1
|
Konno T, Murachi H, Otsuka K, Kimura Y, Sampei C, Arasaki Y, Kohara Y, Hayata T. Ctdnep1 phosphatase is required for negative regulation of RANKL-induced osteoclast differentiation in RAW264.7 cells. Biochem Biophys Res Commun 2024; 719:150063. [PMID: 38749090 DOI: 10.1016/j.bbrc.2024.150063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
Osteoclasts are multinucleated cells with bone resorption activity. Excessive osteoclast activity has been implicated in osteoporosis, rheumatoid arthritis, and bone destruction due to bone metastases from cancer, making osteoclasts essential target cells in bone and joint diseases. C-terminal domain nuclear envelope phosphatase 1 (Ctdnep1, formerly Dullard) is a negative regulator of transforming growth factor (TGF)-β superfamily signaling and regulates endochondral ossification in mesenchymal cells during skeletal development. In this study, we investigated the role of Ctdnep1 in the Receptor activator of nuclear factor-kappa B ligand (RANKL)-induced RAW264.7 osteoclast differentiation. Expression of Ctdnep1 did not change during osteoclast differentiation; Ctdnep1 protein localized to the cytoplasm before and after osteoclast differentiation. Small interfering RNA-mediated knockdown of Ctdnep1 increased tartrate-resistant acid phosphatase-positive multinucleated osteoclasts and the expression of osteoclast marker genes, including Acp5, Ctsk, and Nfatc1. Interestingly, the knockdown of Ctdnep1 increased the protein level of Nfatc1 in cells unstimulated with RANKL. Knockdown of Ctdnep1 also enhanced calcium-resorbing activity. Mechanistically, the knockdown of Ctdnep1 increased the phosphorylation of RANKL signaling components. These results suggest that Ctdnep1 negatively regulates osteoclast differentiation by suppressing the RANKL signaling pathway.
Collapse
Affiliation(s)
- Takuto Konno
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Hitomi Murachi
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Kanon Otsuka
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Yuta Kimura
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Chisato Sampei
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Yasuhiro Arasaki
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Yukihiro Kohara
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Tadayoshi Hayata
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan.
| |
Collapse
|
2
|
Wang X, Tang P, Yang K, Guo S, Tang Y, Zhang H, Wang Q. Regulation of bone homeostasis by traditional Chinese medicine active scaffolds and enhancement for the osteoporosis bone regeneration. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118141. [PMID: 38570149 DOI: 10.1016/j.jep.2024.118141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The active ingredients of traditional Chinese medicine (TCM), such as naringin (NG), Eucommiol, isopsoralen, icariin, Astragalus polysaccharides, and chondroitin sulfate, contained in Drynariae Rhizoma, Eucommiae Cortex, Psoralea corylifolia, Herba Epimedii, Astragalus radix and deer antler, are considered promising candidates for enhancing the healing of osteoporotic defects due to their outstanding bone homeostasis regulating properties. They are commonly used to activate bone repair scaffolds. AIM OF THE REVIEW Bone repair scaffolds are inadequate to meet the demands of osteoporotic defect healing due to the lack of regulation of bone homeostasis. Therefore, selecting bone scaffolds activated with TCM to improve the therapeutic effect of repairing osteoporotic bone defects. MATERIALS AND METHODS To gather information on bone scaffold activated by traditional Chinese medicine, we conducted a thorough search of several scientific databases, including Google Scholar, Web of Science, Scifinder, Baidu Scholar, PubMed, and China National Knowledge Infrastructure (CNKI). RESULTS This review discusses the mechanism of TCM active ingredients in regulating bone homeostasis, including stimulating bone formation and inhibiting bone resorption process and the healing mechanism of traditional bone repair scaffolds activated by them for osteoporotic defect healing. CONCLUSION In general, the introduction of TCM active ingredients provides a novel therapeutic approach for modulating bone homeostasis and facilitating osteoporotic defect healing, and also offers a new strategy for design of other unconventional bone defect healing materials.
Collapse
Affiliation(s)
- Xi Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Pengfei Tang
- Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu, 610065, China
| | - Kun Yang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Shuangquan Guo
- Chengdu Holy (Group) Industry Co. Ltd., Chengdu, 610041, China
| | - Youhong Tang
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Hongping Zhang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China.
| | - Qingyuan Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China; Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
3
|
Peng S, Fu H, Li R, Li H, Wang S, Li B, Sun J. A new direction in periodontitis treatment: biomaterial-mediated macrophage immunotherapy. J Nanobiotechnology 2024; 22:359. [PMID: 38907216 PMCID: PMC11193307 DOI: 10.1186/s12951-024-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/28/2024] [Indexed: 06/23/2024] Open
Abstract
Periodontitis is a chronic inflammation caused by a bacterial infection and is intimately associated with an overactive immune response. Biomaterials are being utilized more frequently in periodontal therapy due to their designability and unique drug delivery system. However, local and systemic immune response reactions driven by the implantation of biomaterials could result in inflammation, tissue damage, and fibrosis, which could end up with the failure of the implantation. Therefore, immunological adjustment of biomaterials through precise design can reduce the host reaction while eliminating the periodontal tissue's long-term chronic inflammation response. It is important to note that macrophages are an active immune system component that can participate in the progression of periodontal disease through intricate polarization mechanisms. And modulating macrophage polarization by designing biomaterials has emerged as a new periodontal therapy technique. In this review, we discuss the role of macrophages in periodontitis and typical strategies for polarizing macrophages with biomaterials. Subsequently, we discuss the challenges and potential opportunities of using biomaterials to manipulate periodontal macrophages to facilitate periodontal regeneration.
Collapse
Affiliation(s)
- Shumin Peng
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Haojie Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Rui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Hui Li
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100069, China
| | - Shuyuan Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Bingyan Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Jingjing Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China.
| |
Collapse
|
4
|
Hsieh MK, Wang CY, Kao FC, Su HT, Chen MF, Tsai TT, Lai PL. Local application of zoledronate inhibits early bone resorption and promotes bone formation. JBMR Plus 2024; 8:ziae031. [PMID: 38606146 PMCID: PMC11008729 DOI: 10.1093/jbmrpl/ziae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/14/2024] [Accepted: 03/03/2024] [Indexed: 04/13/2024] Open
Abstract
Nonunion resulting from early bone resorption is common after bone transplantation surgery. In these patients, instability or osteoporosis causes hyperactive catabolism relative to anabolism, leading to graft resorption instead of fusion. Systemic zoledronate administration inhibits osteoclastogenesis and is widely used to prevent osteoporosis; however, evidence on local zoledronate application is controversial due to osteoblast cytotoxicity, uncontrolled dosing regimens, and local release methods. We investigated the effects of zolendronate on osteoclastogenesis and osteogenesis and explored the corresponding signaling pathways. In vitro cytotoxicity and differentiation of MC3T3E1 cells, rat bone marrow stromal cells (BMSCs) and preosteoclasts (RAW264.7 cells) were evaluated with different zolendronate concentrations. In vivo bone regeneration ability was tested by transplanting different concentrations of zolendronate with β-tricalcium phosphate (TCP) bone substitute into rat femoral critical-sized bone defects. In vitro, zolendronate concentrations below 2.5 × 10-7 M did not compromise viability in the three cell lines and did not promote osteogenic differentiation in MC3T3E1 cells and BMSCs. In RAW264.7 cells, zoledronate inhibited extracellular regulated protein kinases and c-Jun n-terminal kinase signaling, downregulating c-Fos and NFATc1 expression, with reduced expression of fusion-related dendritic cell‑specific transmembrane protein and osteoclast-specific Ctsk and tartrate-resistant acid phosphatase (. In vivo, histological staining revealed increased osteoid formation and neovascularization and reduced fibrotic tissue with 500 μM and 2000 μM zolendronate. More osteoclasts were found in the normal saline group after 6 weeks, and sequential osteoclast formation occurred after zoledronate treatment, indicating inhibition of bone resorption during early callus formation without inhibition of late-stage bone remodeling. In vivo, soaking β-TCP artificial bone with 500 μM or 2000 μM zoledronate is a promising approach for bone regeneration, with potential applications in bone transplantation.
Collapse
Affiliation(s)
- Ming-Kai Hsieh
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chi-Yun Wang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, Taishan Dist, New Taipei City 243303, Taiwan
| | - Fu-Cheng Kao
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Hui-Ting Su
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Mei-Feng Chen
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Po-Liang Lai
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
5
|
Ji S, Zhao B, Gao Y, Xie J, Han H, Wu Q, Yang D. Cinnamaldehyde attenuates streptozocin-induced diabetic osteoporosis in a rat model by modulating netrin-1/DCC-UNC5B signal transduction. Front Pharmacol 2024; 15:1367806. [PMID: 38628640 PMCID: PMC11019308 DOI: 10.3389/fphar.2024.1367806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 04/19/2024] Open
Abstract
Background: Cinnamaldehyde (CMD) is a major functional component of Cinnamomum verum and has shown treatment effects against diverse bone diseases. This study aimed to assess the anti-diabetic osteoporosis (DOP) potential of diabetes mellitus (DM) and to explore the underlying mechanism driving the activity of CMD. Methods: A DOP model was induced via an intraperitoneal injection of streptozocin (STZ) into Sprague-Dawley rats, and then two different doses of CMD were administered to the rats. The effects of CMD on the strength, remodeling activity, and histological structure of the bones were assessed. Changes in the netrin-1 related pathways also were detected to elucidate the mechanism of the anti-DOP activity by CMD. Results: CMD had no significant effect on the body weight or blood glucose level of the model rats. However, the data showed that CMD improved the bone strength and bone remodeling activity as well as attenuating the bone structure destruction in the DOP rats in a dose-dependent manner. The expression of netrin-1, DCC, UNC5B, RANKL, and OPG was suppressed, while the expression of TGF-β1, cathepsin K, TRAP, and RANK was induced by the STZ injection. CMD administration restored the expression of all of these indicators at both the mRNA and protein levels, indicating that the osteoclast activity was inhibited by CMD. Conclusion: The current study demonstrated that CMD effectively attenuated bone impairments associated with DM in a STZ-induced DOP rat model, and the anti-DOP effects of CMD were associated with the modulation of netrin-1/DCC/UNC5B signal transduction.
Collapse
Affiliation(s)
- Songjie Ji
- Department of Orthopaedic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Department of Joint Surgery, Beijing Jishuitan Guizhou Hospital, Guiyang, China
| | - Bingjia Zhao
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Translational Medicine Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Gao
- Department of Joint Surgery, Beijing Jishuitan Guizhou Hospital, Guiyang, China
| | - Jun Xie
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Translational Medicine Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Huijun Han
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Qunli Wu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Translational Medicine Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Yang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Translational Medicine Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Li Z, Xu J, Shi S, Weng Y, Guo B, Che L, Sun J. Identification and validation of iron metabolism genes in osteoporosis. BMC Med Genomics 2024; 17:5. [PMID: 38169377 PMCID: PMC10762978 DOI: 10.1186/s12920-023-01779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Osteoporosis is the most common metabolic bone disease in humans. Exploring the expression difference of iron metabolism-related genes in osteoporosis can provide a new target for diagnosis and treatment. METHODS First, we used online databases to identify differentially expressed genes (DEGs) related to iron metabolism in patients with osteoporosis. The differential genes were comprehensively analyzed by bioinformatics method (GO, KEGG, GSEA, immune infiltration analysis, PPI). The expression levels of hub genes and important signaling pathways were verified by qRT-PCR and Western blotting. RESULTS A total of 23 iron metabolism-related genes with significant differences were identified, which were enriched in "regulation of protein dephosphorylation" and "negative regulation of protein dephosphorylation". The GSEA results, heme metabolism and Myc targets v1 were among the top two pathways, both upregulated. The immune infiltration analysis revealed that the expressions of genes such as ABCA5, D2HGDH, GNAI2, and CTSW were correlated with the infiltration degree of significantly different cells. The PPI network contained 12 differentially expressed iron metabolism-related genes. Additionally, YWHAE, TGFB1, PPP1R15A, TOP2A, and CALR were mined as hub genes using the Cytoscape software. qRT PCR showed that the expression of TGF-β1, YWHAE, TOP2A and CALR increased. We also verified the expression of related proteins and genes in the oxidative stress signaling pathway by qRT PCR and Western blotting. The results showed that Mob1, YAP and TAZ molecules were highly expressed at the gene and protein levels. CONCLUSIONS These differentially expressed iron metabolism-related genes could provide new potential targets for the diagnosis and treatment of osteoporosis.
Collapse
Affiliation(s)
- Zutao Li
- Department of Orthopedic Trauma, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang, China
| | - Jiangbo Xu
- Department of Orthopedic Trauma, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang, China
| | - Shouyin Shi
- Department of Orthopedic Trauma, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang, China
| | - Youlin Weng
- Department of Orthopedic Trauma, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang, China
| | - Bin Guo
- Department of Orthopedic Trauma, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang, China
| | - Lixin Che
- Department of Orthopedic Trauma, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang, China
| | - Jungang Sun
- Department of Orthopedic Trauma, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang, China.
| |
Collapse
|
7
|
Chen S, Jin J, Xu Z, Han H, Wu L, Li Z. Catalpol attenuates osteoporosis in ovariectomized rats through promoting osteoclast apoptosis via the Sirt6-ERα-FasL axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155262. [PMID: 38100921 DOI: 10.1016/j.phymed.2023.155262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Catalpol, a major active component of the Chinese herb Rehmannia glutinosa, possesses various pharmacological benefits, including anti-inflammatory, antidiabetic, and antitumor properties. Recent studies have reported that catalpol can attenuate bone loss and enhance bone formation. Nevertheless, the molecular mechanisms underlying its effects on osteoporosis pathogenesis remain unclear. PURPOSE We investigated whether catalpol had a protective effect against postmenopausal osteoporosis (PMOP) and explored its exact mechanism of action. METHODS Seventy-two rats were randomly divided into six groups: sham, model, low-dose catalpol (5 mg/kg/day), medium-dose catalpol (10 mg/kg/day), high-dose catalpol (20 mg/kg/day), and positive control (alendronate, 2.5 mg/kg). In this experiment, a ovariectomy was performed to establish a female rat model of PMOP. After 12 weeks of gavage, micro-computed tomography (micro-CT) and histochemical staining were performed to evaluate bone mass, bone microstructure and histological parameters. Furthermore, RAW 264.7 cells were induced by RANKL to form mature osteoclasts to investigate the effect of catalpol on osteoclast differentiation and apoptosis in vitro. Additionally, the osteoclast apoptosis-related proteins of Sirt6, ERα, FasL, NFATc1, cleaved-caspase 8, cleaved-caspase 3, and Bax were assessed using western blotting. The expressions of NFATc1, Ctsk, Oscar, and Trap were quantified using RT-qPCR. The apoptotic rate of the osteoclasts was determined using flow cytometry. Sirt6 knockdown was performed using siRNA gene silencing in experiments to investigate its role in catalpol-mediated osteoclast apoptosis. The deacetylation of ERα in osteoclasts was tested via co-immunoprecipitation. RESULTS Catalpol (10 and 20 mg/kg) and alendronate (2.5 mg/kg) could significantly improve bone mineral density (BMD) and microstructure and decrease osteoclast density in ovariectomized (OVX) rats. In addition, catalpol (10 and 20 mg/kg) upregulated the expression of Sirt6, ERα, FasL, cleaved-caspase 8, cleaved-caspase 3, Bax, and downregulated the expression of NFATc1, Ctsk, Oscar, Trap both in vivo and in vitro. Catalpol also promoted ERα deacetylation and stabilized ERα protein to enhance the expression of FasL. In addition, Sirt6 knockdown by siRNA prevented ERα deacetylation and eliminated catalpol-mediated osteoclast apoptosis. CONCLUSIONS The present study demonstrated that catalpol prevents estrogen deficiency-induced osteoporosis by promoting osteoclast apoptosis via the Sirt6-ERα-FasL axis. These findings revealed a novel molecular mechanism underpinning the impact of catalpol in the progression of osteoporosis and provided novel insights into the treatment of osteoporosis.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziqing Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huawei Han
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lan Wu
- Department of Gynecology and Obstetrics, Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China.
| | - Zhiwei Li
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
8
|
Skubica P, Husakova M, Dankova P. In vitro osteoclastogenesis in autoimmune diseases - Strengths and pitfalls of a tool for studying pathological bone resorption and other disease characteristics. Heliyon 2023; 9:e21925. [PMID: 38034780 PMCID: PMC10682642 DOI: 10.1016/j.heliyon.2023.e21925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Osteoclasts play a critical role in bone pathology frequently associated with autoimmune diseases. Studying the etiopathogenesis of these diseases and their clinical manifestations can involve in vitro osteoclastogenesis, an experimental technique that utilizes osteoclast precursors that are relatively easily accessible from peripheral blood or synovial fluid. However, the increasing number of methodical options to study osteoclastogenesis in vitro poses challenges in translating findings to clinical research and practice. This review compares and critically evaluates previous research work based on in vitro differentiation of human osteoclast precursors originating from patients, which aimed to explain autoimmune pathology in rheumatic and enteropathic diseases. The discussion focuses primarily on methodical differences between the studies, including the origin of osteoclast precursors, culture conditions, and methods for identifying osteoclasts and assessing their activity. Additionally, the review examines the clinical significance of the three most commonly used in vitro approaches: induced osteoclastogenesis, spontaneous osteoclastogenesis, and cell co-culture. By analyzing and integrating the gathered information, this review proposes general connections between different studies, even in cases where their results are seemingly contradictory. The derived conclusions and future directions aim to enhance our understanding of a potential and limitations of in vitro osteoclastogenesis and provide a foundation for discussing novel methods (such as osteoclastogenesis dynamic) and standardized approaches (such as spontaneous osteoclastogenesis) for future use in autoimmune disease research.
Collapse
Affiliation(s)
- Patrik Skubica
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Marketa Husakova
- First Faculty of Medicine, Charles University, Prague and Institute of Rheumatology, Prague, Czech Republic
| | - Pavlina Dankova
- Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
9
|
Chen H, Zheng Q, Lv Y, Yang Z, Fu Q. CUL4A-mediated ZEB1/microRNA-340-5p/HMGB1 axis promotes the development of osteoporosis. J Biochem Mol Toxicol 2023; 37:e23373. [PMID: 37253097 DOI: 10.1002/jbt.23373] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/17/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Understanding the molecular mechanisms underlying osteoclast differentiation provides insights into bone loss and even osteoporosis. The specific mechanistic actions of cullin 4A (CUL4A) in osteoclast differentiation and resultant osteoporosis is poorly explored. We developed a mouse model of osteoporosis using bilateral ovariectomy (OVX) and examined CUL4A expression. It was noted that CUL4A expression was increased in the bone marrow of OVX mice. Overexpression of CUL4A promoted osteoclast differentiation, and knockdown of CUL4A alleviated osteoporosis symptoms of OVX mice. Bioinformatic analyses were applied to identify the downstream target genes of microRNA-340-5p (miR-340-5p), followed by interaction analysis. The bone marrow macrophages (BMMs) were isolated from femur of OVX mice, which were transfected with different plasmids to alter the expression of CUL4A, Zinc finer E-box binding homeobox 1 (ZEB1), miR-340-5p, and Toll-like receptor 4 (TLR4). ChIP assay was performed to detect enrichment of ZEB1 promoter by H3K4me3 antibody in BMMs. ZEB1 was overexpressed in the bone marrow of OVX mice. Overexpression of CUL4A mediated H3K4me3 methylation to increase ZEB1 expression, thus promoting osteoclast differentiation. Meanwhile, ZEB1 could inhibit miR-340-5p expression and upregulate HMGB1 to induce osteoclast differentiation. Overexpressed ZEB1 activated the TLR4 pathway by regulating the miR-340-5p/HMGB1 axis to induce osteoclast differentiation, thus promoting the development of osteoporosis. Overall, E3 ubiquitin ligase CUL4A can upregulate ZEB1 to repress miR-340-5p expression, leading to HMGB1 upregulation and the TLR4 pathway activation, which promotes osteoclast differentiation and the development of osteoporosis.
Collapse
Affiliation(s)
- Hongliang Chen
- Department of Joint Surgery, Shenyang Sujiatun District Central Hospital, Shenyang, China
| | - Qiang Zheng
- Department of Joint Surgery, Shenyang Sujiatun District Central Hospital, Shenyang, China
| | - You Lv
- Department of Joint Surgery, Shenyang Sujiatun District Central Hospital, Shenyang, China
| | - Zhongfeng Yang
- Department of Joint Surgery, Shenyang Sujiatun District Central Hospital, Shenyang, China
| | - Qin Fu
- Department of Joint Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Ishitoku M, Mokuda S, Araki K, Watanabe H, Kohno H, Sugimoto T, Yoshida Y, Sakaguchi T, Masumoto J, Hirata S, Sugiyama E. Tumor Necrosis Factor and Interleukin-1β Upregulate NRP2 Expression and Promote SARS-CoV-2 Proliferation. Viruses 2023; 15:1498. [PMID: 37515185 PMCID: PMC10383177 DOI: 10.3390/v15071498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), utilizes the host receptor angiotensin-converting enzyme 2 (ACE2) and the auxiliary receptor Neuropilin-1 (NRP1) to enter host cells. NRP1 has another isoform, NRP2, whose function in COVID-19 has seldom been reported. In addition, although patients with severe cases of COVID-19 often exhibit increased levels of proinflammatory cytokines, the relationship between these cytokines and SARS-CoV-2 proliferation remains unknown. The aim of this study is to clarify the roles of proinflammatory cytokines in Neuropilin expressions and in SARS-CoV-2 infection. To identify the expression patterns of NRP under inflamed and noninflamed conditions, next-generation sequencing (RNA-seq), immunohistochemistry, quantitative real-time PCR, and Western blotting were performed using primary cultured fibroblast-like synoviocytes, MH7A (immortalized cell line of human rheumatoid fibroblast-like synoviocytes), immortalized MRC5 (human embryonic lung fibroblast), and synovial tissues. To measure viral proliferative capacity, SARS-CoV-2 infection experiments were also performed. NRP2 was upregulated in inflamed tissues. Cytokine-stimulated human fibroblast cell lines, such as MH7A and immortalized MRC5, revealed that NRP2 expression increased with co-stimulation of tumor necrosis factor α (TNFα) and interleukin-1 beta (IL-1β) and was suppressed with anti-TNFα antibody alone. TNFα and IL-1β promoted SARS-CoV-2 proliferation and Spike protein binding. The viral proliferation coincided with the expression of NRP2, which was modulated through plasmid transfections. Our results revealed that proinflammatory cytokines, including TNFα, contribute to NRP2 upregulation and SARS-CoV-2 proliferation in host human cells.
Collapse
Affiliation(s)
- Michinori Ishitoku
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Sho Mokuda
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
- Division of Laboratory Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Kei Araki
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Hirofumi Watanabe
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Hiroki Kohno
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Tomohiro Sugimoto
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Yusuke Yoshida
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Junya Masumoto
- Department of Pathology, Ehime University Proteo-Science Center and Graduate School of Medicine, Toon 791-0295, Japan
| | - Shintaro Hirata
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Eiji Sugiyama
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
11
|
Lin L, Guo Z, He E, Long X, Wang D, Zhang Y, Guo W, Wei Q, He W, Wu W, Li J, Wo L, Hong D, Zheng J, He M, Zhao Q. SIRT2 regulates extracellular vesicle-mediated liver-bone communication. Nat Metab 2023; 5:821-841. [PMID: 37188819 PMCID: PMC10229428 DOI: 10.1038/s42255-023-00803-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
The interplay between liver and bone metabolism remains largely uncharacterized. Here, we uncover a mechanism of liver-bone crosstalk regulated by hepatocyte SIRT2. We demonstrate that hepatocyte SIRT2 expression is increased in aged mice and elderly humans. Liver-specific SIRT2 deficiency inhibits osteoclastogenesis and alleviates bone loss in mouse models of osteoporosis. We identify leucine-rich α-2-glycoprotein 1 (LRG1) as a functional cargo in hepatocyte-derived small extracellular vesicles (sEVs). In SIRT2-deficient hepatocytes, LRG1 levels in sEVs are upregulated, leading to increased transfer of LRG1 to bone-marrow-derived monocytes (BMDMs), and in turn, to inhibition of osteoclast differentiation via reduced nuclear translocation of NF-κB p65. Treatment with sEVs carrying high levels of LRG1 inhibits osteoclast differentiation in human BMDMs and in mice with osteoporosis, resulting in attenuated bone loss in mice. Furthermore, the plasma level of sEVs carrying LRG1 is positively correlated with bone mineral density in humans. Thus, drugs targeting hepatocyte-osteoclast communication may constitute a promising therapeutic strategy for primary osteoporosis.
Collapse
Affiliation(s)
- Longshuai Lin
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zengya Guo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enjun He
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xidai Long
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Difei Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weihong Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Wei
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanying Wu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingchi Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lulu Wo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dengli Hong
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junke Zheng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Qinghua Zhao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Bone Cell Exosomes and Emerging Strategies in Bone Engineering. Biomedicines 2022; 10:biomedicines10040767. [PMID: 35453517 PMCID: PMC9033129 DOI: 10.3390/biomedicines10040767] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023] Open
Abstract
Bone tissue remodeling is a highly regulated process balancing bone formation and resorption through complex cellular crosstalk between resident bone and microenvironment cells. This cellular communication is mediated by direct cell and cell–matrix contact, autocrine, endocrine, and paracrine receptor mediated mechanisms such as local soluble signaling molecules and extracellular vesicles including nanometer sized exosomes. An impairment in this balanced process leads to development of pathological conditions. Bone tissue engineering is an emerging interdisciplinary field with potential to address bone defects and disorders by synthesizing three-dimensional bone substitutes embedded with cells for clinical implantation. However, current cell-based therapeutic approaches have faced hurdles due to safety and ethical concerns, challenging their clinical translation. Recent studies on exosome-regulated bone homeostasis and regeneration have gained interest as prospective cell free therapy in conjugation with tissue engineered bone grafts. However, exosome research is still in its nascent stages of bone tissue engineering. In this review, we specifically describe the role of exosomes secreted by cells within bone microenvironment such as osteoblasts, osteocytes, osteoclasts, mesenchymal stem cell cells, immune cells, endothelial cells, and even tumor cells during bone homeostasis and crosstalk. We also review exosome-based osteoinductive functionalization strategies for various bone-based biomaterials such as ceramics, polymers, and metals in bone tissue engineering. We further highlight biomaterials as carrier agents for exosome delivery to bone defect sites and, finally, the influence of various biomaterials in modulation of cell exosome secretome.
Collapse
|
13
|
Inoue M, Nagai-Yoshioka Y, Yamasaki R, Kawamoto T, Nishihara T, Ariyoshi W. Mechanisms involved in suppression of osteoclast supportive activity by transforming growth factor-β1 via the ubiquitin-proteasome system. PLoS One 2022; 17:e0262612. [PMID: 35196318 PMCID: PMC8865688 DOI: 10.1371/journal.pone.0262612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022] Open
Abstract
Orthodontic treatment requires the regulation of bone remodeling in both compression and tension sides. Transforming growth factor-β1 (TGF-β1) is an important coupling factor for bone remodeling. However, the mechanism underlying the TGF-β1-mediated regulation of the osteoclast-supporting activity of osteoblasts and stromal cells remain unclear. The current study investigated the effect of TGF-β1 on receptor activator of nuclear factor kappa-B ligand (RANKL) expression in stromal cells induced by 1α,25(OH)2D3 (D3) and dexamethasone (Dex). TGF-β1 downregulated the expression of RANKL induced by D3 and Dex in mouse bone marrow stromal lineage, ST2 cells. Co-culture system revealed that TGF-β1 suppressed osteoclast differentiation from bone marrow cell induced by D3 and Dex-activated ST2 cells. The inhibitory effect of TGF-β1 on RANKL expression was recovered by inhibiting the interaction between TGF-β1 and the TGF-β type I/activin receptor or by downregulating of smad2/3 expression. Interestingly, TGF-β1 degraded the retinoid X receptor (RXR)-α protein which forms a complex with vitamin D receptor (VDR) and regulates transcriptional activity of RANKL without affecting nuclear translocation of VDR and phosphorylation of signal transducer and activator of transcription3 (STAT3). The degradation of RXR-α protein by TGF-β1 was recovered by a ubiquitin-proteasome inhibitor. We also observed that poly-ubiquitination of RXR-α protein was induced by TGF-β1 treatment. These results indicated that TGF-β1 downregulates RANKL expression and the osteoclast-supporting activity of osteoblasts/stromal cells induced by D3 and Dex through the degradation of the RXR-α protein mediated by ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Momoko Inoue
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
- Division of Orofacial Functions and Orthodontics, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Yoshie Nagai-Yoshioka
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Ryota Yamasaki
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Tatsuji Nishihara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
14
|
Sun Y, Li J, Xie X, Gu F, Sui Z, Zhang K, Yu T. Macrophage-Osteoclast Associations: Origin, Polarization, and Subgroups. Front Immunol 2021; 12:778078. [PMID: 34925351 PMCID: PMC8672114 DOI: 10.3389/fimmu.2021.778078] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/15/2021] [Indexed: 12/31/2022] Open
Abstract
Cellular associations in the bone microenvironment are involved in modulating the balance between bone remodeling and resorption, which is necessary for maintaining a normal bone morphology. Macrophages and osteoclasts are both vital components of the bone marrow. Macrophages can interact with osteoclasts and regulate bone metabolism by secreting a variety of cytokines, which make a significant contribution to the associations. Although, recent studies have fully explored either macrophages or osteoclasts, indicating the significance of these two types of cells. However, it is of high importance to report the latest discoveries on the relationships between these two myeloid-derived cells in the field of osteoimmunology. Therefore, this paper reviews this topic from three novel aspects of the origin, polarization, and subgroups based on the previous work, to provide a reference for future research and treatment of bone-related diseases.
Collapse
Affiliation(s)
- Yang Sun
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Jiangbi Li
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Xiaoping Xie
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Feng Gu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Zhenjiang Sui
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Ke Zhang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Tiecheng Yu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Li CH, Palanisamy K, Li X, Yu SH, Wang IK, Li CY, Sun KT. Exosomal tumor necrosis factor-α from hepatocellular cancer cells (Huh-7) promote osteoclast differentiation. J Cell Biochem 2021; 122:1749-1760. [PMID: 34383347 DOI: 10.1002/jcb.30127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/28/2022]
Abstract
Bone is the common extra-hepatic site for cancer metastasis. Hepatic cancer is associated with a higher incidence of pathological fracture. However, this important regulatory mechanism remains unexplored. Thus, exosome-mediated cell-cell communication between hepatocellular cancer and bone might be key to osteolytic bone destruction. Huh-7 exosomes were characterized for size and exosome marker expressions (CD63, Alix). Exosome mediated osteoclast differentiation in the RAW 264.7 cells was monitored from day 1 to 6 and multinucleated osteoclast formation and bone resorption activity were analyzed. The osteoclastogenic factor expressions in the exosomes and osteoclast differentiation markers such as tumor necrosis factor receptor 6 (TRAF6), nuclear factor κB (NF-κB), nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), and cathepsin K (CTSK) were analyzed using western blot. Exosomes released by liver cancer cells (Huh-7) promoted osteoclast differentiation in RAW 264.7 cells. Analysis of osteoclastogenic factors in the exosomes showed that exosomes were specifically enriched with tumor necrosis factor α (TNF-α). Huh-7 exosomes promoted osteoclast differentiation by significantly increasing the number of TRAP-positive multi nucleated osteoclasts and resorption pits. Importantly, exosomes upregulated osteoclast markers TRAF6, NF-κB, and CTSK expressions. Further, neutralizing exosomal TNF-α reverted exosome-mediated osteoclast differentiation in RAW 264.7 cells. Collectively, our findings show that cellular communication of exosomal TNF-α from hepatocellular cancer cells (Huh-7) regulates osteoclast differentiation through NF-κB/CTSK/TRAP expressions. Thus, exosomal TNF-α might act as an important therapeutic target to prevent hepatocellular cancer mediated pathological bone disease.
Collapse
Affiliation(s)
- Ching-Hao Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Kalaiselvi Palanisamy
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Xin Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Shao-Hua Yu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - I-Kuan Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Division of Nephrology, China Medical University Hospital, Taichung, Taiwan.,Department of Internal Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Yuan Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Kuo-Ting Sun
- Department of Pediatric Dentistry, China Medical University Hospital, Taichung, Taiwan.,School of Dentistry, China Medical University, Taichung, Taiwan
| |
Collapse
|
16
|
Wang S, Feng W, Liu J, Wang X, Zhong L, Lv C, Feng M, An N, Mao Y. Alginate oligosaccharide alleviates senile osteoporosis via the RANKL-RANK pathway in D-galactose-induced C57BL/6J mice. Chem Biol Drug Des 2021; 99:46-55. [PMID: 34145772 PMCID: PMC9544009 DOI: 10.1111/cbdd.13904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/06/2021] [Indexed: 11/30/2022]
Abstract
Osteoporosis is a systemic skeletal disorder characterized by reduced bone mineral density (BMD) and bone quality and increased bone porosity, which increase the risk of bone fracture. Inflammation, one of the important mechanisms related to aging, is associated with osteoporosis. Treatment with anti‐inflammatory agents is effective for alleviating senile osteoporosis. Alginate oligosaccharide (AOS) can prevent and treat diseases related to inflammation, oxidative stress, and immunity. This study evaluates the effect of AOS on osteoporosis and investigates the underlying mechanism. Osteoporosis model was induced by D‐galactose (D‐gal) (200 mg kg−1 day−1) for eight weeks. Three groups were administered via AOS (50, 100, and 150 mg kg−1 day−1) for four weeks, while a control group received sterile water (5 ml kg−1 day−1) for 8 weeks. The results showed that AOS improved bone density and bone microstructure in D‐gal‐induced osteoporosis mice. AOS inhibited osteoclast proliferation, probably through the suppression of receptor activator of nuclear factor‐kappa B ligand (RANKL)‐associated nuclear factor kappa B (NF‐κB) and c‐Fos signaling pathway. AOS also increased osteoprotegerin (OPG) expression and competitively inhibited the binding between RANK and RANKL in senile osteoporosis. Further, AOS decreased the secretion of serum osteocalcin and reduced bone conversion. Together, these results demonstrate the anti‐osteoporosis activity of AOS in mice with osteoporosis.
Collapse
Affiliation(s)
- Shan Wang
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Wenjing Feng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.,Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, 266021, China
| | - Jianya Liu
- Department of General Practice, Anyang District Hospital of Puyang City, Anyang, 455000, China
| | - Xufu Wang
- Department of Nuclear medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Lina Zhong
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chengxiu Lv
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Meiping Feng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Nina An
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yongjun Mao
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| |
Collapse
|
17
|
Miah M, Goh I, Haniffa M. Prenatal Development and Function of Human Mononuclear Phagocytes. Front Cell Dev Biol 2021; 9:649937. [PMID: 33898444 PMCID: PMC8060508 DOI: 10.3389/fcell.2021.649937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
The human mononuclear phagocyte (MP) system, which includes dendritic cells, monocytes, and macrophages, is a critical regulator of innate and adaptive immune responses. During embryonic development, MPs derive sequentially in yolk sac progenitors, fetal liver, and bone marrow haematopoietic stem cells. MPs maintain tissue homeostasis and confer protective immunity in post-natal life. Recent evidence - primarily in animal models - highlight their critical role in coordinating the remodeling, maturation, and repair of target organs during embryonic and fetal development. However, the molecular regulation governing chemotaxis, homeostasis, and functional diversification of resident MP cells in their respective organ systems during development remains elusive. In this review, we summarize the current understanding of the development and functional contribution of tissue MPs during human organ development and morphogenesis and its relevance to regenerative medicine. We outline how single-cell multi-omic approaches and next-generation ex-vivo organ-on-chip models provide new experimental platforms to study the role of human MPs during development and disease.
Collapse
Affiliation(s)
- Mohi Miah
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Issac Goh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
18
|
Durstberger G, Nguyen PQ, Hohensinner V, Pietschmann P, Rausch-Fan X, Andrukhov O. Effect of Enamel Matrix Derivatives on Osteoclast Formation from PBMC of Periodontitis Patients and Healthy Individuals after Interaction with Activated Endothelial Cells. ACTA ACUST UNITED AC 2021; 57:medicina57030269. [PMID: 33804249 PMCID: PMC7998895 DOI: 10.3390/medicina57030269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
Background and objectives: Enamel matrix derivative (EMD) is produced from developing porcine tooth buds and represents a complex of low-molecular-weight hydrophobic enamel proteins. EMD is widely applied in periodontal regeneration. Osteoclasts are multinuclear cells, which are responsible for bone resorption. The precursors of osteoclasts, hematopoietic cells, undergo in vivo the process of transendothelial migration before differentiation. EMD is known to affect the process of osteoclastogenesis, but its effect on human osteoclasts precursors after the interaction with activated endothelium was never studied. Materials and Methods: Human umbilical vein endothelial cells (HUVECs)s were seeded in transwell inserts with a pore size of 8 µm and pre-activated by TNF-α and IL-1β for 18 h. Peripheral blood mononuclear cells (PBMCs), freshly isolated from 16 periodontitis patients and 16 healthy individuals, were added to pre-activated HUVECs. Adherent, non-adherent and transmigrated cells were collected and differentiated to osteoclasts by the standard protocol in the presence or absence of EMD. The number of osteoclasts was determined by tartrate-resistant acid phosphatase staining. Results: PBMCs isolated from periodontitis patients have formed a significantly higher osteoclast number compared to PBMCs isolated from healthy individuals (p < 0.05). EMD induced concentration-dependent inhibition of osteoclast formation from PBMCs. This was true for the different PBMC fractions isolated from both healthy individuals and periodontitis patients. Conclusions: Our data show that EMD inhibits the formation and activity of osteoclasts differentiated from the progenitor cells after the interaction with activated endothelium. This might be associated with bone resorption inhibition and supporting bone regeneration in the frame of periodontal therapy.
Collapse
Affiliation(s)
- Gerlinde Durstberger
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (G.D.); (X.R.-F.)
| | - Phuong Quynh Nguyen
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Verena Hohensinner
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immuology, Medical University of Vienna, 1090 Vienna, Austria; (V.H.); (P.P.)
| | - Peter Pietschmann
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immuology, Medical University of Vienna, 1090 Vienna, Austria; (V.H.); (P.P.)
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (G.D.); (X.R.-F.)
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
- Correspondence:
| |
Collapse
|
19
|
Ibudilast Mitigates Delayed Bone Healing Caused by Lipopolysaccharide by Altering Osteoblast and Osteoclast Activity. Int J Mol Sci 2021; 22:ijms22031169. [PMID: 33503906 PMCID: PMC7865869 DOI: 10.3390/ijms22031169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial infection in orthopedic surgery is challenging because cell wall components released after bactericidal treatment can alter osteoblast and osteoclast activity and impair fracture stability. However, the precise effects and mechanisms whereby cell wall components impair bone healing are unclear. In this study, we characterized the effects of lipopolysaccharide (LPS) on bone healing and osteoclast and osteoblast activity in vitro and in vivo and evaluated the effects of ibudilast, an antagonist of toll-like receptor 4 (TLR4), on LPS-induced changes. In particular, micro-computed tomography was used to reconstruct femoral morphology and analyze callus bone content in a femoral defect mouse model. In the sham-treated group, significant bone bridge and cancellous bone formation were observed after surgery, however, LPS treatment delayed bone bridge and cancellous bone formation. LPS inhibited osteogenic factor-induced MC3T3-E1 cell differentiation, alkaline phosphatase (ALP) levels, calcium deposition, and osteopontin secretion and increased the activity of osteoclast-associated molecules, including cathepsin K and tartrate-resistant acid phosphatase in vitro. Finally, ibudilast blocked the LPS-induced inhibition of osteoblast activation and activation of osteoclast in vitro and attenuated LPS-induced delayed callus bone formation in vivo. Our results provide a basis for the development of a novel strategy for the treatment of bone infection.
Collapse
|
20
|
Chen K, Jiao Y, Liu L, Huang M, He C, He W, Hou J, Yang M, Luo X, Li C. Communications Between Bone Marrow Macrophages and Bone Cells in Bone Remodeling. Front Cell Dev Biol 2020; 8:598263. [PMID: 33415105 PMCID: PMC7783313 DOI: 10.3389/fcell.2020.598263] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/27/2020] [Indexed: 01/15/2023] Open
Abstract
The mammalian skeleton is a metabolically active organ that continuously undergoes bone remodeling, a process of tightly coupled bone resorption and formation throughout life. Recent studies have expanded our knowledge about the interactions between cells within bone marrow in bone remodeling. Macrophages resident in bone (BMMs) can regulate bone metabolism via secreting numbers of cytokines and exosomes. This review summarizes the current understanding of factors, exosomes, and hormones that involved in the communications between BMMs and other bone cells including mensenchymal stem cells, osteoblasts, osteocytes, and so on. We also discuss the role of BMMs and potential therapeutic approaches targeting BMMs in bone remodeling related diseases such as osteoporosis, osteoarthritis, rheumatoid arthritis, and osteosarcoma.
Collapse
Affiliation(s)
- Kaixuan Chen
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Yurui Jiao
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Ling Liu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Chen He
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhen He
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Jing Hou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
21
|
Cao R, Zhang Y, Du J, Chen S, Wang N, Ying H, Shen B. Increased FURIN expression in rheumatoid arthritis patients and its anti-inflammatory effect. J Clin Lab Anal 2020; 34:e23530. [PMID: 32840921 PMCID: PMC7755791 DOI: 10.1002/jcla.23530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/19/2020] [Accepted: 07/18/2020] [Indexed: 12/22/2022] Open
Abstract
Background FURIN belongs to the proprotein convertase family that processes proproteins and is involved in many diseases. However, the role of FURIN in rheumatoid arthritis (RA) remains unknown. In this study, we investigated the association between circulating FURIN and disease activity in patients with RA and the effect of FURIN in THP‐1‐derived macrophages. Methods A total of 108 RA patients and 39 healthy controls participants were included in this study. RA patients were divided into four disease activity groups determined by the Disease Activity Score of 28 joints (DAS28). FURIN expression in peripheral blood mononuclear cells (PBMCs) and serum was detected by using quantitative real‐time polymerase chain reaction (qRT‐PCR) and enzyme‐linked immunosorbent assay (ELISA), respectively. Western blotting and qRT‐PCR were used to detect cytokines level after interfering FURIN expressed in THP‐1‐derived macrophages. Results Both FURIN mRNA and protein levels were significantly higher in RA patients than in healthy controls participants (P < .001). No significant difference in FURIN expression was observed among the four RA groups (P > .05). Spearman correlation revealed that FURIN positively correlated with transforming growth factor‐β1(TGF‐β1), rheumatoid factor (RF), and anti‐cyclic citrullinated peptide (anti‐CCP). Moreover, the inhibition of FURIN in THP‐1‐derived macrophages promoted the caspase‐1 and IL‐1β expression (P < .05). Conclusion FURIN levels were significantly increased in the peripheral blood of RA patients and were not associated with disease activity. The inhibition of FURIN in THP‐1‐derived macrophages with elevated IL‐1β levels shows that FURIN may have an anti‐inflammatory effect.
Collapse
Affiliation(s)
- Rong Cao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Juping Du
- Department of Clinical Laboratory, Taizhou Enze Medical Center (Group), Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Shuaishuai Chen
- Department of Clinical Laboratory, Taizhou Enze Medical Center (Group), Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Na Wang
- Department of Clinical Laboratory, Taizhou Enze Medical Center (Group), Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Haijian Ying
- Department of Clinical Laboratory, Taizhou Enze Medical Center (Group), Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Bo Shen
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Chang Y, Hsiao YM, Hu CC, Chang CH, Li CY, Ueng SWN, Chen MF. Synovial Fluid Interleukin-16 Contributes to Osteoclast Activation and Bone Loss through the JNK/NFATc1 Signaling Cascade in Patients with Periprosthetic Joint Infection. Int J Mol Sci 2020; 21:ijms21082904. [PMID: 32326301 PMCID: PMC7215706 DOI: 10.3390/ijms21082904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Abstract
Because of lipopolysaccharide (LPS)-mediated effects on osteoclast differentiation and bone loss, periprosthetic joint infection (PJI) caused by Gram-negative bacteria increases the risk of aseptic loosening after reimplantation. Synovial fluid interleukin-16 (IL-16) expression was higher in patients with PJI than in patients without joint infection. Thus, we explored the effects of IL-16 on bone. We investigated whether IL-16 modulates osteoclast or osteoblast differentiation in vitro. An LPS-induced bone loss mice model was used to explore the possible advantages of IL-16 inhibition for the prevention of bone loss. IL-16 directly activated p38 and c-Jun N-terminal kinase (JNK)/mitogen-activated protein kinase (MAPK) signaling and increased osteoclast activation markers, including tartrate-resistant acid phosphatase (TRAP), cathepsin K, and nuclear factor of activated T cells 1 (NFATc1). IL-16 directly caused monocytes to differentiate into TRAP-positive osteoclast-like cells through NFATc1 activation dependent on JNK/MAPK signaling. Moreover, IL-16 did not alter alkaline phosphatase activity or calcium deposition during osteoblastic differentiation. Finally, IL-16 inhibition prevented LPS-induced trabecular bone loss and osteoclast activation in vivo. IL-16 directly increased osteoclast activation through the JNK/NFATc1 pathway. IL-16 inhibition could represent a new strategy for treating infection-associated bone loss.
Collapse
Affiliation(s)
- Yuhan Chang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.C.); (C.-C.H.); (C.-H.C.); (C.-Y.L.); (S.W.N.U.)
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yi-min Hsiao
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.C.); (C.-C.H.); (C.-H.C.); (C.-Y.L.); (S.W.N.U.)
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.C.); (C.-C.H.); (C.-H.C.); (C.-Y.L.); (S.W.N.U.)
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Hsiang Chang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.C.); (C.-C.H.); (C.-H.C.); (C.-Y.L.); (S.W.N.U.)
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Cai-Yan Li
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.C.); (C.-C.H.); (C.-H.C.); (C.-Y.L.); (S.W.N.U.)
| | - Steve W. N. Ueng
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.C.); (C.-C.H.); (C.-H.C.); (C.-Y.L.); (S.W.N.U.)
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Mei-Feng Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.C.); (C.-C.H.); (C.-H.C.); (C.-Y.L.); (S.W.N.U.)
- Correspondence:
| |
Collapse
|