1
|
Wang L, Mao Y, Tang Y, Zhao J, Wang A, Li C, Wu H, Wu Q, Zhao H. Rutin distribution in Tartary buckwheat: Identifying prime dietary sources through comparative analysis of post-processing treatments. Food Chem 2025; 464:141641. [PMID: 39427614 DOI: 10.1016/j.foodchem.2024.141641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/06/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Rutin is a crucial bioactive compound that determines the nutritional value of Tartary buckwheat (TB). However, the potential of utilizing TB as a dietary source of rutin for human consumption remains largely unexplored. This study aims to address these knowledge gaps by conducting a detailed analysis of rutin content distribution in TB tissues. Our findings revealed a significant variation in rutin content across different plant tissues. Notably, higher levels of rutin were found in embryos and cotyledons compared to other tissues, highlighting them as the primary sites of rutin accumulation in TB seeds and sprouts. Additional research on the processing of TB showed that sprouts and seeds retain high rutin levels even after boiling, steaming, deep-frying, stir-frying, and popping. Comparative analysis of different TB-derived products confirmed that cooked seeds and sprouts can serve as significant dietary sources of rutin. This study offers a foundational framework for the development of future dietary recommendations and applications of TB.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China
| | - Yuanbin Mao
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China
| | - Yu Tang
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China
| | - Jiali Zhao
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China
| | - Anhu Wang
- Xichang University, 615013 Xichang, Sichuan, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China.
| |
Collapse
|
2
|
Xu J, Wei Z, Liao J, Tao K, Zhang J, Jiang Y, Niu Y, Zheng Y, Zhang L, Wei X. Loss of flavonoids homeostasis leads to pistillody in sua-CMS of Nicotiana tabacum. BMC PLANT BIOLOGY 2025; 25:111. [PMID: 39863899 PMCID: PMC11763115 DOI: 10.1186/s12870-025-06122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana. tabacum L. K326 and Nicotiana suaveolens). Transcriptome data analysis presented that the expression levels of B-class MADS genes, including pMADS1, GLO1, GLO2, pMADS2.1, pMADS2.2, significantly reduced in the pistil-like structure of sua-CMS. DEGs were enriched in flavonoid and phenylpropanoid biosynthesis pathways. Transcriptome and metabolomics analysis revealed that the expression levels of CHI/CHS (key enzymes regulating flavonoid synthesis), and the contents of flavonoids reduced significantly in the pistil-like structures of sua-CMS. Chemical fluorescence staining assay showed that reactive oxygen species (ROS) levels were higher in the pistil-like structure of sua-CMS. Application of external flavonoids (hesperetin) reduced the frequency of pistillody and ROS levels. These results suggested that the metabolism of flavonoids played important roles in regulating pistillody through ROS in sua-CMS. Our study provides new insights into the regulatory mechanism of pistillody in plants.
Collapse
Affiliation(s)
- Jie Xu
- Yuxi Zhongyan Tobacco Seed CO., Ltd, Yuxi, Yunan, 653100, China
| | - Zhuo Wei
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Crop Diseases & Pests, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan University, Kunming, 650500, Yunnan Province, China
| | - Jugou Liao
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Crop Diseases & Pests, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan University, Kunming, 650500, Yunnan Province, China
| | - Keliang Tao
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Crop Diseases & Pests, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan University, Kunming, 650500, Yunnan Province, China
| | - Junpeng Zhang
- School of Engineering, Dali University, Dali, Yunnan Province, China
| | - Yu Jiang
- School of Engineering, Dali University, Dali, Yunnan Province, China
| | - Yongzhi Niu
- Yuxi Zhongyan Tobacco Seed CO., Ltd, Yuxi, Yunan, 653100, China
| | - Yunye Zheng
- Yuxi Zhongyan Tobacco Seed CO., Ltd, Yuxi, Yunan, 653100, China
| | - Limeng Zhang
- Yuxi Zhongyan Tobacco Seed CO., Ltd, Yuxi, Yunan, 653100, China.
| | - Xuemei Wei
- School of Engineering, Dali University, Dali, Yunnan Province, China.
| |
Collapse
|
3
|
Dong XM, Zhang W, Tu M, Zhang SB. Spatial and Temporal Regulation of Flower Coloration in Cymbidium lowianum. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39834034 DOI: 10.1111/pce.15398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Flower color is a crucial trait that attracts pollinators and determines the ornamental value of floral crops. Cymbidium lowianum, one of the most important breeding parent of Cymbidium hybrids, has two flower morphs (normal and albino) that differ in flower lip color. However, the molecular mechanisms underlying flower color formation in C. lowianum are not well understood. In this study, comparative metabolomic analysis between normal and albino flower lip tissues indicated that cyanidin-3-O-glucoside content was significantly higher in red epichiles than in other lip tissues. This finding suggests that cyanidin-3-O-glucoside is responsible for color variation and differentiation in the lip in C. lowianum. We also found that red coloration in C. lowianum flower is correlated with high levels of F3'H expression; further, anthocyanins, carotenoids and chlorophyll coordinate to influence sepal and petal coloration during flower development. In transgenic Arabidopsis lines, overexpression of F3'H increased anthocyanin concentration, overexpression of BCH increased carotenoid concentration, whereas overexpression of HEMG and CHLI both increased chlorophyll concentration. Identification and assessment of several transcription factors revealed that MYB308-1 activates BCH, MYB111 and PIF4-2 activate HEMG and CHLI expression during flower development. Importantly, MYB14-1 shows interaction with PIF4-2, and appears to act as a connector between anthocyanin and chlorophyll biosynthesis by either activating F3'H expression or inhibiting CHLI expression. These results indicate that, in C. lowianum, variation in flower color and differentiation of lip color patterns are primarily regulated by the types and concentrations of flavonoids; further, carotenoids and chlorophyll also influence flower coloration during development.
Collapse
Affiliation(s)
- Xiu-Mei Dong
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
| | - Wei Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
| | - Mengling Tu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
| |
Collapse
|
4
|
Huang X, He Y, Zhang K, Shi Y, Zhao H, Lai D, Lin H, Wang X, Yang Z, Xiao Y, Li W, Ouyang Y, Woo SH, Quinet M, Georgiev MI, Fernie AR, Liu X, Zhou M. Evolution and Domestication of a Novel Biosynthetic Gene Cluster Contributing to the Flavonoid Metabolism and High-Altitude Adaptability of Plants in the Fagopyrum Genus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403603. [PMID: 39312476 DOI: 10.1002/advs.202403603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/15/2024] [Indexed: 09/25/2024]
Abstract
The diversity of secondary metabolites is an important means for plants to cope with the complex and ever-changing terrestrial environment. Plant biosynthetic gene clusters (BGCs) are crucial for the biosynthesis of secondary metabolites. The domestication and evolution of BGCs and how they affect plant secondary metabolites biosynthesis and environmental adaptation are still not fully understood. Buckwheat exhibits strong resistance and abundant secondary metabolites, especially flavonoids, allowing it to thrive in harsh environments. A non-canonical BGC named UFGT3 cluster is identified, which comprises a phosphorylase kinase (PAK), two transcription factors (MADS1/2), and a glycosyltransferase (UFGT3), forming a complete molecular regulatory module involved in flavonoid biosynthesis. This cluster is selected during Tartary buckwheat domestication and is widely present in species of the Fagopyrum genus. In wild relatives of cultivated buckwheat, a gene encoding anthocyanin glycosyltransferase (AGT), which glycosylates pelargonidin into pelargonidin-3-O-glucoside, is found inserted into this cluster. The pelargonidin-3-O-glucoside can help plants resist UV stress, endowing wild relatives with stronger high-altitude adaptability. This study provides a new research paradigm for the evolutionary dynamics of plant BGCs, and offers new perspectives for exploring the mechanism of plant ecological adaptability driven by environmental stress through the synthesis of secondary metabolites.
Collapse
Affiliation(s)
- Xu Huang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuqi He
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kaixuan Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yaliang Shi
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Dili Lai
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiangru Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhimin Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yawen Xiao
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Li
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yinan Ouyang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sun Hee Woo
- Department of Agronomy, Chungbuk National University, Cheongju, 28644, South Korea
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université Catholique de Louvain, Croix du Sud 45, boîte L7.07.13, Louvain-la-Neuve, B-1348, Belgium
| | - Milen I Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, 4000, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Xu Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meiliang Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
5
|
Feng Y, Li J, Yin H, Shen J, Liu W. Multi-omics analysis revealed the mechanism underlying flavonol biosynthesis during petal color formation in Camellia Nitidissima. BMC PLANT BIOLOGY 2024; 24:847. [PMID: 39251901 PMCID: PMC11382509 DOI: 10.1186/s12870-024-05332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/25/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Camellia nitidissima is a rare, prized camellia species with golden-yellow flowers. It has a high ornamental, medicinal, and economic value. Previous studies have shown substantial flavonol accumulation in C. nitidissima petals during flower formation. However, the mechanisms underlying the golden flower formation in C. nitidissima remain largely unknown. RESULTS We performed an integrative analysis of the transcriptome, proteome, and metabolome of the petals at five flower developmental stages to construct the regulatory network underlying golden flower formation in C. nitidissima. Metabolome analysis revealed the presence of 323 flavonoids, and two flavonols, quercetin glycosides and kaempferol glycosides, were highly accumulated in the golden petals. Transcriptome and proteome sequencing suggested that the flavonol biosynthesis-related genes and proteins upregulated and the anthocyanin and proanthocyanidin biosynthesis-related genes and proteins downregulated in the golden petal stage. Further investigation revealed the involvement of MYBs and bHLHs in flavonoid biosynthesis. Expression analysis showed that flavonol synthase 2 (CnFLS2) was highly expressed in the petals, and its expression positively correlated with flavonol content at all flower developmental stages. Transient overexpression of CnFLS2 in the petals increased flavonol content. Furthermore, correlation analysis showed that the jasmonate (JA) pathways positively correlated with flavonol biosynthesis, and exogenous methyl jasmonate (MeJA) treatment promoted CnFLS2 expression and flavonol accumulation. CONCLUSIONS Our findings showed that the JA-CnFLS2 module regulates flavonol biosynthesis during golden petal formation in C. nitidissima.
Collapse
Affiliation(s)
- Yi Feng
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Jiyuan Li
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Hengfu Yin
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Jian Shen
- Jinhua Forestry Technology Promotion Station of Zhejiang Province, Jinhua, Zhejiang, 321017, China.
| | - Weixin Liu
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China.
| |
Collapse
|
6
|
Hong Y, Wei R, Li C, Cai H, Chen E, Pan X, Zhang W. Establishment of virus-induced gene-silencing system in Juglans sigillata Dode and functional analysis of JsFLS2 and JsFLS4. Gene 2024; 913:148385. [PMID: 38493973 DOI: 10.1016/j.gene.2024.148385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Juglans sigillata Dode is one of the important tree species in southwest China, and it has significant economic and ecological value. However, there is still a lack of effective methods to identify the functional genes of J. sigillata. By verifying the model plant tobacco, the pTRV2::JsPDS vector was able to cause photobleaching. This study showed that photobleaching occurred 24 and 30 d after the silencing vector was infected with aseptic seedlings and fruits of J. sigillata, respectively. When the OD600 was 0.6, and the injection dose was 500 μL, the gene silencing efficiency of aseptic seedlings was the highest at 16.7 %, significantly better than other treatments. Moreover, when the OD600 was 0.8, and the injection dose was 500 μL, the gene silencing efficiency in the walnut fruit was the highest (20 %). In addition, the VIGS system was successfully used to silence JsFLS2 and JsFLS4 genes in J. sigillata. This study also showed that the flavonol content and gene expression in the treatment group were decreased compared to the control group. In addition, the proteins transcribed and translated from the JsFLS4 gene may have higher catalytic activity for dihydroquercetin. The above results indicate that the TRV-mediated VIGS system can be an ideal tool for studying J. sigillata gene function.
Collapse
Affiliation(s)
- Yanyang Hong
- College of Agriculture, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China; Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China
| | - Rong Wei
- College of Agriculture, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China; Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China
| | - Chunxiang Li
- College of Agriculture, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China; Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China
| | - Hu Cai
- College of Agriculture, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China; Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China
| | - Erjuan Chen
- College of Agriculture, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China
| | - Xuejun Pan
- College of Agriculture, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China; Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China.
| | - Wen'e Zhang
- College of Agriculture, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China.
| |
Collapse
|
7
|
Wang Y, Lu RS, Li MH, Lu XY, Sun XQ, Zhang YM. Unraveling the Molecular Basis of Color Variation in Dioscorea alata Tubers: Integrated Transcriptome and Metabolomics Analysis. Int J Mol Sci 2024; 25:2057. [PMID: 38396734 PMCID: PMC10889544 DOI: 10.3390/ijms25042057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Dioscorea alata L. (Dioscoreaceae) is a widely cultivated tuber crop with variations in tuber color, offering potential value as health-promoting foods. This study focused on the comparison of D. alata tubers possessing two distinct colors, white and purple, to explore the underlying mechanisms of color variation. Flavonoids, a group of polyphenols known to influence plant color and exhibit antioxidant properties, were of particular interest. The total phenol and total flavonoid analyses revealed that purple tubers (PTs) have a significantly higher content of these metabolites than white tubers (WTs) and a higher antioxidant activity than WTs, suggesting potential health benefits of PT D. alata. The transcriptome analysis identified 108 differentially expressed genes associated with the flavonoid synthesis pathway, with 57 genes up-regulated in PTs, including CHS, CHI, DFR, FLS, F3H, F3'5'H, LAR, ANS, and ANR. The metabolomics analysis demonstrated that 424 metabolites, including 104 flavonoids and 8 tannins, accumulated differentially in PTs and WTs. Notably, five of the top ten up-regulated metabolites were flavonoids, including 6-hydroxykaempferol-7-O-glucoside, pinocembrin-7-O-(6″-O-malonyl)glucoside, 6-hydroxykaempferol-3,7,6-O-triglycoside, 6-hydroxykaempferol-7-O-triglycoside, and cyanidin-3-O-(6″-O-feruloyl)sophoroside-5-O-glucoside, with the latter being a precursor to anthocyanin synthesis. Integrating transcriptome and metabolomics data revealed that the 57 genes regulated 20 metabolites within the flavonoid synthesis pathway, potentially influencing the tubers' color variation. The high polyphenol content and antioxidant activity of PTs indicate their suitability as nutritious and health-promoting food sources. Taken together, the findings of this study provide insights into the molecular basis of tuber color variation in D. alata and underscore the potential applications of purple tubers in the food industry and human health promotion. The findings contribute to the understanding of flavonoid biosynthesis and pigment accumulation in D. alata tubers, opening avenues for future research on enhancing the nutritional quality of D. alata cultivars.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Y.W.); (R.-S.L.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Rui-Sen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Y.W.); (R.-S.L.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Ming-Han Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Y.W.); (R.-S.L.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Xin-Yu Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Y.W.); (R.-S.L.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Xiao-Qin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Y.W.); (R.-S.L.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Yan-Mei Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Y.W.); (R.-S.L.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| |
Collapse
|
8
|
Li S, Chen J, Guo X, Li X, Shen Q, Fu X, Tang D. Metabolic Patterns of Flavonoid and Its Key Gene Expression Characteristics of Five Cultivars of Tulipa gesneriana during Flower Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:459. [PMID: 38337991 PMCID: PMC10857304 DOI: 10.3390/plants13030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Flower color is one of the most important ornamental traits of tulips (Tulipa gesneriana). Five typical tulip cultivars were selected to identify the flavonoid components and analyze their key gene expression in their tepals. Firstly, after preliminary determination of the pigment type, the flavonoids were identified by UPLC-Q-TOF-MS. A total of 17 anthoxanthins were detected in the five cultivars. The total anthoxanthin content in the white tulip and the red tulip showed a similar decreasing trend, while an increasing trend was observed in the black tulip. Similarly, a total of 13 anthocyanins were detected in five tulip cultivars. The black tulip contained the largest number of anthocyanins, mainly delphinidin derivatives (Dp) and cyanidin derivatives (Cy). The total anthocyanin content (TAC) in the orange, red, and black cultivars was higher than that in the white and yellow cultivars and presented an overall increase trend along with the flower development. TgCHS, TgFLS, TgF3H, TgF3'H, TgF3'5'H, and TgDFR, as key structural genes, were involved in the flavonoid synthesis pathway, and the expression patterns of these genes are basically consistent with the components and accumulation patterns of flavonoids mentioned above. Taken together, the flower color in tulips was closely related to the composition and content of anthocyanins and anthoxanthins, which were indeed regulated by certain key structural genes in the flavonoid pathway.
Collapse
Affiliation(s)
- Shu Li
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Chen
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueying Guo
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Li
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Shen
- Shanghai Flower Port Enterprise Development Co., Ltd., Shanghai 200003, China
| | - Xueqing Fu
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongqin Tang
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Ding Z, Fu L, Wang B, Ye J, Ou W, Yan Y, Li M, Zeng L, Dong X, Tie W, Ye X, Yang J, Xie Z, Wang Y, Guo J, Chen S, Xiao X, Wan Z, An F, Zhang J, Peng M, Luo J, Li K, Hu W. Metabolic GWAS-based dissection of genetic basis underlying nutrient quality variation and domestication of cassava storage root. Genome Biol 2023; 24:289. [PMID: 38098107 PMCID: PMC10722858 DOI: 10.1186/s13059-023-03137-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Metabolites play critical roles in regulating nutritional qualities of plants, thereby influencing their consumption and human health. However, the genetic basis underlying the metabolite-based nutrient quality and domestication of root and tuber crops remain largely unknown. RESULTS We report a comprehensive study combining metabolic and phenotypic genome-wide association studies to dissect the genetic basis of metabolites in the storage root (SR) of cassava. We quantify 2,980 metabolic features in 299 cultivated cassava accessions. We detect 18,218 significant marker-metabolite associations via metabolic genome-wide association mapping and identify 12 candidate genes responsible for the levels of metabolites that are of potential nutritional importance. Me3GT, MeMYB4, and UGT85K4/UGT85K5, which are involved in flavone, anthocyanin, and cyanogenic glucoside metabolism, respectively, are functionally validated through in vitro enzyme assays and in vivo gene silencing analyses. We identify a cluster of cyanogenic glucoside biosynthesis genes, among which CYP79D1, CYP71E7b, and UGT85K5 are highly co-expressed and their allelic combination contributes to low linamarin content. We find MeMYB4 is responsible for variations in cyanidin 3-O-glucoside and delphinidin 3-O-rutinoside contents, thus controlling SR endothelium color. We find human selection affects quercetin 3-O-glucoside content and SR weight per plant. The candidate gene MeFLS1 is subject to selection during cassava domestication, leading to decreased quercetin 3-O-glucoside content and thus increased SR weight per plant. CONCLUSIONS These findings reveal the genetic basis of cassava SR metabolome variation, establish a linkage between metabolites and agronomic traits, and offer useful resources for genetically improving the nutrition of cassava and other root crops.
Collapse
Affiliation(s)
- Zehong Ding
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lili Fu
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Bin Wang
- Wuhan Metware Biotechnology Co., Ltd, Wuhan, China
| | - Jianqiu Ye
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenjun Ou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yan Yan
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Meiying Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Liwang Zeng
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- Institute of Scientific and Technical Information, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xuekui Dong
- Wuhan Healthcare Metabolic Biotechnology Co., Ltd, Wuhan, China
| | - Weiwei Tie
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Xiaoxue Ye
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jinghao Yang
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhengnan Xie
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yu Wang
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jianchun Guo
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xinhui Xiao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhongqing Wan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Feifei An
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiaming Zhang
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Ming Peng
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jie Luo
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
- Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China.
| | - Kaimian Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| | - Wei Hu
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
10
|
Kang Y, Li Y, Zhang T, Wang P, Liu W, Zhang Z, Yu W, Wang J, Wang J, Zhou Y. Integrated metabolome, full-length sequencing, and transcriptome analyses unveil the molecular mechanisms of color formation of the canary yellow and red bracts of Bougainvillea × buttiana 'Chitra'. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1441-1461. [PMID: 37648415 DOI: 10.1111/tpj.16439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Bougainvillea is a typical tropical flower of great ornamental value due to its colorful bracts. The molecular mechanism behind color formation is not well-understood. Therefore, this research conducted metabolome analysis, transcriptome analysis, and multi-flux full-length sequencing in two color bracts of Bougainvillea × buttiana 'Chitra' to investigate the significantly different metabolites (SDMs) and differentially expressed genes (DEGs). Overall, 261 SDMs, including 62 flavonoids and 26 alkaloids, were detected, and flavonols and betalains were significantly differentially accumulated among the two bracts. Furthermore, the complete-length transcriptome of Bougainvillea × buttiana was also developed, which contained 512 493 non-redundant isoforms. Among them, 341 210 (66.58%) displayed multiple annotations in the KOG, GO, NR, KEGG, Pfam, Swissprot, and NT databases. RNA-seq findings revealed that 3610 DEGs were identified between two bracts. Co-expression analysis demonstrated that the DEGs and SDMs involved in flavonol metabolism (such as CHS, CHI, F3H, FLS, CYP75B1, kaempferol, and quercetin) and betacyanin metabolism (DODA, betanidin, and betacyanins) were the main contributors for the canary yellow and red bract formation, respectively. Further investigation revealed that several putative transcription factors (TFs) might interact with the promoters of the genes mentioned above. The expression profiles of the putative TFs displayed that they may positively and negatively regulate the structural genes' expression profiles. The data revealed a potential regulatory network between important genes, putative TFs, and metabolites in the flavonol and betacyanin biosynthesis of Bougainvillea × buttiana 'Chitra' bracts. These findings will serve as a rich genetic resource for future studies that could create new color bracts.
Collapse
Affiliation(s)
- Yuqian Kang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Yuxin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Tingting Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
- Xiangyang Academy of Agricultural Sciences, Xiangyang, 441057, Hubei, People's Republic of China
| | - Peng Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Wen Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Zhao Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Wengang Yu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Jian Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Jian Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| |
Collapse
|
11
|
Xiao Z, Wang J, Jiang N, Fan C, Xiang X, Liu W. An LcMYB111-LcHY5 Module Differentially Activates an LcFLS Promoter in Different Litchi Cultivars. Int J Mol Sci 2023; 24:16817. [PMID: 38069137 PMCID: PMC10706726 DOI: 10.3390/ijms242316817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Flavonol synthase (FLS) is the crucial enzyme of the flavonol biosynthetic pathways, and its expression is tightly regulated in plants. In our previous study, two alleles of LcFLS,LcFLS-A and LcFLS-B, have been identified in litchi, with extremely early-maturing (EEM) cultivars only harboring LcFLS-A, while middle-to-late-maturing (MLM) cultivars only harbor LcFLS-B. Here, we overexpressed both LcFLS alleles in tobacco, and transgenic tobacco produced lighter-pink flowers and showed increased flavonol levels while it decreased anthocyanin levels compared to WT. Two allelic promoters of LcFLS were identified, with EEM cultivars only harboring proLcFLS-A, while MLM cultivars only harbor proLcFLS-B. One positive and three negative R2R3-MYB transcription regulators of LcFLS expression were identified, among which only positive regulator LcMYB111 showed a consistent expression pattern with LcFLS, which both have higher expression in EEM than that of MLM cultivars. LcMYB111 were further confirmed to specifically activate proLcFLS-A with MYB-binding element (MBE) while being unable to activate proLcFLS-B with mutated MBE (MBEm). LcHY5 were also identified and can interact with LcMYB111 to promote LcFLS expression. Our study elucidates the function of LcFLS and its differential regulation in different litchi cultivars for the first time.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China; (Z.X.); (J.W.); (N.J.); (C.F.); (X.X.)
| |
Collapse
|
12
|
Rudenko NN, Vetoshkina DV, Marenkova TV, Borisova-Mubarakshina MM. Antioxidants of Non-Enzymatic Nature: Their Function in Higher Plant Cells and the Ways of Boosting Their Biosynthesis. Antioxidants (Basel) 2023; 12:2014. [PMID: 38001867 PMCID: PMC10669185 DOI: 10.3390/antiox12112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Plants are exposed to a variety of abiotic and biotic stresses leading to increased formation of reactive oxygen species (ROS) in plant cells. ROS are capable of oxidizing proteins, pigments, lipids, nucleic acids, and other cell molecules, disrupting their functional activity. During the process of evolution, numerous antioxidant systems were formed in plants, including antioxidant enzymes and low molecular weight non-enzymatic antioxidants. Antioxidant systems perform neutralization of ROS and therefore prevent oxidative damage of cell components. In the present review, we focus on the biosynthesis of non-enzymatic antioxidants in higher plants cells such as ascorbic acid (vitamin C), glutathione, flavonoids, isoprenoids, carotenoids, tocopherol (vitamin E), ubiquinone, and plastoquinone. Their functioning and their reactivity with respect to individual ROS will be described. This review is also devoted to the modern genetic engineering methods, which are widely used to change the quantitative and qualitative content of the non-enzymatic antioxidants in cultivated plants. These methods allow various plant lines with given properties to be obtained in a rather short time. The most successful approaches for plant transgenesis and plant genome editing for the enhancement of biosynthesis and the content of these antioxidants are discussed.
Collapse
Affiliation(s)
- Natalia N. Rudenko
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Daria V. Vetoshkina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Tatiana V. Marenkova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Maria M. Borisova-Mubarakshina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| |
Collapse
|
13
|
Li Y, Ran L, Mo T, Liu N, Zeng J, Liang A, Wang C, Suo Q, Chen Z, Wang Y, Fang N, Xu S, Xiao Y. Yellow Petal locus GaYP promotes flavonol biosynthesis and yellow coloration in petals of Asiatic cotton (Gossypium arboreum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:98. [PMID: 37027050 DOI: 10.1007/s00122-023-04329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Yellow Petal locus GaYP is located on chromosome 11 and encodes a Sg6 R2R3-MYB transcription factor, which promotes flavonol biosynthesis and yellow coloration in Asiatic cotton petals. Petal color is pivotal to ornamental value and reproduction of plants. Yellow coloration in plant petals is mainly attributed to colorants including carotenoids, aurones and some flavonols. To date, the genetic regulatory mechanism of flavonol biosynthesis in petals is still to be elucidated. Here, we employed Asiatic cottons with or without deep yellow coloration in petals to address this question. Multi-omic and biochemical analysis revealed significantly up-regulated transcription of flavonol structural genes and increased levels of flavonols, especially gossypetin and 6-hydroxykaempferol, in yellow petals of Asiatic cotton. Furthermore, the Yellow Petal gene (GaYP) was mapped on chromosome 11 by using a recombinant inbred line population. It was found that GaYP encoded a transcriptional factor belonging to Sg6 R2R3-MYB proteins. GaYP could bind to the promoter of flavonol synthase gene (GaFLS) and activate the transcription of downstream genes. Knocking out of GaYP or GaFLS homologs in upland cotton largely eliminated flavonol accumulation and pale yellow coloration in petals. Our results indicated that flavonol synthesis, up-regulated by the R2R3-MYB transcription activator GaYP, was the causative factor for yellow coloration of Asiatic cotton petals. In addition, knocking out of GaYP homologs also led to decrease in anthocyanin accumulation and petal size in upland cotton, suggesting that GaYP and its homologs might modulate developmental or physiological processes beyond flavonol biosynthesis.
Collapse
Affiliation(s)
- Yaohua Li
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Lingfang Ran
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Tong Mo
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Nian Liu
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Jianyan Zeng
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Aimin Liang
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Chuannan Wang
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Qingwei Suo
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Zhong Chen
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Yi Wang
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Nianjuan Fang
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Shijia Xu
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Yuehua Xiao
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China.
| |
Collapse
|
14
|
Yang C, Bai Y, Halitschke R, Gase K, Baldwin G, Baldwin IT. Exploring the metabolic basis of growth/defense trade-offs in complex environments with Nicotiana attenuata plants cosilenced in NaMYC2a/b expression. THE NEW PHYTOLOGIST 2023; 238:349-366. [PMID: 36636784 DOI: 10.1111/nph.18732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
In response to challenges from herbivores and competitors, plants use fitness-limiting resources to produce (auto)toxic defenses. Jasmonate signaling, mediated by MYC2 transcription factors (TF), is thought to reconfigure metabolism to minimize these formal costs of defense and optimize fitness in complex environments. To study the context-dependence of this metabolic reconfiguration, we cosilenced NaMYC2a/b by RNAi in Nicotiana attenuata and phenotyped plants in the field and increasingly realistic glasshouse setups with competitors and mobile herbivores. NaMYC2a/b had normal phytohormonal responses, and higher growth and fitness in herbivore-reduced environments, but were devastated in high herbivore-load environments in the field due to diminished accumulations of specialized metabolites. In setups with competitors and mobile herbivores, irMYC2a/b plants had lower fitness than empty vector (EV) in single-genotype setups but increased fitness in mixed-genotype setups. Correlational analyses of metabolic, resistance, and growth traits revealed the expected defense/growth associations for most sectors of primary and specialized metabolism. Notable exceptions were some HGL-DTGs and phenolamides that differed between single-genotype and mixed-genotype setups, consistent with expectations of a blurred functional trichotomy of metabolites. MYC2 TFs mediate the reconfiguration of primary and specialized metabolic sectors to allow plants to optimize their fitness in complex environments.
Collapse
Affiliation(s)
- Caiqiong Yang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Yuechen Bai
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Gundega Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| |
Collapse
|
15
|
Huang X, Wu Y, Zhang S, Yang H, Wu W, Lyu L, Li W. Overexpression of RuFLS2 Enhances Flavonol-Related Substance Contents and Gene Expression Levels. Int J Mol Sci 2022; 23:ijms232214230. [PMID: 36430708 PMCID: PMC9699159 DOI: 10.3390/ijms232214230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
As an emerging third-generation fruit, blackberry has high nutritional value and is rich in polyphenols, flavonoids and anthocyanins. Flavonoid biosynthesis and metabolism is a popular research topic, but no related details have been reported for blackberry. Based on previous transcriptome data from this research group, two blackberry flavonol synthase genes were identified in this study, and the encoded proteins were subjected to bioinformatics analysis. RuFLS1 and RuFLS2 are both hydrophobic acidic proteins belonging to the 2OG-Fe(II) dioxygenase superfamily. RuFLS2 was expressed at 27.93-fold higher levels than RuFLS1 in red-purple fruit by RNA-seq analysis. Therefore, RuFLS2-overexpressing tobacco was selected for functional exploration. The identification of metabolites from transgenic tobacco showed significantly increased contents of flavonoids, such as apigenin 7-glucoside, kaempferol 3-O-rutinoside, astragalin, and quercitrin. The high expression of RuFLS2 also upregulated the expression levels of NtF3H and NtFLS in transgenic tobacco. The results indicate that RuFLS2 is an important functional gene regulating flavonoid biosynthesis and provides an important reference for revealing the molecular mechanism of flavonoid accumulation in blackberry fruit.
Collapse
Affiliation(s)
- Xin Huang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing 210014, China
- Correspondence: (Y.W.); (W.L.); Tel.: +86-25-8434-7022 (Y.W.); +86-25-8542-8513 (W.L.)
| | - Shanshan Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Hao Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
- Correspondence: (Y.W.); (W.L.); Tel.: +86-25-8434-7022 (Y.W.); +86-25-8542-8513 (W.L.)
| |
Collapse
|
16
|
Cheng C, Guo Z, Li H, Mu X, Wang P, Zhang S, Yang T, Cai H, Wang Q, Lü P, Zhang J. Integrated metabolic, transcriptomic and chromatin accessibility analyses provide novel insights into the competition for anthocyanins and flavonols biosynthesis during fruit ripening in red apple. FRONTIERS IN PLANT SCIENCE 2022; 13:975356. [PMID: 36212335 PMCID: PMC9540549 DOI: 10.3389/fpls.2022.975356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Fruit ripening is accompanied by a wide range of metabolites and global changes in gene expression that are regulated by various factors. In this study, we investigated the molecular differences in red apple 'Hongmantang' fruits at three ripening stages (PS1, PS5 and PS9) through a comprehensive analysis of metabolome, transcriptome and chromatin accessibility. Totally, we identified 341 and 195 differentially accumulated metabolites (DAMs) in comparison I (PS5_vs_PS1) and comparison II (PS9_vs_PS5), including 57 and 23 differentially accumulated flavonoids (DAFs), respectively. Intriguingly, among these DAFs, anthocyanins and flavonols showed opposite patterns of variation, suggesting a possible competition between their biosynthesis. To unveil the underlying mechanisms, RNA-Seq and ATAC-Seq analyses were performed. A total of 852 DEGs significantly enriched in anthocyanin metabolism and 128 differential accessible regions (DARs) significantly enriched by MYB-related motifs were identified as up-regulated in Comparison I but down-regulated in Comparison II. Meanwhile, the 843 DEGs significantly enriched in phenylalanine metabolism and the 364 DARs significantly enriched by bZIP-related motifs showed opposite trends. In addition, four bZIPs and 14 MYBs were identified as possible hub genes regulating the biosynthesis of flavonols and anthocyanins. Our study will contribute to the understanding of anthocyanins and flavonols biosynthesis competition in red apple fruits during ripening.
Collapse
Affiliation(s)
- Chunzhen Cheng
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Ziwei Guo
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Hua Li
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaopeng Mu
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Pengfei Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Shuai Zhang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Tingzhen Yang
- Fruit Research Institute, Shanxi Agricultural University, Jinzhong, China
| | - Huacheng Cai
- Fruit Research Institute, Shanxi Agricultural University, Jinzhong, China
| | - Qian Wang
- Fruit Research Institute, Shanxi Agricultural University, Jinzhong, China
| | - Peitao Lü
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiancheng Zhang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
17
|
Silencing of Dihydroflavonol 4-reductase in Chrysanthemum Ray Florets Enhances Flavonoid Biosynthesis and Antioxidant Capacity. PLANTS 2022; 11:plants11131681. [PMID: 35807633 PMCID: PMC9269342 DOI: 10.3390/plants11131681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 01/08/2023]
Abstract
Flavonoid biosynthesis requires the activities of several enzymes, which form weakly-bound, ordered protein complexes termed metabolons. To decipher flux regulation in the flavonoid biosynthetic pathway of chrysanthemum (Chrysanthemum morifolium Ramat), we suppressed the gene-encoding dihydroflavonol 4-reductase (DFR) through RNA interference (RNAi)-mediated post-transcriptional gene silencing under a floral-specific promoter. Transgenic CmDFR-RNAi chrysanthemum plants were obtained by Agrobacterium-mediated transformation. Genomic PCR analysis of CmDFR-RNAi chrysanthemums propagated by several rounds of stem cuttings verified stable transgene integration into the genome. CmDFR mRNA levels were reduced by 60–80% in CmDFR-RNAi lines compared to those in wild-type (WT) plants in ray florets, but not leaves. Additionally, transcript levels of flavonoid biosynthetic genes were highly upregulated in ray florets of CmDFR-RNAi chrysanthemum relative to those in WT plants, while transcript levels in leaves were similar to WT. Total flavonoid contents were high in ray florets of CmDFR-RNAi chrysanthemums, but flavonoid contents of leaves were similar to WT, consistent with transcript levels of flavonoid biosynthetic genes. Ray florets of CmDFR-RNAi chrysanthemums exhibited stronger antioxidant capacity than those of WT plants. We propose that post-transcriptional silencing of CmDFR in ray florets modifies metabolic flux, resulting in enhanced flavonoid content and antioxidant activity.
Collapse
|
18
|
Xiao Q, Zhu Y, Cui G, Zhang X, Hu R, Deng Z, Lei L, Wu L, Mei L. A Comparative Study of Flavonoids and Carotenoids Revealed Metabolite Responses for Various Flower Colorations Between Nicotiana tabacum L. and Nicotiana rustica L. FRONTIERS IN PLANT SCIENCE 2022; 13:828042. [PMID: 35548319 PMCID: PMC9083207 DOI: 10.3389/fpls.2022.828042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/24/2022] [Indexed: 05/20/2023]
Abstract
Tobacco is a model plant for studying flower coloration. Flavonoids and carotenoids were reported to contribute to the flower color in many plants. We investigated the mechanism underlying flower color formation in tobacco by comparing the profiling flavonoids and carotenoids between various species Nicotiana tabacum L. and Nicotiana rustica L., as their flowers commonly presented red (pink) and yellow (orange), respectively. The metabolomes were conducted by UPLC-ESI-MS/MS system. The main findings were as follows: (1) A total of 31 flavonoids and 36 carotenoids were identified in all four cultivars involved in N. tabacum and N. rustica. (2) Flavonoids and carotenoids tended to concentrate in the red flowers (N. tabacum) and yellow flowers (N. rustica), respectively. (3) About eight flavonoids and 12 carotenoids were primarily screened out for metabolic biomarkers, such as the robust biomarker involving kaempferol-3-o-rut, quercetin-glu, rutin, lutein, and β-carotene. This is the first research of systematic metabolome involving both flavonoids and carotenoids in tobacco flower coloration. The metabolic mechanism concluded that flavonoids and carotenoids mainly contributed to red (pink) and yellow (orange) colors of the tobacco flowers, respectively. Our finding will provide essential insights into characterizing species and modifying flower color in tobacco breeding through genetic improvement or regulation of featured metabolic synthesis.
Collapse
Affiliation(s)
- Qinzhi Xiao
- Yongzhou Tobacco Monopoly Bureau of Hunan, Yongzhou, China
- College of Agronomy, Hunan Agricultural University, Changsha, China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yueyi Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guoxian Cui
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Xianwen Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Risheng Hu
- Yongzhou Tobacco Monopoly Bureau of Hunan, Yongzhou, China
| | - Zhengyu Deng
- Yongzhou Tobacco Monopoly Bureau of Hunan, Yongzhou, China
| | - Lei Lei
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liwen Wu
- College of Bioscience and Technology, Hubei Minzu University, Enshi, China
| | - Lei Mei
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Lei Mei
| |
Collapse
|
19
|
Zheng Y, Chen Y, Liu Z, Wu H, Jiao F, Xin H, Zhang L, Yang L. Important Roles of Key Genes and Transcription Factors in Flower Color Differences of Nicotianaalata. Genes (Basel) 2021; 12:1976. [PMID: 34946925 PMCID: PMC8701347 DOI: 10.3390/genes12121976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
Nicotiana alata is an ornamental horticultural plant with a variety of flower colors and a long flowering period. The genes in four different colored N. alata (white, purple, red, and lemon green) were analyzed to explain the differences in flower color using transcriptomes. A total of 32 differential expression genes in the chlorophyll biosynthesis pathway and 41 in the anthocyanin biosynthesis pathway were identified. The enrichment analysis showed that the chlorophyll biosynthesis pathway and anthocyanin biosynthesis pathway play critical roles in the color differences of N. alata. The HEMA of the chlorophyll biosynthesis pathway was up-regulated in lemon green flowers. Compared with white flowers, in the red and purple flowers, F3H, F3'5'H and DFR were significantly up-regulated, while FLS was significantly down-regulated. Seventeen differential expression genes homologous to transcription factor coding genes were obtained, and the homologues of HY5, MYB12, AN1 and AN4 were also involved in flower color differences. The discovery of these candidate genes related to flower color differences is significant for further research on the flower colors formation mechanism and color improvements of N. alata.
Collapse
Affiliation(s)
- Yalin Zheng
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (Y.C.); (Z.L.); (H.W.); (L.Z.)
| | - Yudong Chen
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (Y.C.); (Z.L.); (H.W.); (L.Z.)
| | - Zhiguo Liu
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (Y.C.); (Z.L.); (H.W.); (L.Z.)
| | - Hui Wu
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (Y.C.); (Z.L.); (H.W.); (L.Z.)
| | - Fangchan Jiao
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China;
| | - Haiping Xin
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Li Zhang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (Y.C.); (Z.L.); (H.W.); (L.Z.)
| | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (Y.C.); (Z.L.); (H.W.); (L.Z.)
| |
Collapse
|
20
|
Park S, Lee H, Min MK, Ha J, Song J, Lim CJ, Oh J, Lee SB, Lee JY, Kim BG. Functional Characterization of BrF3'H, Which Determines the Typical Flavonoid Profile of Purple Chinese Cabbage. FRONTIERS IN PLANT SCIENCE 2021; 12:793589. [PMID: 34956292 PMCID: PMC8693655 DOI: 10.3389/fpls.2021.793589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Flavonols and anthocyanins are the two major classes of flavonoids in Brassica rapa. To elucidate the flavonoid biosynthetic pathway in Chinese cabbage (B. rapa L. subsp. pekinensis), we analyzed flavonoid contents in two varieties of Chinese cabbage with normal green (5546) and purple (8267) leaves. The 8267 variety accumulates significantly higher levels of quercetin, isorhamnetin, and cyanidin than the 5546 variety, indicating that 3'-dihydroxylated flavonoids are more prevalent in the purple than in the green variety. Gene expression analysis showed that the expression patterns of most phenylpropanoid pathway genes did not correspond to the flavonoid accumulation patterns in 5546 and 8267 varieties, except for BrPAL1.2 while most early and late flavonoid biosynthetic genes are highly expressed in 8267 variety. In particular, the flavanone 3'-hydroxylase BrF3'H (Bra009312) is expressed almost exclusively in 8267. We isolated the coding sequences of BrF3'H from the two varieties and found that both sequences encode identical amino acid sequences and are highly conserved with F3'H genes from other species. An in vitro enzymatic assay demonstrated that the recombinant BrF3'H protein catalyzes the 3'-hydroxylation of a wide range of 4'-hydroxylated flavonoid substrates. Kinetic analysis showed that kaempferol is the most preferred substrate and dihydrokaempferol (DHK) is the poorest substrate for recombinant BrF3'H among those tested. Transient expression of BrF3'H in Nicotiana benthamiana followed by infiltration of naringenin and DHK as substrates resulted in eriodictyol and quercetin production in the infiltrated leaves, demonstrating the functionality of BrF3'H in planta. As the first functional characterization of BrF3'H, our study provides insight into the molecular mechanism underlying purple coloration in Chinese cabbage.
Collapse
Affiliation(s)
- Sangkyu Park
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, JeonJu, South Korea
| | - Hyo Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, JeonJu, South Korea
| | - Myung Ki Min
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, JeonJu, South Korea
| | - Jihee Ha
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, JeonJu, South Korea
| | - Jaeeun Song
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, JeonJu, South Korea
| | - Chan Ju Lim
- Institute of Biotechnology and Breeding, Asiaseed Inc., Icheon, South Korea
| | - Jinpyo Oh
- Institute of Biotechnology and Breeding, Asiaseed Inc., Icheon, South Korea
| | - Saet Buyl Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, JeonJu, South Korea
| | - Jong-Yeol Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, JeonJu, South Korea
| | - Beom-Gi Kim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, JeonJu, South Korea
| |
Collapse
|
21
|
Sun W, Zhou N, Wang Y, Sun S, Zhang Y, Ju Z, Yi Y. Characterization and functional analysis of RdDFR1 regulation on flower color formation in Rhododendron delavayi. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:203-210. [PMID: 34801974 DOI: 10.1016/j.plaphy.2021.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Rhododendron delavayi is a popular ornamental plant with globular flowers noted for their bright red color, but very limited studies have been reported on its flower color formation. In this study, we successfully isolated a novel DFR gene (RdDFR1) from red flowers of Rhododendron delavayi. Multiple sequence alignments revealed that RdDFR1 had the conserved NADP and substrate binding domain, and was classified into Asn-type DFR. Meanwhile, quantitative real-time PCR analysis showed that transcript levels of RdDFR1 matched the accumulation patterns of anthocyanins during flower development, hinting its potential role involved in anthocyanin biosynthesis. Then in vitro enzymatic analysis indicated that recombinant RdDFR1 protein could catalyze the production of leucoanthocyanidins from dihydroquercetin and dihydromyricetin. Furthermore, the in planta assay, using Arabidopsis thaliana dfr mutant (tt3-1) and tobacco, displayed that RdDFR1 transgenes recovered the defective proanthocyanidin and anthocyanin biosynthesis at seed coats, hypocotyl as well as cotyledon, and altered the flowers color of tobacco from pale pink to dark pink which demonstrated its function as dihydroflavonol 4-reductase in vivo. In summary, our findings suggest that RdDFR1 plays a crucial role in the biosynthesis of anthocyanin and will also make a contribution to understand the mechanisms of flower color formation in Rhododendron delavayi.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountain Area of Southwest of China, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Nana Zhou
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountain Area of Southwest of China, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Yuhan Wang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountain Area of Southwest of China, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Shiyu Sun
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountain Area of Southwest of China, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Yan Zhang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountain Area of Southwest of China, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Zhigang Ju
- Pharmacy College, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| | - Yin Yi
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountain Area of Southwest of China, School of Life Science, Guizhou Normal University, Guiyang, China; Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, China
| |
Collapse
|
22
|
Liu W, Feng Y, Yu S, Fan Z, Li X, Li J, Yin H. The Flavonoid Biosynthesis Network in Plants. Int J Mol Sci 2021; 22:ijms222312824. [PMID: 34884627 PMCID: PMC8657439 DOI: 10.3390/ijms222312824] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived from the phenylpropanoid metabolic pathway, and have a basic structure that comprises a C15 benzene ring structure of C6-C3-C6. Over recent decades, a considerable number of studies have been directed at elucidating the mechanisms involved in flavonoid biosynthesis in plants. In this review, we systematically summarize the flavonoid biosynthetic pathway. We further assemble an exhaustive map of flavonoid biosynthesis in plants comprising eight branches (stilbene, aurone, flavone, isoflavone, flavonol, phlobaphene, proanthocyanidin, and anthocyanin biosynthesis) and four important intermediate metabolites (chalcone, flavanone, dihydroflavonol, and leucoanthocyanidin). This review affords a comprehensive overview of the current knowledge regarding flavonoid biosynthesis, and provides the theoretical basis for further elucidating the pathways involved in the biosynthesis of flavonoids, which will aid in better understanding their functions and potential uses.
Collapse
Affiliation(s)
- Weixin Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yi Feng
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Suhang Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhengqi Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xinlei Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence: (J.L.); (H.Y.); Tel.: +86-571-6334-6372 (J.L.)
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence: (J.L.); (H.Y.); Tel.: +86-571-6334-6372 (J.L.)
| |
Collapse
|
23
|
Zaragozá C, Monserrat J, Mantecón C, Villaescusa L, Álvarez-Mon MÁ, Zaragozá F, Álvarez-Mon M. Binding and antiplatelet activity of quercetin, rutin, diosmetin, and diosmin flavonoids. Biomed Pharmacother 2021; 141:111867. [PMID: 34229245 DOI: 10.1016/j.biopha.2021.111867] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
Platelets exert an essential role in vascular inflammation and thrombosis. Flavonoids are natural compounds employed for the clinical management of vascular disorders preventing capillary permeability, working as phlebotonics and improving the blood rheology, although their mechanism of action remains partially unknown. The effects of quercetin, rutin, diosmetin and diosmin were investigated in platelet activation utilizing blood from healthy and non-treated volunteers. The arrangement of the different activation states of platelets and GPIIb/IIIa receptor occupation was computed by flow cytometry working with calcium ionophore as pro-aggregant to provoke platelet activation and aggregation. The flavonoids studied demonstrated relevant antiplatelet activity through the blocked of GPIIb/IIIa receptors, the suppression of the platelet activation, as well as the pro-aggregate effect of calcium ionophore. Therefore, whichever of the active ingredients examined could be beneficious in the prevention of cardiovascular disease and this article also contributes to elucidate a new mechanism of action for these drugs.
Collapse
Affiliation(s)
- Cristina Zaragozá
- Pharmacology Unit, Biomedical Sciences Department, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain.
| | - Jorge Monserrat
- Laboratory of Immune System Diseases and Oncology, Department of Medicine and Medical Specialties, University of Alcalá, Alcala de Henares, 28805 Madrid, Spain; Institute Ramón y Cajal for Health Research (IRYCIS). Biomedical Institute for Liver and Gut Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Mantecón
- Pharmacology Unit, Biomedical Sciences Department, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain
| | - Lucinda Villaescusa
- Pharmacology Unit, Biomedical Sciences Department, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain
| | - Miguel Ángel Álvarez-Mon
- Laboratory of Immune System Diseases and Oncology, Department of Medicine and Medical Specialties, University of Alcalá, Alcala de Henares, 28805 Madrid, Spain; Institute Ramón y Cajal for Health Research (IRYCIS). Biomedical Institute for Liver and Gut Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry and Medical Psychology, University Hospital Infanta Leonor, Madrid, Spain
| | - Francisco Zaragozá
- Pharmacology Unit, Biomedical Sciences Department, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain
| | - Melchor Álvarez-Mon
- Laboratory of Immune System Diseases and Oncology, Department of Medicine and Medical Specialties, University of Alcalá, Alcala de Henares, 28805 Madrid, Spain; Institute Ramón y Cajal for Health Research (IRYCIS). Biomedical Institute for Liver and Gut Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain; Internal Medicine and Rheumatology/Autoimmunity Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
24
|
Zhao Y, Su X, Wang X, Wang M, Chi X, Aamir Manzoor M, Li G, Cai Y. Comparative Genomic Analysis of TCP Genes in Six Rosaceae Species and Expression Pattern Analysis in Pyrus bretschneideri. Front Genet 2021; 12:669959. [PMID: 34079584 PMCID: PMC8165447 DOI: 10.3389/fgene.2021.669959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
TCP is a plant-specific transcription factor that plays an important role in flowering, leaf development and other physiological processes. In this study, we identified a total of 155 TCP genes: 34 in Pyrus bretschneideri, 19 in Fragaria vesca, 52 in Malus domestica, 19 in Prunus mume, 17 in Rubus occidentalis and 14 in Prunus avium. The evolutionary relationship of the TCP gene family was examined by constructing a phylogenetic tree, tracking gene duplication events, performing a sliding window analysis. The expression profile analysis and qRT-PCR results of different tissues showed that PbTCP10 were highly expressed in the flowers. These results indicated that PbTCP10 might participated in flowering induction in pear. Expression pattern analysis of different developmental stages showed that PbTCP14 and PbTCP15 were similar to the accumulation pattern of fruit lignin and the stone cell content. These two genes might participate in the thickening of the secondary wall during the formation of stone cells in pear. Subcellular localization showed that PbTCPs worked in the nucleus. This study explored the evolution of TCP genes in six Rosaceae species, and the expression pattern of TCP genes in different tissues of “Dangshan Su” pear. Candidate genes related to flower induction and stone cell formation were identified. In summary, our research provided an important theoretical basis for improving pear fruit quality and increasing fruit yield by molecular breeding.
Collapse
Affiliation(s)
- Yu Zhao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xueqiang Su
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xinya Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Mengna Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xujing Chi
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | | | - Guohui Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
25
|
Cloning and Functional Characterization of Dihydroflavonol 4-Reductase Gene Involved in Anthocyanin Biosynthesis of Chrysanthemum. Int J Mol Sci 2020; 21:ijms21217960. [PMID: 33120878 PMCID: PMC7663526 DOI: 10.3390/ijms21217960] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 11/25/2022] Open
Abstract
Dihydroflavonol 4-reductase (DFR) catalyzes a committed step in anthocyanin and proanthocyanidin biosynthesis by reducing dihydroflavonols to leucoanthocyanidins. However, the role of this enzyme in determining flower color in the economically important crop chrysanthemum (Chrysanthemum morifolium Ramat.) is unknown. Here, we isolated cDNAs encoding DFR from two chrysanthemum cultivars, the white-flowered chrysanthemum “OhBlang” (CmDFR-OB) and the red-flowered chrysanthemum “RedMarble” (CmDFR-RM) and identified variations in the C-terminus between the two sequences. An enzyme assay using recombinant proteins revealed that both enzymes catalyzed the reduction of dihydroflavonol substrates, but CmDFR-OB showed significantly reduced DFR activity for dihydrokaempferol (DHK) substrate as compared with CmDFR-RM. Transcript levels of anthocyanin biosynthetic genes were consistent with the anthocyanin contents at different flower developmental stages of both cultivars. The inplanta complementation assay, using Arabidopsis thaliana dfr mutant (tt3-1), revealed that CmDFR-RM, but not CmDFR-OB, transgenes restored defective anthocyanin biosynthesis of this mutant at the seedling stage, as well as proanthocyanidin biosynthesis in the seed. The difference in the flower color of two chrysanthemums can be explained by the C-terminal variation of CmDFR combined with the loss of CmF3H expression during flower development.
Collapse
|