1
|
Marra M, Catalano A, Sinicropi MS, Ceramella J, Iacopetta D, Salpini R, Svicher V, Marsico S, Aquaro S, Pellegrino M. New Therapies and Strategies to Curb HIV Infections with a Focus on Macrophages and Reservoirs. Viruses 2024; 16:1484. [PMID: 39339960 PMCID: PMC11437459 DOI: 10.3390/v16091484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
More than 80 million people worldwide have been infected with the human immunodeficiency virus (HIV). There are now approximately 39 million individuals living with HIV/acquired immunodeficiency syndrome (AIDS). Although treatments against HIV infection are available, AIDS remains a serious disease. Combination antiretroviral therapy (cART), also known as highly active antiretroviral therapy (HAART), consists of treatment with a combination of several antiretroviral drugs that block multiple stages in the virus replication cycle. However, the increasing usage of cART is inevitably associated with the emergence of HIV drug resistance. In addition, the development of persistent cellular reservoirs of latent HIV is a critical obstacle to viral eradication since viral rebound takes place once anti-retroviral therapy (ART) is interrupted. Thus, several efforts are being applied to new generations of drugs, vaccines and new types of cART. In this review, we summarize the antiviral therapies used for the treatment of HIV/AIDS, both as individual agents and as combination therapies, and highlight the role of both macrophages and HIV cellular reservoirs and the most recent clinical studies related to this disease.
Collapse
Affiliation(s)
- Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Romina Salpini
- Department of Experimental Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Valentina Svicher
- Department of Experimental Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
2
|
Perron H. A tale of a hidden family of genetic immigrants. Microbes Infect 2024:105387. [PMID: 38944111 DOI: 10.1016/j.micinf.2024.105387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Though not usual for the editors of a scientific journal to ask that a story be told to its readers, this special issue is offering an opportunity to pay tribute to all those who have made it possible for a long scientific journey to open up many research avenues, to access the discoveries of what was not known and to the understanding of what was unveiled in the field of human endogenous retroviruses. In particular, and beyond a simple fortuitous association, to show their pathogenic involvement in certain diseases whose causality has been the subject of numerous and variable hypotheses.
Collapse
Affiliation(s)
- Hervé Perron
- GeNeuro, 3 chemin du Pré-Fleuri, 1228 Plan-les-ouates, Geneva, Switzerland; Geneuro-Innovation, 60A, Avenue Rockefeller, 69008 Lyon, France.
| |
Collapse
|
3
|
Takahashi Ueda M. Retrotransposon-derived transcripts and their functions in immunity and disease. Genes Genet Syst 2024; 98:305-319. [PMID: 38199240 DOI: 10.1266/ggs.23-00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Retrotransposons, which account for approximately 42% of the human genome, have been increasingly recognized as "non-self" pathogen-associated molecular patterns (PAMPs) due to their virus-like sequences. In abnormal conditions such as cancer and viral infections, retrotransposons that are aberrantly expressed due to impaired epigenetic suppression display PAMPs, leading to their recognition by pattern recognition receptors (PRRs) of the innate immune system and triggering inflammation. This viral mimicry mechanism has been observed in various human diseases, including aging and autoimmune disorders. However, recent evidence suggests that retrotransposons possess highly regulated immune reactivity and play important roles in the development and function of the immune system. In this review, I discuss a wide range of retrotransposon-derived transcripts, their role as targets in immune recognition, and the diseases associated with retrotransposon activity. Furthermore, I explore the implications of chimeric transcripts formed between retrotransposons and known gene mRNAs, which have been previously underestimated, for the increase of immune-related gene isoforms and their influence on immune function. Retrotransposon-derived transcripts have profound and multifaceted effects on immune system function. The aim of this comprehensive review is to provide a better understanding of the complex relationship between retrotransposon transcripts and immune defense.
Collapse
Affiliation(s)
- Mahoko Takahashi Ueda
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University
| |
Collapse
|
4
|
Balestrieri E, Corinaldesi E, Fabi M, Cipriani C, Giudice M, Conti A, Minutolo A, Petrone V, Fanelli M, Miele MT, Andreozzi L, Guida F, Filice E, Meli M, Grelli S, Rasi G, Toschi N, Torcetta F, Matteucci C, Lanari M, Sinibaldi-Vallebona P. Preliminary Evidence of the Differential Expression of Human Endogenous Retroviruses in Kawasaki Disease and SARS-CoV-2-Associated Multisystem Inflammatory Syndrome in Children. Int J Mol Sci 2023; 24:15086. [PMID: 37894766 PMCID: PMC10606856 DOI: 10.3390/ijms242015086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a postinfectious sequela of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with some clinical features overlapping with Kawasaki disease (KD). Our research group and others have highlighted that the spike protein of SARS-CoV-2 can trigger the activation of human endogenous retroviruses (HERVs), which in turn induces inflammatory and immune reactions, suggesting HERVs as contributing factors in COVID-19 immunopathology. With the aim to identify new factors involved in the processes underlying KD and MIS-C, we analysed the transcriptional levels of HERVs, HERV-related genes, and immune mediators in children during the acute and subacute phases compared with COVID-19 paediatric patients and healthy controls. The results showed higher levels of HERV-W, HERV-K, Syn-1, and ASCT-1/2 in KD, MIS-C, and COV patients, while higher levels of Syn-2 and MFSD2A were found only in MIS-C patients. Moreover, KD and MIS-C shared the dysregulation of several inflammatory and regulatory cytokines. Interestingly, in MIS-C patients, negative correlations have been found between HERV-W and IL-10 and between Syn-2 and IL-10, while positive correlations have been found between HERV-K and IL-10. In addition, HERV-W expression positively correlated with the C-reactive protein. This pilot study supports the role of HERVs in inflammatory diseases, suggesting their interplay with the immune system in this setting. The elevated expression of Syn-2 and MFSD2A seems to be a distinctive trait of MIS-C patients, allowing to distinguish them from KD ones. The understanding of pathological mechanisms can lead to the best available treatment for these two diseases, limiting complications and serious outcomes.
Collapse
Affiliation(s)
- Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
| | - Elena Corinaldesi
- Pediatric Unit, Ramazzini Hospital, 41012 Carpi, Italy; (E.C.); (F.T.)
| | - Marianna Fabi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40126 Bologna, Italy; (L.A.); (F.G.); (E.F.); (M.M.); (M.L.)
| | - Chiara Cipriani
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
| | - Martina Giudice
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
| | - Allegra Conti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (N.T.)
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
| | - Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
| | - Laura Andreozzi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40126 Bologna, Italy; (L.A.); (F.G.); (E.F.); (M.M.); (M.L.)
| | - Fiorentina Guida
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40126 Bologna, Italy; (L.A.); (F.G.); (E.F.); (M.M.); (M.L.)
| | - Emanuele Filice
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40126 Bologna, Italy; (L.A.); (F.G.); (E.F.); (M.M.); (M.L.)
| | - Matteo Meli
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40126 Bologna, Italy; (L.A.); (F.G.); (E.F.); (M.M.); (M.L.)
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
| | - Guido Rasi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (N.T.)
- Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA 02129, USA
| | | | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
| | - Marcello Lanari
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40126 Bologna, Italy; (L.A.); (F.G.); (E.F.); (M.M.); (M.L.)
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
- National Research Council, Institute of Translational Pharmacology, 00133 Rome, Italy
| |
Collapse
|
5
|
Daradoumis J, Ragonnaud E, Skandorff I, Nielsen KN, Bermejo AV, Andersson AM, Schroedel S, Thirion C, Neukirch L, Holst PJ. An Endogenous Retrovirus Vaccine Encoding an Envelope with a Mutated Immunosuppressive Domain in Combination with Anti-PD1 Treatment Eradicates Established Tumours in Mice. Viruses 2023; 15:v15040926. [PMID: 37112906 PMCID: PMC10141008 DOI: 10.3390/v15040926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Endogenous retroviruses (ERVs) account for 8% of our genome, and, although they are usually silent in healthy tissues, they become reactivated and expressed in pathological conditions such as cancer. Several studies support a functional role of ERVs in tumour development and progression, specifically through their envelope (Env) protein, which contains a region described as an immunosuppressive domain (ISD). We have previously shown that targeting of the murine ERV (MelARV) Env using virus-like vaccine (VLV) technology, consisting of an adenoviral vector encoding virus-like particles (VLPs), induces protection against small tumours in mice. Here, we investigate the potency and efficacy of a novel MelARV VLV with a mutated ISD (ISDmut) that can modify the properties of the adenoviral vaccine-encoded Env protein. We show that the modification of the vaccine's ISD significantly enhanced T-cell immunogenicity in both prime and prime-boost vaccination regimens. The modified VLV in combination with an α-PD1 checkpoint inhibitor (CPI) exhibited excellent curative efficacy against large established colorectal CT26 tumours in mice. Furthermore, only ISDmut-vaccinated mice that survived CT26 challenge were additionally protected against rechallenge with a triple-negative breast cancer cell line (4T1), showing that our modified VLV provides cross-protection against different tumour types expressing ERV-derived antigens. We envision that translating these findings and technology into human ERVs (HERVs) could provide new treatment opportunities for cancer patients with unmet medical needs.
Collapse
Affiliation(s)
- Joana Daradoumis
- Department of Immunology and Microbiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | - Emeline Ragonnaud
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Isabella Skandorff
- Department of Immunology and Microbiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | | | - Amaia Vergara Bermejo
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Anne-Marie Andersson
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | | | | | - Lasse Neukirch
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Peter Johannes Holst
- Department of Immunology and Microbiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
6
|
Fišar Z. Biological hypotheses, risk factors, and biomarkers of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110626. [PMID: 36055561 DOI: 10.1016/j.pnpbp.2022.110626] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/19/2022]
Abstract
Both the discovery of biomarkers of schizophrenia and the verification of biological hypotheses of schizophrenia are an essential part of the process of understanding the etiology of this mental disorder. Schizophrenia has long been considered a neurodevelopmental disease whose symptoms are caused by impaired synaptic signal transduction and brain neuroplasticity. Both the onset and chronic course of schizophrenia are associated with risk factors-induced disruption of brain function and the establishment of a new homeostatic setpoint characterized by biomarkers. Different risk factors and biomarkers can converge to the same symptoms of schizophrenia, suggesting that the primary cause of the disease can be highly individual. Schizophrenia-related biomarkers include measurable biochemical changes induced by stress (elevated allostatic load), mitochondrial dysfunction, neuroinflammation, oxidative and nitrosative stress, and circadian rhythm disturbances. Here is a summary of selected valid biological hypotheses of schizophrenia formulated based on risk factors and biomarkers, neurodevelopment, neuroplasticity, brain chemistry, and antipsychotic medication. The integrative neurodevelopmental-vulnerability-neurochemical model is based on current knowledge of the neurobiology of the onset and progression of the disease and the effects of antipsychotics and psychotomimetics and reflects the complex and multifactorial nature of schizophrenia.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Department of Psychiatry, Czech Republic.
| |
Collapse
|
7
|
Büttiker P, Weissenberger S, Esch T, Anders M, Raboch J, Ptacek R, Kream RM, Stefano GB. Dysfunctional mitochondrial processes contribute to energy perturbations in the brain and neuropsychiatric symptoms. Front Pharmacol 2023; 13:1095923. [PMID: 36686690 PMCID: PMC9849387 DOI: 10.3389/fphar.2022.1095923] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Mitochondria are complex endosymbionts that evolved from primordial purple nonsulfur bacteria. The incorporation of bacteria-derived mitochondria facilitates a more efficient and effective production of energy than what could be achieved based on previous processes alone. In this case, endosymbiosis has resulted in the seamless coupling of cytochrome c oxidase and F-ATPase to maximize energy production. However, this mechanism also results in the generation of reactive oxygen species (ROS), a phenomenon that can have both positive and negative ramifications on the host. Recent studies have revealed that neuropsychiatric disorders have a pro-inflammatory component in which ROS is capable of initiating damage and cognitive malfunction. Our current understanding of cognition suggests that it is the product of a neuronal network that consumes a substantial amount of energy. Thus, alterations or perturbations of mitochondrial function may alter not only brain energy supply and metabolite generation, but also thought processes and behavior. Mitochondrial abnormalities and oxidative stress have been implicated in several well-known psychiatric disorders, including schizophrenia (SCZ) and bipolar disorder (BPD). As cognition is highly energy-dependent, we propose that the neuronal pathways underlying maladaptive cognitive processing and psychiatric symptoms are most likely dependent on mitochondrial function, and thus involve brain energy translocation and the accumulation of the byproducts of oxidative stress. We also hypothesize that neuropsychiatric symptoms (e.g., disrupted emotional processing) may represent the vestiges of an ancient masked evolutionary response that can be used by both hosts and pathogens to promote self-repair and proliferation via parasitic and/or symbiotic pathways.
Collapse
Affiliation(s)
- Pascal Büttiker
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic, Prague, Czechia
| | - Simon Weissenberger
- Department of Psychology, University of New York in Prague, Czech Republic, Prague, Czechia
| | - Tobias Esch
- Institute for Integrative Health Care and Health Promotion, School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Martin Anders
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic, Prague, Czechia
| | - Jiri Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic, Prague, Czechia
| | - Radek Ptacek
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic, Prague, Czechia
| | - Richard M. Kream
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic, Prague, Czechia
| | - George B. Stefano
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic, Prague, Czechia,*Correspondence: George B. Stefano,
| |
Collapse
|
8
|
Herrero F, Mueller FS, Gruchot J, Küry P, Weber-Stadlbauer U, Meyer U. Susceptibility and resilience to maternal immune activation are associated with differential expression of endogenous retroviral elements. Brain Behav Immun 2023; 107:201-214. [PMID: 36243285 DOI: 10.1016/j.bbi.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/26/2022] [Accepted: 10/09/2022] [Indexed: 12/05/2022] Open
Abstract
Endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into the mammalian genome through germline infections and insertions during evolution. While increased ERV expression has been repeatedly implicated in psychiatric and neurodevelopmental disorders, recent evidence suggests that aberrant endogenous retroviral activity may contribute to biologically defined subgroups of psychotic disorders with persisting immunological dysfunctions. Here, we explored whether ERV expression is altered in a mouse model of maternal immune activation (MIA), a transdiagnostic environmental risk factor of psychiatric and neurodevelopmental disorders. MIA was induced by maternal administration of poly(I:C) on gestation day 12 in C57BL/6N mice. Murine ERV transcripts were quantified in the placentae and fetal brains shortly after poly(I:C)-induced MIA, as well as in adult offspring that were stratified according to their behavioral profiles. We found that MIA increased and reduced levels of class II ERVs and syncytins, respectively, in placentae and fetal brain tissue. We also revealed abnormal ERV expression in MIA-exposed offspring depending on whether they displayed overt behavioral anomalies or not. Taken together, our findings provide a proof of concept that an inflammatory stimulus, even when initiated in prenatal life, has the potential of altering ERV expression across fetal to adult stages of development. Moreover, our data highlight that susceptibility and resilience to MIA are associated with differential ERV expression, suggesting that early-life exposure to inflammatory factors may play a role in determining disease susceptibility by inducing persistent alterations in the expression of endogenous retroviral elements.
Collapse
Affiliation(s)
- Felisa Herrero
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Flavia S Mueller
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Joel Gruchot
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Interplay between activation of endogenous retroviruses and inflammation as common pathogenic mechanism in neurological and psychiatric disorders. Brain Behav Immun 2023; 107:242-252. [PMID: 36270439 DOI: 10.1016/j.bbi.2022.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 12/05/2022] Open
Abstract
Human endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into our genome through germline infections and insertions during evolution. They have repeatedly been implicated in the aetiology and pathophysiology of numerous human disorders, particularly in those that affect the central nervous system. In addition to the known association of ERVs with multiple sclerosis and amyotrophic lateral sclerosis, a growing number of studies links the induction and expression of these retroviral elements with the onset and severity of neurodevelopmental and psychiatric disorders. Although these disorders differ in terms of overall disease pathology and causalities, a certain degree of (subclinical) chronic inflammation can be identified in all of them. Based on these commonalities, we discuss the bidirectional relationship between ERV expression and inflammation and highlight that numerous entry points to this reciprocal sequence of events exist, including initial infections with ERV-activating pathogens, exposure to non-infectious inflammatory stimuli, and conditions in which epigenetic silencing of ERV elements is disrupted.
Collapse
|
10
|
Cipriani C, Giudice M, Petrone V, Fanelli M, Minutolo A, Miele MT, Toschi N, Maracchioni C, Siracusano M, Benvenuto A, Coniglio A, Curatolo P, Mazzone L, Sandro G, Garaci E, Sinibaldi-Vallebona P, Matteucci C, Balestrieri E. Modulation of human endogenous retroviruses and cytokines expression in peripheral blood mononuclear cells from autistic children and their parents. Retrovirology 2022; 19:26. [PMID: 36451209 PMCID: PMC9709758 DOI: 10.1186/s12977-022-00603-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/09/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Putative pathogenic effects mediated by human endogenous retroviruses (HERVs) in neurological and psychiatric disorders in humans have been extensively described. HERVs may alter the development of the brain by means of several mechanisms, including modulation of gene expression, alteration of DNA stability, and activation of immune system. We recently demonstrated that autistic children and their mothers share high expression levels of some HERVs and cytokines in peripheral blood mononuclear cells (PBMCs) ex vivo, suggesting a close mother-child association in Autism Spectrum Disorder (ASD). RESULTS In the present study, PBMCs from autistic children and their parents were exposed to stimulating factors (Interleukin-2/Phytohaemagglutinin) or drugs, as Valproic acid and Efavirenz. The results show that HERVs and cytokines expression can be modulated in vitro by different stimuli in PBMCs from autistic children and their mothers, while no significant changes were found in PBMCs ASD fathers or in controls individuals. In particular, in vitro exposure to interleukin-2/Phytohaemagglutinin or valproic acid induces the expression of several HERVs and cytokines while Efavirenz inhibits them. CONCLUSION Herein we show that autistic children and their mothers share an intrinsic responsiveness to in vitro microenvironmental changes in expressing HERVs and pro-inflammatory cytokines. Remarkably, the antiretroviral drug Efavirenz restores the expression of specific HERV families to values similar to those of the controls, also reducing the expression of proinflammatory cytokines but keeping the regulatory ones high. Our findings open new perspectives to study the role of HERVs in the biological mechanisms underlying Autism.
Collapse
Affiliation(s)
- Chiara Cipriani
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Martina Giudice
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Vita Petrone
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Marialaura Fanelli
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Antonella Minutolo
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Martino T. Miele
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Nicola Toschi
- grid.6530.00000 0001 2300 0941Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy ,grid.38142.3c000000041936754XMartinos Center for Biomedical Imaging and Harvard Medical School, Boston, USA
| | - Christian Maracchioni
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Martina Siracusano
- grid.6530.00000 0001 2300 0941Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Arianna Benvenuto
- grid.413009.fChild Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| | - Antonella Coniglio
- grid.413009.fChild Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| | - Paolo Curatolo
- grid.413009.fChild Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| | - Luigi Mazzone
- grid.413009.fChild Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| | - Grelli Sandro
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy ,Virology Unit, Policlinic of Tor Vergata, 00133 Rome, Italy
| | - Enrico Garaci
- University San Raffaele, Rome, Italy ,grid.18887.3e0000000417581884IRCCS San Raffaele Pisana, 00133 Rome, Italy
| | - Paola Sinibaldi-Vallebona
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy ,grid.5326.20000 0001 1940 4177Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Claudia Matteucci
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Emanuela Balestrieri
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
11
|
Cipriani C, Tartaglione AM, Giudice M, D’Avorio E, Petrone V, Toschi N, Chiarotti F, Miele MT, Calamandrei G, Garaci E, Matteucci C, Sinibaldi-Vallebona P, Ricceri L, Balestrieri E. Differential Expression of Endogenous Retroviruses and Inflammatory Mediators in Female and Male Offspring in a Mouse Model of Maternal Immune Activation. Int J Mol Sci 2022; 23:13930. [PMID: 36430402 PMCID: PMC9695919 DOI: 10.3390/ijms232213930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Maternal infections during pregnancy and the consequent maternal immune activation (MIA) are the major risk factors for autism spectrum disorder (ASD). Epidemiological evidence is corroborated by the preclinical models in which MIA leads to ASD-like behavioral abnormalities and altered neuroinflammatory profiles, with an increase in pro-inflammatory cytokines and microglial markers. In addition to neuroinflammatory response, an abnormal expression of endogenous retroviruses (ERVs) has been identified in neurodevelopmental disorders and have been found to correlate with disease severity. Our aim was to evaluate the transcriptional profile of several ERV families, ERV-related genes, and inflammatory mediators (by RT real-time PCR) in mouse offspring of both sexes, prenatally exposed to polyinosinic:polycytidylic acid (Poly I:C), a synthetic double-stranded RNA molecule targeting TLR-3 that mimics viral maternal infection during pregnancy. We found that prenatal exposure to Poly I:C deregulated the expression of some ERVs and ERV-related genes both in the prefrontal cortex (PFC) and hippocampus, while no changes were detected in the blood. Interestingly, sex-related differences in the expression levels of some ERVs, ERV-related genes, and inflammatory mediators that were higher in females than in males emerged only in PFC. Our findings support the tissue specificity of ERV and ERV-related transcriptional profiles in MIA mice.
Collapse
Affiliation(s)
- Chiara Cipriani
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Anna Maria Tartaglione
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy
| | - Martina Giudice
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Erica D’Avorio
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
- Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA 02115, USA
| | - Flavia Chiarotti
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Gemma Calamandrei
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy
| | - Enrico Garaci
- University San Raffaele, 00166 Rome, Italy
- IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Laura Ricceri
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
12
|
Siracusano M, Riccioni A, Gialloreti LE, Carloni E, Baratta A, Ferrara M, Arturi L, Lisi G, Adulti I, Rossi R, Lucaselli A, Rossi A, Niolu C, Mazzone L. Maternal Perinatal Depression and Risk of Neurodevelopmental Disorders in Offspring: Preliminary Results from the SOS MOOD Project. CHILDREN 2021; 8:children8121150. [PMID: 34943347 PMCID: PMC8700100 DOI: 10.3390/children8121150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
The latest research is attempting to define whether there may be an association between maternal Perinatal Depression (PD), the use of psychotropic medications during pregnancy, and a higher risk of neurodevelopmental disorders in children, including Autism Spectrum Disorder (ASD). A better understanding of the relation between PD and ASD is a key element to develop early interventions. This study has been developed in the context of the SOS MOOD project. Its aim is to evaluate the possible impact of maternal PD on the child’s cognitive and behavioral phenotype with a focus on ASD. Women included in the project were screened during pregnancy (1st, 2nd trimester) for PD—categorized as affected or not—and if necessary were prescribed pharmacological therapy; offspring of both groups of women underwent at a mean age of 43 months a standardized neuropsychiatric evaluation of developmental and cognitive skills, behavioral problems, autism symptoms and parental stress. Preliminary results on 59 women and 59 children do not suggest significant long-term effects of maternal PD on offspring’s development and behavior. Nonetheless further studies on wider samples are necessary in order to confirm such results and disentangle the role of possible confounding factors associated to the maternal illness.
Collapse
Affiliation(s)
- Martina Siracusano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy; (A.R.); (E.C.); (A.B.); (M.F.); (L.A.); (L.M.)
- Correspondence: or ; Tel.: +39-0620900249
| | - Assia Riccioni
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy; (A.R.); (E.C.); (A.B.); (M.F.); (L.A.); (L.M.)
- Systems Medicine Department, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy; (G.L.); (R.R.); (C.N.)
| | - Leonardo Emberti Gialloreti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Elisa Carloni
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy; (A.R.); (E.C.); (A.B.); (M.F.); (L.A.); (L.M.)
| | - Antonia Baratta
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy; (A.R.); (E.C.); (A.B.); (M.F.); (L.A.); (L.M.)
| | - Marialaura Ferrara
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy; (A.R.); (E.C.); (A.B.); (M.F.); (L.A.); (L.M.)
| | - Lucrezia Arturi
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy; (A.R.); (E.C.); (A.B.); (M.F.); (L.A.); (L.M.)
- Systems Medicine Department, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy; (G.L.); (R.R.); (C.N.)
| | - Giulia Lisi
- Systems Medicine Department, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy; (G.L.); (R.R.); (C.N.)
- Mental Health Department, Azienda Sanitaria Locale Roma 1, 00133 Rome, Italy
| | - Ilaria Adulti
- Psychiatry and Clinical Psychology Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy;
| | - Rodolfo Rossi
- Systems Medicine Department, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy; (G.L.); (R.R.); (C.N.)
| | - Alessia Lucaselli
- Section of Psychiatry, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.L.); (A.R.)
| | - Alessandro Rossi
- Section of Psychiatry, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.L.); (A.R.)
| | - Cinzia Niolu
- Systems Medicine Department, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy; (G.L.); (R.R.); (C.N.)
- Psychiatry and Clinical Psychology Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy;
| | - Luigi Mazzone
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy; (A.R.); (E.C.); (A.B.); (M.F.); (L.A.); (L.M.)
- Systems Medicine Department, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy; (G.L.); (R.R.); (C.N.)
| |
Collapse
|
13
|
Helmy M, Selvarajoo K. Systems Biology to Understand and Regulate Human Retroviral Proinflammatory Response. Front Immunol 2021; 12:736349. [PMID: 34867957 PMCID: PMC8635014 DOI: 10.3389/fimmu.2021.736349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/21/2021] [Indexed: 01/13/2023] Open
Abstract
The majority of human genome are non-coding genes. Recent research have revealed that about half of these genome sequences make up of transposable elements (TEs). A branch of these belong to the endogenous retroviruses (ERVs), which are germline viral infection that occurred over millions of years ago. They are generally harmless as evolutionary mutations have made them unable to produce viral agents and are mostly epigenetically silenced. Nevertheless, ERVs are able to express by still unknown mechanisms and recent evidences have shown links between ERVs and major proinflammatory diseases and cancers. The major challenge is to elucidate a detailed mechanistic understanding between them, so that novel therapeutic approaches can be explored. Here, we provide a brief overview of TEs, human ERVs and their links to microbiome, innate immune response, proinflammatory diseases and cancer. Finally, we recommend the employment of systems biology approaches for future HERV research.
Collapse
Affiliation(s)
- Mohamed Helmy
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Computer Science, Lakehead University, Thunder Bay, ON, Canada
| | - Kumar Selvarajoo
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Synthetic Biology Translational Research Program & SynCTI, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Kent Ridge, Singapore
| |
Collapse
|
14
|
Kasperek A, Béguin A, Bawa O, De Azevedo K, Job B, Massard C, Scoazec JY, Heidmann T, Heidmann O. Therapeutic potential of the human endogenous retroviral envelope protein HEMO: a pan-cancer analysis. Mol Oncol 2021; 16:1451-1473. [PMID: 34318590 PMCID: PMC8978518 DOI: 10.1002/1878-0261.13069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 12/02/2022] Open
Abstract
Human endogenous retroviruses represent approximately 8% of our genome. Most of these sequences are defective except for a few genes such as the ancestral retroviral HEMO envelope gene (Human Endogenous MER34 ORF), recently characterized by our group. In this study, we characterized transcriptional activation of HEMO in primary tumors from The Cancer Genome Atlas (TCGA) and in metastatic tumors from a Gustave Roussy cohort. Pan‐cancer detection of the HEMO protein in a series of patient samples validated these results. Differential gene expression analysis in various TCGA datasets revealed a link between HEMO expression and activation of Wnt/β‐catenin signaling, in particular in endometrial cancer. Studies on cell models led us to propose that the Wnt/β‐catenin pathway could act as an upstream regulator of this retroviral endogenous sequence in tumor condition. Characterization of transcriptomic profiles of both HEMOLow and HEMOHigh tumors suggested that activation of HEMO is negatively associated with immune response signatures. Taken together, these results highlight that HEMO, as an endogenous retroviral envelope protein specifically expressed in tumors, represents a promising tumor biomarker and therapeutic target.
Collapse
Affiliation(s)
- Amélie Kasperek
- CNRS UMR 9196, Laboratory of Physiology and Pathology of Infectious and Endogenous Retroviruses, Gustave Roussy, University Paris-Saclay, Villejuif, 94805, France
| | - Anthony Béguin
- CNRS UMR 9196, Laboratory of Physiology and Pathology of Infectious and Endogenous Retroviruses, Gustave Roussy, University Paris-Saclay, Villejuif, 94805, France
| | - Olivia Bawa
- PETRA platform, AMMICa, CNRS-UMS 3655 and INSERM-US23, Gustave Roussy, University Paris-Saclay, Villejuif, 94805, France
| | - Kévin De Azevedo
- CNRS UMR 9196, Laboratory of Physiology and Pathology of Infectious and Endogenous Retroviruses, Gustave Roussy, University Paris-Saclay, Villejuif, 94805, France
| | - Bastien Job
- Bioinformatic Core Facility, AMMICa, CNRS-UMS 3655 and INSERM-US23, Gustave Roussy, University Paris-Saclay, Villejuif, 94805, France
| | - Christophe Massard
- Drug Development Department (DITEP), Gustave Roussy, University Paris-Saclay, Villejuif, 94805, France
| | - Jean-Yves Scoazec
- PETRA platform, AMMICa, CNRS-UMS 3655 and INSERM-US23, Gustave Roussy, University Paris-Saclay, Villejuif, 94805, France.,University Paris-Saclay, Faculty of Medicine, Le Kremlin Bicêtre, 94270, France.,Department of Pathology, Gustave Roussy, Villejuif, 94805, France
| | - Thierry Heidmann
- CNRS UMR 9196, Laboratory of Physiology and Pathology of Infectious and Endogenous Retroviruses, Gustave Roussy, University Paris-Saclay, Villejuif, 94805, France
| | - Odile Heidmann
- CNRS UMR 9196, Laboratory of Physiology and Pathology of Infectious and Endogenous Retroviruses, Gustave Roussy, University Paris-Saclay, Villejuif, 94805, France
| |
Collapse
|
15
|
Tamouza R, Meyer U, Foiselle M, Richard JR, Wu CL, Boukouaci W, Le Corvoisier P, Barrau C, Lucas A, Perron H, Leboyer M. Identification of inflammatory subgroups of schizophrenia and bipolar disorder patients with HERV-W ENV antigenemia by unsupervised cluster analysis. Transl Psychiatry 2021; 11:377. [PMID: 34230451 PMCID: PMC8260666 DOI: 10.1038/s41398-021-01499-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/26/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of infections that took place several million years ago and represent around 8% of the human genome. Despite evidence implicating increased expression of HERV type W envelope (HERV-W ENV) in schizophrenia and bipolar disorder, it remains unknown whether such expression is associated with distinct clinical or biological characteristics and symptoms. Accordingly, we performed unsupervised two-step clustering of a multivariate data set that included HERV-W ENV protein antigenemia, serum cytokine levels, childhood trauma scores, and clinical data of cohorts of patients with schizophrenia (n = 29), bipolar disorder (n = 43) and healthy controls (n = 32). We found that subsets of patients with schizophrenia (~41%) and bipolar disorder (~28%) show positive antigenemia for HERV-W ENV protein, whereas the large majority (96%) of controls was found to be negative for ENV protein. Unsupervised cluster analysis identified the presence of two main clusters of patients, which were best predicted by the presence or absence of HERV-W ENV protein. HERV-W expression was associated with increased serum levels of inflammatory cytokines and higher childhood maltreatment scores. Furthermore, patients with schizophrenia who were positive for HERV-W ENV protein showed more manic symptoms and higher daily chlorpromazine (CPZ) equivalents, whereas HERV-W ENV positive patients with bipolar disorder were found to have an earlier disease onset than those who were negative for HERV-W ENV protein. Taken together, our study suggest that HERV-W ENV protein antigenemia and cytokines can be used to stratify patients with major mood and psychotic disorders into subgroups with differing inflammatory and clinical profiles.
Collapse
Affiliation(s)
- Ryad Tamouza
- AP-HP, Hôpital Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision (FHU ADAPT), Créteil, France.
- Université Paris Est Créteil, Laboratoire Neuro-Psychiatrie translationnelle, Créteil, France.
- Fondation FondaMental, Créteil, France.
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Marianne Foiselle
- Université Paris Est Créteil, Laboratoire Neuro-Psychiatrie translationnelle, Créteil, France
- Fondation FondaMental, Créteil, France
| | - Jean-Romain Richard
- Université Paris Est Créteil, Laboratoire Neuro-Psychiatrie translationnelle, Créteil, France
- Fondation FondaMental, Créteil, France
| | - Ching-Lien Wu
- Université Paris Est Créteil, Laboratoire Neuro-Psychiatrie translationnelle, Créteil, France
- Fondation FondaMental, Créteil, France
| | - Wahid Boukouaci
- Université Paris Est Créteil, Laboratoire Neuro-Psychiatrie translationnelle, Créteil, France
- Fondation FondaMental, Créteil, France
| | - Philippe Le Corvoisier
- Université Paris Est Créteil, Centre Investigation Clinique, CIC Henri Mondor, Créteil, France
| | - Caroline Barrau
- Plateforme de Ressources Biologiques, HU Henri Mondor, Créteil, France
| | - Alexandre Lucas
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), plateau We-Met, Inserm UMR1048 and Université Paul Sabatier, Toulouse, France
| | - Hervé Perron
- GeNeuro, 3, Chemin du pré Fleuri 1228 Plan-les-Ouates, Geneva, Switzerland
- Université de Lyon-UCBL, Lyon, France
| | - Marion Leboyer
- AP-HP, Hôpital Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision (FHU ADAPT), Créteil, France.
- Université Paris Est Créteil, Laboratoire Neuro-Psychiatrie translationnelle, Créteil, France.
- Fondation FondaMental, Créteil, France.
| |
Collapse
|
16
|
Glinsky GV. Genomics-Guided Drawing of Molecular and Pathophysiological Components of Malignant Regulatory Signatures Reveals a Pivotal Role in Human Diseases of Stem Cell-Associated Retroviral Sequences and Functionally-Active hESC Enhancers. Front Oncol 2021; 11:638363. [PMID: 33869024 PMCID: PMC8044830 DOI: 10.3389/fonc.2021.638363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/10/2021] [Indexed: 12/31/2022] Open
Abstract
Repetitive DNA sequences (repeats) colonized two-third of human genome and a majority of repeats comprised of transposable genetic elements (TE). Evolutionary distinct categories of TE represent nucleic acid sequences that are repeatedly copied from and pasted into chromosomes at multiple genomic locations and acquired a multitude of regulatory functions. Here, genomics-guided maps of stemness regulatory signatures were drawn to dissect the contribution of TE to clinical manifestations of malignant phenotypes of human cancers. From patients’ and physicians’ perspectives, the clinical definition of a tumor’s malignant phenotype could be restricted to the early diagnosis of sub-types of malignancies with the increased risk of existing therapy failure and high likelihood of death from cancer. It is the viewpoint from which the understanding of stemness and malignant regulatory signatures is considered in this contribution. Genomics-guided analyses of experimental and clinical observations revealed the pivotal role of human stem cell-associated retroviral sequences (SCARS) in the origin and pathophysiology of clinically-lethal malignancies. SCARS were defined as the evolutionary- and biologically-related family of genomic regulatory sequences, the principal physiological function of which is to create and maintain the stemness phenotype during human preimplantation embryogenesis. For cell differentiation to occur, SCARS expression must be silenced and SCARS activity remains repressed in most terminally-differentiated human cells which are destined to perform specialized functions in the human body. Epigenetic reprogramming, de-repression, and sustained activity of SCARS results in various differentiation-defective phenotypes. One of the most prominent tissue- and organ-specific clinical manifestations of sustained SCARS activities is diagnosed as a pathological condition defined by a consensus of morphological, molecular, and genetic examinations as the malignant growth. Here, contemporary evidence are acquired, analyzed, and reported defining both novel diagnostic tools and druggable molecular targets readily amenable for diagnosis and efficient therapeutic management of clinically-lethal malignancies. These diagnostic and therapeutic approaches are based on monitoring of high-fidelity molecular signals of continuing SCARS activities in conjunction with genomic regulatory networks of thousands’ functionally-active embryonic enhancers affecting down-stream phenotype-altering genetic loci. Collectively, reported herein observations support a model of SCARS-activation triggered singular source code facilitating the intracellular propagation and intercellular (systemic) dissemination of disease states in the human body.
Collapse
Affiliation(s)
- Gennadi V Glinsky
- Institute of Engineering in Medicine, University of California, San Diego, CA, United States.,Department of Functional & Translational Genomics, OncoSCAR, Inc., Portland, OR, United States
| |
Collapse
|
17
|
Römer C. Viruses and Endogenous Retroviruses as Roots for Neuroinflammation and Neurodegenerative Diseases. Front Neurosci 2021; 15:648629. [PMID: 33776642 PMCID: PMC7994506 DOI: 10.3389/fnins.2021.648629] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
Many neurodegenerative diseases are associated with chronic inflammation in the brain and periphery giving rise to a continuous imbalance of immune processes. Next to inflammation markers, activation of transposable elements, including long intrespersed nuclear elements (LINE) elements and endogenous retroviruses (ERVs), has been identified during neurodegenerative disease progression and even correlated with the clinical severity of the disease. ERVs are remnants of viral infections in the human genome acquired during evolution. Upon activation, they produce transcripts and the phylogenetically youngest ones are still able to produce viral-like particles. In addition, ERVs can bind transcription factors and modulate immune response. Being between own and foreign, ERVs are reviewed in the context of viral infections of the central nervous system, in aging and neurodegenerative diseases. Moreover, this review tests the hypothesis that viral infection may be a trigger at the onset of neuroinflammation and that ERVs sustain the inflammatory imbalance by summarizing existing data of neurodegenerative diseases associated with viruses and/or ERVs.
Collapse
Affiliation(s)
- Christine Römer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, The Berlin Institute for Medical Systems Biology, Berlin, Germany
| |
Collapse
|