1
|
Zhang H, Cao X, Gui R, Li Y, Zhao X, Mei J, Zhou B, Wang M. Mesenchymal Stem/Stromal cells in solid tumor Microenvironment: Orchestrating NK cell remodeling and therapeutic insights. Int Immunopharmacol 2024; 142:113181. [PMID: 39305890 DOI: 10.1016/j.intimp.2024.113181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs), originating from normal tissues, possess the capacity to home to tumor sites and differentiate into tumor-associated MSCs (TA-MSCs), which are instrumental in shaping an immunosuppressive milieu within tumors. Natural killer (NK) cells, integral to the innate immune system, are endowed with the ability to eradicate target cells autonomously, serving as an immediate defense against neoplastic growths. Nonetheless, within the tumor microenvironment (TME), NK cells often exhibit a decline in both their numerical presence and functionality. TA-MSCs have been shown to exert profound inhibitory effects on the functions of tumor-infiltrating immune cells, notably NK cells. Understanding the mechanisms by which TA-MSCs contribute to NK cell dysfunction is critical for the advancement of immune surveillance and the enhancement of tumoricidal responses. This review summarizes existing literature on NK cell modulation by TA-MSCs within the TME and proposes innovative strategies to augment antitumor immunity.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, 226321, China
| | - Rulin Gui
- Laboratory Animal Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, China
| | - Yuanyuan Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Xinlan Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Jingyu Mei
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Baocheng Zhou
- Department of Medical Laboratory, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu Province, 222000, China.
| | - Mei Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
2
|
Maxwell M, Yan D, Rivest B, Boone A, Cardia J, Noessner E. INTASYL self-delivering RNAi decreases TIGIT expression, enhancing NK cell cytotoxicity: a potential application to increase the efficacy of NK adoptive cell therapy against cancer. Cancer Immunol Immunother 2024; 73:239. [PMID: 39358647 PMCID: PMC11447204 DOI: 10.1007/s00262-024-03835-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Natural killer (NK) cells are frontline defenders against cancer and are capable of recognizing and eliminating tumor cells without prior sensitization or antigen presentation. Due to their unique HLA mismatch tolerance, they are ideal for adoptive cell therapy (ACT) because of their ability to minimize graft-versus-host-disease risk. The therapeutic efficacy of NK cells is limited in part by inhibitory immune checkpoint receptors, which are upregulated upon interaction with cancer cells and the tumor microenvironment. Overexpression of inhibitory receptors reduces NK cell-mediated cytotoxicity by impairing the ability of NK cells to secrete effector cytokines and cytotoxic granules. T-cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT), a well-known checkpoint receptor involved in T-cell exhaustion, has recently been implicated in the exhaustion of NK cells. Overcoming TIGIT-mediated inhibition of NK cells may allow for a more potent antitumor response following ACT. Here, we describe a novel approach to TIGIT inhibition using self-delivering RNAi compounds (INTASYL™) that incorporates the features of RNAi and antisense technology. INTASYL compounds demonstrate potent activity and stability, are rapidly and efficiently taken up by cells, and can be easily incorporated into cell product manufacturing. INTASYL PH-804, which targets TIGIT, suppresses TIGIT mRNA and protein expression in NK cells, resulting in increased cytotoxic capacity and enhanced tumor cell killing in vitro. Delivering PH-804 to NK cells before ACT has emerged as a promising strategy to counter TIGIT inhibition, thereby improving the antitumor response. This approach offers the potential for more potent off-the-shelf products for adoptive cell therapy, particularly for hematological malignancies.
Collapse
Affiliation(s)
- Melissa Maxwell
- Phio Pharmaceuticals, 11 Apex Dr., Ste 300A PMB 2006, Marlborough, MA, 01752, USA.
| | - Dingxue Yan
- Phio Pharmaceuticals, 11 Apex Dr., Ste 300A PMB 2006, Marlborough, MA, 01752, USA
| | - Brianna Rivest
- Phio Pharmaceuticals, 11 Apex Dr., Ste 300A PMB 2006, Marlborough, MA, 01752, USA
| | - Andrew Boone
- Phio Pharmaceuticals, 11 Apex Dr., Ste 300A PMB 2006, Marlborough, MA, 01752, USA
| | - James Cardia
- Phio Pharmaceuticals, 11 Apex Dr., Ste 300A PMB 2006, Marlborough, MA, 01752, USA
| | - Elfriede Noessner
- Immunoanalytics-Tissue Control of Immunocytes, Helmholtz Zentrum Munich, Feodor-Lynen-Str. 21, 81377, Munich, Germany
| |
Collapse
|
3
|
Xu L, Cao P, Wang J, Zhang P, Hu S, Cheng C, Wang H. IL-22: A key inflammatory mediator as a biomarker and potential therapeutic target for lung cancer. Heliyon 2024; 10:e35901. [PMID: 39263114 PMCID: PMC11387261 DOI: 10.1016/j.heliyon.2024.e35901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Lung cancer, one of the most prevalent cancers worldwide, stands as the primary cause of cancer-related deaths. As is well-known, the utmost crucial risk factor contributing to lung cancer is smoking. In recent years, remarkable progress has been made in treating lung cancer, particularly non-small cell lung cancer (NSCLC). Nevertheless, the absence of effective and accurate biomarkers for diagnosing and treating lung cancer remains a pressing issue. Interleukin 22 (IL-22) is a member of the IL-10 cytokine family. It exerts biological functions (including induction of proliferation and anti-apoptotic signaling pathways, enhancement of tissue regeneration and immunity defense) by binding to heterodimeric receptors containing type 1 receptor chain (R1) and type 2 receptor chain (R2). IL-22 has been identified as a pro-cancer factor since dysregulation of the IL-22-IL-22R system has been implicated in the development of different cancers, including lung, breast, gastric, pancreatic, and colon cancers. In this review, we discuss the differential expression, regulatory role, and potential clinical significance of IL-22 in lung cancer, while shedding light on innovative approaches for the future.
Collapse
Affiliation(s)
- Ling Xu
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Peng Cao
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Jianpeng Wang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Peng Zhang
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Shuhui Hu
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Chao Cheng
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Cho MM, Song L, Quamine AE, Szewc F, Shi L, Ebben JD, Turicek DP, Kline JM, Burpee DM, Lafeber EO, Phillips MF, Ceas AS, Erbe AK, Capitini CM. CD155 blockade enhances allogeneic natural killer cell-mediated antitumor response against osteosarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.07.544144. [PMID: 37333207 PMCID: PMC10274782 DOI: 10.1101/2023.06.07.544144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Allogeneic bone marrow transplant (alloBMT) is curative for hematologic malignancies through the graft-versus-tumor (GVT) effect but has been ineffective for solid tumors like osteosarcoma (OS). OS expresses CD155 which interacts strongly with inhibitory receptors TIGIT and CD96 but also binds to activating receptor DNAM-1 on natural killer (NK) cells. CD155 has never been targeted after alloBMT. Combining adoptively transferred allogeneic NK (alloNK) cells with CD155 blockade after alloBMT may enhance a GVT effect against OS. Methods Murine NK cells were activated and expanded ex vivo with soluble IL-15/IL-15Rα. AlloNK and syngeneic NK (synNK) cell phenotype, cytotoxicity, cytokine production, and degranulation against CD155-expressing murine OS cell line K7M2 were assessed in vitro. Mice bearing pulmonary OS metastases underwent alloBMT and alloNK cell infusion with anti-CD155 either before or after tumor induction, with select groups receiving anti-DNAM-1 pretreated alloNK cells. Tumor growth, GVHD and survival were monitored, and differential gene expression of lung tissue was assessed by RNA microarray. Results AlloNK cells exhibited superior cytotoxicity against CD155-expressing OS compared to synNK cells, and this activity was enhanced by CD155 blockade. CD155 blockade increased alloNK cell degranulation and interferon gamma production through DNAM-1. In vivo, CD155 blockade with alloNK infusion increased survival when treating OS that relapsed after alloBMT. No benefit was seen for treating established OS before alloBMT. Treatment with combination CD155 and anti-DNAM-1 pretreated alloNK ameliorated survival and tumor control benefits seen with CD155 blockade alone. RNA microarray showed mice treated with alloNK and CD155 blockade had increased expression of cytotoxicity genes and the NKG2D ligand H60a, whereas mice treated with anti-DNAM-1 pretreated alloNK cells resulted in upregulation of NK cell inhibitory receptor genes. Whereas blocking DNAM-1 on alloNK abrogated cytotoxicity, blocking NKG2D had no effect, implying DNAM-1:CD155 engagement drives alloNK activation against OS. Conclusions These results demonstrate the safety and efficacy of infusing alloNK cells with CD155 blockade to mount a GVT effect against OS and show benefits are in part through DNAM-1. Defining the hierarchy of receptors that govern alloNK responses is critical to translating alloNK cell infusions and immune checkpoint inhibition for solid tumors treated with alloBMT. WHAT IS ALREADY KNOWN ON THIS TOPIC Allogeneic bone marrow transplant (alloBMT) has yet to show efficacy in treating solid tumors, such as osteosarcoma (OS). CD155 is expressed on OS and interacts with natural killer (NK) cell receptors, such as activating receptor DNAM-1 and inhibitory receptors TIGIT and CD96 and has a dominant inhibitory effect on NK cell activity. Targeting CD155 interactions on allogeneic NK cells could enhance anti-OS responses, but this has not been tested after alloBMT. WHAT THIS STUDY ADDS CD155 blockade enhances allogeneic natural killer cell-mediated cytotoxicity against OS and improved event-free survival after alloBMT in an in vivo mouse model of metastatic pulmonary OS. Addition of DNAM-1 blockade abrogated CD155 blockade-enhanced allogeneic NK cell antitumor responses. HOW THIS STUDY MIGHT AFFECT RESEARCH PRACTICE OR POLICY These results demonstrate efficacy of allogeneic NK cells combined with CD155 blockade to mount an antitumor response against CD155-expressing OS. Translation of combination adoptive NK cell and CD155 axis modulation offers a platform for alloBMT treatment approaches for pediatric patients with relapsed and refractory solid tumors.
Collapse
|
5
|
Orland MD, Ullah F, Yilmaz E, Geiger JL. Immunotherapy for Head and Neck Squamous Cell Carcinoma: Present and Future Approaches and Challenges. JCO Oncol Pract 2024:OP2400041. [PMID: 38709998 DOI: 10.1200/op.24.00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
Despite significant progress and improving outcomes in the management of head and neck squamous cell carcinoma (HNSCC), there are few effective treatment options for patients with recurrent or metastatic head and neck squamous cell carcinoma. The advent of immune checkpoint inhibitors has changed the treatment algorithm of head and neck squamous cell carcinoma and are approved in the frontline setting for recurrent and metastatic (R/M) head and neck squamous cell carcinomas. Although promising for some patients, most patients with R/M HNSCC do not derive clinical benefit from currently approved checkpoint inhibitors. Many studies are underway to identify the patient population that would benefit the most from immunotherapy as well as postimmunotherapy treatment failures, including novel combinations of immunomodulatory therapies. In this review, we summarize the clinical development of all major clinical trials of immunotherapy in HNSCC.
Collapse
Affiliation(s)
- Mark D Orland
- Department of Internal Medicine, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Fauzia Ullah
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Emrullah Yilmaz
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Jessica L Geiger
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
6
|
Wu JW, Liu Y, Dai XJ, Liu HM, Zheng YC, Liu HM. CD155 as an emerging target in tumor immunotherapy. Int Immunopharmacol 2024; 131:111896. [PMID: 38518596 DOI: 10.1016/j.intimp.2024.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
CD155 is an immunoglobulin-like protein overexpressed in almost all the tumor cells, which not only promotes proliferation, adhesion, invasion, and migration of tumor cells, but also regulates immune responses by interacting with TIGIT, CD226 or CD96 receptors expressed on several immune cells, thereby modulating the functionality of these cellular subsets. As a novel immune checkpoint, the inhibition of CD155/TIGIT, either as a standalone treatment or in conjunction with other immune checkpoint inhibitors, has demonstrated efficacy in managing advanced solid malignancies. In this review, we summarize the intricate relationship between on tumor surface CD155 and its receptors, with further discussion on how they regulate the occurrence of tumor immune escape. In addition, novel therapeutic strategies and clinical trials targeting CD155 and its receptors are summarized, providing a strong rationale and way forward for the development of next-generation immunotherapies.
Collapse
Affiliation(s)
- Jiang-Wan Wu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ying Liu
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Xing-Jie Dai
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Hui-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
7
|
Occhiuto CJ, Liby KT. KEAP1-Mutant Lung Cancers Weaken Anti-Tumor Immunity and Promote an M2-like Macrophage Phenotype. Int J Mol Sci 2024; 25:3510. [PMID: 38542481 PMCID: PMC10970780 DOI: 10.3390/ijms25063510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
Considerable advances have been made in lung cancer therapies, but there is still an unmet clinical need to improve survival for lung cancer patients. Immunotherapies have improved survival, although only 20-30% of patients respond to these treatments. Interestingly, cancers with mutations in Kelch-like ECH-associated protein 1 (KEAP1), the negative regulator of the nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor, are resistant to immune checkpoint inhibition and correlate with decreased lymphoid cell infiltration. NRF2 is known for promoting an anti-inflammatory phenotype when activated in immune cells, but the study of NRF2 activation in cancer cells has not been adequately assessed. The objective of this study was to determine how lung cancer cells with constitutive NRF2 activity interact with the immune microenvironment to promote cancer progression. To assess, we generated CRISPR-edited mouse lung cancer cell lines by knocking out the KEAP1 or NFE2L2 genes and utilized a publicly available single-cell dataset through the Gene Expression Omnibus to investigate tumor/immune cell interactions. We show here that KEAP1-mutant cancers promote immunosuppression of the tumor microenvironment. Our data suggest KEAP1 deletion is sufficient to alter the secretion of cytokines, increase expression of immune checkpoint markers on cancer cells, and alter recruitment and differential polarization of immunosuppressive macrophages that ultimately lead to T-cell suppression.
Collapse
Affiliation(s)
- Christopher J. Occhiuto
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Karen T. Liby
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Pan C, Zhai Y, Wang C, Liao Z, Wang D, Yu M, Wu F, Yin Y, Shi Z, Li G, Jiang T, Zhang W. Poliovirus receptor-based chimeric antigen receptor T cells combined with NK-92 cells exert potent activity against glioblastoma. J Natl Cancer Inst 2024; 116:389-400. [PMID: 37944044 PMCID: PMC10919341 DOI: 10.1093/jnci/djad226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Poliovirus receptor interacts with 3 receptors: T-cell immunoglobulin immunoreceptor tyrosine-based inhibitory motif, CD96, and DNAX accessory molecule 1, which are predominantly expressed on T cells and natural killer (NK) cells. Many solid tumors, including IDH wild-type glioblastoma, have been reported to overexpress poliovirus receptor, and this overexpression is associated with poor prognosis. However, there are no preclinical or clinical trials investigating the use of cell-based immunotherapies targeting poliovirus receptor in IDH wild-type glioblastoma. METHODS We analyzed poliovirus receptor expression in transcriptome sequencing databases and specimens from IDH wild-type glioblastoma patients. We developed poliovirus receptor targeting chimeric antigen receptor T cells using lentivirus. The antitumor activity of chimeric antigen receptor T cells was demonstrated in patient-derived glioma stem cells, intracranial and subcutaneous mouse xenograft models. RESULTS We verified poliovirus receptor expression in primary glioma stem cells, surgical specimens from IDH wild-type glioblastoma patients, and organoids. Accordingly, we developed poliovirus receptor-based second-generation chimeric antigen receptor T cells. The antitumor activity of chimeric antigen receptor T cells was demonstrated in glioma stem cells and xenograft models. Tumor recurrence occurred in intracranial xenograft models because of antigen loss. The combinational therapy of tyrosine-based inhibitory motif extracellular domain-based chimeric antigen receptor T cells and NK-92 cells markedly suppressed tumor recurrence and prolonged survival. CONCLUSIONS Poliovirus receptor-based chimeric antigen receptor T cells were capable of killing glioma stem cells and suppressing tumor recurrence when combined with NK-92 cells.
Collapse
Affiliation(s)
- Changqing Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - You Zhai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Chen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zhiyi Liao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Di Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Mingchen Yu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Yiyun Yin
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Zhongfang Shi
- Department of Pathophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Guanzhang Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
- Chinese Glioma Genome Atlas Network and Asian Glioma Genome Atlas Network, Beijing, PR China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
- Chinese Glioma Genome Atlas Network and Asian Glioma Genome Atlas Network, Beijing, PR China
- China National Clinical Research Center for Neurological Diseases, Beijing, PR China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, PR China
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
- Chinese Glioma Genome Atlas Network and Asian Glioma Genome Atlas Network, Beijing, PR China
- China National Clinical Research Center for Neurological Diseases, Beijing, PR China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, PR China
| |
Collapse
|
9
|
Pessino G, Scotti C, Maggi M, Immuno-Hub Consortium. Hepatocellular Carcinoma: Old and Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:901. [PMID: 38473265 DOI: 10.3390/cancers16050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Liver cancer, predominantly hepatocellular carcinoma (HCC), globally ranks sixth in incidence and third in cancer-related deaths. HCC risk factors include non-viral hepatitis, alcohol abuse, environmental exposures, and genetic factors. No specific genetic alterations are unequivocally linked to HCC tumorigenesis. Current standard therapies include surgical options, systemic chemotherapy, and kinase inhibitors, like sorafenib and regorafenib. Immunotherapy, targeting immune checkpoints, represents a promising avenue. FDA-approved checkpoint inhibitors, such as atezolizumab and pembrolizumab, show efficacy, and combination therapies enhance clinical responses. Despite this, the treatment of hepatocellular carcinoma (HCC) remains a challenge, as the complex tumor ecosystem and the immunosuppressive microenvironment associated with it hamper the efficacy of the available therapeutic approaches. This review explores current and advanced approaches to treat HCC, considering both known and new potential targets, especially derived from proteomic analysis, which is today considered as the most promising approach. Exploring novel strategies, this review discusses antibody drug conjugates (ADCs), chimeric antigen receptor T-cell therapy (CAR-T), and engineered antibodies. It then reports a systematic analysis of the main ligand/receptor pairs and molecular pathways reported to be overexpressed in tumor cells, highlighting their potential and limitations. Finally, it discusses TGFβ, one of the most promising targets of the HCC microenvironment.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Immuno-Hub Consortium
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
10
|
Li C, Liu H, Duan Z. Expression of the immune checkpoint molecules CD226 and TIGIT in preeclampsia patients. BMC Immunol 2024; 25:12. [PMID: 38326745 PMCID: PMC10848455 DOI: 10.1186/s12865-024-00603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Imbalanced immune responses are involved in developing preeclampsia (PE). We wish to explore the expression and potential changes of immune checkpoint molecules TIGIT, CD226 and CD155 in PE patients. METHODS The expression of the immune checkpoint molecules TIGIT, CD226 and CD155 in different lymphocyte subpopulations was determined by flow cytometry in 24 patients with PE and compared to 24 healthy pregnant women of the same gestational age as the controls.Serum CD155 was detected by ELISA in the patients with PE compared to controls. RESULTS The percentages of CD4+ and CD8+ T lymphocytes in the peripheral blood of PE patients were not significantly different from those of the controls, whereas the regulatory T cells (Tregs) in PE patients were significantly lower than those in controls (6.43 ± 1.77% vs. 7.48 ± 1.71%, P = 0.0420). The expression of TIGIT and CD226 showed different percentages on CD4+ T cells, CD8+ T cells and Treg cells. However, the difference in the percentages of TIGIT, CD226 on these T cells between the two groups was not statistically significant. The level of CD155 in peripheral serum of PE patients was 6.64 ± 1.79 ng/ml, which was not significantly different from that in the control group 5.61 ± 1.77 ng/ml, P = 0.0505. The present results demonstrate that TIGIT, CD226 and CD155 are not present at altered immune conditions in the peripheral blood of patients with PE, compared with normal pregnant women. CONCLUSION The immune checkpoint molecules TIGIT, CD226 and CD155 are not abnormally expressed in PE patients.
Collapse
Affiliation(s)
- Cui Li
- Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, China
| | - Haiyan Liu
- Obstetrics Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Zhongliang Duan
- Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, China.
| |
Collapse
|
11
|
Ageenko A, Vasileva N, Richter V, Kuligina E. Combination of Oncolytic Virotherapy with Different Antitumor Approaches against Glioblastoma. Int J Mol Sci 2024; 25:2042. [PMID: 38396720 PMCID: PMC10889383 DOI: 10.3390/ijms25042042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Glioblastoma is one of the most malignant and aggressive tumors of the central nervous system. Despite the standard therapy consisting of maximal surgical resection and chemo- and radiotherapy, the median survival of patients with this diagnosis is about 15 months. Oncolytic virus therapy is one of the promising areas for the treatment of malignant neoplasms. In this review, we have focused on emphasizing recent achievements in virotherapy, both as a monotherapy and in combination with other therapeutic schemes to improve survival rate and quality of life among patients with glioblastoma.
Collapse
Affiliation(s)
- Alisa Ageenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Natalia Vasileva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
- LLC "Oncostar", R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| | - Vladimir Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Elena Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
- LLC "Oncostar", R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| |
Collapse
|
12
|
Bakhtiyari M, Liaghat M, Aziziyan F, Shapourian H, Yahyazadeh S, Alipour M, Shahveh S, Maleki-Sheikhabadi F, Halimi H, Forghaniesfidvajani R, Zalpoor H, Nabi-Afjadi M, Pornour M. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: immune checkpoints, metabolic checkpoints, and signaling pathways. Cell Commun Signal 2023; 21:252. [PMID: 37735675 PMCID: PMC10512514 DOI: 10.1186/s12964-023-01282-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Acute myeloid leukemia (AML) comprises a multifarious and heterogeneous array of illnesses characterized by the anomalous proliferation of myeloid cells in the bone marrow microenvironment (BMM). The BMM plays a pivotal role in promoting AML progression, angiogenesis, and metastasis. The immune checkpoints (ICs) and metabolic processes are the key players in this process. In this review, we delineate the metabolic and immune checkpoint characteristics of the AML BMM, with a focus on the roles of BMM cells e.g. tumor-associated macrophages, natural killer cells, dendritic cells, metabolic profiles and related signaling pathways. We also discuss the signaling pathways stimulated in AML cells by BMM factors that lead to AML progression. We then delve into the roles of immune checkpoints in AML angiogenesis, metastasis, and cell proliferation, including co-stimulatory and inhibitory ICs. Lastly, we discuss the potential therapeutic approaches and future directions for AML treatment, emphasizing the potential of targeting metabolic and immune checkpoints in AML BMM as prognostic and therapeutic targets. In conclusion, the modulation of these processes through the use of directed drugs opens up new promising avenues in combating AML. Thereby, a comprehensive elucidation of the significance of these AML BMM cells' metabolic and immune checkpoints and signaling pathways on leukemic cells can be undertaken in the future investigations. Additionally, these checkpoints and cells should be considered plausible multi-targeted therapies for AML in combination with other conventional treatments in AML. Video Abstract.
Collapse
Affiliation(s)
- Maryam Bakhtiyari
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Alipour
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Shaghayegh Shahveh
- American Association of Naturopath Physician (AANP), Washington, DC, USA
| | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Halimi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Forghaniesfidvajani
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.
| |
Collapse
|
13
|
Paolini R, Molfetta R. Dysregulation of DNAM-1-Mediated NK Cell Anti-Cancer Responses in the Tumor Microenvironment. Cancers (Basel) 2023; 15:4616. [PMID: 37760586 PMCID: PMC10527063 DOI: 10.3390/cancers15184616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
NK cells play a pivotal role in anti-cancer immune responses, thanks to the expression of a wide array of inhibitory and activating receptors that regulate their cytotoxicity against transformed cells while preserving healthy cells from lysis. However, NK cells exhibit severe dysfunction in the tumor microenvironment, mainly due to the reduction of activating receptors and the induction or increased expression of inhibitory checkpoint receptors. An activating receptor that plays a central role in tumor recognition is the DNAM-1 receptor. It recognizes PVR and Nectin2 adhesion molecules, which are frequently overexpressed on the surface of cancerous cells. These ligands are also able to trigger inhibitory signals via immune checkpoint receptors that are upregulated in the tumor microenvironment and can counteract DNAM-1 activation. Among them, TIGIT has recently gained significant attention, since its targeting results in improved anti-tumor immune responses. This review aims to summarize how the recognition of PVR and Nectin2 by paired co-stimulatory/inhibitory receptors regulates NK cell-mediated clearance of transformed cells. Therapeutic approaches with the potential to reverse DNAM-1 dysfunction in the tumor microenvironment will be also discussed.
Collapse
Affiliation(s)
| | - Rosa Molfetta
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
14
|
Li W, Deng C, Yang H, Tian X, Chen L, Liu Q, Gao C, Lu X, Wang G, Peng Q. Upregulation of the CD155-CD226 Axis Is Associated With Muscle Inflammation and Disease Severity in Idiopathic Inflammatory Myopathies. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200143. [PMID: 37491355 PMCID: PMC10368451 DOI: 10.1212/nxi.0000000000200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/01/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND AND OBJECTIVES The CD155-CD226/T-cell Ig and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT) pathway plays a critical role in regulating T-cell responses and is being targeted clinically. However, research on the role of this pathway in autoimmune diseases is limited. This study aimed to investigate the expression and tissue-specific roles of CD155-CD226/TIGIT pathway molecules in the inflamed muscles of patients with idiopathic inflammatory myopathies (IIMs). METHODS Immunohistochemistry, Western blot analysis, and polychromatic immunofluorescence staining were performed to examine the expression of CD155, CD226, and TIGIT in skeletal muscle biopsies from 30 patients with dermatomyositis (DM), 10 patients with amyopathic DM (ADM), 20 patients with immune-mediated necrotizing myopathy (IMNM), 5 patients with dysferlinopathy, and 4 healthy controls. Flow cytometry analysis was used to analyze the functions of T cells with different phenotypes. RESULTS Strong expression of CD155 was observed in patients with DM and IMNM, while its expression was largely negative in those with ADM and dysferlinopathy and healthy controls. The costimulatory receptor CD226 was highly expressed on muscle-infiltrating cells, while the coinhibitory receptor TIGIT was expressed at low levels. These infiltrating CD226+ cells were mainly activated effector T cells that localized adjacent to CD155-expressing myofibers, but were faintly detectable within the muscle fascicles lacking CD155. A strong positive correlation between CD155 and CD226 expression scores was also observed. Polychromatic immunofluorescence staining revealed that CD155+ muscle cells coexpressed major histocompatibility complex classes I and II, and tumor necrosis factor alpha expression was detected in CD226+ T cells at their close sites with the myofibers. Furthermore, the expression levels of CD155 and CD226 showed a positive correlation with creatine kinase, lactate dehydrogenase, and the muscle histopathology damage scores and an inverse correlation with the Manual Muscle Testing-8 scores. In addition, CD155 and CD226 expressions were significantly decreased in representative patients who achieved remission posttreatment. DISCUSSION These findings demonstrate that the CD155-CD226 axis is highly activated in inflamed muscle tissues of patients with IIM and is associated with muscle disease severity. Our data uncover the immunopathogenic role of the axis in the pathology of IIMs.
Collapse
Affiliation(s)
- Wenli Li
- From the Department of Rheumatology (W.L., H.Y., X.T., Q.L., C.G., X.L., G.W., Q.P.), Key Myositis Laboratories, China-Japan Friendship Hospital; Department of Rheumatology and Clinical Immunology (C.D.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; and Department of Blood Transfusion (L.C.), China-Japan Friendship Hospital, Beijing.
| | - Chuiwen Deng
- From the Department of Rheumatology (W.L., H.Y., X.T., Q.L., C.G., X.L., G.W., Q.P.), Key Myositis Laboratories, China-Japan Friendship Hospital; Department of Rheumatology and Clinical Immunology (C.D.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; and Department of Blood Transfusion (L.C.), China-Japan Friendship Hospital, Beijing
| | - Hanbo Yang
- From the Department of Rheumatology (W.L., H.Y., X.T., Q.L., C.G., X.L., G.W., Q.P.), Key Myositis Laboratories, China-Japan Friendship Hospital; Department of Rheumatology and Clinical Immunology (C.D.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; and Department of Blood Transfusion (L.C.), China-Japan Friendship Hospital, Beijing
| | - Xiaolan Tian
- From the Department of Rheumatology (W.L., H.Y., X.T., Q.L., C.G., X.L., G.W., Q.P.), Key Myositis Laboratories, China-Japan Friendship Hospital; Department of Rheumatology and Clinical Immunology (C.D.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; and Department of Blood Transfusion (L.C.), China-Japan Friendship Hospital, Beijing
| | - Lida Chen
- From the Department of Rheumatology (W.L., H.Y., X.T., Q.L., C.G., X.L., G.W., Q.P.), Key Myositis Laboratories, China-Japan Friendship Hospital; Department of Rheumatology and Clinical Immunology (C.D.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; and Department of Blood Transfusion (L.C.), China-Japan Friendship Hospital, Beijing
| | - Qingyan Liu
- From the Department of Rheumatology (W.L., H.Y., X.T., Q.L., C.G., X.L., G.W., Q.P.), Key Myositis Laboratories, China-Japan Friendship Hospital; Department of Rheumatology and Clinical Immunology (C.D.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; and Department of Blood Transfusion (L.C.), China-Japan Friendship Hospital, Beijing
| | - Chang Gao
- From the Department of Rheumatology (W.L., H.Y., X.T., Q.L., C.G., X.L., G.W., Q.P.), Key Myositis Laboratories, China-Japan Friendship Hospital; Department of Rheumatology and Clinical Immunology (C.D.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; and Department of Blood Transfusion (L.C.), China-Japan Friendship Hospital, Beijing
| | - Xin Lu
- From the Department of Rheumatology (W.L., H.Y., X.T., Q.L., C.G., X.L., G.W., Q.P.), Key Myositis Laboratories, China-Japan Friendship Hospital; Department of Rheumatology and Clinical Immunology (C.D.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; and Department of Blood Transfusion (L.C.), China-Japan Friendship Hospital, Beijing
| | - Guochun Wang
- From the Department of Rheumatology (W.L., H.Y., X.T., Q.L., C.G., X.L., G.W., Q.P.), Key Myositis Laboratories, China-Japan Friendship Hospital; Department of Rheumatology and Clinical Immunology (C.D.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; and Department of Blood Transfusion (L.C.), China-Japan Friendship Hospital, Beijing
| | - Qinglin Peng
- From the Department of Rheumatology (W.L., H.Y., X.T., Q.L., C.G., X.L., G.W., Q.P.), Key Myositis Laboratories, China-Japan Friendship Hospital; Department of Rheumatology and Clinical Immunology (C.D.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; and Department of Blood Transfusion (L.C.), China-Japan Friendship Hospital, Beijing.
| |
Collapse
|
15
|
Paolini R, Molfetta R. CD155 and Its Receptors as Targets for Cancer Therapy. Int J Mol Sci 2023; 24:12958. [PMID: 37629138 PMCID: PMC10455395 DOI: 10.3390/ijms241612958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
CD155, also known as the poliovirus receptor, is an adhesion molecule often overexpressed in tumors of different origins where it promotes cell migration and proliferation. In addition to this pro-tumorigenic function, CD155 plays an immunomodulatory role during tumor progression since it is a ligand for both the activating receptor DNAM-1 and the inhibitory receptor TIGIT, expressed on cytotoxic innate and adaptative lymphocytes. DNAM-1 is a well-recognized receptor involved in anti-tumor immune surveillance. However, in advanced tumor stages, TIGIT is up-regulated and acts as an immune checkpoint receptor, counterbalancing DNAM-1-mediated cancer cell clearance. Pre-clinical studies have proposed the direct targeting of CD155 on tumor cells as well as the enhancement of DNAM-1-mediated anti-tumor functions as promising therapeutic approaches. Moreover, immunotherapeutic use of anti-TIGIT blocking antibody alone or in combined therapy has already been included in clinical trials. The aim of this review is to summarize all these potential therapies, highlighting the still controversial role of CD155 during tumor progression.
Collapse
Affiliation(s)
| | - Rosa Molfetta
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
16
|
Luo Z, Wang Y, Bi X, Ismtula D, Wang H, Guo C. Cytokine-induced apoptosis inhibitor 1: a comprehensive analysis of potential diagnostic, prognosis, and immune biomarkers in invasive breast cancer. Transl Cancer Res 2023; 12:1765-1786. [PMID: 37588751 PMCID: PMC10425657 DOI: 10.21037/tcr-23-34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/07/2023] [Indexed: 08/18/2023]
Abstract
Background Cytokine-induced apoptosis inhibitor 1 (CIAPIN1) is strictly associated with the incidence and progress of several malignant tumors, but its effect on invasive breast cancer (IBC) remains unclear. We directed to research the potential diagnostic and prognostic significance of CIAPIN1 in IBC. Methods The Cancer Genome Atlas (TCGA) database and Tumor Immune Estimation Resource (TIMER) database were utilized to examine CIAPIN1 expression level in IBC and its relationship with clinicopathological features. The diagnostic value and prognostic importance of CIAPIN1 in IBC were assessed by Kaplan-Meier analysis, Cox regression analysis, receiver operating characteristic (ROC) curve and nomogram model. The STRING database and enrichment analysis were utilized to discover the interacting proteins, biological roles and possible cellular mechanisms related to CIAPIN1. The methylation status of CIAPIN1 was analyzed using MethSurv database and the University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN). By using Spearman correlation assessment, how the expression of CIAPIN1 was related to TP53, immune checkpoint genes and immune cell infiltration was determined. Results CIAPIN1 mRNA and protein levels were overexpressed in IBC, and significantly correlated with T stage, histological type, age, ER status, PR status and PAM50 (P<0.001). CIAPIN1 overexpression significantly decreased overall survival, distant metastasis free survival (DMFS) and relapse free survival in IBC patients (P<0.001). Similarly, hypermethylation of CIAPIN1 was associated with adverse outcomes in IBC patients. Multivariate Cox analysis identified CIAPIN1 as a potential risk factor for disease specific survival (DSS) and progression free survival (PFS) in individuals with IBC. The outcomes of the ROC curve showed that CIAPIN1 had a better accuracy in predicting ER(-), PR(-) and Asian breast cancer subtypes. Furthermore, there was a substantial correlation between the CIAPIN1 expression level in IBC and immune cell infiltration, TP53, and immune checkpoint genes. Conclusions The high expression of CIAPIN1 in IBC is significantly related to the infiltration status of various tumor immune cells and the poor prognosis of IBC patients. According to this current study, CIAPIN1 is a promising diagnostic and prognostic marker for IBC.
Collapse
Affiliation(s)
- Zhiwen Luo
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yiyang Wang
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaojuan Bi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dilimulati Ismtula
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Haiyan Wang
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chenming Guo
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
17
|
Cabioglu N, Bayram A, Emiroglu S, Onder S, Karatay H, Oner G, Tukenmez M, Muslumanoglu M, Igci A, Aydiner A, Saip P, Yavuz E, Ozmen V. Diverging prognostic effects of CD155 and CD73 expressions in locally advanced triple-negative breast cancer. Front Oncol 2023; 13:1165257. [PMID: 37519808 PMCID: PMC10374450 DOI: 10.3389/fonc.2023.1165257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Background Immune checkpoint inhibition, combined with novel biomarkers, may provide alternative pathways for treating chemotherapy-resistant triple-negative breast cancer (TNBC). This study investigates the expression of new immune checkpoint receptors, including CD155 and CD73, which play a role in T and natural killer (NK) cell activities, in patients with residual TNBC after neoadjuvant chemotherapy (NAC). Methods The expression of biomarkers was immunohistochemically examined by staining archival tissue from surgical specimens (n = 53) using specific monoclonal antibodies for PD-L1, CD155, and CD73. Results Of those, 59.2% (29/49) were found to be positive (>1%) for PD-L1 on the tumour and tumour-infiltrating lymphocytes (TILs), while CD155 (30/53, 56.6%) and CD73 (24/53, 45.3%) were detected on tumours. Tumour expressions of CD155 and CD73 significantly correlated with PD-L1 expression on the tumour (p = 0.004 for CD155, p = 0.001 for CD73). Patients with CD155 positivity ≥10% were more likely to have a poor chemotherapy response, as evidenced by higher MDACC Residual Cancer Burden Index scores and Class II/III than those without CD155 expression (100% vs 82.6%, p = 0.03). At a median follow-up time of 80 months (range, 24-239), patients with high CD73 expression showed improved 10-year disease-free survival (DFS) and disease-specific survival (DSS) rates compared to those with low CD73 expression. In contrast, patients with CD155 (≥10%) expression exhibited a decreasing trend in 10-year DFS and DSS compared to cases with lower expression, although statistical significance was not reached. However, patients with coexpression of CD155 (≥10%) and low CD73 were significantly more likely to have decreased 10-year DFS and DSS rates compared to others (p = 0.005). Conclusion These results demonstrate high expression of CD73 and CD155 in patients with residual tumours following NAC. CD155 expression was associated with a poor response to NAC and poor prognosis in this chemotherapy-resistant TNBC cohort, supporting the use of additional immune checkpoint receptor inhibitor therapy. Interestingly, the interaction between CD155 and CD73 at lower levels resulted in a worse outcome than either marker alone, which calls for further investigation in future studies.
Collapse
Affiliation(s)
- Neslihan Cabioglu
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Aysel Bayram
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Selman Emiroglu
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Semen Onder
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Huseyin Karatay
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
- Department of Pathology, Basaksehir Cam Sakura Hospital, Istanbul, Türkiye
| | - Gizem Oner
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Mustafa Tukenmez
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Mahmut Muslumanoglu
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Abdullah Igci
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
- Department of General Surgery, American Hospital, Istanbul, Türkiye
| | - Adnan Aydiner
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Türkiye
| | - Pinar Saip
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Türkiye
| | - Ekrem Yavuz
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Vahit Ozmen
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
- Department of General Surgery, Istanbul Florence Nightingale Hospital, Istanbul, Türkiye
| |
Collapse
|
18
|
Molfetta R, Petillo S, Cippitelli M, Paolini R. SUMOylation and related post-translational modifications in natural killer cell anti-cancer responses. Front Cell Dev Biol 2023; 11:1213114. [PMID: 37313439 PMCID: PMC10258607 DOI: 10.3389/fcell.2023.1213114] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
SUMOylation is a reversible modification that involves the covalent attachment of small ubiquitin-like modifier (SUMO) to target proteins, leading to changes in their localization, function, stability, and interactor profile. SUMOylation and additional related post-translational modifications have emerged as important modulators of various biological processes, including regulation of genomic stability and immune responses. Natural killer (NK) cells are innate immune cells that play a critical role in host defense against viral infections and tumors. NK cells can recognize and kill infected or transformed cells without prior sensitization, and their activity is tightly regulated by a balance of activating and inhibitory receptors. Expression of NK cell receptors as well as of their specific ligands on target cells is finely regulated during malignant transformation through the integration of different mechanisms including ubiquitin- and ubiquitin-like post-translational modifications. Our review summarizes the role of SUMOylation and other related pathways in the biology of NK cells with a special emphasis on the regulation of their response against cancer. The development of novel selective inhibitors as useful tools to potentiate NK-cell mediated killing of tumor cells is also briefly discussed.
Collapse
|
19
|
Ma L, Ma J, Sun X, Liu H. Bispecific anti-CD3×anti-CD155 antibody mediates T-cell immunotherapy in human haematologic malignancies. Invest New Drugs 2023:10.1007/s10637-023-01367-2. [PMID: 37198354 DOI: 10.1007/s10637-023-01367-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
T cells are important components in the cell-mediated antitumour response. In recent years, bispecific antibodies (Bi-Abs) have become promising treatments because of their ability to recruit T cells that kill tumours. Here, we demonstrate that CD155 is expressed in a wide range of human haematologic tumours and report on the ability of the bispecific antibody anti-CD3 x anti-CD155 (CD155Bi-Ab) to activate T cells targeting malignant haematologic cells. The specific cytolytic effect of T cells armed with CD155Bi-Ab was evaluated by quantitative luciferase assay, and the results showed that the cytolytic effect of these cells was accompanied by an increase in the level of the cell-killing mediator perforin. Moreover, compared with their unarmed T-cell counterparts, CD155Bi-Ab-armed T cells induced significant cytotoxicity in CD155-positive haematologic tumour cells, as indicated by lactate dehydrogenase assays, and these results were accompanied by increased granzyme B secretion. Furthermore, CD155Bi-Ab-armed T cells produced more T-cell-derived cytokines, including TNF-α, IFN-γ, and IL-2. In conclusion, CD155Bi-Ab enhances the ability of T cells to kill haematologic tumour cells, and therefore, CD155 may serve as a novel target for immunotherapy against haematologic malignancies.
Collapse
Affiliation(s)
- Li Ma
- Department of Pathology, Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100029, China
| | - Juan Ma
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xin Sun
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- College of Basic Medical Science, Peking University Health Science Center, Beijing, 100191, China
| | - Honggang Liu
- Department of Pathology, Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
20
|
CD155 is a putative therapeutic target in medulloblastoma. Clin Transl Oncol 2023; 25:696-705. [PMID: 36301489 DOI: 10.1007/s12094-022-02975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/05/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Medulloblastoma is the most common pediatric malignant brain tumor, consisting of four molecular subgroups (WNT, SHH, Group 3, Group 4) and 12 subtypes. Expression of the cell surface poliovirus receptor (PVR), CD155, is necessary for entry of the viral immunotherapeutic agent, PVSRIPO, a polio:rhinovirus chimera. CD155, physiologically expressed in the mononuclear phagocytic system, is widely expressed ectopically in solid tumors. The objective of this study is to elucidate CD155 expression as both a receptor for PVSRIPO and a therapeutic target in medulloblastoma. METHODS PVR mRNA expression was determined in several patient cohorts and human medulloblastoma cell lines. Patient samples were also analyzed for CD155 expression using immunohistochemistry and cell lines were analyzed using Western Blots. CD155 was blocked using a monoclonal antibody and cell viability, invasion, and migration were assessed. RESULTS AND DISCUSSION PVR mRNA expression was highest in the WNT subgroup and lowest in Group 4. PVR expression in the subgroups of medulloblastoma were similar to other pediatric brain and non-brain tumors. PVR expression was largely not associated with subgroup or subtype. Neither PVR protein expression intensity nor frequency were associated with overall survival. PVR expression was elevated in Group 3 patients with metastases but there was no difference in paired primary and metastatic medulloblastoma. Blocking PVR resulted in dose-dependent cell death, decreased invasion in vitro, and modestly inhibited cell migration. CONCLUSIONS CD155 is expressed across medulloblastoma subgroups and subtypes. Blocking CD155 results in cell death and decreased cellular invasion. This study provides rationale for CD155-targeting agents including PVSRIPO and antibody-mediated blockade of CD155.
Collapse
|
21
|
Milito ND, Zingoni A, Stabile H, Soriani A, Capuano C, Cippitelli M, Gismondi A, Santoni A, Paolini R, Molfetta R. NKG2D engagement on human NK cells leads to DNAM-1 hypo-responsiveness through different converging mechanisms. Eur J Immunol 2023; 53:e2250198. [PMID: 36440686 DOI: 10.1002/eji.202250198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
Natural killer (NK) cell activation is regulated by activating and inhibitory receptors that facilitate diseased cell recognition. Among activating receptors, NKG2D and DNAM-1 play a pivotal role in anticancer immune responses since they bind ligands upregulated on transformed cells. During tumor progression, however, these receptors are frequently downmodulated and rendered functionally inactive. Of note, NKG2D internalization has been associated with the acquisition of a dysfunctional phenotype characterized by the cross-tolerization of unrelated activating receptors. However, our knowledge of the consequences of NKG2D engagement is still incomplete. Here, by cytotoxicity assays combined with confocal microscopy, we demonstrate that NKG2D engagement on human NK cells impairs DNAM-1-mediated killing through two different converging mechanisms: by the upregulation of the checkpoint inhibitory receptor TIGIT, that in turn suppresses DNAM-1-mediated cytotoxic function, and by direct inhibition of DNAM-1-promoted signaling. Our results highlight a novel interplay between NKG2D and DNAM-1/TIGIT receptors that may facilitate neoplastic cell evasion from NK cell-mediated clearance.
Collapse
Affiliation(s)
- Nadia D Milito
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Zingoni
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Helena Stabile
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Soriani
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cristina Capuano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Cippitelli
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Gismondi
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Rossella Paolini
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rosa Molfetta
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Role of NF-κB Signaling in the Interplay between Multiple Myeloma and Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:ijms24031823. [PMID: 36768145 PMCID: PMC9916119 DOI: 10.3390/ijms24031823] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Nuclear factor-κB (NF-κB) transcription factors play a key role in the pathogenesis of multiple myeloma (MM). The survival, proliferation and chemoresistance of malignant plasma cells largely rely on the activation of canonical and noncanonical NF-κB pathways. They are triggered by cancer-associated mutations or by the autocrine and paracrine production of cytokines and growth factors as well as direct interaction with cellular and noncellular components of bone marrow microenvironment (BM). In this context, NF-κB also significantly affects the activity of noncancerous cells, including mesenchymal stromal cells (MSCs), which have a critical role in disease progression. Indeed, NF-κB transcription factors are involved in inflammatory signaling that alters the functional properties of these cells to support cancer evolution. Moreover, they act as regulators and/or effectors of pathways involved in the interplay between MSCs and MM cells. The aim of this review is to analyze the role of NF-κB in this hematologic cancer, focusing on NF-κB-dependent mechanisms in tumor cells, MSCs and myeloma-mesenchymal stromal cell crosstalk.
Collapse
|
23
|
Briukhovetska D, Suarez-Gosalvez J, Voigt C, Markota A, Giannou AD, Schübel M, Jobst J, Zhang T, Dörr J, Märkl F, Majed L, Müller PJ, May P, Gottschlich A, Tokarew N, Lücke J, Oner A, Schwerdtfeger M, Andreu-Sanz D, Grünmeier R, Seifert M, Michaelides S, Hristov M, König LM, Cadilha BL, Mikhaylov O, Anders HJ, Rothenfusser S, Flavell RA, Cerezo-Wallis D, Tejedo C, Soengas MS, Bald T, Huber S, Endres S, Kobold S. T cell-derived interleukin-22 drives the expression of CD155 by cancer cells to suppress NK cell function and promote metastasis. Immunity 2023; 56:143-161.e11. [PMID: 36630913 PMCID: PMC9839367 DOI: 10.1016/j.immuni.2022.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/28/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023]
Abstract
Although T cells can exert potent anti-tumor immunity, a subset of T helper (Th) cells producing interleukin-22 (IL-22) in breast and lung tumors is linked to dismal patient outcome. Here, we examined the mechanisms whereby these T cells contribute to disease. In murine models of lung and breast cancer, constitutional and T cell-specific deletion of Il22 reduced metastases without affecting primary tumor growth. Deletion of the IL-22 receptor on cancer cells decreases metastasis to a degree similar to that seen in IL-22-deficient mice. IL-22 induced high expression of CD155, which bound to the activating receptor CD226 on NK cells. Excessive activation led to decreased amounts of CD226 and functionally impaired NK cells, which elevated the metastatic burden. IL-22 signaling was also associated with CD155 expression in human datasets and with poor patient outcomes. Taken together, our findings reveal an immunosuppressive circuit activated by T cell-derived IL-22 that promotes lung metastasis.
Collapse
Affiliation(s)
- Daria Briukhovetska
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany
| | - Javier Suarez-Gosalvez
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany
| | - Cornelia Voigt
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany
| | - Anamarija Markota
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany
| | - Anastasios D. Giannou
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, and Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany,Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maryam Schübel
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany
| | - Jakob Jobst
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany
| | - Tao Zhang
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, and Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Janina Dörr
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany
| | - Florian Märkl
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany
| | - Lina Majed
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany
| | - Philipp Jie Müller
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany
| | - Peter May
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany
| | - Adrian Gottschlich
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany
| | - Nicholas Tokarew
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany
| | - Jöran Lücke
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, and Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany,Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Arman Oner
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany
| | - Melanie Schwerdtfeger
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany
| | - David Andreu-Sanz
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany
| | - Ruth Grünmeier
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany
| | - Matthias Seifert
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany
| | - Stefanos Michaelides
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany
| | - Michael Hristov
- Institute for Cardiovascular Prevention (IPEK), University Hospital, Klinikum der Universität München, Munich, Germany
| | - Lars M. König
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany
| | - Bruno Loureiro Cadilha
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany
| | | | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Klinikum der Universität München, 80337 Munich, Germany
| | - Simon Rothenfusser
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany,Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
| | - Richard A. Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06520, USA,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daniela Cerezo-Wallis
- Melanoma Laboratory, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Cristina Tejedo
- Melanoma Laboratory, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - María S. Soengas
- Melanoma Laboratory, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Tobias Bald
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, and Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Endres
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany,Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany,Center for Translational Cancer Research (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Klinikum der Universität München, 80337 Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany; Center for Translational Cancer Research (DKTK), Partner Site Munich, 80336 Munich, Germany.
| |
Collapse
|
24
|
Kobecki J, Gajdzis P, Mazur G, Chabowski M. Nectins and Nectin-like Molecules in Colorectal Cancer: Role in Diagnostics, Prognostic Values, and Emerging Treatment Options: A Literature Review. Diagnostics (Basel) 2022; 12:3076. [PMID: 36553083 PMCID: PMC9777592 DOI: 10.3390/diagnostics12123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
In 2020, colorectal cancer was the third most common type of cancer worldwide with a clearly visible increase in the number of cases each year. With relatively high mortality rates and an uncertain prognosis, colorectal cancer is a serious health problem. There is an urgent need to investigate its specific mechanism of carcinogenesis and progression in order to develop new strategies of action against this cancer. Nectins and Nectin-like molecules are cell adhesion molecules that take part in a plethora of essential processes in healthy tissues as well as mediating substantial actions for tumor initiation and evolution. Our understanding of their role and a viable application of this in anti-cancer therapy has rapidly improved in recent years. This review summarizes the current data on the role nectins and Nectin-like molecules play in colorectal cancer.
Collapse
Affiliation(s)
- Jakub Kobecki
- Department of Surgery, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wroclaw, Poland
- Division of Anaesthesiological and Surgical Nursing, Department of Nursing and Obstetrics, Faculty of Health Science, Wroclaw Medical University, 5 Bartla Street, 51-618 Wroclaw, Poland
| | - Paweł Gajdzis
- Department of Pathomorphology, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wroclaw, Poland
- Department of Clinical Pathology, Wroclaw Medical University, 213 Borowska Street, 50-556 Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska Street, 50-556 Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wroclaw, Poland
- Division of Anaesthesiological and Surgical Nursing, Department of Nursing and Obstetrics, Faculty of Health Science, Wroclaw Medical University, 5 Bartla Street, 51-618 Wroclaw, Poland
| |
Collapse
|
25
|
Li Y, Li TY, Qi Q, Zhang MT, Tong MX, Su PJ, Zhang ZB. Human poliovirus receptor contributes to biliary atresia pathogenesis by exacerbating natural-killer-cell-mediated bile duct injury. Liver Int 2022; 42:2724-2742. [PMID: 36251580 DOI: 10.1111/liv.15457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Natural killer (NK) cells play an important role in biliary atresia (BA) pathogenesis; human poliovirus receptor (PVR) is an important NK-cell modulator. Here, we explored the role of PVR in BA pathogenesis. METHODS Poliovirus receptor expression and NK cell-associated genes were detected in human BA samples and a rotavirus-induced BA mouse model using quantitative PCR and immunofluorescence staining. Chemically modified small interfering RNA silenced PVR expression in the BA model, and its effects on the population and function of intrahepatic NK cells were investigated using flow cytometry (FCM). The effects of PVR overexpression and knockdown on proliferation, apoptosis and NK-cell-mediated lysis of cultured human cholangiocytes were analysed using FCM and cell viability assays. Serum PVR, high-mobility group box 1 (HMGB1), and interleukin-1beta (IL-1beta) levels were measured in a cohort of 50 patients using ELISA. RESULTS Poliovirus receptor expression was upregulated in the biliary epithelium of BA patients and BA model and was positively correlated with the population and activation of intrahepatic NK cells. Silencing of PVR expression impaired the cytotoxicity of NK cells, reduced inflammation and protected mice from rotavirus-induced BA. Activation of the TLR3-IRF3 signalling pathway induced PVR expression in cultured cholangiocytes. PVR overexpression promoted proliferation and inhibited the apoptosis of cholangiocytes but exacerbated NK cell-mediated cholangiocyte lysis. Serum PVR levels were elevated in BA patients and were positively correlated with HMGB1 and IL-1beta levels. CONCLUSIONS Poliovirus receptor contributes to BA pathogenesis by regulating NK cell-mediated bile duct injury; PVR has the value as a biomarker of BA.
Collapse
Affiliation(s)
- Yuan Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.,The Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Tian-Yu Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.,The Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Qiao Qi
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Min-Ting Zhang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.,The Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ming-Xin Tong
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Peng-Jun Su
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zhi-Bo Zhang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.,The Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
26
|
Liu WF, Quan B, Li M, Zhang F, Hu KS, Yin X. PVR-A Prognostic Biomarker Correlated with Immune Cell Infiltration in Hepatocellular Carcinoma. Diagnostics (Basel) 2022; 12:diagnostics12122953. [PMID: 36552960 PMCID: PMC9777148 DOI: 10.3390/diagnostics12122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The poliovirus receptor (PVR) is a member of the immunoglobulin superfamily (Ig SF) and is essential for the promotion of cancer cell proliferation and invasion. However, the correlation between PVR expression and prognosis as well as immune infiltration in hepatocellular carcinoma (HCC) remains unclear. The expression level of PVR was quantified using the Tumor and Tumor Immunity Evaluation Resource (TIMER) and Sangerbox. The Gene Expression Omnibus (GEO) database was used to validate the PVR expression. The receiver operating characteristic (ROC) curve was used to evaluate the feasibility of using PVR as a differentiating factor according to the area under curve (AUC) score. A PVR binding protein network was built using the STRING tool. An enrichment analysis using the R package clusterProfiler was used to explore the potential function of PVR. Immune infiltration analysis was calculated with ESTIMATE algorithms. We also assessed the correlation between PVR expression and immune infiltration by the single-sample Gene Set Enrichment Analysis (ssGSEA) method from the R package GSVA and TIMER database. The results showed that PVR was commonly overexpressed in multiple types of tumors including HCC. The data of GSE64041 confirmed the same result. The ROC curve suggested that PVR could be a potential diagnostic biomarker. Additionally, high mRNA expression of PVR in HCC was significantly correlated with poor overall survival (OS) and relapse free survival (RFS). Results also indicated correlations between PVR mRNA expression with the level of infiltration immune cells including B cells, CD8+ T cells, cytotoxic cells, DCs, CD56dim NK cells, pDCs, and Th2 cells. Furthermore, the PVR level was significantly correlated with immune markers for immunosuppressive cells in HCC. In conclusion, PVR might be an important regulator of tumor immune cell infiltration and a valuable prognostic biomarker in HCC. However, additional work is needed to fully elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Wen-Feng Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 136 Yi Xue Yuan Road, Shanghai 200032, China
| | - Bing Quan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 136 Yi Xue Yuan Road, Shanghai 200032, China
| | - Miao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 136 Yi Xue Yuan Road, Shanghai 200032, China
| | - Feng Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 136 Yi Xue Yuan Road, Shanghai 200032, China
| | - Ke-Shu Hu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 136 Yi Xue Yuan Road, Shanghai 200032, China
| | - Xin Yin
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 136 Yi Xue Yuan Road, Shanghai 200032, China
- Correspondence:
| |
Collapse
|
27
|
Role of PARP Inhibitors in Cancer Immunotherapy: Potential Friends to Immune Activating Molecules and Foes to Immune Checkpoints. Cancers (Basel) 2022; 14:cancers14225633. [PMID: 36428727 PMCID: PMC9688455 DOI: 10.3390/cancers14225633] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induce cytotoxic effects as single agents in tumors characterized by defective repair of DNA double-strand breaks deriving from BRCA1/2 mutations or other abnormalities in genes associated with homologous recombination. Preclinical studies have shown that PARPi-induced DNA damage may affect the tumor immune microenvironment and immune-mediated anti-tumor response through several mechanisms. In particular, increased DNA damage has been shown to induce the activation of type I interferon pathway and up-regulation of PD-L1 expression in cancer cells, which can both enhance sensitivity to Immune Checkpoint Inhibitors (ICIs). Despite the recent approval of ICIs for a number of advanced cancer types based on their ability to reinvigorate T-cell-mediated antitumor immune responses, a consistent percentage of treated patients fail to respond, strongly encouraging the identification of combination therapies to overcome resistance. In the present review, we analyzed both established and unexplored mechanisms that may be elicited by PARPi, supporting immune reactivation and their potential synergism with currently used ICIs. This analysis may indicate novel and possibly patient-specific immune features that might represent new pharmacological targets of PARPi, potentially leading to the identification of predictive biomarkers of response to their combination with ICIs.
Collapse
|
28
|
CD155 Cooperates with PD-1/PD-L1 to Promote Proliferation of Esophageal Squamous Cancer Cells via PI3K/Akt and MAPK Signaling Pathways. Cancers (Basel) 2022; 14:cancers14225610. [PMID: 36428703 PMCID: PMC9688614 DOI: 10.3390/cancers14225610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Esophageal cancer is still a leading cause of death among all tumors in males, with unsatisfactory responses to novel immunotherapies such as anti-PD-1 agents. Herein, we explored the role of CD155 in esophageal squamous cell cancer (ESCA) and its underlying molecular mechanisms. METHODS Publicly available datasets were used for differential gene expression and immune infiltration analyses, and their correlation with patient survival. A total of 322 ESCA and 161 paracancer samples were collected and evaluated by performing immunohistochemistry and the H score was obtained by performing semiquantitative analysis. In vitro transfection of ESCA cell lines with lentivirus vectors targeting CD155 was performed to knockdown the protein. These cells were analyzed by conducting RNA sequencing, and the effects of CD155 knockdown on cell cycle and apoptosis were verified with flow cytometry and Western blotting. In addition, in vivo experiments using these engineered cell lines were performed to determine the role of CD155 in tumor formation. A small interfering RNA-mediated knockdown of Nectin3 was used to determine whether it phenocopied the profile of CD155 knockdown. RESULTS CD155 is highly expressed in ESCA tissues and is positively associated with PD1, PDL1, CD4, IL2RA, and S100A9 expression. Furthermore, CD155 knockdown inhibited ESCA cells' proliferation by impairing the cell cycle and inducing cell apoptosis. Bioinformatics analysis of the gene expression profile of these engineered cells showed that CD155 mainly contributed to the regulation of PI3K/Akt and MAPK signals. The downregulation of Nectin3 expression phenocopied the profile of CD155 knockdown. DISCUSSION CD155 may cooperate with PD-1/PD-L1 to support ESCA proliferation in ways other than regulating its underlying immune mechanisms. Indeed, CD155 downregulation can impair ESCA cell pro-cancerous behavior via the inhibition of the PI3K/Akt and MAPK signaling pathways. Moreover, Nectin3 may be a ligand of CD155 and participate in the regulation of ESCA cells' proliferation. Hence, the inhibition of CD155 may enhance the therapeutic effect of anti-PD-1 immunotherapies in ESCA.
Collapse
|
29
|
Zhang D, Liu J, Zheng M, Meng C, Liao J. Prognostic and clinicopathological significance of CD155 expression in cancer patients: a meta-analysis. World J Surg Oncol 2022; 20:351. [DOI: 10.1186/s12957-022-02813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/16/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
It has been previously reported that CD155 is often over-expressed in a variety of cancer types. In fact, it is known to be involved in cancer development, and its role in cancer has been widely established. However, clinical and mechanistic studies involving CD155 yielded conflicting results. Thus, the present study aimed to evaluate overall prognostic value of CD155 in cancer patients, using a comprehensive analysis.
Methods
Online databases were searched, data was collected, and clinical value of CD155 was evaluated by combining hazard ratios (HRs) or odds ratios (ORs).
Results
The present study involved meta-analysis of 26 previous studies that involved 4325 cancer patients. These studies were obtained from 25 research articles. The results of the study revealed that increased CD155 expression was significantly associated with reduced OS in patients with cancer as compared to low CD155 expression (pooled HR = 1.772, 95% CI = 1.441–2.178, P < 0.001). Furthermore, subgroup analysis demonstrated that the level of CD155 expression was significantly associated with OS in patients with digestive system cancer (pooled HR = 1.570, 95% CI = 1.120–2.201, P = 0.009), hepatobiliary pancreatic cancer (pooled HR = 1.677, 95% CI = 1.037–2.712, P = 0.035), digestive tract cancer (pooled HR = 1.512, 95% CI = 1.016–2.250, P = 0.042), breast cancer (pooled HR = 2.137, 95% CI = 1.448–3.154, P < 0.001), lung cancer (pooled HR = 1.706, 95% CI = 1.193–2.440, P = 0.003), head and neck cancer (pooled HR = 1.470, 95% CI = 1.160–1.862, P = 0.001). Additionally, a significant correlation was observed between enhanced CD155 expression and advanced tumor stage (pooled OR = 1.697, 95% CI = 1.217–2.366, P = 0.002), LN metastasis (pooled OR = 1.953, 95% CI = 1.253–3.046, P = 0.003), and distant metastasis (pooled OR = 2.253, 95% CI = 1.235–4.110, P = 0.008).
Conclusion
Altogether, the results of the present study revealed that CD155 acted as an independent marker of prognosis in cancer patients, and it could provide a new and strong direction for cancer treatment.
Collapse
|
30
|
Kuzevanova A, Apanovich N, Mansorunov D, Korotaeva A, Karpukhin A. The Features of Checkpoint Receptor—Ligand Interaction in Cancer and the Therapeutic Effectiveness of Their Inhibition. Biomedicines 2022; 10:biomedicines10092081. [PMID: 36140182 PMCID: PMC9495440 DOI: 10.3390/biomedicines10092081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
To date, certain problems have been identified in cancer immunotherapy using the inhibition of immune checkpoints (ICs). Despite the excellent effect of cancer therapy in some cases when blocking the PD-L1 (programmed death-ligand 1) ligand and the immune cell receptors PD-1 (programmed cell death protein 1) and CTLA4 (cytotoxic T-lymphocyte-associated protein 4) with antibodies, the proportion of patients responding to such therapy is still far from desirable. This situation has stimulated the exploration of additional receptors and ligands as targets for immunotherapy. In our article, based on the analysis of the available data, the TIM-3 (T-cell immunoglobulin and mucin domain-3), LAG-3 (lymphocyte-activation gene 3), TIGIT (T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif (ITIM) domains), VISTA (V-domain Ig suppressor of T-cell activation), and BTLA (B- and T-lymphocyte attenuator) receptors and their ligands are comprehensively considered. Data on the relationship between receptor expression and the clinical characteristics of tumors are presented and are analyzed together with the results of preclinical and clinical studies on the therapeutic efficacy of their blocking. Such a comprehensive analysis makes it possible to assess the prospects of receptors of this series as targets for anticancer therapy. The expression of the LAG-3 receptor shows the most unambiguous relationship with the clinical characteristics of cancer. Its inhibition is the most effective of the analyzed series in terms of the antitumor response. The expression of TIGIT and BTLA correlates well with clinical characteristics and demonstrates antitumor efficacy in preclinical and clinical studies, which indicates their high promise as targets for anticancer therapy. At the same time, the relationship of VISTA and TIM-3 expression with the clinical characteristics of the tumor is contradictory, and the results on the antitumor effectiveness of their inhibition are inconsistent.
Collapse
|
31
|
Mussafi O, Mei J, Mao W, Wan Y. Immune checkpoint inhibitors for PD-1/PD-L1 axis in combination with other immunotherapies and targeted therapies for non-small cell lung cancer. Front Oncol 2022; 12:948405. [PMID: 36059606 PMCID: PMC9430651 DOI: 10.3389/fonc.2022.948405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 12/13/2022] Open
Abstract
It has been widely acknowledged that the use of immune checkpoint inhibitors (ICI) is an effective therapeutic treatment in many late-stage cancers. However, not all patients could benefit from ICI therapy. Several biomarkers, such as high expression of PD-L1, high mutational burden, and higher number of tumor infiltration lymphocytes have shown to predict clinical benefit from immune checkpoint therapies. One approach using ICI in combination with other immunotherapies and targeted therapies is now being investigated to enhance the efficacy of ICI alone. In this review, we summarized the use of other promising immunotherapies and targeted therapies in combination with ICI in treatment of lung cancers. The results from multiple animals and clinical trials were reviewed. We also briefly discussed the possible outlooks for future treatment.
Collapse
Affiliation(s)
- Ofek Mussafi
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY, United States
| | - Jie Mei
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY, United States
| |
Collapse
|
32
|
CD155 in tumor progression and targeted therapy. Cancer Lett 2022; 545:215830. [PMID: 35870689 DOI: 10.1016/j.canlet.2022.215830] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022]
Abstract
CD155, also known as the poliovirus receptor (PVR), has received considerable attention in recent years because of its intrinsic and extrinsic roles in tumor progression. Although barely expressed in host cells, CD155 is upregulated in tumor-infiltrating myeloid cells. High expression of CD155 in tumor cells across multiple cancer types is common and associated with poor patient outcomes. The intrinsic functions of CD155 in tumor cells promote tumor progression and metastasis, whereas its extrinsic immunoregulatory functions in the tumor microenvironment (TME) involve interaction with the upregulated inhibitory immune cell receptor and checkpoint TIGIT, suggesting that CD155 and CD155 pathways are promising tumor immunotherapy targets. Preclinical studies demonstrate that targeting CD155 and its receptor (anti-TIGIT) using a single treatment or in combination with anti-PD-1 can improve immune-mediated tumor control. However, there is still a limited understanding of CD155 and its associated targeting strategies, especially antibody and immune cell editing-related strategies of CD155 in cancer. Here, we review the role of CD155 in host and tumor cells in controlling tumor progression and discuss the potential of targeting CD155 for tumor therapy.
Collapse
|
33
|
Jiang C, Qu X, Ma L, Yi L, Cheng X, Gao X, Wang J, Che N, Zhang H, Zhang S. CD155 expression impairs anti-PD1 therapy response in non-small cell lung cancer. Clin Exp Immunol 2022; 208:220-232. [PMID: 35262683 PMCID: PMC9188351 DOI: 10.1093/cei/uxac020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/08/2022] [Indexed: 01/08/2023] Open
Abstract
CD155 is an immune checkpoint protein expressed in tumor cells that interacts with its ligand TIGIT, and inhibition of this point presents a new and novel way for cancer therapy. At present, whether the expression of CD155 affects the response to anti(α)-PD1 treatment in non-small cell lung cancer (NSCLC) patients is unclear. This observational study characterizes the expression of CD155 in NSCLC patients and its responses to PD1 inhibitors. We retrospectively detected the expression of CD155 and tumor-infiltrated lymphocyte (TIL) TIGIT by immunohistochemistry in advanced NSCLC patients who had received αPD1 therapy. The patients with CD155 positive had a significantly worse response to αPD1 therapy compared with CD155-negative patients (ORR: 25.6% vs 54.8%, P < 0.01; median PFS: 5.1 vs 7.1 months, HR = 2.322; 95% CI 1.396-3.861, P = 0.001). This effect is more prominent in PD-L1 positive patients. In PD-L1-positive patients, CD155 expression is associated with a poor response to αPD1 therapy in both LUAC (lung adenocarcinoma) and LUSC (lung squamous cell carcinoma); meanwhile, the expression of CD155 was associated with a poor response to the first-line αPD1 therapy, posterior-line αPD1 therapy, and αPD1 combination therapy. Furthermore, the expression of TIGIT was not correlated with the therapeutic effect of αPD1. Our pilot study suggests that CD155 expression attenuates the therapeutic effect of αPD1 therapy and is associated with a higher risk of progression. The CD155 pathway may be a promising immunotherapeutic target and simultaneously targeting CD155/TIGIT and PD1/PD-L1 can improve the effect of immunotherapy.
Collapse
Affiliation(s)
- Chang Jiang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaodie Qu
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Li Ma
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ling Yi
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xu Cheng
- Department of Thoracic surgery, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiang Gao
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jinghui Wang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Nanying Che
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hongtao Zhang
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shucai Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
34
|
Vazeh H, Behboudi E, Hashemzadeh-Omran A, Moradi A. Live-attenuated poliovirus-induced extrinsic apoptosis through Caspase 8 within breast cancer cell lines expressing CD155. Breast Cancer 2022; 29:899-907. [PMID: 35641853 DOI: 10.1007/s12282-022-01372-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Breast cancer is one of the most common cancers among women in the world. Different therapeutic strategies such as radiotherapy, chemotherapy and surgery have been used either individually or in combination. Oncolytic virotherapy is a rising treatment methodology, which utilizes replicating viruses to eliminate tumor cells. The aim of this study was to investigate the oncolytic activity of live-attenuated poliovirus in breast cancer cell lines. MATERIALS AND METHODS The CD155 expression level in two human breast cancer cell lines and a normal breast cell line were evaluated using real-time PCR and flow cytometry. Virus titration was assessed by TCID50. The cytotoxicity of poliovirus on cell line and apoptosis response was investigated by MTT and Caspase 8 and Caspase 9 ELISA kits, respectively. RESULTS This study showed that CD155 gene was expressed significantly (p = 0.001) higher in both human breast cancer cell lines compared to the normal cell line. The protein expression level of CD155 was 98.1%, 96.7%, in MDA_MB231 and MCF_7 cell lines, respectively, whereas the CD155 expression level was 1.3% in MCF_10A. The cytopathic effect of poliovirus in breast cancer cell lines was significantly higher than normal cells (p < 0.05). Extrinsic apoptosis response was more effective than intrinsic apoptosis in both breast cancer cell lines (p < 0.05). CONCLUSION In summary, administration of live-attenuated poliovirus can be a promising treatment to breast cancer. However, in vitro and in vivo studies will be required to evaluate the safety of this strategy.
Collapse
Affiliation(s)
- Hossein Vazeh
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Emad Behboudi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Abdolvahab Moradi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
35
|
Fittje P, Hœlzemer A, Garcia-Beltran WF, Vollmers S, Niehrs A, Hagemann K, Martrus G, Körner C, Kirchhoff F, Sauter D, Altfeld M. HIV-1 Nef-mediated downregulation of CD155 results in viral restriction by KIR2DL5+ NK cells. PLoS Pathog 2022; 18:e1010572. [PMID: 35749424 PMCID: PMC9231786 DOI: 10.1371/journal.ppat.1010572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/05/2022] [Indexed: 01/02/2023] Open
Abstract
Antiviral NK cell activity is regulated through the interaction of activating and inhibitory NK cell receptors with their ligands on infected cells. HLA class I molecules serve as ligands for most killer cell immunoglobulin-like receptors (KIRs), but no HLA class I ligands for the inhibitory NK cell receptor KIR2DL5 have been identified to date. Using a NK cell receptor/ligand screening approach, we observed no strong binding of KIR2DL5 to HLA class I or class II molecules, but confirmed that KIR2DL5 binds to the poliovirus receptor (PVR, CD155). Functional studies using primary human NK cells revealed a significantly decreased degranulation of KIR2DL5+ NK cells in response to CD155-expressing target cells. We subsequently investigated the role of KIR2DL5/CD155 interactions in HIV-1 infection, and showed that multiple HIV-1 strains significantly decreased CD155 expression levels on HIV-1-infected primary human CD4+ T cells via a Nef-dependent mechanism. Co-culture of NK cells with HIV-1-infected CD4+ T cells revealed enhanced anti-viral activity of KIR2DL5+ NK cells against wild-type versus Nef-deficient viruses, indicating that HIV-1-mediated downregulation of CD155 renders infected cells more susceptible to recognition by KIR2DL5+ NK cells. These data show that CD155 suppresses the antiviral activity of KIR2DL5+ NK cells and is downmodulated by HIV-1 Nef protein as potential trade-off counteracting activating NK cell ligands, demonstrating the ability of NK cells to counteract immune escape mechanisms employed by HIV-1. HIV infection remains a global health emergency that has caused around 36 million deaths. NK cells play an important role in the control of HIV-1 infections, and are able to detect and destroy infected cells using a large array of activating and inhibitory receptors, including KIRs. Here we demonstrate that CD155 serves as a functional interaction partner for the inhibitory NK cell receptor KIR2DL5, and that KIR2DL5+ NK cells are inhibited by CD155-expressing target cells. CD155 surface expression on HIV-1-infected CD4+ T cells was downregulated by the HIV-1 Nef protein, resulting in increased anti-viral activity of KIR2DL5+ NK cells through the loss of inhibitory signals. Taken together, these studies demonstrate functional consequences of the novel interaction between KIR2DL5 and CD155 for the antiviral activity of KIR2DL5+ NK cells during HIV-1 infection.
Collapse
Affiliation(s)
- Pia Fittje
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Angelique Hœlzemer
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- First Department of Internal Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Wilfredo F. Garcia-Beltran
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Annika Niehrs
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | | | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Marcus Altfeld
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- * E-mail:
| |
Collapse
|
36
|
Lee BH, Kim JH, Kang KW, Lee SR, Park Y, Sung HJ, Kim BS. PVR (CD155) Expression as a Potential Prognostic Marker in Multiple Myeloma. Biomedicines 2022; 10:1099. [PMID: 35625835 PMCID: PMC9139015 DOI: 10.3390/biomedicines10051099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Poliovirus receptor (PVR, CD155) is upregulated during tumor progression, and PVR expression is associated with poor prognosis in cancer patients; however, prognostic implications for PVR in multiple myeloma (MM) have not been investigated. PVR plays an immunomodulatory role by interacting with CD226, CD96, and TIGIT. TIGIT is a checkpoint inhibitory receptor that can limit adaptive and innate immunity, and it binds to PVR with the highest affinity. We used immunohistochemistry, ELISA, qPCR, and flow cytometry to investigate the role of PVR in MM. PVR was highly expressed in patients with MM, and membrane PVR expression showed a significant correlation with soluble PVR levels. PVR expression was significantly associated with the Revised-International Staging System stage, presence of extramedullary plasmacytoma and bone lesion, percentage of bone marrow plasma cells (BMPCs), and β2-microglobulin levels, suggesting a possible role in advanced stages and metastasis. Furthermore, TIGIT expression was significantly correlated with the percentage of BMPCs. Patients with high PVR expression had significantly shorter overall and progression-free survival, and PVR expression was identified as an independent prognostic factor for poor MM survival. These findings indicate that PVR expression is associated with MM stage and poor prognosis, and is a potential prognostic marker for MM.
Collapse
Affiliation(s)
- Byung-Hyun Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (B.-H.L.); (K.-W.K.); (S.-R.L.); (Y.P.)
| | - Ji-Hea Kim
- Department of Biomedical Science, Graduate School of Medicine, Korea University, Seoul 02841, Korea;
| | - Ka-Won Kang
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (B.-H.L.); (K.-W.K.); (S.-R.L.); (Y.P.)
| | - Se-Ryeon Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (B.-H.L.); (K.-W.K.); (S.-R.L.); (Y.P.)
| | - Yong Park
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (B.-H.L.); (K.-W.K.); (S.-R.L.); (Y.P.)
| | - Hwa-Jung Sung
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (B.-H.L.); (K.-W.K.); (S.-R.L.); (Y.P.)
| | - Byung-Soo Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (B.-H.L.); (K.-W.K.); (S.-R.L.); (Y.P.)
- Department of Biomedical Science, Graduate School of Medicine, Korea University, Seoul 02841, Korea;
| |
Collapse
|
37
|
Karamali N, Ebrahimnezhad S, Khaleghi Moghadam R, Daneshfar N, Rezaiemanesh A. HRD1 in human malignant neoplasms: Molecular mechanisms and novel therapeutic strategy for cancer. Life Sci 2022; 301:120620. [PMID: 35533759 DOI: 10.1016/j.lfs.2022.120620] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
In tumor cells, the endoplasmic reticulum (ER) plays an essential role in maintaining cellular proteostasis by stimulating unfolded protein response (UPR) underlying stress conditions. ER-associated degradation (ERAD) is a critical pathway of the UPR to protect cells from ER stress-induced apoptosis and the elimination of unfolded or misfolded proteins by the ubiquitin-proteasome system (UPS). 3-Hydroxy-3-methylglutaryl reductase degradation (HRD1) as an E3 ubiquitin ligase plays an essential role in the ubiquitination and dislocation of misfolded protein in ERAD. In addition, HRD1 can target other normal folded proteins. In various types of cancer, the expression of HRD1 is dysregulated, and it targets different molecules to develop cancer hallmarks or suppress the progression of the disease. Recent investigations have defined the role of HRD1 in drug resistance in types of cancer. This review focuses on the molecular mechanisms of HRD1 and its roles in cancer pathogenesis and discusses the worthiness of targeting HRD1 as a novel therapeutic strategy in cancer.
Collapse
Affiliation(s)
- Negin Karamali
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Samaneh Ebrahimnezhad
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Reihaneh Khaleghi Moghadam
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Niloofar Daneshfar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
38
|
Combination Blockade of the IL6R/STAT-3 Axis with TIGIT and Its Impact on the Functional Activity of NK Cells against Prostate Cancer Cells. J Immunol Res 2022; 2022:1810804. [PMID: 35465350 PMCID: PMC9020142 DOI: 10.1155/2022/1810804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Background/Aims. Prostate cancer (PCa) is one of the neoplasms with the highest incidence and mortality rate in men worldwide. Advanced stages of the disease are usually very aggressive, and most are treated with chemotherapeutic drugs that generally cause side effects in these patients. However, additional therapeutic targets such as the IL6R/STAT-3 axis and TIGIT have been proposed, mainly due to their relevance in the development of PCa and regulation of NK cell-mediated cytotoxicity. Here, we evaluate the effect of inhibitors directed against these therapeutic targets primarily via an analysis of NK cell function versus prostate cancer cells. Methods. We analyzed the secretion of cytokines, chemokines, and growth factors in 22Rv1, LNCaP, and DU145 cells. In these cells, we also evaluated the expression of NK ligands, IL6R, STAT-3, and phosporylated STAT-3. In NK-92 cells, we evaluated the effects of Stattic (Stt) and tocilizumab (Tcz) on NK receptors. In addition, we assessed if the disruption of the IL6R/STAT-3 pathway and blockade of TIGIT potentiated the cytotoxicity of NK-92 cells versus DU145 cells. Results. DU145 abundantly secretes M-CSF, VEGF, IL-6, CXCL8, and TGF-β. Furthermore, the expression of CD155 was found to increase in accordance with aggressiveness and metastatic status in the prostate cancer cells. Stt and Tcz induce a decrease in STAT-3 phosphorylation in the DU145 cells and, in turn, induce an increase of NKp46 and a decrease of TIGIT expression in NK-92 cells. Finally, the disruption of the IL6R/STAT-3 axis in prostate cancer cells and the blocking of TIGIT on NK-92 were observed to increase the cytotoxicity of NK-92 cells against DU145 cells through an increase in sFasL, granzyme A, granzyme B, and granulysin. Conclusions. Our results reveal that the combined use of inhibitors directed against the IL6R/STAT-3 axis and TIGIT enhances the functional activity of NK cells against castration-resistant prostate cancer cells.
Collapse
|
39
|
Jin A, Yang Y, Su X, Yang W, Liu T, Chen W, Li T, Ding L, Wang H, Wang B, Pan B, Zhou J, Fan J, Yang X, Guo W. High serum soluble CD155 level predicts poor prognosis and correlates with an immunosuppressive tumor microenvironment in hepatocellular carcinoma. J Clin Lab Anal 2022; 36:e24259. [PMID: 35089611 PMCID: PMC8906055 DOI: 10.1002/jcla.24259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/03/2022] [Accepted: 01/15/2022] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies with poor prognosis. There is no research about the clinical significance of serum soluble CD155 (sCD155) level for HCC. We aim to explore the prognostic and diagnostic value of sCD155 in HCC patients undergoing curative resection. Methods Serum sCD155 level in HCC patients was determined by enzyme‐linked immunosorbent assay. The prognostic significance of sCD155 was evaluated by Cox regression and Kaplan–Meier analyses. CD155 expression and biomarkers of immune cells in HCC tissues were detected by immunohistochemistry staining. The diagnostic significance of sCD155 was evaluated using receiver operating characteristic curve. Results Serum sCD155 level was significantly increased in HCC patients and predicted poor prognosis. The prognostic value of sCD155 remained in low recurrent risk subgroups of HCC. Serum sCD155 level was positively related to CD155 expression in HCC tissues. High serum sCD155 level was associated with decreased numbers of CD8+T cells and CD56+NK cells and increased number of CD163+M2 macrophages. Serum sCD155 level had better performance in distinguishing HCC patients from healthy donors and patients with chronic liver conditions than α‐fetoprotein. Among patients with α‐fetoprotein ≤ 20 ng/ml, serum sCD155 level could differentiate HCC patients from non‐HCC patients. Conclusion Serum sCD155 level represents a promising biomarker for diagnosis and prognosis of HCC. High serum sCD155 level may reflect an immunosuppressive tumor microenvironment in HCC.
Collapse
Affiliation(s)
- An‐Li Jin
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
| | - Yi‐Hui Yang
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
| | - Xi Su
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
| | - Wen‐Jing Yang
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
| | - Te Liu
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
- Shanghai Geriatric Institute of Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Wei Chen
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
| | - Tong Li
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
| | - Lin Ding
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
| | - Hao Wang
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
| | - Bei‐Li Wang
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
- Department of Laboratory Medicine Wusong Branch Zhongshan Hospital Fudan University Shanghai China
- Department of Laboratory Medicine Xiamen Branch Zhongshan Hospital Fudan University Xiamen China
| | - Bai‐Shen Pan
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
- Department of Laboratory Medicine Wusong Branch Zhongshan Hospital Fudan University Shanghai China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation Liver Cancer Institute Zhongshan Hospital Fudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education Shanghai China
| | - Jia Fan
- Department of Liver Surgery & Transplantation Liver Cancer Institute Zhongshan Hospital Fudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education Shanghai China
| | - Xin‐Rong Yang
- Department of Liver Surgery & Transplantation Liver Cancer Institute Zhongshan Hospital Fudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education Shanghai China
| | - Wei Guo
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
- Department of Laboratory Medicine Wusong Branch Zhongshan Hospital Fudan University Shanghai China
- Department of Laboratory Medicine Xiamen Branch Zhongshan Hospital Fudan University Xiamen China
- Cancer Center Zhongshan Hospital Fudan University Shanghai China
| |
Collapse
|
40
|
Li JH, O’Sullivan TE. Back to the Future: Spatiotemporal Determinants of NK Cell Antitumor Function. Front Immunol 2022; 12:816658. [PMID: 35082797 PMCID: PMC8785903 DOI: 10.3389/fimmu.2021.816658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
NK cells play a crucial role in host protection during tumorigenesis. Throughout tumor development, however, NK cells become progressively dysfunctional through a combination of dynamic tissue-specific and systemic factors. While a number of immunosuppressive mechanisms present within the tumor microenvironment have been characterized, few studies have contextualized the spatiotemporal dynamics of these mechanisms during disease progression and across anatomical sites. Understanding how NK cell immunosuppression evolves in these contexts will be necessary to optimize NK cell therapy for solid and metastatic cancers. Here, we outline the spatiotemporal determinants of antitumor NK cell regulation, including heterogeneous tumor architecture, temporal disease states, diverse cellular communities, as well as the complex changes in NK cell states produced by the sum of these higher-order elements. Understanding of the signals encountered by NK cells across time and space may reveal new therapeutic targets to harness the full potential of NK cell therapy for cancer.
Collapse
Affiliation(s)
- Joey H. Li
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Medical Scientist Training Program, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Timothy E. O’Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
41
|
Expression of Immune Checkpoints in Malignant Tumors: Therapy Targets and Biomarkers for the Gastric Cancer Prognosis. Diagnostics (Basel) 2021; 11:diagnostics11122370. [PMID: 34943606 PMCID: PMC8700640 DOI: 10.3390/diagnostics11122370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
To increase the effectiveness of anticancer therapy based on immune checkpoint (IC) inhibition, some ICs are being investigated in addition to those used in clinic. We reviewed data on the relationship between PD-L1, B7-H3, B7-H4, IDO1, Galectin-3 and -9, CEACAM1, CD155, Siglec-15 and ADAM17 expression with cancer development in complex with the results of clinical trials on their inhibition. Increased expression of the most studied ICs—PD-L1, B7-H3, and B7-H4—is associated with poor survival; their inhibition is clinically significant. Expression of IDO1, CD155, and ADAM17 is also associated with poor survival, including gastric cancer (GC). The available data indicate that CD155 and ADAM17 are promising targets for immune therapy. However, the clinical trials of anti-IDO1 antibodies have been unsatisfactory. Expression of Galectin-3 and -9, CEACAM1 and Siglec-15 demonstrates a contradictory relationship with patient survival. The lack of satisfactory results of these IC inhibitor clinical trials additionally indicates the complex nature of their functioning. In conclusion, in many cases it is important to analyze the expression of other participants of the immune response besides target IC. The PD-L1, B7-H3, B7-H4, IDO1 and ADAM17 may be considered as candidates for prognosis markers for GC patient survival.
Collapse
|
42
|
Transcriptomic adaptation during skeletal muscle habituation to eccentric or concentric exercise training. Sci Rep 2021; 11:23930. [PMID: 34907264 PMCID: PMC8671437 DOI: 10.1038/s41598-021-03393-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Eccentric (ECC) and concentric (CON) contractions induce distinct muscle remodelling patterns that manifest early during exercise training, the causes of which remain unclear. We examined molecular signatures of early contraction mode-specific muscle adaptation via transcriptome-wide network and secretome analyses during 2 weeks of ECC- versus CON-specific (downhill versus uphill running) exercise training (exercise 'habituation'). Despite habituation attenuating total numbers of exercise-induced genes, functional gene-level profiles of untrained ECC or CON were largely unaltered post-habituation. Network analysis revealed 11 ECC-specific modules, including upregulated extracellular matrix and immune profiles plus downregulated mitochondrial pathways following untrained ECC. Of 3 CON-unique modules, 2 were ribosome-related and downregulated post-habituation. Across training, 376 ECC-specific and 110 CON-specific hub genes were identified, plus 45 predicted transcription factors. Secreted factors were enriched in 3 ECC- and/or CON-responsive modules, with all 3 also being under the predicted transcriptional control of SP1 and KLF4. Of 34 candidate myokine hubs, 1 was also predicted to have elevated expression in skeletal muscle versus other tissues: THBS4, of a secretome-enriched module upregulated after untrained ECC. In conclusion, distinct untrained ECC and CON transcriptional responses are dampened after habituation without substantially shifting molecular functional profiles, providing new mechanistic candidates into contraction-mode specific muscle regulation.
Collapse
|
43
|
Han G, Yang G, Hao D, Lu Y, Thein K, Simpson BS, Chen J, Sun R, Alhalabi O, Wang R, Dang M, Dai E, Zhang S, Nie F, Zhao S, Guo C, Hamza A, Czerniak B, Cheng C, Siefker-Radtke A, Bhat K, Futreal A, Peng G, Wargo J, Peng W, Kadara H, Ajani J, Swanton C, Litchfield K, Ahnert JR, Gao J, Wang L. 9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy. Nat Commun 2021; 12:5606. [PMID: 34556668 PMCID: PMC8460828 DOI: 10.1038/s41467-021-25894-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Immune checkpoint therapy (ICT) provides substantial clinical benefits to cancer patients, but a large proportion of cancers do not respond to ICT. To date, the genomic underpinnings of primary resistance to ICT remain elusive. Here, we performed immunogenomic analysis of data from TCGA and clinical trials of anti-PD-1/PD-L1 therapy, with a particular focus on homozygous deletion of 9p21.3 (9p21 loss), one of the most frequent genomic defects occurring in ~13% of all cancers. We demonstrate that 9p21 loss confers "cold" tumor-immune phenotypes, characterized by reduced abundance of tumor-infiltrating leukocytes (TILs), particularly, T/B/NK cells, altered spatial TILs patterns, diminished immune cell trafficking/activation, decreased rate of PD-L1 positivity, along with activation of immunosuppressive signaling. Notably, patients with 9p21 loss exhibited significantly lower response rates to ICT and worse outcomes, which were corroborated in eight ICT trials of >1,000 patients. Further, 9p21 loss synergizes with PD-L1/TMB for patient stratification. A "response score" was derived by incorporating 9p21 loss, PD-L1 expression and TMB levels in pre-treatment tumors, which outperforms PD-L1, TMB, and their combination in identifying patients with high likelihood of achieving sustained response from otherwise non-responders. Moreover, we describe potential druggable targets in 9p21-loss tumors, which could be exploited to design rational therapeutic interventions.
Collapse
Affiliation(s)
- Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guoliang Yang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dapeng Hao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Lu
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kyaw Thein
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Benjamin S Simpson
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Jianfeng Chen
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ryan Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Omar Alhalabi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Minghao Dang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enyu Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaojun Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fengqi Nie
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shuangtao Zhao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ameer Hamza
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chao Cheng
- Department of Medicine, Epidemiology and Population Science, Baylor College of Medicine, Houston, TX, USA
| | - Arlene Siefker-Radtke
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krishna Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Kevin Litchfield
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Jordi Rodon Ahnert
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA.
| |
Collapse
|
44
|
BCL9 regulates CD226 and CD96 checkpoints in CD8 + T cells to improve PD-1 response in cancer. Signal Transduct Target Ther 2021; 6:313. [PMID: 34417435 PMCID: PMC8379253 DOI: 10.1038/s41392-021-00730-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
To date, the overall response rate of PD-1 blockade remains unsatisfactory, partially due to limited understanding of tumor immune microenvironment (TIME). B-cell lymphoma 9 (BCL9), a key transcription co-activator of the Wnt pathway, is highly expressed in cancers. By genetic depletion and pharmacological inhibition of BCL9 in tumors, we found that BCL9 suppression reduced tumor growth, promoted CD8+ T cell tumor infiltration, and enhanced response to anti-PD-1 treatment in mouse colon cancer models. To determine the underlying mechanism of BCL9's role in TIME regulation, single-cell RNA-seq was applied to reveal cellular landscape and transcription differences in the tumor immune microenvironment upon BCL9 inhibition. CD155-CD226 and CD155-CD96 checkpoints play key roles in cancer cell/CD8+ T cell interaction. BCL9 suppression induces phosphorylation of VAV1 in CD8+ T cells and increases GLI1 and PATCH expression to promote CD155 expression in cancer cells. In The Cancer Genome Atlas database analysis, we found that BCL9 expression is positively associated with CD155 and negatively associated with CD226 expression. BCL9 is also linked to adenomatous polyposis coli (APC) mutation involved in patient survival following anti-PD-1 treatment. This study points to cellular diversity within the tumor immune microenvironment affected by BCL9 inhibition and provides new insights into the role of BCL9 in regulating CD226 and CD96 checkpoints.
Collapse
|
45
|
Duraivelan K, Samanta D. Emerging roles of the nectin family of cell adhesion molecules in tumour-associated pathways. Biochim Biophys Acta Rev Cancer 2021; 1876:188589. [PMID: 34237351 DOI: 10.1016/j.bbcan.2021.188589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
Tumour cells achieve maximum survival by modifying cellular machineries associated with processes such as cell division, migration, survival, and apoptosis, resulting in genetically complex and heterogeneous populations. While nectin and nectin-like cell adhesion molecules control development and maintenance of multicellular organisation in higher vertebrates by mediating cell-cell adhesion and related signalling processes, recent studies indicate that they also critically regulate growth and development of different types of cancers. In this review, we detail current knowledge about the role of nectin family members in various tumours. Furthermore, we also analyse the seemingly opposing roles of some members of nectin family in tumour-associated pathways, as they function as both tumour suppressors and oncogenes. Understanding this functional duality of nectin family in tumours will further our knowledge of molecular mechanisms regulating tumour development and progression, and contribute to the advancement of tumour diagnosis and therapy.
Collapse
Affiliation(s)
- Kheerthana Duraivelan
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
46
|
Yoshikawa K, Ishida M, Yanai H, Tsuta K, Sekimoto M, Sugie T. Immunohistochemical analysis of CD155 expression in triple-negative breast cancer patients. PLoS One 2021; 16:e0253176. [PMID: 34115802 PMCID: PMC8195407 DOI: 10.1371/journal.pone.0253176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction CD155 is an immune checkpoint protein. Its overexpression is an indicator of poor prognosis in some types of cancer. However, the significance of CD155 expression in patients with triple-negative breast cancer, and the relationship between CD155 and programmed death-ligand 1 (PD-L1) expression, have not yet been analyzed in detail. Methods Using immunohistochemical staining and tissue microarrays, we analyzed the expression profiles of CD155 and PD-L1 in 61 patients with triple-negative breast cancer. Relapse-free survival and overall survival rates were compared according to CD155 expression. The correlation between CD155 expression and clinicopathological factors, including PD-L1 expression (using SP142 and 73–10 assays), was also examined. Results CD155 expression was noted in 25 patients (41.0%) in this cohort. CD155 expression did not correlate with pathological stage, histological grade, Ki-67 labeling index, or stromal tumor-infiltrating lymphocytes. Only PD-L1 expression in tumor cells by SP142 assay significantly correlated with CD155 expression (p = 0.035); however, PD-L1 expression in tumor cells by 73–10 assay did not show a correlation (p = 0.115). Using the 73–10 assay, 59% of patients showed CD155 and/or PD-L1 expression in tumor cells. Moreover, using the SP142 assay, 63.3% of patients showed CD155 and/or PD-L1 expression in immune cells. CD155 expression did not correlate with either relapse-free survival or overall survival (p = 0.485 and 0.843, respectively). Conclusions CD155 may be a novel target for antitumor immunotherapy. The results of this study indicate that CD155 may expand the pool of candidates with triple-negative breast cancer who could benefit from antitumor immunotherapy.
Collapse
Affiliation(s)
- Katsuhiro Yoshikawa
- Department of Pathology and Clinical Laboratory, Kansai Medical University, Osaka, Japan
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | - Mitsuaki Ishida
- Department of Pathology and Clinical Laboratory, Kansai Medical University, Osaka, Japan
- * E-mail:
| | - Hirotsugu Yanai
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | - Koji Tsuta
- Department of Pathology and Clinical Laboratory, Kansai Medical University, Osaka, Japan
| | | | - Tomoharu Sugie
- Department of Surgery, Kansai Medical University, Osaka, Japan
| |
Collapse
|
47
|
Artesunate-induced ATG5-related autophagy enhances the cytotoxicity of NK92 cells on endometrial cancer cells via interactions between CD155 and CD226/TIGIT. Int Immunopharmacol 2021; 97:107705. [PMID: 33933849 DOI: 10.1016/j.intimp.2021.107705] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Uterine corpus endometrial carcinoma (UCEC) is the most prevalent gynecologic cancer in developed countries and lacks efficient therapeutic strategies. Artesunate (ART), a well-modified derivate of artemisinin, exerts potent anti-cancer effects apart from its classical anti-malaria feature. Autophagy is a universal double-edged process in cell survival, and CD155 is a novel immune checkpoint highly expressed in numerous cancers. However, the relationships among ART, autophagy, and CD155 remain unclear in UCEC. In this study, we discovered that ART not only inhibited proliferation and migration, promoted apoptosis, but also induced autophagy in UCEC cells. Meanwhile, ART-induced autophagy elevated the level of CD155 in UCEC cells, thereby enhancing the cytotoxicity of natural killer cell line (NK92) by modulating the interactions between CD155 and its receptors in NK92 cells via upregulation of co-stimulator CD226 and downregulation of co-inhibitor TIGIT. Additionally, ART regulated CD155 partially via ATG5, and knockdown of ATG5 dampened the expression of CD155 in UCEC cells, thus decreasing the cytotoxicity of NK92 cells. Therefore, this study demonstrated the dual anti-cancer effects of ART as it could induce cell-killing directly and indirectly, which provides novel insights into the anti-cancer mechanisms of ART on UCEC.
Collapse
|
48
|
Zhang H, Yang Z, Du G, Cao L, Tan B. CD155-Prognostic and Immunotherapeutic Implications Based on Multiple Analyses of Databases Across 33 Human Cancers. Technol Cancer Res Treat 2021; 20:1533033820980088. [PMID: 33576304 PMCID: PMC7887689 DOI: 10.1177/1533033820980088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Growing evidence has suggested that CD155 participates in the regulation of many biological processes ranging cell growth, invasion, and migration from regulation of immune responses in most malignances. However, the impact of prognostic value and CD115-related immune response on the survival in multiple cancers remains incompletely clear. In our study, we assessed the prognostic significance and immune-associated mechanism of CD155 based on data from multiple databases and methods, including UCSC Xena, Oncomine, PrognoScan. We identified that CD155 was commonly upregulated in most human cancers, and High expression of CD155 was closely correlated with unfavorable clinical outcomes in 10/33 of human cancers, while CD155 at low level was responsible for better survival in KICH and PAAD. More intriguingly, CD155 expression had a significant interaction with immune function in several tumors by analyzing Tumor mutational burden and microsatellite in stability, immune score and stromal score. The correlation between immune infiltration and CD155 expression also indicated that CD155 expression positively correlated with CD4+ T cells in Head and Neck squamous cell carcinoma, Lung adenocarcinoma and Colon adenocarcinoma, while had inversely interaction with CD8+ T in Kidney renal clear cell carcinoma and Head and Neck squamous cell carcinoma as well as Tregs in Skin Cutaneous Melanoma, Head and Neck squamous cell carcinoma and Bladder Urothelial Carcinoma. These findings indicate CD155 correlates with cancer immunotherapy function. In conclusions, our observations revealed CD155 might function as immune-associated system in the development of human cancers, and acted as a promising prognostic and therapeutic target against human cancers.
Collapse
Affiliation(s)
- Hongpan Zhang
- Department of Oncology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Zhihao Yang
- BaoTou Medical College, Inner Mongolia University of Science and Technology, Baotou, People's Republic of China
| | - Guobo Du
- Department of Oncology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Lu Cao
- Department of Oncology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - BangXian Tan
- Department of Oncology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| |
Collapse
|
49
|
Alfarra H, Weir J, Grieve S, Reiman T. Targeting NK Cell Inhibitory Receptors for Precision Multiple Myeloma Immunotherapy. Front Immunol 2020; 11:575609. [PMID: 33304346 PMCID: PMC7693637 DOI: 10.3389/fimmu.2020.575609] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Innate immune surveillance of cancer involves multiple types of immune cells including the innate lymphoid cells (ILCs). Natural killer (NK) cells are considered the most active ILC subset for tumor elimination because of their ability to target infected and malignant cells without prior sensitization. NK cells are equipped with an array of activating and inhibitory receptors (IRs); hence NK cell activity is controlled by balanced signals between the activating and IRs. Multiple myeloma (MM) is a hematological malignancy that is known for its altered immune landscape. Despite improvements in therapeutic options for MM, this disease remains incurable. An emerging trend to improve clinical outcomes in MM involves harnessing the inherent ability of NK cells to kill malignant cells by recruiting NK cells and enhancing their cytotoxicity toward the malignant MM cells. Following the clinical success of blocking T cell IRs in multiple cancers, targeting NK cell IRs is drawing increasing attention. Relevant NK cell IRs that are attractive candidates for checkpoint blockades include KIRs, NKG2A, LAG-3, TIGIT, PD-1, and TIM-3 receptors. Investigating these NK cell IRs as pathogenic agents and therapeutic targets could lead to promising applications in MM therapy. This review describes the critical role of enhancing NK cell activity in MM and discusses the potential of blocking NK cell IRs as a future MM therapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
- Cytotoxicity, Immunologic/drug effects
- Humans
- Immune Checkpoint Inhibitors/adverse effects
- Immune Checkpoint Inhibitors/therapeutic use
- Immunotherapy, Adoptive/adverse effects
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/transplantation
- Molecular Targeted Therapy
- Multiple Myeloma/drug therapy
- Multiple Myeloma/immunology
- Multiple Myeloma/metabolism
- Multiple Myeloma/pathology
- Receptors, Natural Killer Cell/antagonists & inhibitors
- Receptors, Natural Killer Cell/metabolism
- Signal Transduction
- Tumor Escape
- Tumor Microenvironment
Collapse
Affiliation(s)
- Helmi Alfarra
- Department of Biology, University of New Brunswick, Saint John, NB, Canada
| | - Jackson Weir
- Department of Biology, University of New Brunswick, Saint John, NB, Canada
| | - Stacy Grieve
- Department of Biology, University of New Brunswick, Saint John, NB, Canada
| | - Tony Reiman
- Department of Biology, University of New Brunswick, Saint John, NB, Canada
- Department of Oncology, Saint John Regional Hospital, Saint John, NB, Canada
- Department of Medicine, Dalhousie University, Saint John, NB, Canada
| |
Collapse
|
50
|
Abstract
Checkpoint inhibitors have become an efficient way to treat cancers. Indeed, anti-CTLA-4, anti-PD1, and anti-PDL-1 antibodies are now used as therapies for cancers. However, while these therapies are very efficient in certain tumors, they remain poorly efficient in others. This might be explained by the immune infiltrate, the expression of target molecules, and the influence of the tumor microenvironment. It is therefore critical to identify checkpoint antigens that represent alternative targets for immunotherapies. PVR-like molecules play regulatory roles in immune cell functions. These proteins are expressed by different cell types and have been shown to be upregulated in various malignancies. PVR and Nectin-2 are expressed by tumor cells as well as myeloid cells, while TIGIT, CD96, and DNAM-1 are expressed on effector lymphoid cells. PVR is able to bind DNAM-1, CD96, and TIGIT, which results in two distinct profiles of effector cell activation. Indeed, while binding to DNAM-1 induces the release of cytokines and cytotoxicity of cytotoxic effector cells, binding TIGIT induces an immunosuppressive and non-cytotoxic profile. PVR is also able to bind CD96, which induces an immunosuppressive response in murine models. Unfortunately, in humans, results remain contradictory, and this interaction might induce the activation or the suppression of the immune response. Similarly, Nectin-2 was shown to bind TIGIT and to induce regulatory profiles in effectors cells such as NK and T cells. Therefore, these data highlight the potential of each of the molecules of the “PVR–TIGIT axis” as a potential target for immune checkpoint therapy. However, many questions remain to be answered to fully understand the mechanisms of this synapse, in particular for human CD96 and Nectin-2, which are still understudied. Here, we review the recent advances in “PVR–TIGIT axis” research and discuss the potential of targeting this axis by checkpoint immunotherapies.
Collapse
Affiliation(s)
- Laurent Gorvel
- Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Aix Marseille Université, Institut Paoli - Calmettes, Marseille, France
| | - Daniel Olive
- Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Aix Marseille Université, Institut Paoli - Calmettes, Marseille, France
| |
Collapse
|