of adipose tissue derived tissue SVF (AD-tSVF) were evaluated. Medical devices that can mechanically isolate AD-tSVF were listed, and publications referring to such devices were summarized. Recent review manuscripts were also systematically evaluated and included. Transferring adipose tissues and cells has its roots in plastic, reconstructive, and aesthetic surgery. Micro- and nano-fat is also transferred to other organs and tissues to stimulate regeneration as it contains regenerative cells. Minimal manipulation of the adipose tissue is recently preferred to isolate the regenerative cells without disrupting them from their natural environment. The number of patients in the follow-up studies are recently increasing. The duration of follow up is also increasing with favorable outcomes from the short- to mid-term. There are however variations for mean age and the severity of knee OA patients between studies. Positive outcomes are related to the higher number of cells in the AD-tSVF. Repetition of injections and concomitant treatments such as combining the AD-tSVF with platelet rich plasma or hyaluronan are not solidified. Good results were obtained when combined with arthroscopic debridement and micro- or nano-fracture techniques for small-sized cartilage defects. The optimum pressure applied to the tissues and cells during filtration and purification of the AD-tSVF is not specified yet. Quantitative monitoring of articular joint cartilage regeneration by ultrasound, MR, and synovial fluid analysis as well as with second-look arthroscopy could improve our current knowledge on AD-tSVF treatment in knee OA. AD-tSVF isolation techniques and technologies have the potential to improve knee OA treatment. The duration of centrifugation, filtration, washing, and purification should however be standardized. Using gravity-only for isolation and filtration could be a reasonable approach to avoid possible complications of other methodologies.
Collapse
Affiliation(s)
- İbrahim Vargel
- Department of Plastic Reconstructive and Aesthetic Surgery, Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| | - Ali Tuncel
- Department of Chemical Engineering, Engineering Faculty, Hacettepe University, Universiteler Mahallesi, Hacettepe Beytepe Campus #31, Çankaya, Ankara 06800, Turkey
| | - Nilsu Baysal
- Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| | - İrem Hartuç-Çevik
- Department of Sports Medicine, Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| | - Feza Korkusuz
- Department of Sports Medicine, Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| |
Collapse
|
26
|
Akasaka Y. The Role of Mesenchymal Stromal Cells in Tissue Repair and Fibrosis. Adv Wound Care (New Rochelle) 2022; 11:561-574. [PMID: 34841889 DOI: 10.1089/wound.2021.0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: The present review covers an overview of the current understanding of biology of mesenchymal stromal cells (MSCs) and suggests an important role of their differential potential for clinical approaches associated with tissue repair and fibrosis. Recent Advances: Genetic lineage tracing technology has enabled the delineation of cellular hierarchies and examination of MSC cellular origins and myofibroblast sources. This technique has led to the characterization of perivascular MSC populations and suggests that pericytes might provide a local source of tissue-specific MSCs, which can differentiate into tissue-specific cells for tissue repair and fibrosis. Autologous adipose tissue MSCs led to the advance in tissue engineering for regeneration of damaged tissues. Critical Issues: Recent investigation has revealed that perivascular MSCs might be the origin of myofibroblasts during fibrosis development, and perivascular MSCs might be the major source of myofibroblasts in fibrogenic disease. Adipose tissue MSCs combined with cytokines and biomaterials are available in the treatment of soft tissue defect and skin wound healing. Future Directions: Further investigation of the roles of perivascular MSCs may enable new approaches in the treatment of fibrogenic disease; moreover, perivascular MSCs might have potential as an antifibrotic target for fibrogenic disease. Autologous adipose tissue MSCs combined with cytokines and biomaterials will be an alternative method for the treatment of soft tissue defect and skin wound healing.
Collapse
Affiliation(s)
- Yoshikiyo Akasaka
- Division of Research Promotion and Development, Advanced Research Center, Toho University Graduate School of Medicine, Ota-ku, Japan.,Department of Pathology, Toho University School of Medicine, Ota-ku, Japan
| |
Collapse
|
27
|
Paganelli A, Rossi E, Magnoni C. The dark side of adipose-derived mesenchymal stromal cells in cutaneous oncology: roles, expectations, and potential pitfalls. Stem Cells Dev 2022; 31:593-603. [PMID: 36066334 DOI: 10.1089/scd.2022.0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adipose-derived stromal cells (ADSCs) have well-established regenerative and immunomodulatory properties. For such reasons, ADSCs are currently under investigation for their use in the setting of both regenerative medicine and autoimmune diseases. As per dermatological disorders, MSC-based strategies represent potential therapeutic tools not only for chronic ulcers and wound healing, but also for immune-mediated dermatoses. However, a growing body of research has been focusing on the role of MSCs in human cancers, due to the potential oncological risk of using MSC-based strategies linked to their anti-apoptotic, pro-angiogenic and immunosuppressive properties. In the dermatological setting, ADSCs have shown not only to promote melanoma growth and invasiveness, but also to induce drug-resistance. On the other hand, genetically modified ADSCs have been demonstrated to efficiently target therapies at tumor sites, due to their migratory properties and their peculiar tropism for cancer microenvironment. The present review briefly summarizes the findings published so far on the use of ADSCs in the dermato-oncological setting, with the majority of data being available for melanoma.
Collapse
Affiliation(s)
- Alessia Paganelli
- Universita degli Studi di Modena e Reggio Emilia, Dermatology, Modena, Italy, 41124;
| | - Elena Rossi
- Universita degli Studi di Modena e Reggio Emilia, Dermatology, Modena, Italy;
| | - Cristina Magnoni
- Universita degli Studi di Modena e Reggio Emilia, Dermatology, Modena, Italy;
| |
Collapse
|
28
|
Yao W, Dong H, Qi J, Zhang Y, Shi L. Safety and efficacy of mesenchymal stem cells in severe/critical patients with COVID-19: A systematic review and meta-analysis. EClinicalMedicine 2022; 51:101545. [PMID: 35844767 PMCID: PMC9270852 DOI: 10.1016/j.eclinm.2022.101545] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The present study aims to better understand the efficacy and safety of mesenchymal stromal cells (MSCs) in treating severe/critical patients with COVID-19. METHODS PubMed, the Cochrane Library, and the Chinese electronic database CNKI were searched from inception up to Dec 19, 2021. Original comparative studies for MSC treatment + standard treatment for severe/critical patients with COVID-19, with placebo or standard treatment as the control group, were included. The primary outcomes were in-hospital mortality and adverse events (AEs). A meta-analysis was performed to compare the mortality rates between the two groups. Then, a subgroup analysis was performed according to the category of the disease (severe or critical) and MSC dose. Afterwards, a descriptive analysis was performed for AEs and secondary outcomes. The funnel plot and Egger's test were used for the publication bias assessment. FINDINGS Compared to placebo or standard care, MSCs provide significant benefit in the treatment of patients with severe/critical COVID-19, in terms of in-hospital mortality rate (odds ratio: 0.52, 95% CI 0.32-0.84), with very low heterogeneity (P=0.998 [Q test], I 2=0.0%) and less AEs. No significant difference was found in mortality rate due to the different disease categories or MSC doses. Furthermore, no publication bias was found. INTERPRETATION The present study demonstrates that MSCs are highly likely to reduce mortality and are safe to use for patients with severe or critical COVID-19, regardless of whether 1-3 doses are applied. However, due to the small sample size of the included studies, further high-quality, large-scale trials are needed to confirm this statement in the future. FUNDING The National Key Research and Development Program of China (No. 2020YFC0860900), the Science and Technology Project of Wuhan (No. 2020020602012112), the Tianjin Science and Technology Research Program (18PTSYJC00070 and 16PTWYHZ00030), Haihe Laboratory of Cell Ecosystem Innovation Fund (HH22KYZX0046), and the Tianjin Free Trade Zone Innovation Development Project (ZMCY-03-2021002-01) funded the study. We are also grateful for the support from the 3551 Talent Plan of China Optics Valley.
Collapse
Affiliation(s)
- Weiqi Yao
- Department of Hematology, Union Hospital, Tong Ji Medical College, Hua Zhong University of Science and Technology, Hubei, China
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
- Wuhan Optics Valley Vcanbio Cell & Gene Technology Co., Ltd., Hubei, China
- Wuhan Optics Valley Zhongyuan Pharmaceutical Co., Ltd., Hubei, China
- Hubei Engineering Research Center for Human Stem Cell Preparation, Application and Resource Preservation, Wuhan, China
| | - Haibo Dong
- Wuhan Optics Valley Vcanbio Cell & Gene Technology Co., Ltd., Hubei, China
- Wuhan Optics Valley Zhongyuan Pharmaceutical Co., Ltd., Hubei, China
- Hubei Engineering Research Center for Human Stem Cell Preparation, Application and Resource Preservation, Wuhan, China
| | - Ji Qi
- Wuhan Optics Valley Zhongyuan Pharmaceutical Co., Ltd., Hubei, China
| | - Yu Zhang
- Wuhan Optics Valley Vcanbio Cell & Gene Technology Co., Ltd., Hubei, China
- Wuhan Optics Valley Zhongyuan Pharmaceutical Co., Ltd., Hubei, China
- Hubei Engineering Research Center for Human Stem Cell Preparation, Application and Resource Preservation, Wuhan, China
- VCANBIO Cell & Gene Engineering Corp., Ltd., No. 12 Meiyuan Road, Tianjin, China
- State Industrial Base for Stem Cell Engineering Products, Tianjin, China
- Corresponding authors.
| | - Lei Shi
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, No. 100 Xi Si Huan Middle Road, Fengtai District, Beijing, China
- Corresponding authors.
| |
Collapse
|
29
|
Zhou Y, Zhang XL, Lu ST, Zhang NY, Zhang HJ, Zhang J, Zhang J. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound healing and regeneration. Stem Cell Res Ther 2022; 13:407. [PMID: 35941707 PMCID: PMC9358082 DOI: 10.1186/s13287-022-02980-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background Large area skin trauma has always been a great challenge for both patients and clinicians. Exosomes originating from human adipose-derived mesenchymal stem cells (hADSCs) have been a novel promising cell-free treatment in cutaneous damage repair. Nevertheless, the low retention rate of exosomes post-transplantation in vivo remains a significant challenge in clinical applications. Herein, we purposed to explore the potential clinical application roles of hADSCs-Exos encapsulated in functional PF-127 hydrogel in wound healing.
Methods hADSCs-Exos were isolated from human hADSCs by ultracentrifugation. An injectable, biocompatible, and thermo-sensitive hydrogel Pluronic F-127 hydrogel was employed to encapsulate allogeneic hADSCs-Exos, and this complex was topically applied to a full-thickness cutaneous wound in mice. On different days post-transplantation, the mice were sacrificed, and the skin tissue was excised for histological and immunohistochemical analysis.
Results Compared with hADSCs-Exos or PF-127 only, PF-127/hADSCs-Exos complexes enhanced skin wound healing, promoted re-epithelialization, increased expression of Ki67, α-SMA, and CD31, facilitated collagen synthesis (Collagen I, Collagen III), up-regulated expression of skin barrier proteins (KRT1, AQP3), and reduced inflammation (IL-6, TNF-α, CD68, CD206). By using PF-127/hADSCs-Exos complexes, hADSCs-Exos can be administrated at lower doses frequency while maintaining the same therapeutic effects. Conclusion Administration of hADSCs-Exos in PF-127 improves the efficiency of exosome delivery, maintains the bioactivity of hADSCs-Exos, and optimizes the performance of hADSCs-Exos. Thus, this biomaterial-based exosome will be a promising treatment approach for the cutaneous rejuvenation of skin wounds.
Collapse
Affiliation(s)
- Yang Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xing-Liao Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shou-Tao Lu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.,National United Engineering Laboratory for Biomedical Material Modification Branden Industrial Park, Dezhou, 251100, Shandong, China
| | - Ning-Yan Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, School of Life Science and Technology, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Hai-Jun Zhang
- National United Engineering Laboratory for Biomedical Material Modification Branden Industrial Park, Dezhou, 251100, Shandong, China. .,Tenth People's Hospital of Tongji University, Shanghai, China.
| | - Jing Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, School of Life Science and Technology, Tongji University, 389 Xincun Road, Shanghai, 200065, China. .,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| | - Jun Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China. .,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|
30
|
Ren Y, Liu J, Xu H, Wang S, Li S, Xiang M, Chen S. Knockout of integrin β1 in induced pluripotent stem cells accelerates skin-wound healing by promoting cell migration in extracellular matrix. Stem Cell Res Ther 2022; 13:389. [PMID: 35908001 PMCID: PMC9338467 DOI: 10.1186/s13287-022-03085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022] Open
Abstract
Background Induced pluripotent stem cells (iPSCs) have the potential to promote wound healing; however, their adhesion to the extracellular matrix (ECM) might decrease iPSC migration, thereby limiting their therapeutic potential. Integrin β1 (Itgb1) is the major integrin subunit that mediates iPSC-ECM adhesion, suggesting that knocking out Itgb1 might be an effective method for enhancing the therapeutic efficacy of iPSCs. Methods We knocked out Itgb1 in mouse iPSCs and evaluated its effects on the therapeutic potential of topically applied iPSCs, as well as their underlying in vivo and in vitro mechanisms. Results The Itgb1-knockout (Itgb1-KO) did not change iPSC pluripotency, function, or survival in the absence of embedding in an ECM gel but did accelerate wound healing, angiogenesis, blood perfusion, and survival in skin-wound lesions. However, embedding in an ECM gel inhibited the in vivo effects of wild-type iPSCs but not those of Itgb1-knockout iPSCs. Additionally, in vitro results showed that Itgb1-knockout decreased iPSC-ECM adhesion while increasing ECM-crossing migration. Moreover, ECM coating on the culture surface did not change cell survival, regardless of Itgb1 status; however, the in vivo and in vitro functions of both Itgb1-knockout and wild-type iPSCs were not affected by the presence of agarose gel, which does not contain integrin-binding sites. Knockout of Integrin α4 (Itga4) did not change the above-mentioned cellular and therapeutic functions of iPSCs. Conclusions Itgb1-knockout increased iPSCs migration and the wound-healing-promoting effect of topically applied iPSCs. These findings suggest the inhibition of Itgb1 expression is a possible strategy for increasing the efficacy of iPSC therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03085-7.
Collapse
Affiliation(s)
- Yansong Ren
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jinbo Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Huijun Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shun Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shirui Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Meng Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Sifeng Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
31
|
Fernández-Santos ME, Garcia-Arranz M, Andreu EJ, García-Hernández AM, López-Parra M, Villarón E, Sepúlveda P, Fernández-Avilés F, García-Olmo D, Prosper F, Sánchez-Guijo F, Moraleda JM, Zapata AG. Optimization of Mesenchymal Stromal Cell (MSC) Manufacturing Processes for a Better Therapeutic Outcome. Front Immunol 2022; 13:918565. [PMID: 35812460 PMCID: PMC9261977 DOI: 10.3389/fimmu.2022.918565] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 12/20/2022] Open
Abstract
MSCs products as well as their derived extracellular vesicles, are currently being explored as advanced biologics in cell-based therapies with high expectations for their clinical use in the next few years. In recent years, various strategies designed for improving the therapeutic potential of mesenchymal stromal cells (MSCs), including pre-conditioning for enhanced cytokine production, improved cell homing and strengthening of immunomodulatory properties, have been developed but the manufacture and handling of these cells for their use as advanced therapy medicinal products (ATMPs) remains insufficiently studied, and available data are mainly related to non-industrial processes. In the present article, we will review this topic, analyzing current information on the specific regulations, the selection of living donors as well as MSCs from different sources (bone marrow, adipose tissue, umbilical cord, etc.), in-process quality controls for ensuring cell efficiency and safety during all stages of the manual and automatic (bioreactors) manufacturing process, including cryopreservation, the use of cell banks, handling medicines, transport systems of ATMPs, among other related aspects, according to European and US legislation. Our aim is to provide a guide for a better, homogeneous manufacturing of therapeutic cellular products with special reference to MSCs.
Collapse
Affiliation(s)
- Maria Eugenia Fernández-Santos
- Cardiology Department, HGU Gregorio Marañón. GMP-ATMPs Production Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM). Complutense University, CIBER Cardiovascular (CIBERCV), ISCIII, Madrid, Spain
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
| | - Mariano Garcia-Arranz
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD). Surgery Department, Autonoma University of Madrid, Madrid, Spain
| | - Enrique J. Andreu
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematology Department and Cell Therapy Area, Clínica Universidad de Navarra. CIBEROC and IDISNA, Pamplona, Spain
| | - Ana Maria García-Hernández
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Miriam López-Parra
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Eva Villarón
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Pilar Sepúlveda
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Francisco Fernández-Avilés
- Cardiology Department, HGU Gregorio Marañón. GMP-ATMPs Production Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM). Complutense University, CIBER Cardiovascular (CIBERCV), ISCIII, Madrid, Spain
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
| | - Damian García-Olmo
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD). Surgery Department, Autonoma University of Madrid, Madrid, Spain
| | - Felipe Prosper
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematology Department and Cell Therapy Area, Clínica Universidad de Navarra. CIBEROC and IDISNA, Pamplona, Spain
| | - Fermin Sánchez-Guijo
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Jose M. Moraleda
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Agustin G. Zapata
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Department of Cell Biology, Complutense University, Madrid, Spain
- *Correspondence: Maria Eugenia Fernández-Santos, ; Agustin G. Zapata,
| |
Collapse
|
32
|
Mirhaj M, Labbaf S, Tavakoli M, Seifalian AM. Emerging treatment strategies in wound care. Int Wound J 2022; 19:1934-1954. [PMID: 35297170 DOI: 10.1111/iwj.13786] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 12/20/2022] Open
Abstract
Wound healing is a complex process in tissue regeneration through which the body responds to the dissipated cells as a result of any kind of severe injury. Diabetic and non-healing wounds are considered an unmet clinical need. Currently, different strategic approaches are widely used in the treatment of acute and chronic wounds which include, but are not limited to, tissue transplantation, cell therapy and wound dressings, and the use of an instrument. A large number of literatures have been published on this topic; however, the most effective clinical treatment remains a challenge. The wound dressing involves the use of a scaffold, usually using biomaterials for the delivery of medication, autologous stem cells, or growth factors from the blood. Antibacterial and anti-inflammatory drugs are also used to stop the infection as well as accelerate wound healing. With an increase in the ageing population leading to diabetes and associated cutaneous wounds, there is a great need to improve the current treatment strategies. This research critically reviews the current advancement in the therapeutic and clinical approaches for wound healing and tissue regeneration. The results of recent clinical trials suggest that the use of modern dressings and skin substitutes is the easiest, most accessible, and most cost-effective way to treat chronic wounds with advances in materials science such as graphene as 3D scaffold and biomolecules hold significant promise. The annual market value for successful wound treatment exceeds over $50 billion US dollars, and this will encourage industries as well as academics to investigate the application of emerging smart materials for modern dressings and skin substitutes for wound therapy.
Collapse
Affiliation(s)
- Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran.,Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, UK
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, UK
| |
Collapse
|
33
|
Bellei B, Migliano E, Picardo M. Research update of adipose tissue-based therapies in regenerative dermatology. Stem Cell Rev Rep 2022; 18:1956-1973. [PMID: 35230644 DOI: 10.1007/s12015-022-10328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2022] [Indexed: 12/09/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) have a spontaneous propensity to support tissue homeostasis and regeneration. Among the several sources of MSCs, adipose-derived tissue stem cells (ADSCs) have received major interest due to the higher mesenchymal stem cells concentration, ease, and safety of access. However, since a significant part of the natural capacity of ADSCs to repair damaged tissue is ascribable to their secretory activity that combines mitogenic factors, cytokines, chemokines, lipids, and extracellular matrix components, several studies focused on cell-free strategies. Furthermore, adipose cell-free derivatives are becoming more attractive especially for non-volumizing purposes, such as most dermatological conditions. However, when keratinocytes, fibroblasts, melanocytes, adipocytes, and hair follicle cells might not be locally sourced, graft of materials containing concentrated ADSCs is preferred. The usage of extracellular elements of adipose tissue aims to promote a self-autonomous regenerative microenvironment in the receiving area restoring physiological homeostasis. Hence, ADSCs or their paracrine activity are currently being studied in several dermatological settings including wound healing, skin fibrosis, burn, and aging.The present work analyzing both preclinical and clinical experiences gives an overview of the efficacy of adipose tissue-derivatives like autologous fat, the stromal vascular fraction (SVF), purified ADSCs, secretome and extracellular matrix graft in the field of regenerative medicine for the skin.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Emilia Migliano
- Department of Plastic and Reconstructive Surgery, San Gallicano Dermatological Institute, IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
34
|
|
35
|
Jeyaraman M, Muthu S, Sharma S, Ganta C, Ranjan R, Jha SK. Nanofat: A therapeutic paradigm in regenerative medicine. World J Stem Cells 2021; 13:1733-1746. [PMID: 34909120 PMCID: PMC8641019 DOI: 10.4252/wjsc.v13.i11.1733] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/15/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue is a compact and well-organized tissue containing a heterogeneous cellular population of progenitor cells, including mesenchymal stromal cells. Due to its availability and accessibility, adipose tissue is considered a “stem cell depot.” Adipose tissue products possess anti-inflammatory, anti-fibrotic, anti-apoptotic, and immunomodulatory effects. Nanofat, being a compact bundle of stem cells with regenerative and tissue remodeling potential, has potential in translational and regenerative medicine. Considering the wide range of applicability of its reconstructive and regenerative potential, the applications of nanofat can be used in various disciplines. Nanofat behaves on the line of adipose tissue-derived mesenchymal stromal cells. At the site of injury, these stromal cells initiate a site-specific reparative response comprised of remodeling of the extracellular matrix, enhanced and sustained angiogenesis, and immune system modulation. These properties of stromal cells provide a platform for the usage of regenerative medicine principles in curbing various diseases. Details about nanofat, including various preparation methods, characterization, delivery methods, evidence on practical applications, and ethical concerns are included in this review. However, appropriate guidelines and preparation protocols for its optimal use in a wide range of clinical applications have yet to be standardized.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Biotechnology, School of Engineering and Technology, Sharda University , Greater Noida 201306, Uttar Pradesh, India
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida 201306, Uttar Pradesh, India
- Indian Stem Cell Study Group, Lucknow 226010, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University , Greater Noida 201306, Uttar Pradesh, India
- Indian Stem Cell Study Group, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624001, Tamil Nadu, India
| | - Shilpa Sharma
- Indian Stem Cell Study Group, Lucknow 226010, Uttar Pradesh, India
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, New Delhi, India
| | - Charan Ganta
- Indian Stem Cell Study Group, Lucknow 226010, Uttar Pradesh, India
- Department of Stem Cells and Regenerative Medicine, Kansas State University, Manhattan, United States 10002, United States
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida 201306, Uttar Pradesh, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University , Greater Noida 201306, Uttar Pradesh, India
| |
Collapse
|
36
|
Tanios E, Ahmed TM, Shafik EA, Sherif MF, Sayed D, Gaber N, Hassan Y. Efficacy of adipose-derived stromal vascular fraction cells in the management of chronic ulcers: a randomized clinical trial. Regen Med 2021; 16:975-988. [PMID: 34596433 DOI: 10.2217/rme-2020-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Cell therapy is a promising method for improving healing in chronic ulcers through delivery of isolated adipose-derived stromal vascular fraction. Objectives: This study investigates the autologous stem cell yield of adipose tissue and its efficacy in chronic ulcers compared with conventional methods. Methods: This study was a randomized controlled trial. After the study design and protocol were established and ethical committee approval was obtained, we enrolled 100 patients divided into study and control groups. In the study group, we performed debridement and autologous stem cell injection every 3 weeks. The control group was treated with debridement and conventional dressing. Assessments included clinical and histological parameters. Results: The study group showed improved healing. Conclusion: Using autologous adipose-derived stromal vascular fraction cells is an effective treatment method for chronic ulcers. This study was registered on the Pan-African Clinical Trial Registry and the number of the registry was PACTR201709002519185.
Collapse
Affiliation(s)
- Emil Tanios
- Plastic Surgery Department, Faculty of Medicine, Assiut University, 71111, Egypt
| | - Tohamy M Ahmed
- Plastic Surgery Department, Faculty of Medicine, Assiut University, 71111, Egypt
| | - Engy A Shafik
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, 71111, Egypt
| | | | - Douaa Sayed
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, 71111, Egypt
| | - Noha Gaber
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, 71111, Egypt
| | - Youssef Hassan
- Plastic Surgery Department, Faculty of Medicine, Assiut University, 71111, Egypt
| |
Collapse
|
37
|
Stem Cells in Autologous Microfragmented Adipose Tissue: Current Perspectives in Osteoarthritis Disease. Int J Mol Sci 2021; 22:ijms221910197. [PMID: 34638538 PMCID: PMC8508703 DOI: 10.3390/ijms221910197] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a chronic debilitating disorder causing pain and gradual degeneration of weight-bearing joints with detrimental effects on cartilage volume as well as cartilage damage, generating inflammation in the joint structure. The etiology of OA is multifactorial. Currently, therapies are mainly addressing the physical and occupational aspects of osteoarthritis using pharmacologic pain treatment and/or surgery to manage the symptomatology of the disease with no specific regard to disease progression or prevention. Herein, we highlight alternative therapeutics for OA specifically considering innovative and encouraging translational methods with the use of adipose mesenchymal stem cells.
Collapse
|
38
|
Buscail E, Le Cosquer G, Gross F, Lebrin M, Bugarel L, Deraison C, Vergnolle N, Bournet B, Gilletta C, Buscail L. Adipose-Derived Stem Cells in the Treatment of Perianal Fistulas in Crohn's Disease: Rationale, Clinical Results and Perspectives. Int J Mol Sci 2021; 22:ijms22189967. [PMID: 34576129 PMCID: PMC8470328 DOI: 10.3390/ijms22189967] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 12/16/2022] Open
Abstract
Between 20 to 25% of Crohn’s disease (CD) patients suffer from perianal fistulas, a marker of disease severity. Seton drainage combined with anti-TNFα can result in closure of the fistula in 70 to 75% of patients. For the remaining 25% of patients there is room for in situ injection of autologous or allogenic mesenchymal stem cells such as adipose-derived stem/stromal cells (ADSCs). ADSCs exert their effects on tissues and effector cells through paracrine phenomena, including the secretome and extracellular vesicles. They display anti-inflammatory, anti-apoptotic, pro-angiogenic, proliferative, and immunomodulatory properties, and a homing within the damaged tissue. They also have immuno-evasive properties allowing a clinical allogeneic approach. Numerous clinical trials have been conducted that demonstrate a complete cure rate of anoperineal fistulas in CD ranging from 46 to 90% of cases after in situ injection of autologous or allogenic ADSCs. A pivotal phase III-controlled trial using allogenic ADSCs (Alofisel®) demonstrated that prolonged clinical and radiological remission can be obtained in nearly 60% of cases with a good safety profile. Future studies should be conducted for a better knowledge of the local effect of ADSCs as well as for a standardization in terms of the number of injections and associated procedures.
Collapse
Affiliation(s)
- Etienne Buscail
- Department of Surgery, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France;
- IRSD, University of Toulouse, INSERM 1022, INRAe, ENVT, UPS, 31300 Toulouse, France; (C.D.); (N.V.)
| | - Guillaume Le Cosquer
- Department of Gastroenterology and Pancreatology, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France; (G.L.C.); (B.B.); (C.G.)
| | - Fabian Gross
- Centre for Clinical Investigation in Biotherapy, CHU Toulouse-Rangueil and INSERM U1436, 31059 Toulouse, France; (F.G.); (M.L.); (L.B.)
| | - Marine Lebrin
- Centre for Clinical Investigation in Biotherapy, CHU Toulouse-Rangueil and INSERM U1436, 31059 Toulouse, France; (F.G.); (M.L.); (L.B.)
| | - Laetitia Bugarel
- Centre for Clinical Investigation in Biotherapy, CHU Toulouse-Rangueil and INSERM U1436, 31059 Toulouse, France; (F.G.); (M.L.); (L.B.)
| | - Céline Deraison
- IRSD, University of Toulouse, INSERM 1022, INRAe, ENVT, UPS, 31300 Toulouse, France; (C.D.); (N.V.)
| | - Nathalie Vergnolle
- IRSD, University of Toulouse, INSERM 1022, INRAe, ENVT, UPS, 31300 Toulouse, France; (C.D.); (N.V.)
| | - Barbara Bournet
- Department of Gastroenterology and Pancreatology, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France; (G.L.C.); (B.B.); (C.G.)
| | - Cyrielle Gilletta
- Department of Gastroenterology and Pancreatology, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France; (G.L.C.); (B.B.); (C.G.)
| | - Louis Buscail
- Department of Gastroenterology and Pancreatology, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France; (G.L.C.); (B.B.); (C.G.)
- Centre for Clinical Investigation in Biotherapy, CHU Toulouse-Rangueil and INSERM U1436, 31059 Toulouse, France; (F.G.); (M.L.); (L.B.)
- Correspondence: ; Tel.: +33-561323055
| |
Collapse
|
39
|
Casari G, Resca E, Giorgini A, Candini O, Petrachi T, Piccinno MS, Foppiani EM, Pacchioni L, Starnoni M, Pinelli M, De Santis G, Selleri F, Catani F, Dominici M, Veronesi E. Microfragmented adipose tissue is associated with improved ex vivo performance linked to HOXB7 and b-FGF expression. Stem Cell Res Ther 2021; 12:481. [PMID: 34454577 PMCID: PMC8399787 DOI: 10.1186/s13287-021-02540-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Adipose tissue (AT) has become a source of mesenchymal stromal/stem cells (MSC) for regenerative medicine applications, in particular skeletal disorders. Several enzymatic or mechanical procedures have been proposed to process AT with the aim to isolate cells that can be locally implanted. How AT is processed may impact its properties. Thus, we compared AT processed by centrifugation (C-AT) to microfragmentation (MF-AT). Focusing on MF-AT, we subsequently assessed the impact of synovial fluid (SF) alone on both MF-AT and isolated AT-MSC to better understand their cartilage repair mechanisms. MATERIALS AND METHODS MF-AT and C-AT from the same donors were compared by histology and qRT-PCR immediately after isolation or as ex vivo cultures using a micro-tissue pellet system. The in vitro impact of SF on MF-AT and AT-MSC was assessed by histological staining and molecular analysis. RESULTS The main AT histological features (i.e., increased extracellular matrix and cellularity) of the freshly isolated or ex vivo-cultured MF-AT persisted compared to C-AT, which rapidly deteriorated during culture. Based on our previous studies of HOX genes in MSC, we investigated the involvement of Homeobox Protein HOX-B7 (HOXB7) and its target basic Fibroblast Growth Factor (bFGF) in the molecular mechanism underlying the improved performance of MF-AT. Indeed, both these biomarkers were more prominent in freshly isolated MF-AT compared to C-AT. SF alone preserved the AT histological features of MF-AT, together with HOXB7 and bFGF expression. Increased cell performance was also observed in isolated AT-MSC after SF treatment concomitant with enhanced HOXB7 expression, although there was no apparent association with bFGF. CONCLUSIONS Our findings show that MF has a positive effect on the maintenance of AT histology and may trigger the expression of trophic factors that improve tissue repair by processed AT.
Collapse
Affiliation(s)
- Giulia Casari
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.,Rigenerand srl, Medolla, Modena, Italy
| | - Elisa Resca
- Technopole Mario Veronesi, Mirandola, Modena, Italy
| | - Andrea Giorgini
- Department of Orthopaedic and Traumatology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | - Lucrezia Pacchioni
- Division of Plastic Surgery, Department of General Surgery and Surgical Specialties, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Marta Starnoni
- Division of Plastic Surgery, Department of General Surgery and Surgical Specialties, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Pinelli
- Division of Plastic Surgery, Department of General Surgery and Surgical Specialties, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giorgio De Santis
- Division of Plastic Surgery, Department of General Surgery and Surgical Specialties, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Filippo Selleri
- Department of Orthopaedic and Traumatology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Catani
- Department of Orthopaedic and Traumatology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy. .,Rigenerand srl, Medolla, Modena, Italy. .,Technopole Mario Veronesi, Mirandola, Modena, Italy.
| | - Elena Veronesi
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy. .,Technopole Mario Veronesi, Mirandola, Modena, Italy.
| |
Collapse
|
40
|
Radeloff K, Weiss D, Hagen R, Kleinsasser N, Radeloff A. Differentiation Behaviour of Adipose-Derived Stromal Cells (ASCs) Seeded on Polyurethane-Fibrin Scaffolds In Vitro and In Vivo. Biomedicines 2021; 9:biomedicines9080982. [PMID: 34440186 PMCID: PMC8391877 DOI: 10.3390/biomedicines9080982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 01/22/2023] Open
Abstract
Adipose-derived stromal cells (ASCs) are a promising cell source for tissue engineering and regenerative medicine approaches for cartilage replacement. For chondrogenic differentiation, human (h)ASCs were seeded on three-dimensional polyurethane (PU) fibrin composites and induced with a chondrogenic differentiation medium containing TGF-ß3, BMP-6, and IGF-1 in various combinations. In addition, in vitro predifferentiated cell-seeded constructs were implanted into auricular cartilage defects of New Zealand White Rabbits for 4 and 12 weeks. Histological, immunohistochemical, and RT-PCR analyses were performed on the constructs maintained in vitro to determine extracellular matrix (ECM) deposition and expression of specific cartilage markers. Chondrogenic differentiated constructs showed a uniform distribution of cells and ECM proteins. RT-PCR showed increased gene expression of collagen II, collagen X, and aggrecan and nearly stable expression of SOX-9 and collagen I. Rabbit (r)ASC-seeded PU-fibrin composites implanted in ear cartilage defects of New Zealand White Rabbits showed deposition of ECM with structures resembling cartilage lacunae by Alcian blue staining. However, extracellular calcium deposition became detectable over the course of 12 weeks. RT-PCR showed evidence of endochondral ossification during the time course with the expression of specific marker genes (collagen X and RUNX-2). In conclusion, hASCs show chondrogenic differentiation capacity in vitro with the expression of specific marker genes and deposition of cartilage-specific ECM proteins. After implantation of predifferentiated rASC-seeded PU-fibrin scaffolds into a cartilage defect, the constructs undergo the route of endochondral ossification.
Collapse
Affiliation(s)
- Katrin Radeloff
- Department of Otorhinolaryngology, Head and Neck Surgery, Evangelisches Krankenhaus, Carl von Ossietzky-University of Oldenburg, 26122 Oldenburg, Germany;
- Correspondence:
| | - Dorothee Weiss
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius-Maximilian-University of Wuerzburg, 97080 Wuerzburg, Germany; (D.W.); (R.H.); (N.K.)
| | - Rudolf Hagen
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius-Maximilian-University of Wuerzburg, 97080 Wuerzburg, Germany; (D.W.); (R.H.); (N.K.)
| | - Norbert Kleinsasser
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius-Maximilian-University of Wuerzburg, 97080 Wuerzburg, Germany; (D.W.); (R.H.); (N.K.)
| | - Andreas Radeloff
- Department of Otorhinolaryngology, Head and Neck Surgery, Evangelisches Krankenhaus, Carl von Ossietzky-University of Oldenburg, 26122 Oldenburg, Germany;
| |
Collapse
|
41
|
Comparison between Intra-Articular Injection of Infrapatellar Fat Pad (IPFP) Cell Concentrates and IPFP-Mesenchymal Stem Cells (MSCs) for Cartilage Defect Repair of the Knee Joint in Rabbits. Stem Cells Int 2021; 2021:9966966. [PMID: 34367294 PMCID: PMC8337123 DOI: 10.1155/2021/9966966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic method in regenerative medicine. Our previous research adopted a simple nonenzymatic strategy for the preparation of a new type of ready-to-use infrapatellar fat pad (IPFP) cell concentrates. The aim of this study was to compare the therapeutic efficacy of intra-articular (IA) injection of autologous IPFP cell concentrates and allogeneic IPFP-MSCs obtained from these concentrates in a rabbit articular cartilage defect model. IPFP-MSCs sprouting from the IPFP cell concentrates were characterized via flow cytometry as well as based on their potential for differentiation into adipocytes, osteoblasts, and chondrocytes. In the rabbit model, cartilage defects were created on the trochlear groove, followed by treatment with IPFP cell concentrates, IPFP-MSCs, or normal saline IA injection. Distal femur samples were evaluated at 6 and 12 weeks posttreatment via macroscopic observation and histological assessment based on the International Cartilage Repair Society (ICRS) macroscopic scoring system as well as the ICRS visual histological assessment scale. The macroscopic score and histological score were significantly higher in the IPFP-MSC group compared to the IPFP cell concentrate group at 12 weeks. Further, both treatment groups had higher scores compared to the normal saline group. In comparison to the latter, the groups treated with IPFP-MSCs and IPFP cell concentrates showed considerably better cartilage regeneration. Overall, IPFP-MSCs represent an effective therapeutic strategy for stimulating articular cartilage regeneration. Further, due to the simple, cost-effective, nonenzymatic, and safe preparation process, IPFP cell concentrates may represent an effective alternative to stem cell-based therapy in the clinic.
Collapse
|
42
|
The Effects of Mesenchymal Stem Cell on Colorectal Cancer. Stem Cells Int 2021; 2021:9136583. [PMID: 34349805 PMCID: PMC8328693 DOI: 10.1155/2021/9136583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract with nonobvious early symptoms and late symptoms of anemia, weight loss, and other systemic symptoms. Its morbidity and fatality rate are next only to gastric cancer, esophageal cancer, and primary liver cancer among digestive malignancies. In addition to the conventional surgical intervention, other therapies such as radiotherapy and chemotherapy and new treatment methods such as biologics and microbiological products have been introduced. As a promising cell therapy, mesenchymal stem cell (MSC) has attracted extensive research attention. MSCs are early undifferentiated pluripotent stem cells, which have the common features of stem cells, including self-replication, self-division, self-renewal, and multidirectional differentiation. MSCs come from a wide range of sources and can be extracted from a variety of tissues such as the bone marrow, umbilical cord, and fat. Current studies have shown that MSCs have a variety of biological functions such as immune regulation, tissue damage repair, and therapeutic effects on tumors such as CRC. This review outlines the overview of MSCs and CRC and summarizes the role of MSC application in CRC.
Collapse
|
43
|
Ebrahim N, Dessouky AA, Mostafa O, Hassouna A, Yousef MM, Seleem Y, El Gebaly EAEAM, Allam MM, Farid AS, Saffaf BA, Sabry D, Nawar A, Shoulah AA, Khalil AH, Abdalla SF, El-Sherbiny M, Elsherbiny NM, Salim RF. Adipose mesenchymal stem cells combined with platelet-rich plasma accelerate diabetic wound healing by modulating the Notch pathway. Stem Cell Res Ther 2021; 12:392. [PMID: 34256844 PMCID: PMC8276220 DOI: 10.1186/s13287-021-02454-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/12/2021] [Indexed: 02/08/2023] Open
Abstract
Background Diabetic foot ulceration is a serious chronic complication of diabetes mellitus characterized by high disability, mortality, and morbidity. Platelet-rich plasma (PRP) has been widely used for diabetic wound healing due to its high content of growth factors. However, its application is limited due to the rapid degradation of growth factors. The present study aimed to evaluate the efficacy of combined adipose-derived mesenchymal stem cells (ADSCs) and PRP therapy in promoting diabetic wound healing in relation to the Notch signaling pathway. Methods Albino rats were allocated into 6 groups [control (unwounded), sham (wounded but non-diabetic), diabetic, PRP-treated, ADSC-treated, and PRP+ADSCs-treated groups]. The effect of individual and combined therapy was evaluated by assessing wound closure rate, epidermal thickness, dermal collagen, and angiogenesis. Moreover, gene and protein expression of key elements of the Notch signaling pathway (Notch1, Delta-like canonical Notch ligand 4 (DLL4), Hairy Enhancer of Split-1 (Hes1), Hey1, Jagged-1), gene expression of angiogenic marker (vascular endothelial growth factor and stromal cell-derived factor 1) and epidermal stem cells (EPSCs) related gene (ß1 Integrin) were assessed. Results Our data showed better wound healing of PRP+ADSCs compared to their individual use after 7 and 14 days as the combined therapy caused reepithelialization and granulation tissue formation with a marked increase in area percentage of collagen, epidermal thickness, and angiogenesis. Moreover, Notch signaling was significantly downregulated, and EPSC proliferation and recruitment were enhanced compared to other treated groups and diabetic groups. Conclusions These data demonstrated that PRP and ADSCs combined therapy significantly accelerated healing of diabetic wounds induced experimentally in rats via modulating the Notch pathway, promoting angiogenesis and EPSC proliferation.
Collapse
Affiliation(s)
- Nesrine Ebrahim
- Department of Histology and Cell Biology Faculty of Medicine, Benha University, Benha, Egypt.,Stem Cell Unit, Faculty of Medicine, Benha University, Benha, Egypt
| | - Arigue A Dessouky
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ola Mostafa
- Department of Histology and Cell Biology Faculty of Medicine, Benha University, Benha, Egypt
| | - Amira Hassouna
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, AUT University, Auckland, New Zealand
| | - Mohamed M Yousef
- Department of Histology and Cell Biology Faculty of Medicine, Benha University, Benha, Egypt
| | - Yasmin Seleem
- Department of Clinical Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Mona M Allam
- Department of Medical Physiology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ayman Samir Farid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubia, 13736, Egypt
| | - Bayan A Saffaf
- Department of Pharmacology, Faculty of Pharmacy, Future University, New Cairo, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.,Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University, Cairo, 11562, Egypt
| | - Ahmed Nawar
- Department of General Surgery, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ahmed A Shoulah
- Department of General Surgery, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ahmed H Khalil
- Department of Surgery, & Radiology Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Sami F Abdalla
- Clinical Department, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia.,Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nehal M Elsherbiny
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt. .,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Rabab F Salim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt.
| |
Collapse
|
44
|
Deptuła M, Brzezicka A, Skoniecka A, Zieliński J, Pikuła M. Adipose-derived stromal cells for nonhealing wounds: Emerging opportunities and challenges. Med Res Rev 2021; 41:2130-2171. [PMID: 33522005 PMCID: PMC8247932 DOI: 10.1002/med.21789] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/30/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Wound healing complications affect thousands of people each year, thus constituting a profound economic and medical burden. Chronic wounds are a highly complex problem that usually affects elderly patients as well as patients with comorbidities such as diabetes, cancer (surgery, radiotherapy/chemotherapy) or autoimmune diseases. Currently available methods of their treatment are not fully effective, so new solutions are constantly being sought. Cell-based therapies seem to have great potential for use in stimulating wound healing. In recent years, much effort has been focused on characterizing of adipose-derived mesenchymal stromal cells (AD-MSCs) and evaluating their clinical use in regenerative medicine and other medical fields. These cells are easily obtained in large amounts from adipose tissue and show a high proregenerative potential, mainly through paracrine activities. In this review, the process of healing acute and nonhealing (chronic) wounds is detailed, with a special attention paid to the wounds of patients with diabetes and cancer. In addition, the methods and technical aspects of AD-MSCs isolation, culture and transplantation in chronic wounds are described, and the characteristics, genetic stability and role of AD-MSCs in wound healing are also summarized. The biological properties of AD-MSCs isolated from subcutaneous and visceral adipose tissue are compared. Additionally, methods to increase their therapeutic potential as well as factors that may affect their biological functions are summarized. Finally, their therapeutic potential in the treatment of diabetic and oncological wounds is also discussed.
Collapse
Affiliation(s)
- Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of EmbryologyMedical University of GdanskGdańskPoland
| | | | - Aneta Skoniecka
- Department of Embryology, Faculty of MedicineMedical University of GdanskGdańskPoland
| | - Jacek Zieliński
- Department of Oncologic SurgeryMedical University of GdanskGdańskPoland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of EmbryologyMedical University of GdanskGdańskPoland
| |
Collapse
|
45
|
François P, Rusconi G, Arnaud L, Mariotta L, Giraudo L, Minonzio G, Veran J, Bertrand B, Dumoulin C, Grimaud F, Lyonnet L, Casanova D, Giverne C, Cras A, Magalon G, Dignat-George F, Sabatier F, Magalon J, Soldati G. Inter-center comparison of good manufacturing practices-compliant stromal vascular fraction and proposal for release acceptance criteria: a review of 364 productions. Stem Cell Res Ther 2021; 12:373. [PMID: 34210363 PMCID: PMC8252207 DOI: 10.1186/s13287-021-02445-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background Even though the manufacturing processes of the stromal vascular fraction for clinical use are performed in compliance with the good manufacturing practices applying to advanced therapy medicinal products, specifications related to stromal vascular fraction quality remain poorly defined. We analyzed stromal vascular fraction clinical batches from two independent good manufacturing practices-compliant manufacturing facilities, the Swiss Stem Cell Foundation (SSCF) and Marseille University Hospitals (AP-HM), with the goal of defining appropriate and harmonized release acceptance criteria. Methods This retrospective analysis reviewed the biological characteristics of 364 batches of clinical-grade stromal vascular fraction. Collected data included cell viability, recovery yield, cell subset distribution of stromal vascular fraction, and microbiological quality. Results Stromal vascular fraction from SSCF cohort demonstrated a higher viability (89.33% ± 4.30%) and recovery yield (2.54 × 105 ± 1.22 × 105 viable nucleated cells (VNCs) per mL of adipose tissue) than stromal vascular fraction from AP-HM (84.20% ± 5.96% and 2.25 × 105 ± 1.11 × 105 VNCs per mL). AP-HM batches were significantly less contaminated (95.71% of sterile batches versus 74.15% for SSCF batches). The cell subset distribution was significantly different (higher proportion of endothelial cells and lower proportion of leukocytes and pericytes in SSCF cohort). Conclusions Both centers agreed that a good manufacturing practices-compliant stromal vascular fraction batch should exert a viability equal or superior to 80%, a minimum recovery yield of 1.50 × 105 VNCs per mL of adipose tissue, a proportion of adipose-derived stromal cells at least equal to 20%, and a proportion of leukocytes under 50%. In addition, a multiparameter gating strategy for stromal vascular fraction analysis is proposed. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02445-z.
Collapse
Affiliation(s)
- Pauline François
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 147 Bd Baille, 13005, Marseille, France.,Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France
| | - Giulio Rusconi
- Swiss Stem Cell Foundation, Gentilino, Lugano, Switzerland.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Laurent Arnaud
- Vascular Biology Department, Hôpital de la Conception, AP-HM, Marseille, France
| | - Luca Mariotta
- Swiss Stem Cell Foundation, Gentilino, Lugano, Switzerland
| | - Laurent Giraudo
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 147 Bd Baille, 13005, Marseille, France
| | - Greta Minonzio
- Swiss Stem Cell Foundation, Gentilino, Lugano, Switzerland
| | - Julie Veran
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 147 Bd Baille, 13005, Marseille, France
| | - Baptiste Bertrand
- Plastic Surgery Department, Hôpital de la Conception, AP-HM, Marseille, France
| | - Chloé Dumoulin
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 147 Bd Baille, 13005, Marseille, France
| | - Fanny Grimaud
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 147 Bd Baille, 13005, Marseille, France
| | - Luc Lyonnet
- Vascular Biology Department, Hôpital de la Conception, AP-HM, Marseille, France
| | - Dominique Casanova
- Plastic Surgery Department, Hôpital de la Conception, AP-HM, Marseille, France
| | - Camille Giverne
- Normandie Univ, UNIROUEN, INSERM, U1234, Rouen University Hospital, Department of Immunology and Biotherapy, Rouen, France
| | - Audrey Cras
- Assistance Publique-Hôpitaux de Paris, Saint-Louis Hospital, Cell Therapy Unit, Cord blood Bank and CIC-BT501, Paris, France
| | | | - Françoise Dignat-George
- Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France.,Vascular Biology Department, Hôpital de la Conception, AP-HM, Marseille, France
| | - Florence Sabatier
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 147 Bd Baille, 13005, Marseille, France.,Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France.,Remedex, Marseille, France
| | - Jeremy Magalon
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 147 Bd Baille, 13005, Marseille, France. .,Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France. .,Remedex, Marseille, France.
| | - Gianni Soldati
- Swiss Stem Cell Foundation, Gentilino, Lugano, Switzerland
| |
Collapse
|
46
|
Gentile P, Sterodimas A, Calabrese C, Garcovich S. Systematic review: Advances of fat tissue engineering as bioactive scaffold, bioactive material, and source for adipose-derived mesenchymal stem cells in wound and scar treatment. Stem Cell Res Ther 2021; 12:318. [PMID: 34078470 PMCID: PMC8173738 DOI: 10.1186/s13287-021-02397-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Fat tissue (FT) has been used for many years in regenerative surgery as a bioactive material through the lipofilling/fat graft (F-GRF)-nano-fat technique, as a bioactive scaffold when it was enriched with adipose-derived mesenchymal stem cells (AD-MSCs) contained in the stromal vascular fraction (SVF), and as a direct source of AD-MSCs used in wound healing (WH) and scar treatment (ST). This systematic review aims to describe the advances in FT engineering applied to regenerative surgery (from bench to clinic), through the use of AD-MSCs, SVF contained in F-GRF in WH and ST. The work has been performed by assessing in the selected studies autologous graft of AD-MSCs, SVF, and F-GRF compared to any control for ST and WH. The protocol was developed following the Preferred Reporting for Items for Systematic Reviews and Meta-Analyses-Protocols (PRISMA-P) guidelines. A multistep search of the PubMed, MEDLINE, Embase, PreMEDLINE, Ebase, CINAHL, PsycINFO, Clinicaltrials.gov , Scopus database, and Cochrane databases has been performed to identify papers on AD-MSCs, SVF, and F-GRF use in WH and ST in which FT was used as bioactive material-scaffold and source of AD-MSCs. Of the 714 articles initially identified, 453 articles focusing on regenerative strategies in WH and ST were selected and, consequently, only 84 articles that apparently related to AD-MSC, SVF, and F-GRF were analyzed. Of these, 61 articles identified as pre-clinical, experimental, and in vitro, and 5 articles identified as a comment and systematic review were excluded. Only 18 original articles which strictly and exclusively focused on autologous AD-MSCs, SVF, and F-GRF in ST and WH were analyzed. The included studies had to match predetermined criteria according to the PICOS (patients, intervention, comparator, outcomes, and study design) approach. The identified studies described microscopic and clinical outcomes in patients treated with AD-MSCs, SVF, and F-GRF. Collected data confirmed the safety and efficacy of FT both as bioactive material-scaffold and source of AD-MSCs in WH and ST without major side effects.
Collapse
Affiliation(s)
- Pietro Gentile
- Department of Surgical Science, “Tor Vergata” University, Via Courmayeur, 102, 00133 Rome, Italy
- Academy of International Regenerative Medicine & Surgery Societies (AIRMESS), 1201 Geneva, Switzerland
| | - Aris Sterodimas
- Department of Plastic and Reconstructive Surgery, Metropolitan General Hospital, 18547 Athens, Greece
| | | | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
47
|
Mazini L, Rochette L, Malka G. Exosomes contribution in COVID-19 patients' treatment. J Transl Med 2021; 19:234. [PMID: 34059065 PMCID: PMC8165679 DOI: 10.1186/s12967-021-02884-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Adipose cell-free derivatives have been recently gaining attention as potential therapeutic agents for various human diseases. In this context, mesenchymal stromal/stem cells (MSCs), adipocyte mesenchymal stem cells (Ad-MSCs) and adipose-derived stem cells (ADSC) possessing potent immunomodulatory activities are proposed as a therapeutic option for the treatment of coronavirus disease 2019 (COVID-19). The COVID-19 represents a global concern of public health caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in which there is not actually any specific therapy. MSCs exert an immunomodulation effect due to the secretion of endogenous factors, such as vascular endothelial growth factor (VEGF), insulin growth factor (IGF), and nerve growth factor (NGF), transforming growth factor (TGF)-β and growth differentiation factor (GDF)-11. Recent reports are promising for further studies and clinical applications of ADSCs and Ad-MSCs in COVID-19 patients. Experimental and clinical studies are exploring the therapeutic potential of both MSCs and derived-exosomes in moderating the morbidity and mortality of COVID-19. In this field, more preclinical and clinical studies are warranted to find an effective treatment for the patients suffering from COVID-19 infection.
Collapse
Affiliation(s)
- Loubna Mazini
- Institut Superieur des Sciences Biologiques et Paramedicales, Université Mohammed VI Polytechnique, Lot 660, 43150, Ben-Guerir, Morocco.
| | - Luc Rochette
- Equipe D'Accueil (EA 7460), Physiopathologie Et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté Des Sciences de Santé, Université de Bourgogne-Franche Comté, 7 Bd Jeanne d'Arc, 21000, Dijon, France
| | - Gabriel Malka
- Institut Superieur des Sciences Biologiques et Paramedicales, Université Mohammed VI Polytechnique, Lot 660, 43150, Ben-Guerir, Morocco
| |
Collapse
|
48
|
Gentile P, Garcovich S. Adipose-Derived Mesenchymal Stem Cells (AD-MSCs) against Ultraviolet (UV) Radiation Effects and the Skin Photoaging. Biomedicines 2021; 9:biomedicines9050532. [PMID: 34064624 PMCID: PMC8151305 DOI: 10.3390/biomedicines9050532] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/26/2022] Open
Abstract
The skin is a natural barrier against the ultraviolet (UV) radiation of sunlight. The long-term and/or repetitive exposure to the sunlight and related UV radiation may change the skin structure, decreasing collagen production, promoting premature skin aging, which is termed "photoaging". The signs of photoaging include wrinkle formation, mottled pigmentation, and/or cancerous changes. For many years, adipose-derived mesenchymal stem cells (AD-MSCs) and fat grafting (F-GRF) have been used to combat photoaging signs, wrinkles, loss of elasticity, and face soft tissue defects. Several studies have analyzed in vitro actions of AD-MSCs against photoaging's effects, thanks to their migratory activity, paracrine actions, and related in vivo-ex vivo outcomes. In fact, AD-MSCs act against skin photoaging in vitro via activation of dermal fibroblast proliferation, antioxidant effect, and matrix metalloproteinases (MMPs) reduction. In vivo and ex vivo outcomes regard the local injection of AD-MSCs, F-GRF, and/or enriched-F-GRF with AD-MSCs directly in the wrinkles and the face's soft tissue defects. This concise review summarizes the most recent in vitro, in vivo and ex vivo outcomes and developments on the effects of AD-MSCs and F-GRF against photoaging.
Collapse
Affiliation(s)
- Pietro Gentile
- Department of Surgical Science, Plastic and Reconstructive Surgery, Medical School, “Tor Vergata” University, 00133 Rome, Italy
- Scientific Director of Academy of International Regenerative Medicine & Surgery Societies (AIRMESS), 1201 Geneva, Switzerland
- Correspondence: ; Tel.: +39-3388-5154-79
| | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
49
|
Burmeister DM, Chu GCY, Chao T, Heard TC, Gómez BI, Sousse LE, Natesan S, Christy RJ. ASCs derived from burn patients are more prone to increased oxidative metabolism and reactive oxygen species upon passaging. Stem Cell Res Ther 2021; 12:270. [PMID: 33957963 PMCID: PMC8100366 DOI: 10.1186/s13287-021-02327-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Background Patients with severe burn injury (over 20% of the total body surface area) experience profound hypermetabolism which significantly prolongs wound healing. Adipose-derived stem cells (ASCs) have been proposed as an attractive solution for treating burn wounds, including the potential for autologous ASC expansion. While subcutaneous adipocytes display an altered metabolic profile post-burn, it is not known if this is the case with the stem cells associated with the adipose tissue. Methods ASCs were isolated from discarded burn skin of severely injured human subjects (BH, n = 6) and unburned subcutaneous adipose tissue of patients undergoing elective abdominoplasty (UH, n = 6) and were analyzed at passages 2, 4, and 6. Flow cytometry was used to quantify ASC cell surface markers CD90, CD105, and CD73. Mitochondrial abundance and reactive oxygen species (ROS) production were determined with MitoTracker Green and MitoSOX Red, respectively, while JC-10 Mitochondrial Membrane Potential Assays were also performed. Mitochondrial respiration and glycolysis were analyzed with a high-resolution respirometer (Seahorse XFe24 Analyzer). Results There was no difference in age between BH and UH (34 ± 6 and 41 ± 4 years, respectively, P = 0.49). While passage 2 ASCs had lower ASC marker expression than subsequent passages, there were no significant differences in the expression between BH and UH ASCs. Similarly, no differences in mitochondrial abundance or membrane potential were found amongst passages or groups. Two-way ANOVA showed a significant effect (P < 0.01) of passaging on mitochondrial ROS production, with increased ROS in BH ASCs at later passages. Oxidative phosphorylation capacities (leak and maximal respiration) increased significantly in BH ASCs (P = 0.035) but not UH ASCs. On the contrary, basal glycolysis significantly decreased in BH ASCs (P = 0.011) with subsequent passaging, but not UH ASCs. Conclusions In conclusion, ASCs from burned individuals become increasingly oxidative and less glycolytic upon passaging when compared to ASCs from unburned patients. This increase in oxidative capacities was associated with ROS production in later passages. While the autologous expansion of ASCs holds great promise for treating burned patients with limited donor sites, the potential negative consequences of using them require further investigation.
Collapse
Affiliation(s)
- David M Burmeister
- Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA. .,United States Army Institute of Surgical Research, JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX, USA.
| | - Grace Chu-Yuan Chu
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX, USA
| | - Tony Chao
- University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Tiffany C Heard
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX, USA
| | - Belinda I Gómez
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX, USA
| | - Linda E Sousse
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX, USA
| | - Shanmugasundaram Natesan
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX, USA
| | - Robert J Christy
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX, USA
| |
Collapse
|
50
|
A randomized, controlled clinical trial of autologous stromal vascular fraction cells transplantation to promote mechanical stretch-induced skin regeneration. Stem Cell Res Ther 2021; 12:243. [PMID: 33858504 PMCID: PMC8048343 DOI: 10.1186/s13287-021-02318-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The regeneration response of the skin to mechanical stretching in vivo has been explored in reconstructive surgery to repair large-scale deformities. The ability of the skin to regenerate limits the reconstructive outcome. Here, we propose an approach in which autologous stromal vascular fraction (SVF) cells and mechanical stretching are combined to overcome this limitation and promote skin regeneration. METHODS This randomized, blinded, placebo-controlled clinical trial screened 22 participants undergoing tissue expansion with exhausted regeneration. Twenty eligible participants received intradermal injections of the SVF or placebo treatments. Follow-ups were conducted at 4, 8, and 12 weeks to assess efficacy and at 2 years to assess safety. The primary endpoint was the expanded skin thickness at 12 weeks. The secondary endpoints included skin thickness at 4 and 8 weeks, the expansion index (EI), and the skin texture score at 12 weeks. RESULTS The skin thickness of the SVF group was significantly higher than that of the control group at both 8 weeks (mean difference 0.78 [95% CI - 1.43 to - 0.11]; p = 0.018) and 12 weeks (0.65 [95% CI - 1.30 to - 0.01]; p = 0.046). In the SVF group, the increase in skin thickness was significant at 4 weeks (0.49 [95% CI - 0.80 to - 0.06]; p = 0.010) to 8 weeks (0.45 [95% CI - 0.92 to 0.02]; p = 0.026) and maintained after 12 weeks, whereas that in the control group was reduced after 8 weeks (0.42 [95% CI - 0.07 to 0.91]; p = 0.037). The SVF group showed greater EI increases than the control group (0.50 [95% CI - 0.00 to 0.99]; p = 0.047). The skin texture scores in the SVF group were greater than those in the control group at 12 weeks. Histologically, SVF-treated expanded skin showed more proliferating cells and blood vessels, and the extracellular matrix volume increased. No severe adverse events occurred. CONCLUSIONS Transplantation of SVF cells can expedite the potency of mechanical stretch-induced skin regeneration and provide clinical reconstruction with plentiful tissue. TRIAL REGISTRATION This trial was registered with the Chinese Clinical Trial Registry, ChiCTR2000039317 (registered 23 October 2020-retrospectively registered).
Collapse
|