1
|
Tie Y, Liu J, Wu Y, Qiang Y, Cai’Li G, Xu P, Xue M, Xu L, Li X, Zhou X. A Dataset for Constructing the Network Pharmacology of Overactive Bladder and Its Application to Reveal the Potential Therapeutic Targets of Rhynchophylline. Pharmaceuticals (Basel) 2024; 17:1253. [PMID: 39458894 PMCID: PMC11510256 DOI: 10.3390/ph17101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Objectives: Network pharmacology is essential for understanding the multi-target and multi-pathway therapeutic mechanisms of traditional Chinese medicine. This study aims to evaluate the influence of database quality on target identification and to explore the therapeutic potential of rhynchophylline (Rhy) in treating overactive bladder (OAB). Methods: An OAB dataset was constructed through extensive literature screening. Using this dataset, we applied network pharmacology to predict potential targets for Rhy, which is known for its therapeutic effects but lacks a well-defined target profile. Predicted targets were validated through in vitro experiments, including DARTS and CETSA. Results: Our analysis identified Rhy as a potential modulator of the M3 receptor and TRPM8 channel in the treatment of OAB. Validation experiments confirmed the interaction between Rhy and these targets. Additionally, the GeneCards database predicted other targets that are not directly linked to OAB, corroborated by the literature. Conclusions: We established a more accurate and comprehensive dataset of OAB targets, enhancing the reliability of target identification for drug treatments. This study underscores the importance of database quality in network pharmacology and contributes to the potential therapeutic strategies for OAB.
Collapse
Affiliation(s)
- Yan Tie
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.T.); (J.L.); (Y.W.); (Y.Q.); (G.C.); (P.X.); (M.X.)
- School of Chinese Medicine, Capital Medical University, Beijing 100069, China;
| | - Jihan Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.T.); (J.L.); (Y.W.); (Y.Q.); (G.C.); (P.X.); (M.X.)
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yushan Wu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.T.); (J.L.); (Y.W.); (Y.Q.); (G.C.); (P.X.); (M.X.)
| | - Yining Qiang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.T.); (J.L.); (Y.W.); (Y.Q.); (G.C.); (P.X.); (M.X.)
| | - Ge’Er Cai’Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.T.); (J.L.); (Y.W.); (Y.Q.); (G.C.); (P.X.); (M.X.)
| | - Pingxiang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.T.); (J.L.); (Y.W.); (Y.Q.); (G.C.); (P.X.); (M.X.)
| | - Ming Xue
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.T.); (J.L.); (Y.W.); (Y.Q.); (G.C.); (P.X.); (M.X.)
| | - Liping Xu
- School of Chinese Medicine, Capital Medical University, Beijing 100069, China;
| | - Xiaorong Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.T.); (J.L.); (Y.W.); (Y.Q.); (G.C.); (P.X.); (M.X.)
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.T.); (J.L.); (Y.W.); (Y.Q.); (G.C.); (P.X.); (M.X.)
| |
Collapse
|
2
|
Pimentel Neto J, Batista RD, Rocha-Braga LC, Chacur M, Camargo PO, Ciena AP. The telocytes relationship with satellite cells: Extracellular vesicles mediate the myotendinous junction remodeling. Microsc Res Tech 2024; 87:1733-1741. [PMID: 38501548 DOI: 10.1002/jemt.24549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
The peripheral nerve injury (PNI) affects the morphology of the whole locomotor apparatus, which can reach the myotendinous junction (MTJ) interface. In the injury condition, the skeletal muscle satellite cells (SC) are triggered, activated, and proliferated to repair their structure, and in the MTJ, the telocytes (TC) are associated to support the interface with the need for remodeling; in that way, these cells can be associated with SC. The study aimed to describe the SC and TC relationship after PNI at the MTJ. Sixteen adult Wistar rats were divided into Control Group (C, n = 8) and PNI Group (PNI, n = 8), PNI was performed by the constriction of the sciatic nerve. The samples were processed for transmission electron microscopy and immunostaining analysis. In the C group was evidenced the arrangement of sarcoplasmic evaginations and invaginations, the support collagen layer with a TC inside it, and an SC through vesicles internally and externally to then. In the PNI group were observed the disarrangement of invaginations and evaginations and sarcomeres degradation at MTJ, as the disposition of telopodes adjacent and in contact to the SC with extracellular vesicles and exosomes in a characterized paracrine activity. These findings can determine a link between the TCs and the SCs at the MTJ remodeling. RESEARCH HIGHLIGHTS: Peripheral nerve injury promotes the myotendinous junction (MTJ) remodeling. The telocytes (TC) and the satellite cells (SC) are present at the myotendinous interface. TC mediated the SC activity at MTJ.
Collapse
Affiliation(s)
- Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Rodrigo Daniel Batista
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Lara Caetano Rocha-Braga
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Marucia Chacur
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula Oliveira Camargo
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Adriano Polican Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| |
Collapse
|
3
|
Tune T, Sponberg S. Nanometer scale difference in myofilament lattice structure of muscle alter muscle function in a spatially explicit model. ARXIV 2024:arXiv:2405.19443v1. [PMID: 38855552 PMCID: PMC11160890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Crossbridge binding, state transitions, and force in active muscle is dependent on the radial spacing between the myosin-containing thick filament and the actin-containing thin filament in the filament lattice. This radial lattice spacing has been previously shown through spatially explicit modeling and experimental efforts to greatly affect quasi-static, isometric, force production in muscle. It has recently been suggested that this radial spacing might also be able to drive differences in mechanical function, or net work, under dynamic oscillations like those which occur in muscles in vivo. However, previous spatially explicit models either had no radial spacing dependence, meaning the lattice spacing could not be investigated, or did include radial spacing dependence but could not reproduce in vivo net work during dynamic oscillations and only investigated isometric contractions. Here we show the first spatially explicit model to include radial crossbridge dependence which can produce mechanical function similar to real muscle. Using this spatially explicit model of a half sarcomere, we show that when oscillated at strain amplitudes and frequencies like those in the hawk moth Manduca sexta, mechanical function (net work) does depend on the lattice spacing. In addition, since the trajectory of lattice spacing changes during dynamic oscillation can vary from organism to organism, we can prescribe a trajectory of lattice spacing changes in the spatially explicit half sarcomere model and investigate the extent to which the time course of lattice spacing changes can affect mechanical function. We simulated a half sarcomere undergoing dynamic oscillations and prescribed the Poisson's ratio of the lattice to be either 0 (constant lattice spacing) or 0.5 (isovolumetric lattice spacing changes). We also simulated net work using lattice spacing data taken from Manduca sexta which has a variable Poisson's ratio. Our simulation results indicate that the lattice spacing can change the mechanical function of muscle, and that in some cases a 1 nm difference can switch the net work of the half sarcomere model from positive (motor-like) to negative (brake-like).
Collapse
Affiliation(s)
- Travis Tune
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Simon Sponberg
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Hessel AL, Kuehn MN, Han SW, Ma W, Irving TC, Momb BA, Song T, Sadayappan S, Linke WA, Palmer BM. Fast myosin binding protein C knockout in skeletal muscle alters length-dependent activation and myofilament structure. Commun Biol 2024; 7:648. [PMID: 38802450 PMCID: PMC11130249 DOI: 10.1038/s42003-024-06265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
In striated muscle, the sarcomeric protein myosin-binding protein-C (MyBP-C) is bound to the myosin thick filament and is predicted to stabilize myosin heads in a docked position against the thick filament, which limits crossbridge formation. Here, we use the homozygous Mybpc2 knockout (C2-/-) mouse line to remove the fast-isoform MyBP-C from fast skeletal muscle and then conduct mechanical functional studies in parallel with small-angle X-ray diffraction to evaluate the myofilament structure. We report that C2-/- fibers present deficits in force production and calcium sensitivity. Structurally, passive C2-/- fibers present altered sarcomere length-independent and -dependent regulation of myosin head conformations, with a shift of myosin heads towards actin. At shorter sarcomere lengths, the thin filament is axially extended in C2-/-, which we hypothesize is due to increased numbers of low-level crossbridges. These findings provide testable mechanisms to explain the etiology of debilitating diseases associated with MyBP-C.
Collapse
Affiliation(s)
- Anthony L Hessel
- Institute of Physiology II, University of Muenster, Muenster, Germany.
| | - Michel N Kuehn
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Seong-Won Han
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, USA
| | - Thomas C Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, USA
| | - Brent A Momb
- Department of Kinesiology, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Taejeong Song
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sakthivel Sadayappan
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Bradley M Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
5
|
Hoh JFY. Developmental, Physiological and Phylogenetic Perspectives on the Expression and Regulation of Myosin Heavy Chains in Craniofacial Muscles. Int J Mol Sci 2024; 25:4546. [PMID: 38674131 PMCID: PMC11050549 DOI: 10.3390/ijms25084546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review deals with the developmental origins of extraocular, jaw and laryngeal muscles, the expression, regulation and functional significance of sarcomeric myosin heavy chains (MyHCs) that they express and changes in MyHC expression during phylogeny. Myogenic progenitors from the mesoderm in the prechordal plate and branchial arches specify craniofacial muscle allotypes with different repertoires for MyHC expression. To cope with very complex eye movements, extraocular muscles (EOMs) express 11 MyHCs, ranging from the superfast extraocular MyHC to the slowest, non-muscle MyHC IIB (nmMyH IIB). They have distinct global and orbital layers, singly- and multiply-innervated fibres, longitudinal MyHC variations, and palisade endings that mediate axon reflexes. Jaw-closing muscles express the high-force masticatory MyHC and cardiac or limb MyHCs depending on the appropriateness for the acquisition and mastication of food. Laryngeal muscles express extraocular and limb muscle MyHCs but shift toward expressing slower MyHCs in large animals. During postnatal development, MyHC expression of craniofacial muscles is subject to neural and hormonal modulation. The primary and secondary myotubes of developing EOMs are postulated to induce, via different retrogradely transported neurotrophins, the rich diversity of neural impulse patterns that regulate the specific MyHCs that they express. Thyroid hormone shifts MyHC 2A toward 2B in jaw muscles, laryngeal muscles and possibly extraocular muscles. This review highlights the fact that the pattern of myosin expression in mammalian craniofacial muscles is principally influenced by the complex interplay of cell lineages, neural impulse patterns, thyroid and other hormones, functional demands and body mass. In these respects, craniofacial muscles are similar to limb muscles, but they differ radically in the types of cell lineage and the nature of their functional demands.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
罗 国, 周 陈. [Latest Findings on Phase Separation of Cytomechanical Proteins]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:19-23. [PMID: 38322526 PMCID: PMC10839485 DOI: 10.12182/20240160206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Indexed: 02/08/2024]
Abstract
The cellular response to mechanical stimuli depends largely on the structure of the cell itself and the abundance of intracellular cytomechanical proteins also plays a key role in the response to the stimulation of external mechanical signals. Liquid-liquid phase separation (LLPS) is the process by which proteins or protein-RNA complexes spontaneously separate and form two distinct "phases", ie, a low-concentration phase coexisting with a high-concentration phase. According to published findings, membrane-free organelles form and maintain their structures and regulate their internal biochemical activities through LLPS. LLPS, a novel mechanism for intracellular regulation of the biochemical reactions of biomacromolecules, plays a crucial role in modulating the responses of cytomechanical proteins. LLPS leads to the formation of highly concentrated liquid-phase condensates through multivalent interactions between biomacromolecules, thereby regulating a series of intracellular life activities. It has been reported that a variety of cytomechanical proteins respond to external mechanical signals through LLPS, which in turn affects biological behaviors such as cell growth, proliferation, spreading, migration, and apoptosis. Herein, we introduced the mechanisms of cytomechanics and LLPS. In addition, we presented the latest findings on cytomechanical protein phase separation, covering such issues as the regulation of focal adhesion maturation and mechanical signal transduction by LIM domain-containing protein 1 (LIMD1) phase separation, the regulation of intercellular tight junctions by zonula occludens (ZO) phase separation, and the regulation of cell proliferation and apoptosis by cytomechanical protein phase separation of the Hippo signaling pathway. The proposition of LLPS provides an explanation for the formation mechanism of intracellular membraneless organelles and supplies new approaches to understanding the biological functions of intracellular physiology or pathology. However, the molecular mechanisms by which LLPS drives focal adhesions and cell-edge dynamics are still not fully understood. It is not clear whether LLPS under in vitro conditions can occur under physiological conditions of organisms. There are still difficulties to be overcome in using LLPS to explain the interactions of multiple intracellular molecules. Researchers should pursue answers to these questions in the future.
Collapse
Affiliation(s)
- 国文 罗
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 陈晨 周
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Zhang Y, Shen Y, Jin P, Zhu B, Lin Y, Jiang T, Huang X, Wang Y, Zhao Z, Li S. A trade-off in evolution: the adaptive landscape of spiders without venom glands. Gigascience 2024; 13:giae048. [PMID: 39101784 PMCID: PMC11299198 DOI: 10.1093/gigascience/giae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/26/2024] [Accepted: 06/26/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Venom glands play a key role in the predation and defense strategies of almost all spider groups. However, the spider family Uloboridae lacks venom glands and has evolved an adaptive strategy: they excessively wrap their prey directly with spider silk instead of paralyzing it first with toxins. This shift in survival strategy is very fascinating, but the genetic underpinnings behind it are poorly understood. RESULTS Spanning multiple spider groups, we conducted multiomics analyses on Octonoba sinensis and described the adaptive evolution of the Uloboridae family at the genome level. We observed the coding genes of myosin and twitchin in muscles are under positive selection, energy metabolism functions are enhanced, and gene families related to tracheal development and tissue mechanical strength are expanded or emerged, all of which are related to the unique anatomical structure and predatory behavior of spiders in the family Uloboridae. In addition, we also scanned the elements that are absent or under relaxed purifying selection, as well as toxin gene homologs in the genomes of 2 species in this family. The results show that the absence of regions and regions under relaxed selection in these spiders' genomes are concentrated in areas related to development and neurosystem. The search for toxin homologs reveals possible gene function shift between toxins and nontoxins and confirms that there are no reliable toxin genes in the genome of this group. CONCLUSIONS This study demonstrates the trade-off between different predation strategies in spiders, using either chemical or physical strategy, and provides insights into the possible mechanism underlying this trade-off. Venomless spiders need to mobilize multiple developmental and metabolic pathways related to motor function and limb mechanical strength to cover the decline in adaptability caused by the absence of venom glands.
Collapse
Affiliation(s)
- Yiming Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Hebei Key Laboratory of Animal Diversity, College of Life Sciences, Langfang Normal University, Langfang 065000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yunxiao Shen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Pengyu Jin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bingyue Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yejie Lin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Hebei Key Laboratory of Animal Diversity, College of Life Sciences, Langfang Normal University, Langfang 065000, China
| | - Tongyao Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xianting Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yang Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhe Zhao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuqiang Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Childers MC, Regnier M. Atomistic Simulations of Sarcomere Proteins. Methods Mol Biol 2024; 2735:27-41. [PMID: 38038842 DOI: 10.1007/978-1-0716-3527-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Concerted atomic motions are requisite for sarcomere protein function and may become disrupted in HCM pathologies. Computational approaches such as molecular dynamics simulation can resolve such dynamics with unrivalled spatial and temporal resolution. This chapter describes methods to model structural and dynamical changes in biomolecules with HCM-associated perturbations.
Collapse
Affiliation(s)
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Marghany F, Ayobahan SU, Salinas G, Schäfers C, Hollert H, Eilebrecht S. Transcriptomic and proteomic fingerprints induced by the fungicides difenoconazole and metalaxyl in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104348. [PMID: 38135202 DOI: 10.1016/j.etap.2023.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
In this study, we applied OMICs analysis to identify substance-specific biomarker candidates, which may act as early indicators for specific ecotoxic modes of actions (MoA). Zebrafish embryos were exposed to two sublethal concentrations of difenoconazole and metalaxyl according to a modified protocol of the OECD test guideline No. 236. At the end of exposure, total RNA and protein were extracted, followed by transcriptomics and proteomics analysis. The analysis of significantly differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) revealed a positive exposure-response correlation in all test concentrations for both fungicides. Similarly, also a positive correlation between the obtained transcriptome and proteome data was observed, highlighting the robustness of our approach. From the detected DEGs, candidate biomarkers specific for difenoconazole (apoa1b, gatm, mylpfb and acta1b) and metalaxyl (lgals2b, abat, fabp1b.1 and myh9a) were selected, and their biological functions were discussed to assess the predictive potential.
Collapse
Affiliation(s)
- Fatma Marghany
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Steve U Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany.
| |
Collapse
|
10
|
Souza ACR, Vasconcelos AR, Dias DD, Komoni G, Name JJ. The Integral Role of Magnesium in Muscle Integrity and Aging: A Comprehensive Review. Nutrients 2023; 15:5127. [PMID: 38140385 PMCID: PMC10745813 DOI: 10.3390/nu15245127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Aging is characterized by significant physiological changes, with the degree of decline varying significantly among individuals. The preservation of intrinsic capacity over the course of an individual's lifespan is fundamental for healthy aging. Locomotion, which entails the capacity for independent movement, is intricately connected with various dimensions of human life, including cognition, vitality, sensory perception, and psychological well-being. Notably, skeletal muscle functions as a pivotal nexus within this intricate framework. Any perturbation in its functionality can manifest as compromised physical performance and an elevated susceptibility to frailty. Magnesium is an essential mineral that plays a central role in approximately 800 biochemical reactions within the human body. Its distinctive physical and chemical attributes render it an indispensable stabilizing factor in the orchestration of diverse cellular reactions and organelle functions, thereby rendering it irreplaceable in processes directly impacting muscle health. This narrative review offers a comprehensive exploration of the pivotal role played by magnesium in maintaining skeletal muscle integrity, emphasizing the critical importance of maintaining optimal magnesium levels for promoting healthy aging.
Collapse
Affiliation(s)
| | | | | | | | - José João Name
- Kilyos Assessoria, Cursos e Palestras, São Paulo 01311-100, Brazil; (A.C.R.S.); (A.R.V.); (D.D.D.); (G.K.)
| |
Collapse
|
11
|
Hessel AL, Kuehn M, Han SW, Ma W, Irving TC, Momb BA, Song T, Sadayappan S, Linke WA, Palmer BM. Fast myosin binding protein C knockout in skeletal muscle alters length-dependent activation and myofilament structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563160. [PMID: 37961718 PMCID: PMC10634671 DOI: 10.1101/2023.10.19.563160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In striated muscle, some sarcomere proteins regulate crossbridge cycling by varying the propensity of myosin heads to interact with actin. Myosin-binding protein C (MyBP-C) is bound to the myosin thick filament and is predicted to interact and stabilize myosin heads in a docked position against the thick filament and limit crossbridge formation, the so-called OFF state. Via an unknown mechanism, MyBP-C is thought to release heads into the so-called ON state, where they are more likely to form crossbridges. To study this proposed mechanism, we used the C2-/- mouse line to knock down fast-isoform MyBP-C completely and total MyBP-C by ~24%, and conducted mechanical functional studies in parallel with small-angle X-ray diffraction to evaluate the myofilament structure. We report that C2-/- fibers presented deficits in force production and reduced calcium sensitivity. Structurally, passive C2-/- fibers presented altered SL-independent and SL-dependent regulation of myosin head ON/OFF states, with a shift of myosin heads towards the ON state. Unexpectedly, at shorter sarcomere lengths, the thin filament was axially extended in C2-/- vs. non-transgenic controls, which we postulate is due to increased low-level crossbridge formation arising from relatively more ON myosins in the passive muscle that elongates the thin filament. The downstream effect of increasing crossbridge formation in a passive muscle on contraction performance is not known. Such widespread structural changes to sarcomere proteins provide testable mechanisms to explain the etiology of debilitating MyBP-C-associated diseases.
Collapse
Affiliation(s)
- Anthony L. Hessel
- Institute of Physiology II, University of Muenster; Muenster, Germany
| | - Michel Kuehn
- Institute of Physiology II, University of Muenster; Muenster, Germany
| | - Seong-Won Han
- Institute of Physiology II, University of Muenster; Muenster, Germany
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology; Chicago, USA
| | - Thomas C. Irving
- BioCAT, Department of Biology, Illinois Institute of Technology; Chicago, USA
| | - Brent A. Momb
- Department of Kinesiology, University of Massachusetts – Amherst; Amherst, MA, USA
| | - Taejeong Song
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sakthivel Sadayappan
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Wolfgang A. Linke
- Institute of Physiology II, University of Muenster; Muenster, Germany
| | - Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont; Burlington, VT, USA
| |
Collapse
|
12
|
Ezzo M, Hinz B. Novel approaches to target fibroblast mechanotransduction in fibroproliferative diseases. Pharmacol Ther 2023; 250:108528. [PMID: 37708995 DOI: 10.1016/j.pharmthera.2023.108528] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/09/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The ability of cells to sense and respond to changes in mechanical environment is vital in conditions of organ injury when the architecture of normal tissues is disturbed or lost. Among the various cellular players that respond to injury, fibroblasts take center stage in re-establishing tissue integrity by secreting and organizing extracellular matrix into stabilizing scar tissue. Activation, activity, survival, and death of scar-forming fibroblasts are tightly controlled by mechanical environment and proper mechanotransduction ensures that fibroblast activities cease after completion of the tissue repair process. Conversely, dysregulated mechanotransduction often results in fibroblast over-activation or persistence beyond the state of normal repair. The resulting pathological accumulation of extracellular matrix is called fibrosis, a condition that has been associated with over 40% of all deaths in the industrialized countries. Consequently, elements in fibroblast mechanotransduction are scrutinized for their suitability as anti-fibrotic therapeutic targets. We review the current knowledge on mechanically relevant factors in the fibroblast extracellular environment, cell-matrix and cell-cell adhesion structures, stretch-activated membrane channels, stress-regulated cytoskeletal structures, and co-transcription factors. We critically discuss the targetability of these elements in therapeutic approaches and their progress in pre-clinical and/or clinical trials to treat organ fibrosis.
Collapse
Affiliation(s)
- Maya Ezzo
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Govada L, Chayen NE. Crystallisation and characterisation of muscle proteins: a mini-review. J Muscle Res Cell Motil 2023; 44:209-215. [PMID: 37133758 PMCID: PMC10542657 DOI: 10.1007/s10974-023-09648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/29/2023] [Indexed: 05/04/2023]
Abstract
The techniques of X-ray protein crystallography, NMR and high-resolution cryo-electron microscopy have all been used to determine the high-resolution structure of proteins. The most-commonly used method, however, remains X-ray crystallography but it does rely heavily on the production of suitable crystals. Indeed, the production of diffraction quality crystals remains the rate-limiting step for most protein systems. This mini-review highlights the crystallisation trials that used existing and newly developed crystallisation methods on two muscle protein targets - the actin binding domain (ABD) of α-actinin and the C0-C1 domain of human cardiac myosin binding protein C (cMyBP-C). Furthermore, using heterogenous nucleating agents the crystallisation of the C1 domain of cMyBP-C was successfully achieved in house along with preliminary actin binding studies using electron microscopy and co-sedimentation assays .
Collapse
Affiliation(s)
- Lata Govada
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, W12 0NN, London, UK.
| | - Naomi E Chayen
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, W12 0NN, London, UK
| |
Collapse
|
14
|
Morris EP, Knupp C, Luther PK. Obituary: Professor John Michael Squire. J Muscle Res Cell Motil 2023; 44:125-132. [PMID: 37665489 DOI: 10.1007/s10974-023-09656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023]
Affiliation(s)
- Edward P Morris
- School of Molecular Biosciences, University of Glasgow, Garscube Campus, Jarrett Building, 351, Bearsden Road, Glasgow, G61 1QH, UK
| | - Carlo Knupp
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF10 3AT, UK
| | - Pradeep K Luther
- Cardiac Function Section NHLI, Imperial College London, Hammersmith Campus ICTEM Building, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
15
|
Glavaški M, Velicki L, Vučinić N. Hypertrophic Cardiomyopathy: Genetic Foundations, Outcomes, Interconnections, and Their Modifiers. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1424. [PMID: 37629714 PMCID: PMC10456451 DOI: 10.3390/medicina59081424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent heritable cardiomyopathy. HCM is considered to be caused by mutations in cardiac sarcomeric protein genes. Recent research suggests that the genetic foundation of HCM is much more complex than originally postulated. The clinical presentations of HCM are very variable. Some mutation carriers remain asymptomatic, while others develop severe HCM, terminal heart failure, or sudden cardiac death. Heterogeneity regarding both genetic mutations and the clinical course of HCM hinders the establishment of universal genotype-phenotype correlations. However, some trends have been identified. The presence of a mutation in some genes encoding sarcomeric proteins is associated with earlier HCM onset, more severe left ventricular hypertrophy, and worse clinical outcomes. There is a diversity in the mechanisms implicated in the pathogenesis of HCM. They may be classified into groups, but they are interrelated. The lack of known supplementary elements that control the progression of HCM indicates that molecular mechanisms that exist between genotype and clinical presentations may be crucial. Secondary molecular changes in pathways implicated in HCM pathogenesis, post-translational protein modifications, and epigenetic factors affect HCM phenotypes. Cardiac loading conditions, exercise, hypertension, diet, alcohol consumption, microbial infection, obstructive sleep apnea, obesity, and environmental factors are non-molecular aspects that change the HCM phenotype. Many mechanisms are implicated in the course of HCM. They are mostly interconnected and contribute to some extent to final outcomes.
Collapse
Affiliation(s)
- Mila Glavaški
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (L.V.)
| | - Lazar Velicki
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (L.V.)
- Institute of Cardiovascular Diseases Vojvodina, Put Doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Nataša Vučinić
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (L.V.)
| |
Collapse
|
16
|
Zeng W, Deng Z, Gao Y, Sun G, Li X, Yuan D. Downregulation of connexin 43-based gap junctions underlies propofol-induced excessive relaxation in hypertensive vascular smooth muscle cells. Cell Commun Signal 2023; 21:163. [PMID: 37381027 DOI: 10.1186/s12964-023-01176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Postinduction hypotension caused by propofol remains a non-negligible problem for anesthesiologists, and is especially severe in chronic hypertensive patients with long-term vasoconstriction and decreased vascular elasticity. The functional change in gap junctions composed of Cx43 (Cx43-GJs) is reported as the biological basis of synchronized contraction or relaxation of blood vessels. Thus, we investigated the role of Cx43-GJs in propofol-induced dramatic blood pressure fluctuations in chronic hypertensive patients, and their internal mechanisms. METHODS Human umbilical artery smooth muscle cells (HUASMCs) were pretreated with long-term angiotensin II (Ang II), with or without propofol, to simulate the contraction and relaxation of normal and hypertensive VSMCs during anesthesia induction. The levels of F-actin polymerization and MLC2 phosphorylation were used as indicators to observe the contraction and relaxation of HUASMCs. Different specific activators, inhibitors and siRNAs were used to explore the role of Cx43-GJs and Ca2+ as well as the RhoA/ LIMK2/cofilin and RhoA/MLCK signaling pathways in the contraction and relaxation of normal and hypertensive HUASMCs. RESULTS Both F-actin polymerization and MLC2 phosphorylation were significantly enhanced in Ang II-pretreated HUASMCs, along with higher expression of Cx43 protein and stronger function of Cx43-GJs than in normal HUASMCs. However, with propofol administration, similar to Gap26 and Cx43-siRNA, the function of Cx43-GJs in Ang II-pretreated HUASMCs was inhibited compared with that in normal HUASMCs, accompanied by a larger decrease in intracellular Ca2+ and the RhoA/LIMK2/cofilin and RhoA/MLCK signaling pathways. Eventually F-actin polymerization and MLC2 phosphorylation were more dramatically decreased. However, these effects could be reversed by RA with enhanced Cx43-GJ function. CONCLUSION Long-term exposure to Ang II significantly enhanced the expression of the Cx43 protein and function of Cx43-GJs in HUASMCs, resulting in the accumulation of intracellular Ca2+ and the activation of its downstream RhoA/LIMK2/cofilin and RhoA/MLCK signaling pathways, which maintained HUASMCs in a state of excessive-contraction. With inhibition of Cx43-GJs by propofol in Ang II-pretreated HUASMCs, intracellular Ca2+ and its downstream signaling pathways were dramatically inhibited, which ultimately excessively relaxed HUASMCs. This is the reason why the blood pressure fluctuation of patients with chronic hypertension was more severe after receiving propofol induction. Video Abstract.
Collapse
Affiliation(s)
- Weiqi Zeng
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Zhizhao Deng
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Yingxin Gao
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Guoliang Sun
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| | - Xianlong Li
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| | - Dongdong Yuan
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
17
|
Hoh JFY. Developmental, physiologic and phylogenetic perspectives on the expression and regulation of myosin heavy chains in mammalian skeletal muscles. J Comp Physiol B 2023:10.1007/s00360-023-01499-0. [PMID: 37277594 DOI: 10.1007/s00360-023-01499-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
The kinetics of myosin controls the speed and power of muscle contraction. Mammalian skeletal muscles express twelve kinetically different myosin heavy chain (MyHC) genes which provides a wide range of muscle speeds to meet different functional demands. Myogenic progenitors from diverse craniofacial and somitic mesoderm specify muscle allotypes with different repertoires for MyHC expression. This review provides a brief synopsis on the historical and current views on how cell lineage, neural impulse patterns, and thyroid hormone influence MyHC gene expression in muscles of the limb allotype during development and in adult life and the molecular mechanisms thereof. During somitic myogenesis, embryonic and foetal myoblast lineages form slow and fast primary and secondary myotube ontotypes which respond differently to postnatal neural and thyroidal influences to generate fully differentiated fibre phenotypes. Fibres of a given phenotype may arise from myotubes of different ontotypes which retain their capacity to respond differently to neural and thyroidal influences during postnatal life. This gives muscles physiological plasticity to adapt to fluctuations in thyroid hormone levels and patterns of use. The kinetics of MyHC isoforms vary inversely with animal body mass. Fast 2b fibres are specifically absent in muscles involved in elastic energy saving in hopping marsupials and generally absent in large eutherian mammals. Changes in MyHC expression are viewed in the context of the physiology of the whole animal. The roles of myoblast lineage and thyroid hormone in regulating MyHC gene expression are phylogenetically the most ancient while that of neural impulse patterns the most recent.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- , PO Box 152, Killara, NSW, 2071, Australia.
| |
Collapse
|
18
|
Parmentier E, Thiry M. A new organisational design in skeletal muscle fibres. Cell Tissue Res 2023:10.1007/s00441-023-03775-5. [PMID: 37129618 DOI: 10.1007/s00441-023-03775-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
In vertebrate skeletal muscles, the architecture of myofibrils is particularly well conserved throughout the taxa. It is composed of suites of repeating functional units called sarcomeres which give the muscle its striated structure. Here, we show that the skeletal sound producing muscles of the cusk eel Parophidion vassali have a different organisation, distinct from the classical type found in textbooks. Within sarcomeres, filaments are not straight lines but have a Y-shaped structure. This looks like chicken wire, with one branch connecting to a branch from the myofibril above and the other connecting to a branch from the myofibril below. This organisation seems to be an adaptation to counteract a trade-off between the speed and force. The low ratio of myofibrils within cell muscles and the high volume of sarcoplasmic reticulum strongly suggest that these muscles are capable of fast contractions. In parallel, the Z-bands are quite wide about 30% of the sarcomere length. This extraordinary long Z-band could smooth out the tension variations found in high-speed muscle contraction, helping to produce sounds with low variabilities in the sound features. Simultaneously, the Y-shaped structure allows having more cross-bridges, increasing the force in this high-speed muscle.
Collapse
Affiliation(s)
- Eric Parmentier
- Laboratory of Functional and Evolutionary Morphology, FOCUS, Institut de Chimie - B6C, University of Liège, Sart Tilman, 4000, Liege, Belgium.
| | - Marc Thiry
- Laboratory of Cell and Tissue Biology, GIGA-Neurosciences, Cell Biology L3, University of Liège, B-4000, Liege, Belgium
| |
Collapse
|
19
|
Ponlachantra K, Suginta W, Robinson RC, Kitaoku Y. AlphaFold2: A versatile tool to predict the appearance of functional adaptations in evolution: Profilin interactions in uncultured Asgard archaea: Profilin interactions in uncultured Asgard archaea. Bioessays 2023; 45:e2200119. [PMID: 36461738 DOI: 10.1002/bies.202200119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022]
Abstract
The release of AlphaFold2 (AF2), a deep-learning-aided, open-source protein structure prediction program, from DeepMind, opened a new era of molecular biology. The astonishing improvement in the accuracy of the structure predictions provides the opportunity to characterize protein systems from uncultured Asgard archaea, key organisms in evolutionary biology. Despite the accumulation in metagenomics-derived Asgard archaea eukaryotic-like protein sequences, limited structural and biochemical information have restricted the insight in their potential functions. In this review, we focus on profilin, an actin-dynamics regulating protein, which in eukaryotes, modulates actin polymerization through (1) direct actin interaction, (2) polyproline binding, and (3) phospholipid binding. We assess AF2-predicted profilin structures in their potential abilities to participate in these activities. We demonstrate that AF2 is a powerful new tool for understanding the emergence of biological functional traits in evolution.
Collapse
Affiliation(s)
- Khongpon Ponlachantra
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Robert C Robinson
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.,Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan
| | - Yoshihito Kitaoku
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan
| |
Collapse
|
20
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
21
|
Martin AA, Thompson BR, Davis JP, Vang H, Hahn D, Metzger JM. Sarcomere dynamics revealed by a myofilament integrated FRET-based biosensor in live skeletal muscle fibers. Sci Rep 2022; 12:18116. [PMID: 36302792 PMCID: PMC9613882 DOI: 10.1038/s41598-022-21425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/27/2022] [Indexed: 12/30/2022] Open
Abstract
The sarcomere is the functional unit of skeletal muscle, essential for proper contraction. Numerous acquired and inherited myopathies impact sarcomere function causing clinically significant disease. Mechanistic investigations of sarcomere activation have been challenging to undertake in the context of intact, live skeletal muscle fibers during real time physiological twitch contractions. Here, a skeletal muscle specific, intramolecular FRET-based biosensor was designed and engineered into fast skeletal muscle troponin C (TnC) to investigate the dynamics of sarcomere activation. In transgenic animals, the TnC biosensor incorporated into the skeletal muscle fiber sarcomeres by stoichiometric replacement of endogenous TnC and did not alter normal skeletal muscle contractile form or function. In intact single adult skeletal muscle fibers, real time twitch contractile data showed the TnC biosensor transient preceding the peak amplitude of contraction. Importantly, under physiological temperatures, inactivation of the TnC biosensor transient decayed significantly more slowly than the Ca2+ transient and contraction. The uncoupling of the TnC biosensor transient from the Ca2+ transient indicates the biosensor is not functioning as a Ca2+ transient reporter, but rather reports dynamic sarcomere activation/ inactivation that, in turn, is due to the ensemble effects of multiple activating ligands within the myofilaments. Together, these findings provide the foundation for implementing this new biosensor in future physiological studies investigating the mechanism of activation of the skeletal muscle sarcomere in health and disease.
Collapse
Affiliation(s)
- Ashley A Martin
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Brian R Thompson
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA
| | - Hluechy Vang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Dongwoo Hahn
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
22
|
Steib E, Tetley R, Laine RF, Norris DP, Mao Y, Vermot J. TissUExM enables quantitative ultrastructural analysis in whole vertebrate embryos by expansion microscopy. CELL REPORTS METHODS 2022; 2:100311. [PMID: 36313808 PMCID: PMC9606133 DOI: 10.1016/j.crmeth.2022.100311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/11/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Super-resolution microscopy reveals the molecular organization of biological structures down to the nanoscale. While it allows the study of protein complexes in single cells, small organisms, or thin tissue sections, there is currently no versatile approach for ultrastructural analysis compatible with whole vertebrate embryos. Here, we present tissue ultrastructure expansion microscopy (TissUExM), a method to expand millimeter-scale and mechanically heterogeneous whole embryonic tissues, including Drosophila wing discs, whole zebrafish, and mouse embryos. TissUExM is designed for the observation of endogenous proteins. It permits quantitative characterization of protein complexes in various organelles at super-resolution in a range of ∼3 mm-sized tissues using conventional microscopes. We demonstrate its strength by investigating tissue-specific ciliary architecture heterogeneity and ultrastructural defects observed upon ciliary protein overexpression. Overall, TissUExM is ideal for performing ultrastructural studies and molecular mapping in situ in whole embryos.
Collapse
Affiliation(s)
- Emmanuelle Steib
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Rob Tetley
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Romain F. Laine
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Dominic P. Norris
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot OX11 0RD, UK
| | - Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Julien Vermot
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
23
|
Liu Z, Liu Y, Xing T, Li J, Zhang L, Jiang Y, Gao F. Transcriptome analysis reveals the mechanism of chronic heat stress on meat quality of broilers. J Anim Sci Biotechnol 2022; 13:110. [PMID: 36117193 PMCID: PMC9484139 DOI: 10.1186/s40104-022-00759-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Chronic heat stress has a negative impact on poultry meat quality. Although this has been extensively investigated, previous studies have primarily focused on metabolic alterations and oxidative stress in the pectoralis major (PM) muscle under chronic heat stress, and not all of the underlying molecular mechanisms are completely understood.
Methods
A total of 144 male Arbor Acres broilers (28 d old) were randomly allocated into 3 treatment groups: (1) the normal control (NC) group, with broilers raised at 22 °C and fed a basal diet; (2) the heat stress (HS) group, with birds raised at 32 °C and fed a basal diet; and (3) the pair-fed (PF) group, with birds raised at 22 °C and fed the amount of feed equal to the feed consumed on the previous day by the HS group. The experiment lasted for 14 d.
Results
Chronic heat stress decreased the average daily feed intake and average daily gain, increased feed:gain ratio (P < 0.05); and increased drip loss, cooking loss, shear force, hardness, and decreased pH, redness (a*); and springiness of PM muscle (P < 0.05). Furthermore, chronic heat stress decreased muscle fiber density, increased connective tissue, and led to intracellular vacuolation. The transcriptome analyses indicated that the effect of chronic heat stress on meat quality was not only related to metabolism and oxidative stress, but also to signal transduction, immune system, transport and catabolism, cell growth and death, and muscle structure.
Conclusions
Chronic heat stress has a negative impact on the growth performance, meat quality, and the PM muscle structure of broilers. Transcriptome analysis revealed a comprehensive understanding of the mechanism of the chronic heat stress-induced deterioration of broiler meat quality at the transcriptional level.
Collapse
|
24
|
Puttabyatappa M, Saadat N, Elangovan VR, Dou J, Bakulski K, Padmanabhan V. Developmental programming: Impact of prenatal bisphenol-A exposure on liver and muscle transcriptome of female sheep. Toxicol Appl Pharmacol 2022; 451:116161. [PMID: 35817127 PMCID: PMC9618258 DOI: 10.1016/j.taap.2022.116161] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
Gestational Bisphenol A (BPA) exposure leads to peripheral insulin resistance, and hepatic and skeletal muscle oxidative stress and lipotoxicity during adulthood in the female sheep offspring. To investigate transcriptional changes underlying the metabolic outcomes, coding and non-coding (nc) RNA in liver and muscle from 21-month-old control and prenatal BPA-treated (0.5 mg/kg/day from days 30 to 90 of gestation; Term: 147 days) female sheep were sequenced. Prenatal BPA-treatment dysregulated: expression of 194 genes (138 down, 56 up) in liver and 112 genes (32 down, 80 up) in muscle (FDR < 0.05 and abs log2FC > 0.5); 155 common gene pathways including mitochondrial-related genes in both tissues; 1415 gene pathways including oxidative stress and lipid biosynthetic process specifically in the liver (FDR < 0.01); 192 gene pathways including RNA biosynthetic processes in muscle (FDR < 0.01); 77 lncRNA (49 down, 28 up), 14 microRNAs (6 down, 8 up), 127 snoRNAs (63 down, 64 up) and 55 snRNAs (15 down, 40 up) in the liver while upregulating 6 lncRNA and dysregulating 65 snoRNAs (47 down, 18 up) in muscle (FDR < 0.1, abs log2FC > 0.5). Multiple ncRNA correlated with LCORL, MED17 and ZNF41 mRNA in liver but none of them in the muscle. Discriminant analysis identified (p < 0.05) PECAM, RDH11, ABCA6, MIR200B, and MIR30B in liver and CAST, NOS1, FASN, MIR26B, and MIR29A in muscle as gene signatures of gestational BPA exposure. These findings provide mechanistic clues into the development and/or maintenance of the oxidative stress and lipid accumulation and potential for development of mitochondrial and fibrotic defects contributing to the prenatal BPA-induced metabolic dysfunctions.
Collapse
Affiliation(s)
- Muraly Puttabyatappa
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States of America
| | - Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States of America
| | | | - John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Kelly Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
25
|
Matsumoto A, Tsuda H, Furui S, Kawada-Nagashima M, Anzai T, Seki M, Watanabe K, Muramatsu K, Osaka H, Iwamoto S, Nishino I, Yamagata T. A case of congenital fiber-type disproportion syndrome presenting dilated cardiomyopathy with ACTA1 mutation. Mol Genet Genomic Med 2022; 10:e2008. [PMID: 35757965 PMCID: PMC9482392 DOI: 10.1002/mgg3.2008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/03/2022] [Accepted: 06/08/2022] [Indexed: 01/06/2023] Open
Abstract
Background Actin, alpha, skeletal muscle 1 (ACTA1) is one of the causative genes of nemaline myopathy (NM) and congenital fiber‐type disproportion (CFTD). CFTD is characterized by type 1 fiber atrophy and distinguished from NM in the absence of rods. Eight patients with CFTD, including one patient with dilated cardiomyopathy (DCM), have previously been reported. Herein, we report the case of a 10‐year‐old boy presenting with CFTD and DCM. Methods We performed exome sequencing and analyzed the effect of Met327Lys mutations on cultured C2C12 muscle cells compared with that seen in the wild type (WT, ACTA1) and previously identified Asp294Val mutations associated with a severe phenotype of CFTD without cardiomyopathy. Results Exome sequencing revealed a de novo mutation, c.980 T > A, p.(Met327Lys), in ACTA1 (NM_001100.4). C2C12 cells transfected with the WT plasmid expressed ACTA1 in the nucleus and cytoplasm. Cells with the Asp294Val mutant showed needle‐like structures in the cytoplasm, whereas the expression of the Met327Lys mutant resulted in few aggregations but many apoptotic cells. Conclusion Apoptosis induced in Met327Lys‐transfected muscle cells supports the pathogenicity of the mutation and can be implicated as one of the histopathological features associated with CFTD, as in NM.
Collapse
Affiliation(s)
- Ayumi Matsumoto
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan.,Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Hidetoshi Tsuda
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Sadahiro Furui
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | | | - Tatsuya Anzai
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Mitsuru Seki
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Kazuhisa Watanabe
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | | | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Sadahiko Iwamoto
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | | |
Collapse
|
26
|
Ma X, Yan X, Ke R, Shan H, Rehman SU, Feng T, Zheng Y, Chuang C, Zhou W, Liu Q, Zheng J. Comparative Transcriptome Sequencing Analysis of Hirudo nipponia in Different Growth Periods. Front Physiol 2022; 13:873831. [PMID: 35812329 PMCID: PMC9259933 DOI: 10.3389/fphys.2022.873831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Hirudo nipponia is the only blood-sucking leech included in Chinese Pharmacopoeia having distinct features of anticoagulation, exorcizing blood stasis, and promoting menstruation. Despite such significant characteristics, very little is known about its molecular genetics and related physiological mechanisms. In this study, the transcriptomes of H. nipponia at three developmental stages (larvae, young, and adults), revealed a total of 1,348 differentially expressed genes (DEGs), 223 differentially expressed lncRNAs, and 88 novel mRNAs. A significant diverse gene expression patterns were observed at different developmental stages which were analyzed by differential gene expression trends, and the overall gene expression trends consist of three overall down-regulated trends, and two overall up-regulated trends. Furthermore, the GO and KEGG enrichment functional annotation analysis revealed that these DEGs were mainly associated with protein hydrolysis, signal transduction, energy metabolism, and lipid metabolism while growth, development, metabolism, and reproduction-related DEGs were also found. Additionally, real-time quantitative PCR results confirmed deep sequencing results based on the relative expression levels of nine randomly selected genes. This is the first transcriptome-based comprehensive study of H. irudo nipponia at different developmental stages which provided considerable deep understanding related to gene expression patterns and their relevant developmental pathways, neurodevelopmental and reproductive characteristics of the leech.
Collapse
Affiliation(s)
- Xiaocong Ma
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xiuying Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Ren Ke
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Huiquan Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Tong Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yalin Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Chen Chuang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weiguan Zhou
- Thai Natural Hirudin Co, Ltd., Bangkok, Thailand
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
- *Correspondence: Qingyou Liu, ; Jinghui Zheng,
| | - Jinghui Zheng
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Qingyou Liu, ; Jinghui Zheng,
| |
Collapse
|
27
|
In Vitro Model of Human Skeletal Muscle Tissue for the Study of Resident Macrophages and Stem Cells. BIOLOGY 2022; 11:biology11060936. [PMID: 35741457 PMCID: PMC9219866 DOI: 10.3390/biology11060936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary The skeletal muscle of younger adults has a remarkable regenerative capacity, which substantially declines with age. Despite many interspecies differences, animals have been used to study new treatments to promote muscle regeneration in humans. This study reports a novel human experimental model using human skeletal muscle tissue of older adults that was extracted during surgical procedures. We describe an optimal procedure for maintaining human skeletal muscle tissue under experimental conditions for 11 days. This experimental model allows the investigation of resident macrophages and stem cells, which mediate muscle regeneration. Abstract Findings from studies of muscle regeneration can significantly contribute to the treatment of age-related loss of skeletal muscle mass, which may predispose older adults to severe morbidities. We established a human experimental model using excised skeletal muscle tissues from reconstructive surgeries in eight older adults. Muscle samples from each participant were preserved immediately or maintained in agarose medium for the following 5, 9, or 11 days. Immunofluorescence analyses of the structural proteins, actin and desmin, confirmed the integrity of muscle fibers over 11 days of maintenance. Similarly, the numbers of CD80-positive M1 and CD163-positive M2 macrophages were stable over 11 days in vitro. However, the numbers of PAX7-positive satellite cells and MYOD-positive myoblasts changed in opposite ways, suggesting that satellite cells partially differentiated in vitro. Further experiments revealed that stimulation with unsaturated fatty acid C18[2]c (linoleic acid) increased resident M1 macrophages and satellite cells specifically. Thus, the use of human skeletal muscle tissue in vitro provides a direct experimental approach to study the regulation of muscle tissue regeneration by macrophages and stem cells and their responses to therapeutic compounds.
Collapse
|
28
|
García-Consuegra I, Asensio-Peña S, Garrido-Moraga R, Pinós T, Domínguez-González C, Santalla A, Nogales-Gadea G, Serrano-Lorenzo P, Andreu AL, Arenas J, Zugaza JL, Lucia A, Martín MA. Identification of Potential Muscle Biomarkers in McArdle Disease: Insights from Muscle Proteome Analysis. Int J Mol Sci 2022; 23:4650. [PMID: 35563042 PMCID: PMC9100117 DOI: 10.3390/ijms23094650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Glycogen storage disease type V (GSDV, McArdle disease) is a rare genetic myopathy caused by deficiency of the muscle isoform of glycogen phosphorylase (PYGM). This results in a block in the use of muscle glycogen as an energetic substrate, with subsequent exercise intolerance. The pathobiology of GSDV is still not fully understood, especially with regard to some features such as persistent muscle damage (i.e., even without prior exercise). We aimed at identifying potential muscle protein biomarkers of GSDV by analyzing the muscle proteome and the molecular networks associated with muscle dysfunction in these patients. Muscle biopsies from eight patients and eight healthy controls showing none of the features of McArdle disease, such as frequent contractures and persistent muscle damage, were studied by quantitative protein expression using isobaric tags for relative and absolute quantitation (iTRAQ) followed by artificial neuronal networks (ANNs) and topology analysis. Protein candidate validation was performed by Western blot. Several proteins predominantly involved in the process of muscle contraction and/or calcium homeostasis, such as myosin, sarcoplasmic/endoplasmic reticulum calcium ATPase 1, tropomyosin alpha-1 chain, troponin isoforms, and alpha-actinin-3, showed significantly lower expression levels in the muscle of GSDV patients. These proteins could be potential biomarkers of the persistent muscle damage in the absence of prior exertion reported in GSDV patients. Further studies are needed to elucidate the molecular mechanisms by which PYGM controls the expression of these proteins.
Collapse
Affiliation(s)
- Inés García-Consuegra
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| | - Sara Asensio-Peña
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
| | - Rocío Garrido-Moraga
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
| | - Tomàs Pinós
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Cristina Domínguez-González
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| | - Alfredo Santalla
- Department of Computer and Sport Sciences, Universidad Pablo de Olavide, 41013 Sevilla, Spain;
| | - Gisela Nogales-Gadea
- Grup de Recerca en Malalties Neuromusculars i Neuropediàtriques, Department of Neurosciences, Institut d’Investigacio en Ciencies de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Barcelona, Spain;
| | - Pablo Serrano-Lorenzo
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| | - Antoni L. Andreu
- EATRIS, European Infrastructure for Translational Medicine, 1019 Amsterdam, The Netherlands;
| | - Joaquín Arenas
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| | - José L. Zugaza
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, and Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain;
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Alejandro Lucia
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Miguel A. Martín
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| |
Collapse
|
29
|
Genetic Insights into Primary Restrictive Cardiomyopathy. J Clin Med 2022; 11:jcm11082094. [PMID: 35456187 PMCID: PMC9027761 DOI: 10.3390/jcm11082094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Restrictive cardiomyopathy is a rare cardiac disease causing severe diastolic dysfunction, ventricular stiffness and dilated atria. In consequence, it induces heart failure often with preserved ejection fraction and is associated with a high mortality. Since it is a poor clinical prognosis, patients with restrictive cardiomyopathy frequently require heart transplantation. Genetic as well as non-genetic factors contribute to restrictive cardiomyopathy and a significant portion of cases are of unknown etiology. However, the genetic forms of restrictive cardiomyopathy and the involved molecular pathomechanisms are only partially understood. In this review, we summarize the current knowledge about primary genetic restrictive cardiomyopathy and describe its genetic landscape, which might be of interest for geneticists as well as for cardiologists.
Collapse
|
30
|
Ichimura E, Ojima K, Muroya S, Kobayashi K, Nishimura T. Thick filament-associated myosin undergoes frequent replacement at the tip of the thick filament. FEBS Open Bio 2022; 12:852-863. [PMID: 35138697 PMCID: PMC8972040 DOI: 10.1002/2211-5463.13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 11/08/2022] Open
Abstract
Myosin plays a fundamental role in muscle contraction. Approximately 300 myosins form a bipolar thick filament, in which myosin is continuously replaced by protein turnover. However, it is unclear how rapidly this process occurs and whether the myosin exchange rate differs depending on the region of the thick filament. To answer this question, we first measured myosin release and insertion rates over a short period and monitored myotubes expressing a photoconvertible fluorescence protein-tagged myosin, which enabled us to monitor myosin release and insertion simultaneously. About 20% of myosins were replaced within 10 min, while 70% of myosins were exchanged over 10 h with symmetrical and biphasic alteration of myosin release and insertion rates. Next, a fluorescence pulse-chase assay was conducted to investigate whether myosin is incorporated into specific regions in the thick filament. Newly synthesized myosin was located at the tip of the thick filament rather than the center in the first 7 min of pulse-chase labeling and was observed in the remainder of the thick filament by 30 min. These results suggest that the myosin replacement rate differs depending on the regions of the thick filament. We concluded that myosin release and insertion occur concurrently and that myosin is more frequently exchanged at the tip of the thick filament.
Collapse
Affiliation(s)
- Emi Ichimura
- Research Faculty of AgricultureGraduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Koichi Ojima
- Muscle Biology Research UnitDivision of Animal Products ResearchInstitute of Livestock and Grassland Science, NAROTsukubaJapan
| | - Susumu Muroya
- Muscle Biology Research UnitDivision of Animal Products ResearchInstitute of Livestock and Grassland Science, NAROTsukubaJapan
| | - Ken Kobayashi
- Research Faculty of AgricultureGraduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Takanori Nishimura
- Research Faculty of AgricultureGraduate School of AgricultureHokkaido UniversitySapporoJapan
| |
Collapse
|
31
|
Nowak SJ, Dobi KC. Taking flight: an educational primer for use with "A novel mechanism for activation of myosin regulatory light chain by protein kinase C-delta in Drosophila". Genetics 2022; 220:iyab187. [PMID: 35239966 PMCID: PMC8893254 DOI: 10.1093/genetics/iyab187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022] Open
Abstract
Muscles are required for animal movement, feeding, heartbeat, and reproduction. Disruption of muscle function can lead to mobility impairments and diseases like muscular dystrophy and cardiac myopathy; therefore, research in this area has significant implications for public health. Recent work by Vaziri and colleagues has taken genetic, cell biological, and biochemical approaches to identify Protein kinase C-d (Pkcδ) as a novel regulator of the essential myosin light chain 2 (MLC2) by phosphorylation. The authors determine which residues of MLC2 are modified by Pkcδ and show that phosphorylation by Pkcδ is required for proper sarcomere assembly and function. This study underscores the importance of Drosophila melanogaster as a model system for muscle function and highlights how protein phosphorylation is a vital part of post-translational gene regulation.
Collapse
Affiliation(s)
- Scott J Nowak
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
- Master of Science in Integrative Biology Program, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Krista C Dobi
- Department of Natural Sciences, Bernard M. Baruch College, City University of New York, New York, NY 10010, USA
- The Graduate Center, PhD Program in Biology, City University of New York, New York, NY 10016, USA
| |
Collapse
|
32
|
Saadat N, Puttabyatappa M, Elangovan VR, Dou J, Ciarelli JN, Thompson RC, Bakulski KM, Padmanabhan V. Developmental Programming: Prenatal Testosterone Excess on Liver and Muscle Coding and Noncoding RNA in Female Sheep. Endocrinology 2022; 163:6413684. [PMID: 34718504 PMCID: PMC8667859 DOI: 10.1210/endocr/bqab225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Indexed: 11/19/2022]
Abstract
Prenatal testosterone (T)-treated female sheep manifest peripheral insulin resistance, ectopic lipid accumulation, and insulin signaling disruption in liver and muscle. This study investigated transcriptional changes and transcriptome signature of prenatal T excess-induced hepatic and muscle-specific metabolic disruptions. Genome-wide coding and noncoding (nc) RNA expression in liver and muscle from 21-month-old prenatal T-treated (T propionate 100 mg intramuscular twice weekly from days 30-90 of gestation; term: 147 days) and control females were compared. Prenatal T (1) induced differential expression of messenger RNAs (mRNAs) in liver (15 down, 17 up) and muscle (66 down, 176 up) (false discovery rate < 0.05, absolute log2 fold change > 0.5); (2) downregulated mitochondrial pathway genes in liver and muscle; (3) downregulated hepatic lipid catabolism and peroxisome proliferator-activated receptor (PPAR) signaling gene pathways; (4) modulated noncoding RNA (ncRNA) metabolic processes gene pathway in muscle; and (5) downregulated 5 uncharacterized long noncoding RNA (lncRNA) in the muscle but no ncRNA changes in the liver. Correlation analysis showed downregulation of lncRNAs LOC114112974 and LOC105607806 was associated with decreased TPK1, and LOC114113790 with increased ZNF470 expression. Orthogonal projections to latent structures discriminant analysis identified mRNAs HADHA and SLC25A45, and microRNAs MIR154A, MIR25, and MIR487B in the liver and ARIH1 and ITCH and miRNAs MIR369, MIR10A, and MIR10B in muscle as potential biomarkers of prenatal T excess. These findings suggest downregulation of mitochondria, lipid catabolism, and PPAR signaling genes in the liver and dysregulation of mitochondrial and ncRNA gene pathways in muscle are contributors of lipotoxic and insulin-resistant hepatic and muscle phenotype. Gestational T excess programming of metabolic dysfunctions involve tissue-specific ncRNA-modulated transcriptional changes.
Collapse
Affiliation(s)
- Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Muraly Puttabyatappa
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | | | - John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Joseph N Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Robert C Thompson
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
- Correspondence: Vasantha Padmanabhan, PhD, MS, Department of Pediatrics, University of Michigan, 7510 MSRB1, 1150 W Medical Center Dr, Ann Arbor, MI 48019-5718, USA.
| |
Collapse
|
33
|
Ormerod KG, Scibelli AE, Littleton JT. Regulation of excitation-contraction coupling at the Drosophila neuromuscular junction. J Physiol 2022; 600:349-372. [PMID: 34788476 PMCID: PMC9044916 DOI: 10.1113/jp282092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/28/2021] [Indexed: 01/05/2023] Open
Abstract
The Drosophila neuromuscular system is widely used to characterize synaptic development and function. However, little is known about how specific synaptic alterations effect neuromuscular transduction and muscle contractility, which ultimately dictate behavioural output. Here we develop and use a force transducer system to characterize excitation-contraction coupling at Drosophila larval neuromuscular junctions (NMJs), examining how specific neuronal and muscle manipulations disrupt muscle contractility. Muscle contraction force increased with motoneuron stimulation frequency and duration, showing considerable plasticity between 5 and 40 Hz and saturating above 50 Hz. Endogenous recordings of fictive contractions revealed average motoneuron burst frequencies of 20-30 Hz, consistent with the system operating within this plastic range of contractility. Temperature was also a key factor in muscle contractility, as force was enhanced at lower temperatures and dramatically reduced with increasing temperatures. Pharmacological and genetic manipulations of critical components of Ca2+ regulation in both pre- and postsynaptic compartments affected the strength and time course of muscle contractions. A screen for modulators of muscle contractility led to identification and characterization of the molecular and cellular pathway by which the FMRFa peptide, TPAEDFMRFa, increases muscle performance. These findings indicate Drosophila NMJs provide a robust system to correlate synaptic dysfunction, regulation and modulation to alterations in excitation-contraction coupling. KEY POINTS: Larval muscle contraction force increases with stimulation frequency and duration, revealing substantial plasticity between 5 and 40 Hz. Fictive contraction recordings demonstrate endogenous motoneuron burst frequencies consistent with the neuromuscular system operating within the range of greatest plasticity. Genetic and pharmacological manipulations of critical components of pre- and postsynaptic Ca2+ regulation significantly affect the strength and time course of muscle contractions. A screen for modulators of the excitation-contraction machinery identified a FMRFa peptide, TPAEDFMRFa and its associated signalling pathway, that dramatically increases muscle performance. Drosophila serves as an excellent model for dissecting components of the excitation-contraction coupling machinery.
Collapse
Affiliation(s)
- Kiel G Ormerod
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
34
|
Squire JM, Knupp C. Analysis methods and quality criteria for investigating muscle physiology using x-ray diffraction. J Gen Physiol 2021; 153:212538. [PMID: 34351359 PMCID: PMC8348228 DOI: 10.1085/jgp.202012778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/23/2020] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
X-ray diffraction studies of muscle have been tremendously powerful in providing fundamental insights into the structures of, for example, the myosin and actin filaments in a variety of muscles and the physiology of the cross-bridge mechanism during the contractile cycle. However, interpretation of x-ray diffraction patterns is far from trivial, and if modeling of the observed diffraction intensities is required it needs to be performed carefully with full knowledge of the possible pitfalls. Here, we discuss (1) how x-ray diffraction can be used as a tool to monitor various specific muscle properties and (2) how to get the most out of the rest of the observed muscle x-ray diffraction patterns by modeling where the reliability of the modeling conclusions can be objectively tested. In other x-ray diffraction methods, such as protein crystallography, the reliability of every step of the process is estimated and quoted in published papers. In this way, the quality of the structure determination can be properly assessed. To be honest with ourselves in the muscle field, we need to do as near to the same as we can, within the limitations of the techniques that we are using. We discuss how this can be done. We also use test cases to reveal the dos and don’ts of using x-ray diffraction to study muscle physiology.
Collapse
Affiliation(s)
- John M Squire
- Muscle Contraction Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.,Faculty of Medicine, Imperial College, London, UK
| | - Carlo Knupp
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
35
|
Squire JM, Knupp C. The muscle M3 x-ray diffraction peak and sarcomere length: No evidence for disordered myosin heads out of actin overlap. J Gen Physiol 2021; 153:212534. [PMID: 34347004 PMCID: PMC8348229 DOI: 10.1085/jgp.202012859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
X-ray diffraction studies of muscle have provided a wealth of information on muscle structure and physiology, and the meridian of the diffraction pattern is particularly informative. Reconditi et al. (2014. J. Physiol.https://doi.org/10.1113/jphysiol.2013.267849) performed superb experiments on changes to the M3 meridional peak as a function of sarcomere length (SL). They found that the M3 intensity dropped almost linearly as sarcomere length increased at least to about SL = 3.0 µm, and that it followed the same track as tension, pointing toward zero at the end of overlap at ∼3.6 µm. They concluded that, just as tension could only be generated by overlapped myosin heads, so ordered myosin heads contributing to the M3 intensity could only occur in the overlap region of the A-band, and that nonoverlapped heads must be highly disordered. Here we show that this conclusion is not consistent with x-ray diffraction theory; it would not explain their observations. We discuss one possible reason for the change in M3 intensity with increasing sarcomere length in terms of increasing axial misalignment of the myosin filaments that at longer sarcomere lengths is limited by the elastic stretching of the M-band and titin.
Collapse
Affiliation(s)
- John M Squire
- Muscle Contraction Group, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.,Faculty of Medicine, Imperial College London, London, UK
| | - Carlo Knupp
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
36
|
Mass Spectrometric Profiling of Extraocular Muscle and Proteomic Adaptations in the mdx-4cv Model of Duchenne Muscular Dystrophy. Life (Basel) 2021; 11:life11070595. [PMID: 34206383 PMCID: PMC8304255 DOI: 10.3390/life11070595] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Extraocular muscles (EOMs) represent a specialized type of contractile tissue with unique cellular, physiological, and biochemical properties. In Duchenne muscular dystrophy, EOMs stay functionally unaffected in the course of disease progression. Therefore, it was of interest to determine their proteomic profile in dystrophinopathy. The proteomic survey of wild type mice and the dystrophic mdx-4cv model revealed a broad spectrum of sarcomere-associated proteoforms, including components of the thick filament, thin filament, M-band and Z-disk, as well as a variety of muscle-specific markers. Interestingly, the mass spectrometric analysis revealed unusual expression levels of contractile proteins, especially isoforms of myosin heavy chain. As compared to diaphragm muscle, both proteomics and immunoblotting established isoform MyHC14 as a new potential marker in wild type EOMs, in addition to the previously identified isoforms MyHC13 and MyHC15. Comparative proteomics was employed to establish alterations in the protein expression profile between normal EOMs and dystrophin-lacking EOMs. The analysis of mdx-4cv EOMs identified elevated levels of glycolytic enzymes and molecular chaperones, as well as decreases in mitochondrial enzymes. These findings suggest a process of adaptation in dystrophin-deficient EOMs via a bioenergetic shift to more glycolytic metabolism, as well as an efficient cellular stress response in EOMs in dystrophinopathy.
Collapse
|
37
|
Alhakak AS, Teerlink JR, Lindenfeld J, Böhm M, Rosano GMC, Biering-Sørensen T. The significance of left ventricular ejection time in heart failure with reduced ejection fraction. Eur J Heart Fail 2021; 23:541-551. [PMID: 33590579 DOI: 10.1002/ejhf.2125] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 01/10/2023] Open
Abstract
Left ventricular ejection time (LVET) is defined as the time interval from aortic valve opening to aortic valve closure, and is the phase of systole during which the left ventricle ejects blood into the aorta. LVET has been used for several decades to assess left ventricular function and contractility. However, there is a recent interest in LVET as a measure of therapeutic action for novel drugs in patients with heart failure with reduced ejection fraction (HFrEF), since LVET is shortened in these patients. This review provides an overview of the available information on LVET including methods of measuring LVET, mechanistic understanding of LVET, association of LVET with outcomes, mechanisms behind shortened LVET in HFrEF and the potential implications of drugs that affect and normalize LVET.
Collapse
Affiliation(s)
- Alia S Alhakak
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - John R Teerlink
- Section of Cardiology, San Francisco Veterans Affairs Medical Center and School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Michael Böhm
- Department of Internal Medicine, Klinik für Innere Medizin III, Universitätsklinikum Des Saarlandes, Saarland University, Homburg/Saar, Germany
| | | | - Tor Biering-Sørensen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Roopnarine O, Thomas DD. Mechanistic analysis of actin-binding compounds that affect the kinetics of cardiac myosin-actin interaction. J Biol Chem 2021; 296:100471. [PMID: 33639160 PMCID: PMC8063737 DOI: 10.1016/j.jbc.2021.100471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
Actin-myosin mediated contractile forces are crucial for many cellular functions, including cell motility, cytokinesis, and muscle contraction. We determined the effects of ten actin-binding compounds on the interaction of cardiac myosin subfragment 1 (S1) with pyrene-labeled F-actin (PFA). These compounds, previously identified from a small-molecule high-throughput screen (HTS), perturb the structural dynamics of actin and the steady-state actin-activated myosin ATPase activity. However, the mechanisms underpinning these perturbations remain unclear. Here we further characterize them by measuring their effects on PFA fluorescence, which is decreased specifically by the strong binding of myosin to actin. We measured these effects under equilibrium and steady-state conditions, and under transient conditions, in stopped-flow experiments following addition of ATP to S1-bound PFA. We observed that these compounds affect early steps of the myosin ATPase cycle to different extents. They increased the association equilibrium constant K1 for the formation of the strongly bound collision complex, indicating increased ATP affinity for actin-bound myosin, and decreased the rate constant k+2 for subsequent isomerization to the weakly bound ternary complex, thus slowing the strong-to-weak transition that actin-myosin interaction undergoes early in the ATPase cycle. The compounds' effects on actin structure allosterically inhibit the kinetics of the actin-myosin interaction in ways that may be desirable for treatment of hypercontractile forms of cardiomyopathy. This work helps to elucidate the mechanisms of action for these compounds, several of which are currently used therapeutically, and sets the stage for future HTS campaigns that aim to discover new drugs for treatment of heart failure.
Collapse
Affiliation(s)
- Osha Roopnarine
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota , USA.
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota , USA
| |
Collapse
|
39
|
Inflammation-Induced Protein Unfolding in Airway Smooth Muscle Triggers a Homeostatic Response in Mitochondria. Int J Mol Sci 2020; 22:ijms22010363. [PMID: 33396378 PMCID: PMC7795579 DOI: 10.3390/ijms22010363] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
The effects of airway inflammation on airway smooth muscle (ASM) are mediated by pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα). In this review article, we will provide a unifying hypothesis for a homeostatic response to airway inflammation that mitigates oxidative stress and thereby provides resilience to ASM. Previous studies have shown that acute exposure to TNFα increases ASM force generation in response to muscarinic stimulation (hyper-reactivity) resulting in increased ATP consumption and increased tension cost. To meet this increased energetic demand, mitochondrial O2 consumption and oxidative phosphorylation increases but at the cost of increased reactive oxygen species (ROS) production (oxidative stress). TNFα-induced oxidative stress results in the accumulation of unfolded proteins in the endoplasmic reticulum (ER) and mitochondria of ASM. In the ER, TNFα selectively phosphorylates inositol-requiring enzyme 1 alpha (pIRE1α) triggering downstream splicing of the transcription factor X-box binding protein 1 (XBP1s); thus, activating the pIRE1α/XBP1s ER stress pathway. Protein unfolding in mitochondria also triggers an unfolded protein response (mtUPR). In our conceptual framework, we hypothesize that activation of these pathways is homeostatically directed towards mitochondrial remodeling via an increase in peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α) expression, which in turn triggers: (1) mitochondrial fragmentation (increased dynamin-related protein-1 (Drp1) and reduced mitofusin-2 (Mfn2) expression) and mitophagy (activation of the Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)/Parkin mitophagy pathway) to improve mitochondrial quality; (2) reduced Mfn2 also results in a disruption of mitochondrial tethering to the ER and reduced mitochondrial Ca2+ influx; and (3) mitochondrial biogenesis and increased mitochondrial volume density. The homeostatic remodeling of mitochondria results in more efficient O2 consumption and oxidative phosphorylation and reduced ROS formation by individual mitochondrion, while still meeting the increased ATP demand. Thus, the energetic load of hyper-reactivity is shared across the mitochondrial pool within ASM cells.
Collapse
|
40
|
Liu L, Zhang D, Li Y. LncRNAs in cardiac hypertrophy: From basic science to clinical application. J Cell Mol Med 2020; 24:11638-11645. [PMID: 32896990 PMCID: PMC7579708 DOI: 10.1111/jcmm.15819] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiac hypertrophy is a typical pathological phenotype of cardiomyopathy and a result from pathological remodelling of cardiomyocytes in humans. At present, emerging evidence demonstrated the roles of long non‐coding RNAs (lncRNAs) in regulating the pathophysiological process of cardiac hypertrophy. Herein, we would like to review the recent researches on this issue and try to analysis the potential therapeutic targets on lncRNA sites. Studies have revealed both genetic mutations related hypertrophic cardiomyopathy and the compensative cardiac hypertrophy due to pressure overload, inflammation, endocrine issues and other external stimulations, share a common molecular mechanism of ventricular hypertrophy. The emerging evidence identified the abnormal expression of lncRNAs would leading to the impairment the function of sarcomere, intracellular calcium handling and mitochondrial metabolisms. Several researches proved the therapeutic role of lncRNAs in preventing or reversing cardiac hypertrophy. With the development of delivery system for small pieces of oligonucleotide, clinicians could design gene therapy approaches to terminate the process of cardiac hypertrophy to provide better prognosis.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|