1
|
Dushenko MV, Abdullaev SA, Ignatov MA, Osipov AN. Comparative Study of Mitochondrial DNA Abnormalities in Mesenchymal Stem Cells after Exposure to X-Ray Radiation in Low and Medium Doses. Bull Exp Biol Med 2025:10.1007/s10517-025-06370-6. [PMID: 40156742 DOI: 10.1007/s10517-025-06370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Indexed: 04/01/2025]
Abstract
The effects of low- and medium-dose X-rays on mitochondrial function in mesenchymal stem (stromal) cells (MSCs) were compared. Irradiation at a dose of 80 mGy did not lead to mitochondrial disorders in MSCs by all analyzed parameters, while 24 h after irradiation at a dose of 2000 mGy, damage to mitochondrial and nuclear DNA was recorded, as well as the initiation of replicative synthesis of mitochondrial DNA involving damaged molecules, which led to an increase in the level of heteroplasmy. The increased level of mitochondrial DNA heteroplasmy after irradiation at a dose of 2000 mGy was accompanied by a decrease in the expression of genes involved in the process of oxidative phosphorylation and regulating mitochondrial dynamics.
Collapse
Affiliation(s)
- M V Dushenko
- N. N. Semenov Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - S A Abdullaev
- N. N. Semenov Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia.
- Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency of Russia, Moscow, Russia.
| | - M A Ignatov
- N. N. Semenov Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - A N Osipov
- N. N. Semenov Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency of Russia, Moscow, Russia
| |
Collapse
|
2
|
Gureev AP, Nesterova VV, Sadovnikova IS. Long-range PCR as a tool for evaluating mitochondrial DNA damage: Principles, benefits, and limitations of the technique. DNA Repair (Amst) 2025; 146:103812. [PMID: 39848024 DOI: 10.1016/j.dnarep.2025.103812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Mitochondrial DNA (mtDNA) is often more susceptible to damage compared to nuclear DNA. This is due to its localization in the mitochondrial matrix, where a large portion of reactive oxygen species are produced. Mitochondria do not have histones and mtDNA is only slightly protected by histone-like proteins and is believed to have less efficient repair mechanisms. In this review, we discuss the long-range PCR method, which allows for the effective detection of mtDNA damage. The method is based on the assumption that various types of DNA lesions can interfere the progress of DNA polymerase, resulting in reduced amplification efficiency. It can be used to estimate the number of additional (above background) lesions in mtDNA. The review outlines the evolution of the methodology, its variations, applications in a wide range of model organisms, the advantages of the method and its limitations, as well as ways to overcome these limitations. Over the past two decades, the use of long-range PCR has allowed the study of mtDNA repair mechanisms, the characteristics of mitochondrial genome damage in various neurodegenerative diseases, aging, ischemic and oncological processes, as well as in anticancer therapy. The assessment of mtDNA damage has also been proposed for use in environmental biomonitoring. This review provides a critical evaluation of the various variations of this method, summarizes the accumulated data, and discusses the role of mtDNA damage in different organs at the organismal level.
Collapse
Affiliation(s)
- Artem P Gureev
- Departments of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia.
| | - Veronika V Nesterova
- Departments of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Irina S Sadovnikova
- Departments of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| |
Collapse
|
3
|
Wu YL, Christodoulou AG, Beumer JH, Rigatti LH, Fisher R, Ross M, Watkins S, Cortes DRE, Ruck C, Manzoor S, Wyman SK, Stapleton MC, Goetzman E, Bharathi S, Wipf P, Wang H, Tan T, Christner SM, Guo J, Lo CWY, Epperly MW, Greenberger JS. Mitigation of Fetal Radiation Injury from Mid-Gestation Total-body Irradiation by Maternal Administration of Mitochondrial-Targeted GS-Nitroxide JP4-039. Radiat Res 2024; 202:565-579. [PMID: 39074819 PMCID: PMC11552446 DOI: 10.1667/rade-24-00095.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/11/2024] [Indexed: 07/31/2024]
Abstract
Victims of a radiation terrorist event will include pregnant women and unborn fetuses. Mitochondrial dysfunction and oxidative stress are key pathogenic factors of fetal radiation injury. The goal of this preclinical study is to investigate the efficacy of mitigating fetal radiation injury by maternal administration of the mitochondrial-targeted gramicidin S (GS)-nitroxide radiation mitigator JP4-039. Pregnant female C57BL/6NTac mice received 3 Gy total-body irradiation (TBI) at mid-gestation embryonic day 13.5 (E13.5). Using novel time-and-motion-resolved 4D in utero magnetic resonance imaging (4D-uMRI), we found TBI caused extensive injury to the fetal brain that included cerebral hemorrhage, loss of cerebral tissue, and hydrocephalus with excessive accumulation of cerebrospinal fluid (CSF). Histopathology of the fetal mouse brain showed broken cerebral vessels and elevated apoptosis. Further use of novel 4D Oxy-wavelet MRI capable of probing in vivo mitochondrial function in intact brain revealed a significant reduction of mitochondrial function in the fetal brain after 3 Gy TBI. This was validated by ex vivo Oroboros mitochondrial respirometry. One day after TBI (E14.5) maternal administration of JP4-039, which passes through the placenta, significantly reduced fetal brain radiation injury and improved fetal brain mitochondrial respiration. Treatment also preserved cerebral brain tissue integrity and reduced cerebral hemorrhage and cell death. JP4-039 administration following irradiation resulted in increased survival of pups. These findings indicate that JP4-039 can be deployed as a safe and effective mitigator of fetal radiation injury from mid-gestational in utero ionizing radiation exposure.
Collapse
Affiliation(s)
- Yijen L. Wu
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15201
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Anthony G. Christodoulou
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Jan H. Beumer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Lora H. Rigatti
- Division of Laboratory Animal Resources (DLAR), University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Renee Fisher
- Department of Radiation Oncology, School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Mark Ross
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Simon Watkins
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Devin R. E. Cortes
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15201
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
- Department of Biomedical Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Cody Ruck
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15201
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Shanim Manzoor
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15201
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Samuel K. Wyman
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15201
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Margaret C. Stapleton
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15201
| | - Eric Goetzman
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15201
| | - Sivakama Bharathi
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15201
| | - Peter Wipf
- Department of Biomedical Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Chemistry, Kenneth P. Dietrich School of Arts & Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Tuantuan Tan
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15201
| | - Susan M. Christner
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Jianxia Guo
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Cecilia W. Y. Lo
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15201
| | - Michael W. Epperly
- Department of Radiation Oncology, School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Joel S. Greenberger
- Department of Radiation Oncology, School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| |
Collapse
|
4
|
Wu YL, Christodoulou AG, Beumer JH, Rigatti LH, Fisher R, Ross M, Watkins S, Cortes DRE, Ruck C, Manzoor S, Wyman SK, Stapleton MC, Goetzman E, Bharathi S, Wipf P, Tan T, Eiseman JL, Christner SM, Guo J, Lo CWY, Epperly MW, Greenberger JS. Mitigation of Fetal Irradiation Injury from Mid-Gestation Total Body Radiation with Mitochondrial-Targeted GS-Nitroxide JP4-039. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580105. [PMID: 38405696 PMCID: PMC10888932 DOI: 10.1101/2024.02.13.580105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Victims of a radiation terrorist event will include pregnant women and unborn fetuses. Mitochondrial dysfunction and oxidative stress are key pathogenic factors of fetal irradiation injury. The goal of this preclinical study is to investigate the efficacy of mitigating fetal irradiation injury by maternal administration of the mitochondrial-targeted gramicidin S (GS)- nitroxide radiation mitigator, JP4-039. Pregnant female C57BL/6NTac mice received 3 Gy total body ionizing irradiation (TBI) at mid-gestation embryonic day 13.5 (E13.5). Using novel time- and-motion-resolved 4D in utero magnetic resonance imaging (4D-uMRI), we found TBI caused extensive injury to the fetal brain that included cerebral hemorrhage, loss of cerebral tissue, and hydrocephalus with excessive accumulation of cerebrospinal fluid (CSF). Histopathology of the fetal mouse brain showed broken cerebral vessels and elevated apoptosis. Further use of novel 4D Oxy-wavelet MRI capable of probing in vivo mitochondrial function in intact brain revealed significant reduction of mitochondrial function in the fetal brain after 3Gy TBI. This was validated by ex vivo Oroboros mitochondrial respirometry. Maternal administration JP4-039 one day after TBI (E14.5), which can pass through the placental barrier, significantly reduced fetal brain radiation injury and improved fetal brain mitochondrial respiration. This also preserved cerebral brain tissue integrity and reduced cerebral hemorrhage and cell death. As JP4-039 administration did not change litter sizes or fetus viability, together these findings indicate JP4-039 can be deployed as a safe and effective mitigator of fetal radiation injury from mid-gestational in utero ionizing radiation exposure. One Sentence Summary Mitochondrial-targeted gramicidin S (GS)-nitroxide JP4-039 is safe and effective radiation mitigator for mid-gestational fetal irradiation injury.
Collapse
|
5
|
Yoshida Y, Tamura Y, Kouzaki K, Nakazato K. Dietary apple polyphenols enhance mitochondrial turnover and respiratory chain enzymes. Exp Physiol 2023; 108:1295-1307. [PMID: 37658608 PMCID: PMC10988434 DOI: 10.1113/ep091154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
Previous studies have demonstrated the beneficial effects of apple polyphenol (AP) intake on muscle endurance. Since mitochondria are critical for muscle endurance, we investigated mitochondrial enzyme activity, biogenesis, degradation and protein quality control. Twenty-four Wistar rats were randomly fed a 5% AP diet (5% AP group, n = 8), a 0.5% AP diet (0.5% AP group, n = 8), or a control diet (control group, n = 8). After a 4-week feeding period, the expression level of peroxisome proliferator-activated receptor γ coactivator-1α, a mitochondrial biosynthetic factor, did not increase, whereas that of transcription factor EB, another regulator of mitochondrial synthesis, significantly increased. Moreover, the mitochondrial count did not differ significantly between the groups. In contrast, mitophagy-related protein levels were significantly increased. The enzymatic activities of mitochondrial respiratory chain complexes II, III and IV were significantly higher in the AP intake group than in the control group. We conclude that AP feeding increases the activity of respiratory chain complex enzymes in rat skeletal muscles. Moreover, mitochondrial biosynthesis and degradation may have increased in AP-treated rats. NEW FINDINGS: What is the central question of this study? Does the administration of apple polyphenols (AP) affect mitochondrial respiratory chain complex enzyme activity, biogenesis, degradation and protein quality control in rat skeletal muscles? What is the main finding and its importance? AP feeding increases respiratory chain complex enzyme activity in rat skeletal muscle. Moreover, AP administration increases transcription factor EB activation, and mitophagy may be enhanced to promote degradation of dysfunctional mitochondria, but mitochondrial protein quality control was not affected.
Collapse
Affiliation(s)
- Yuki Yoshida
- Faculty of Medical ScienceNippon Sport Science UniversityTokyoJapan
| | - Yuki Tamura
- Faculty of Sport ScienceNippon Sport Science UniversityTokyoJapan
- Graduate School of Health and Sport ScienceNippon Sport Science UniversityTokyoJapan
- Research Institute for Sport ScienceNippon Sport Science UniversityTokyoJapan
| | - Karina Kouzaki
- Faculty of Medical ScienceNippon Sport Science UniversityTokyoJapan
- Research Institute for Sport ScienceNippon Sport Science UniversityTokyoJapan
- Graduate School of Medical and Health ScienceNippon Sport Science UniversityTokyoJapan
| | - Koichi Nakazato
- Faculty of Medical ScienceNippon Sport Science UniversityTokyoJapan
- Graduate School of Health and Sport ScienceNippon Sport Science UniversityTokyoJapan
- Research Institute for Sport ScienceNippon Sport Science UniversityTokyoJapan
- Graduate School of Medical and Health ScienceNippon Sport Science UniversityTokyoJapan
| |
Collapse
|
6
|
Gan C, Li W, Xu J, Pang L, Tang L, Yu S, Li A, Ge H, Huang R, Cheng H. Advances in the study of the molecular biological mechanisms of radiation-induced brain injury. Am J Cancer Res 2023; 13:3275-3299. [PMID: 37693137 PMCID: PMC10492106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/12/2023] [Indexed: 09/12/2023] Open
Abstract
Radiation therapy is one of the most commonly used treatments for head and neck cancers, but it often leads to radiation-induced brain injury. Patients with radiation-induced brain injury have a poorer quality of life, and no effective treatments are available. The pathogenesis of this condition is unknown. This review summarizes the molecular biological mechanism of radiation-induced brain injury and provides research directions for future studies. The molecular mechanisms of radiation-induced brain injury are diverse and complex. Radiation-induced chronic neuroinflammation, destruction of the blood-brain barrier, oxidative stress, neuronal damage, and physiopathological responses caused by specific exosome secretion lead to radiation-induced brain injury.
Collapse
Affiliation(s)
- Chen Gan
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Wen Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Jian Xu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Lulian Pang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Lingxue Tang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Sheng Yu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Anlong Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Han Ge
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Runze Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Huaidong Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Shenzhen Hospital of Southern Medical UniversityShenzhen, Guangdong, China
| |
Collapse
|
7
|
Darbinian N, Darbinyan A, Merabova N, Kassem M, Tatevosian G, Amini S, Goetzl L, Selzer ME. In utero ethanol exposure induces mitochondrial DNA damage and inhibits mtDNA repair in developing brain. Front Neurosci 2023; 17:1214958. [PMID: 37621718 PMCID: PMC10444992 DOI: 10.3389/fnins.2023.1214958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction Mitochondrial dysfunction is postulated to be a central event in fetal alcohol spectrum disorders (FASD). People with the most severe form of FASD, fetal alcohol syndrome (FAS) are estimated to live only 34 years (95% confidence interval, 31 to 37 years), and adults who were born with any form of FASD often develop early aging. Mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage, hallmarks of aging, are postulated central events in FASD. Ethanol (EtOH) can cause mtDNA damage, consequent increased oxidative stress, and changes in the mtDNA repair protein 8-oxoguanine DNA glycosylase-1 (OGG1). Studies of molecular mechanisms are limited by the absence of suitable human models and non-invasive tools. Methods We compared human and rat EtOH-exposed fetal brain tissues and neuronal cultures, and fetal brain-derived exosomes (FB-Es) from maternal blood. Rat FASD was induced by administering a 6.7% alcohol liquid diet to pregnant dams. Human fetal (11-21 weeks) brain tissue was collected and characterized by maternal self-reported EtOH use. mtDNA was amplified by qPCR. OGG1 and Insulin-like growth factor 1 (IGF-1) mRNAs were assayed by qRT-PCR. Exosomal OGG1 was measured by ddPCR. Results Maternal EtOH exposure increased mtDNA damage in fetal brain tissue and FB-Es. The damaged mtDNA in FB-Es correlated highly with small eye diameter, an anatomical hallmark of FASD. OGG1-mediated mtDNA repair was inhibited in EtOH-exposed fetal brain tissues. IGF-1 rescued neurons from EtOH-mediated mtDNA damage and OGG1 inhibition. Conclusion The correlation between mtDNA damage and small eye size suggests that the amount of damaged mtDNA in FB-E may serve as a marker to predict which at risk fetuses will be born with FASD. Moreover, IGF-1 might reduce EtOH-caused mtDNA damage and neuronal apoptosis.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Medical College of Wisconsin-Prevea Health, Green Bay, WI, United States
| | - Myrna Kassem
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Laura Goetzl
- Department of Obstetrics and Gynecology, University of Texas, Houston, TX, United States
| | - Michael E. Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
8
|
Sleiman A, Lalanne K, Vianna F, Perrot Y, Richaud M, SenGupta T, Cardot-Martin M, Pedini P, Picard C, Nilsen H, Galas S, Adam-Guillermin C. Targeted Central Nervous System Irradiation with Proton Microbeam Induces Mitochondrial Changes in Caenorhabditis elegans. BIOLOGY 2023; 12:839. [PMID: 37372124 DOI: 10.3390/biology12060839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Fifty percent of all patients with cancer worldwide require radiotherapy. In the case of brain tumors, despite the improvement in the precision of radiation delivery with proton therapy, studies have shown structural and functional changes in the brains of treated patients with protons. The molecular pathways involved in generating these effects are not completely understood. In this context, we analyzed the impact of proton exposure in the central nervous system area of Caenorhabditis elegans with a focus on mitochondrial function, which is potentially implicated in the occurrence of radiation-induced damage. To achieve this objective, the nematode C. elegans were micro-irradiated with 220 Gy of protons (4 MeV) in the nerve ring (head region) using the proton microbeam, MIRCOM. Our results show that protons induce mitochondrial dysfunction, characterized by an immediate dose-dependent loss of the mitochondrial membrane potential (ΔΨm) associated with oxidative stress 24 h after irradiation, which is itself characterized by the induction of the antioxidant proteins in the targeted region, observed using SOD-1::GFP and SOD-3::GFP strains. Moreover, we demonstrated a two-fold increase in the mtDNA copy number in the targeted region 24 h after irradiation. In addition, using the GFP::LGG-1 strain, an induction of autophagy in the irradiated region was observed 6 h following the irradiation, which is associated with the up-regulation of the gene expression of pink-1 (PTEN-induced kinase) and pdr-1 (C. elegans parkin homolog). Furthermore, our data showed that micro-irradiation of the nerve ring region did not impact the whole-body oxygen consumption 24 h following the irradiation. These results indicate a global mitochondrial dysfunction in the irradiated region following proton exposure. This provides a better understanding of the molecular pathways involved in radiation-induced side effects and may help in finding new therapies.
Collapse
Affiliation(s)
- Ahmad Sleiman
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LMDN, Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Kévin Lalanne
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LMDN, Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - François Vianna
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LMDN, Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Yann Perrot
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LDRI, 92262 Fontenay-aux-Roses, France
| | - Myriam Richaud
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France
| | - Tanima SenGupta
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
| | - Mikaël Cardot-Martin
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LMDN, Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Pascal Pedini
- Aix Marseille University, CNRS, EFS, ADES, 13288 Marseille, France
| | | | - Hilde Nilsen
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
- Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway
| | - Simon Galas
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LMDN, Cadarache, 13115 Saint-Paul-lez-Durance, France
| |
Collapse
|
9
|
Ahn C, Jeong S, Jeung EB. Mitochondrial dynamics when mitochondrial toxic chemicals exposed in 3D cultured mouse embryonic stem cell. Toxicol Res 2023; 39:239-249. [PMID: 37008696 PMCID: PMC10050276 DOI: 10.1007/s43188-022-00161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Mitochondria need to use considerable energy for the intracellular organelles that produce ATP. They are abundant in the cells of organs, such as muscles, liver, and kidneys. The heart, which requires a lot of energy, is also rich in mitochondria. Mitochondrial damage can induce cell death. Doxorubicin, acetaminophen, valproic acid, amiodarone, and hydroxytamoxifen are representative substances that induce mitochondrial damage. On the other hand, the effects of this substance on the progress of cardiomyocyte-differentiating stem cells have not been investigated. Therefore, a 3D cultured embryonic body toxicity test was performed. The results confirmed that the cytotoxic effects on cardiomyocytes were due to mitochondrial damage in the stage of cardiomyocyte differentiation. After drug treatment, the cells were raised in the embryoid body state for four days to obtain the ID50 values, and the levels of mRNA expression associated with the mitochondrial complex were examined. The mitochondrial DNA copy numbers were also compared to prove that the substance affects the number of mitochondria in EB-state cardiomyocytes. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-022-00161-1.
Collapse
Affiliation(s)
- Changhwan Ahn
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Jeju National University, Jeju, 63243 Republic of Korea
| | - SunHwa Jeong
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| |
Collapse
|
10
|
Mishukov A, Odinokova I, Mndlyan E, Kobyakova M, Abdullaev S, Zhalimov V, Glukhova X, Galat V, Galat Y, Senotov A, Fadeev R, Artykov A, Gasparian ME, Solovieva M, Beletsky I, Holmuhamedov E. ONC201-Induced Mitochondrial Dysfunction, Senescence-like Phenotype, and Sensitization of Cultured BT474 Human Breast Cancer Cells to TRAIL. Int J Mol Sci 2022; 23:ijms232415551. [PMID: 36555190 PMCID: PMC9779726 DOI: 10.3390/ijms232415551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
ONC201, the anticancer drug, targets and activates mitochondrial ATP-dependent caseinolytic peptidase P (ClpP), a serine protease located in the mitochondrial matrix. Given the promise of ONC201 in cancer treatment, we evaluated its effects on the breast ductal carcinoma cell line (BT474). We showed that the transient single-dose treatment of BT474 cells by 10 µM ONC201 for a period of less than 48 h induced a reversible growth arrest and a transient activation of an integrated stress response indicated by an increased expression of CHOP, ATF4, and GDF-15, and a reduced number of mtDNA nucleoids. A prolonged exposure to the drug (>48 h), however, initiated an irreversible loss of mtDNA, persistent activation of integrated stress response proteins, as well as cell cycle arrest, inhibition of proliferation, and suppression of the intrinsic apoptosis pathway. Since Natural Killer (NK) cells are quickly gaining momentum in cellular anti-cancer therapies, we evaluated the effect of ONC201 on the activity of the peripheral blood derived NK cells. We showed that following the ONC 201 exposure BT474 cells demonstrated enhanced sensitivity toward human NK cells that mediated killing. Together our data revealed that the effects of a single dose of ONC201 are dependent on the duration of exposure, specifically, while short-term exposure led to reversible changes; long-term exposure resulted in irreversible transformation of cells associated with the senescent phenotype. Our data further demonstrated that when used in combination with NK cells, ONC201 created a synergistic anti-cancer effect, thus suggesting its possible benefit in NK-cell based cellular immunotherapies for cancer treatment.
Collapse
Affiliation(s)
- Artem Mishukov
- Institute of Theoretical & Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow 119991, Russia
| | - Irina Odinokova
- Institute of Theoretical & Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Ekaterina Mndlyan
- Institute of Theoretical & Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Margarita Kobyakova
- Institute of Theoretical & Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Serazhutdin Abdullaev
- Institute of Theoretical & Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Vitaly Zhalimov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Xenia Glukhova
- Institute of Theoretical & Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | | | | | - Anatoly Senotov
- Institute of Theoretical & Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Roman Fadeev
- Institute of Theoretical & Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Artem Artykov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia
| | - Marine E. Gasparian
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia
| | - Marina Solovieva
- Institute of Theoretical & Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Igor Beletsky
- Institute of Theoretical & Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
- Correspondence: (I.B.); (E.H.); Tel.: +1-(857)-200-4192 or +7-(977)-545-0546 (E.H.)
| | - Ekhson Holmuhamedov
- Institute of Theoretical & Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
- Correspondence: (I.B.); (E.H.); Tel.: +1-(857)-200-4192 or +7-(977)-545-0546 (E.H.)
| |
Collapse
|
11
|
Virgana R, Gunadi JW, Atik N, Limdawati K, Jasaputra DK, Wahyudianingsih R, Suardi NNA, Soetadji RS, Goenawan H, Lesmana R, Kartasasmita AS. MitoTEMPOL modulates mitophagy and histopathology of Wistar rat liver after streptozotocin injection. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1382-1388. [PMID: 36474569 PMCID: PMC9699945 DOI: 10.22038/ijbms.2022.65285.14375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVES This study aims to explore the effect of mitoTEMPOL on histopathology, lipid droplet, and mitophagy gene expression of Wistar rat's liver after injection of streptozotocin (STZ). MATERIALS AND METHODS Twenty male Wistar rats were divided into 4 groups: Control (n=5); 100 mg/kg BW/day mitoTEMPOL orally (n=5); 50 mg/kg BW STZ intraperitoneal injection (n=5); and mitoTEMPOL+STZ (n=5). STZ was given a single dose, while mitoTEMPOL was given for 5 weeks after 1 week of STZ injection. Histopathological appearance, lipid droplets, mitophagy, and autophagy gene expression were examined after the mitoTEMPOL treatment. RESULTS We found metabolic zone shifting that might be correlated with the liver activity of fatty acid oxidation in the STZ group, a decrease of lipid droplets in mitoTEMPOL and mitoTEMPOL + STZ compared with Control and STZ groups were found in this study. We also found significant changes in PINK1, Parkin, BNIP3, Mfn1, and LC3 gene expression, but no difference in Opa1, Fis1, Drp1, and p62 gene expression, suggesting a change of mitochondrial fusion rather than mitochondrial fission correlated with mitophagy. CONCLUSION All this concluded that mitoTEMPOL could act as a modulator of mitophagy and metabolic function of the liver, thus amplifying its crucial role in preventing mitochondrial damage in the liver in the early onset of diabetes mellitus.
Collapse
Affiliation(s)
- Rova Virgana
- Department of Ophthalmology, Universitas Padjadjaran, Bandung, West Java, Indonesia,Cicendo National Eye Hospital, Bandung, West Java, Indonesia, These authors contributed eqully to this work
| | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia , These authors contributed eqully to this work,Corresponding author: Julia Windi Gunadi. Department of Physiology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia. Tel: +622-2012186; Fax: +622-2015154;
| | - Nur Atik
- Biology Cell Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Kwee Limdawati
- Department of Internal Medicine, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Diana Krisanti Jasaputra
- Department of Pharmacology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Roro Wahyudianingsih
- Department of Pathology Anatomy, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | | | | | - Hanna Goenawan
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia ,Physiology Molecular Laboratory, Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Jatinangor, West Java, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia ,Physiology Molecular Laboratory, Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Jatinangor, West Java, Indonesia
| | - Arief Sjamsulaksan Kartasasmita
- Department of Ophthalmology, Universitas Padjadjaran, Bandung, West Java, Indonesia,Cicendo National Eye Hospital, Bandung, West Java, Indonesia
| |
Collapse
|
12
|
Savu DI, Moisoi N. Mitochondria - Nucleus communication in neurodegenerative disease. Who talks first, who talks louder? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148588. [PMID: 35780856 DOI: 10.1016/j.bbabio.2022.148588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria - nuclear coadaptation has been central to eukaryotic evolution. The dynamic dialogue between the two compartments within the context of multiorganellar interactions is critical for maintaining cellular homeostasis and directing the balance survival-death in case of cellular stress. The conceptualisation of mitochondria - nucleus communication has so far been focused on the communication from the mitochondria under stress to the nucleus and the consequent signalling responses, as well as from the nucleus to mitochondria in the context of DNA damage and repair. During ageing processes this dialogue may be better viewed as an integrated bidirectional 'talk' with feedback loops that expand beyond these two organelles depending on physiological cues. Here we explore the current views on mitochondria - nucleus dialogue and its role in maintaining cellular health with a focus on brain cells and neurodegenerative disease. Thus, we detail the transcriptional responses initiated by mitochondrial dysfunction in order to protect itself and the general cellular homeostasis. Additionally, we are reviewing the knowledge of the stress pathways initiated by DNA damage which affect mitochondria homeostasis and we add the information provided by the study of combined mitochondrial and genotoxic damage. Finally, we reflect on how each organelle may take the lead in this dialogue in an ageing context where both compartments undergo accumulation of stress and damage and where, perhaps, even the communications' mechanisms may suffer interruptions.
Collapse
Affiliation(s)
- Diana Iulia Savu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, Magurele 077125, Romania
| | - Nicoleta Moisoi
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Innovation, Faculty of Health Sciences, De Montfort University, The Gateway, Hawthorn Building 1.03, LE1 9BH Leicester, UK.
| |
Collapse
|
13
|
Hu F, Nie H, Xu R, Cai X, Shao L, Zhang P. Vinpocetine and coenzyme Q10 combination alleviates cognitive impairment caused by ionizing radiation by improving mitophagy. Brain Res 2022; 1792:148032. [PMID: 35907514 DOI: 10.1016/j.brainres.2022.148032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVE This research was designed to ascertain the effect and mechanism of vinpocetine (VIN) and coenzyme Q10 (CoQ10) combination on cognitive impairment induced by ionizing radiation (IR). METHODS Cognitive impairment in mice was induced by 9-Gy IR, and they were intraperitoneally injected with VIN, CoQ10, or VIN + CoQ10. Then novel object recognition and Morris water maze tests were used to detect cognitive function. The number of hippocampal neurons and BrdU+Dcx+ cells was observed by Nissl and immunofluorescence staining. Mitochondrial respiratory complex I, adenosine triphosphate (ATP), and mitochondrial membrane potential (MMP) were evaluated, as well as oxidative stress injury. Mitophagy in hippocampal neurons was evaluated by observing the ultrastructure of hippocampal neurons and assessing the expression of mitophagy-related proteins. RESULTS IR reduced novel object discrimination index, the time for platform crossing, and the time spent in platform quadrant, in addition to neuron loss, downregulated levels of mitochondrial respiratory complex I, ATP, and MMP, aggravated oxidative stress injury, increased expression of LC3 II/I, Beclin1, PINK1, and parkin, and decreased P62 expression. VIN or CoQ10 treatment mitigated cognitive dysfunction, neurons loss, mitochondrial damage, and oxidative stress injury, and enhanced mitophagy in hippocampal neurons. VIN and CoQ10 combination further protected against IR-induced cognitive dysfunction than VIN or CoQ10 alone. CONCLUSION VIN combined with CoQ10 improved neuron damage, promoted mitophagy, and ameliorated cognitive impairment in IR mice.
Collapse
Affiliation(s)
- Fan Hu
- Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated to Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Hongbing Nie
- Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated to Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Renxu Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated to Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People's Hospital, the First Affiliated to Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital, the First Affiliated to Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Ping Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated to Nanchang Medical College, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
14
|
Kim JS, Choi SW, Park YG, Kim SJ, Choi CH, Cha MJ, Chang JH. Impact of High-Dose Irradiation on Human iPSC-Derived Cardiomyocytes Using Multi-Electrode Arrays: Implications for the Antiarrhythmic Effects of Cardiac Radioablation. Int J Mol Sci 2021; 23:351. [PMID: 35008778 PMCID: PMC8745341 DOI: 10.3390/ijms23010351] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiac radioablation is emerging as an alternative option for refractory ventricular arrhythmias. However, the immediate acute effect of high-dose irradiation on human cardiomyocytes remains poorly known. We measured the electrical activities of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) upon irradiation with 0, 20, 25, 30, 40, and 50 Gy using a multi-electrode array, and cardiomyocyte function gene levels were evaluated. iPSC-CMs showed to recover their electrophysiological activities (total active electrode, spike amplitude and slope, and corrected field potential duration) within 3-6 h from the acute effects of high-dose irradiation. The beat rate immediately increased until 3 h after irradiation, but it steadily decreased afterward. Conduction velocity slowed in cells irradiated with ≥25 Gy until 6-12 h and recovered within 24 h; notably, 20 and 25 Gy-treated groups showed subsequent continuous increase. At day 7 post-irradiation, except for cTnT, cardiomyocyte function gene levels increased with increasing irradiation dose, but uniquely peaked at 25-30 Gy. Altogether, high-dose irradiation immediately and reversibly modifies the electrical conduction of cardiomyocytes. Thus, compensatory mechanisms at the cellular level may be activated after the high-dose irradiation acute effects, thereby, contributing to the immediate antiarrhythmic outcome of cardiac radioablation for refractory ventricular arrhythmias.
Collapse
Affiliation(s)
- Jae Sik Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.S.K.); (C.H.C.)
- Department of Radiation Oncology, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea
| | - Seong Woo Choi
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea;
| | - Yun-Gwi Park
- Stem Cell Research Institute, T&R Biofab Co., Ltd., Siheung 15073, Korea;
| | - Sung Joon Kim
- Department of Physiology & Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Chang Heon Choi
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.S.K.); (C.H.C.)
- Department of Radiation Oncology, Seoul National University Hospital, Seoul 03080, Korea
| | - Myung-Jin Cha
- Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Ji Hyun Chang
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.S.K.); (C.H.C.)
- Department of Radiation Oncology, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
15
|
Abdullaev SA, Glukhov SI, Gaziev AI. Radioprotective and Radiomitigative Effects of Melatonin in Tissues with Different Proliferative Activity. Antioxidants (Basel) 2021; 10:1885. [PMID: 34942988 PMCID: PMC8698738 DOI: 10.3390/antiox10121885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
We used various markers to analyze damage to mouse tissues (spleen and cerebral cortex) which have different proliferative activity and sensitivity to ionizing radiation (IR). We also assessed the degree of modulation of damages that occurs when melatonin is administered to mice prior to and after their X-ray irradiation. The data from this study showed that lesions in nuclear DNA (nDNA) were repaired more actively in the spleen than in the cerebral cortex of mice irradiated and treated with melatonin (N-acetyl-5-methoxytryptamine). Mitochondrial biogenesis involving mitochondrial DNA (mtDNA) synthesis was activated in both tissues of irradiated mice. A significant proportion of the newly synthesized mtDNA molecules were mutant copies that increase oxidative stress. Melatonin reduced the number of mutant mtDNA copies and the level of H2O2 in both tissues of the irradiated mice. Melatonin promoted the restoration of ATP levels in the tissues of irradiated mice. In the mouse tissues after exposure to X-ray, the level of malondialdehyde (MDA) increased and melatonin was able to reduce it. The MDA concentration was higher in the cerebral cortex tissue than that in the spleen tissue of the mouse. In mouse tissues following irradiation, the glutathione (GSH) level was low. The spleen GSH content was more than twice as low as that in the cerebral cortex. Melatonin helped restore the GSH levels in the mouse tissues. Although the spleen and cerebral cortex tissues of mice differ in the baseline values of the analyzed markers, the radioprotective and radiomitigative potential of melatonin was observed in both tissues.
Collapse
Affiliation(s)
- Serazhutdin A. Abdullaev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia; (S.I.G.); (A.I.G.)
| | | | | |
Collapse
|
16
|
Emerging methods for and novel insights gained by absolute quantification of mitochondrial DNA copy number and its clinical applications. Pharmacol Ther 2021; 232:107995. [PMID: 34592204 DOI: 10.1016/j.pharmthera.2021.107995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The past thirty years have seen a surge in interest in pathophysiological roles of mitochondria, and the accurate quantification of mitochondrial DNA copy number (mCN) in cells and tissue samples is a fundamental aspect of assessing changes in mitochondrial health and biogenesis. Quantification of mCN between studies is surprisingly variable due to a combination of physiological variability and diverse protocols being used to measure this endpoint. The advent of novel methods to quantify nucleic acids like digital polymerase chain reaction (dPCR) and high throughput sequencing offer the ability to measure absolute values of mCN. We conducted an in-depth survey of articles published between 1969 -- 2020 to create an overview of mCN values, to assess consensus values of tissue-specific mCN, and to evaluate consistency between methods of assessing mCN. We identify best practices for methods used to assess mCN, and we address the impact of using specific loci on the mitochondrial genome to determine mCN. Current data suggest that clinical measurement of mCN can provide diagnostic and prognostic value in a range of diseases and health conditions, with emphasis on cancer and cardiovascular disease, and the advent of means to measure absolute mCN should improve future clinical applications of mCN measurements.
Collapse
|
17
|
Sravya P, Nimbalkar VP, Kanuri NN, Sugur H, Verma BK, Kundu P, Rao S, Uday Krishna AS, Somanna S, Kondaiah P, Arivazhagan A, Santosh V. Low mitochondrial DNA copy number is associated with poor prognosis and treatment resistance in glioblastoma. Mitochondrion 2020; 55:154-163. [PMID: 33045388 DOI: 10.1016/j.mito.2020.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/27/2020] [Accepted: 10/05/2020] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Mitochondrial DNA (mtDNA) content in several solid tumors was found to be lower than in their normal counterparts. However, there is paucity of literature on the clinical significance of mtDNA content in glioblastoma and its effect on treatment response. Hence, we studied the prognostic significance of mtDNA content in glioblastoma tumor tissue and the effect of mtDNA depletion in glioblastoma cells on response to treatment. MATERIALS AND METHODS 130 newly diagnosed glioblastomas, 32 paired newly diagnosed and recurrent glioblastomas and 35 non-neoplastic brain tissues were utilized for the study. mtDNA content in the patient tumor tissue was assessed and compared with known biomarkers and patient survival. mtDNA was chemically depleted in malignant glioma cell lines, U87, LN229. The biology and treatment response of parent and depleted cells were compared. RESULTS Lower range of mtDNA copy number in glioblastoma was associated with poor overall survival (p = 0.01), progression free survival (p = 0.04) and also with wild type IDH (p = 0.02). In recurrent glioblastoma, mtDNA copy number was higher than newly diagnosed glioblastoma in the patients who received RT (p = 0.01). mtDNA depleted U87 and LN229 cells showed higher survival fraction post radiation exposure when compared to parent lines. The IC50 of TMZ was also higher for mtDNA depleted U87 and LN229 cells. The depleted cells formed more neurospheres than their parent counterparts, thus showing increased stemness of mtDNA depleted cells. CONCLUSION Low mtDNA copy number in glioblastoma is associated with poor patient survival and treatment resistance in cell lines possibly by impacting stemness of the glioblastoma cells.
Collapse
Affiliation(s)
- Palavalasa Sravya
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Vidya Prasad Nimbalkar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Nandaki Nag Kanuri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Harsha Sugur
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Brijesh Kumar Verma
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Paramita Kundu
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Shilpa Rao
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - A S Uday Krishna
- Department of Radiation Oncology, KIDWAI Memorial Institute of Oncology, Bengaluru, India
| | - Sampath Somanna
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Paturu Kondaiah
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Arimappamagan Arivazhagan
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bengaluru, India.
| | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India.
| |
Collapse
|
18
|
Darbinian N, Darbinyan A, Merabova N, Selzer ME, Amini S. HIV-1 and HIV-1-Tat Induce Mitochondrial DNA Damage in Human Neurons. JOURNAL OF HIV AND AIDS 2020; 6:176. [PMID: 33506104 PMCID: PMC7837619 DOI: 10.16966/2380-5536.176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Mitochondrial dysregulation is a key event in HIV-1 infection. Recent studies have suggested that age-related neurodegenerative disorders are associated with increased mitochondrial DNA (mtDNA) damage. As accelerated ageing was found in HIV-1 patients, we hypothesized that HIV-1 infection or HIV-1 proteins can lead to mtDNA damage. Unrepaired mtDNA impairs mitochondrial function, which can lead to oxidative stress and cell death. Investigations of mechanisms of mtDNA damage are limited by the lack of available human models. METHODS We compared mtDNA or nDNA (nuclear DNA) damage in human cortical neurons and PBMC cells. Primary neuronal cultures were incubated with conditioned media from HIV-1 infected PBMC, or HIV-1 viral proteins Tat or Vpr. Total genomic DNA (nuclear and mtDNA) was isolated using the QIAamp Kit. Nuclear and mtDNA were amplified using the long q-PCR/Gene Amp XL Kit. Real-Time RT-PCR using mitochondrial energy metabolism array was performed to assess mitochondrial energy metabolism markers. Superoxide dismutase (SOD) activity in neuronal cells was measured by the OxiSelect SOD Activity Assay. Reactive oxygen species (ROS) were determined by the confocal microscopy. ATP levels were analyzed using ATP determination biochemical assay. Mitochondrial, cytoplasmic and nuclear proteins were studied by quantitative western-blot assay. RESULTS We show that both treatment of neuronal cells with HIV-1 conditioned media, or infection of PBMC with HIV-1 increase mtDNA damage in cells. mtDNA damage was also seen in neuronal cells, incubated with HIV-1 proteins, Tat and Vpr. Next, we confirmed that mtDNA damage was also increased in neuronal cells transfected by Tat expressing plasmids. We showed that mtDNA was not damaged in neuronal cells following treatment with heat inactivated HIV-1 or Tat protein. Further, we demonstrated that HIV-1 or Tat caused more mtDNA damage compared to nuclear DNA damage in neuronal cells. Finally, we showed that Tat dysregulates RNA expression of several genes regulating mitochondrial energy metabolism, suggesting involvement of Tat in mitochondrial bioenergetics in human neurons. Finally, our hypothesis was confirmed by qWestern analysis of mitochondrial and apoptotic proteins demonstrating the accumulation of apoptotic Bax and Bad proteins in mitochondrial fraction of Tat-treated neuronal cells, suggesting toxic effects of Tat on mitochondrial survival. CONCLUSION We showed an increase of mtDNA damage in primary neurons, treated with HIV-1 proteins and in PBMC, infected with HIV-1. Increased mtDNA damage can lead to neurodegeneration, and cause neuronal apoptosis. Our system presents a suitable model to study mtDNA changes during HIV-1 infection.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, USA
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Michael E Selzer
- Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, USA
| |
Collapse
|