1
|
Mohammed MA, Hay NHA, Mohammed MT, Mahmoud HS, Ahmed MY, Abdelmenem A, Abdelrahim DS. The effect of adipose-derived mesenchymal stem cells against high fructose diet induced liver dysfunction and dysbiosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4525-4537. [PMID: 39500806 PMCID: PMC11978704 DOI: 10.1007/s00210-024-03518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/05/2024] [Indexed: 04/10/2025]
Abstract
High fructose diet (HFrD) has been approved to be involved in the pathogenesis of insulin resistance. Mesenchymal stem cells have a vital role in the treatment of various diseases including metabolic disturbances. We investigated the effect of Adipose-derived mesenchymal stem cells (ADMSCs) against HFrD-induced metabolic disorders and the molecular mechanisms for this effect. Rats were divided into 3 groups; control, HFrD, and combined HFrD with ADMSCs. We assessed liver functions, gut microbiota activity, oxidative stress, adiponectin, and IL10 levels. Also, we measured SREBP-1, IRS-1 expression using Western blot, and Malat1 expression using rt-PCR. ADMSCs antagonized metabolic abnormalities induced by HFrD in the form of improvement of liver functions and alleviation of oxidative stress. In addition, ADMSCs ameliorated gut microbiota activity besides the elevation of adiponectin and IL10 levels. ADMSCs attenuated insulin resistance through upregulation of IRS1 and downregulation of SREBP-1 and Malat1. ADMSCs can protect against HFrD-induced metabolic hazards.
Collapse
Affiliation(s)
| | - Nesma Hussein Abel Hay
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maha Tarek Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hoda Sayed Mahmoud
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Manar Yehia Ahmed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed Abdelmenem
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Dina Sayed Abdelrahim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
2
|
Li W, Zhang H, Chen L, Huang C, Jiang Z, Zhou H, Zhu X, Liu X, Zheng Z, Yu Q, He Y, Gao Y, Ma J, Yang L. Cell membrane-derived nanovesicles as extracellular vesicle-mimetics in wound healing. Mater Today Bio 2025; 31:101595. [PMID: 40104636 PMCID: PMC11914519 DOI: 10.1016/j.mtbio.2025.101595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/28/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Cell membrane-derived nanovesicles (NVs) have emerged as promising alternatives to extracellular vesicles (EVs) for wound healing applications, addressing the limitations of traditional EVs, which include insufficient targeting capability, low production yield, and limited drug-loading capacity. Through mechanical cell extrusion methods, NVs exhibit superior characteristics, demonstrating enhanced yield, stability, and purity compared to natural EVs. These NVs can be derived from various membrane sources, including single cell types (stem cells, blood cells, immune cells, and bacterial membranes), hybrid cell membranes and cell membranes mixed with liposomes, with each offering unique therapeutic properties. The integration of genetic engineering and surface modifications has further enhanced NV functionality, enabling precise targeting and improved drug delivery capabilities. Recent advances in NV-based therapies have demonstrated their potential across multiple biomedical applications. Although challenges persist in terms of standardization, storage stability, and clinical translation, the combination of natural cell-derived functions with artificial modification potential positions NVs as a promising platform for next-generation therapeutic delivery systems, thereby offering new possibilities in wound healing applications. Finally, we explore the challenges and future prospects of translating NV-based therapeutics into clinical practice, providing insights into the future development of this innovative approach in wound healing and tissue repair.
Collapse
Affiliation(s)
- Wenwen Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huihui Zhang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chaoyang Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hai Zhou
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinxi Zhu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyang Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zesen Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiuyi Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yufang He
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
3
|
Li X, Wang X, Cai H, Wang Y, Zhou X, Wu B, Cai J, Teng D. Impact of exosomes derived from adipose stem cells on lymphocyte proliferation and phenotype in mouse skin grafts. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2025; 6:141-157. [PMID: 40206795 PMCID: PMC11977351 DOI: 10.20517/evcna.2024.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025]
Abstract
Aim: Exosomes derived from adipose-derived stem cells (ASCs) in mice have been reported to influence immune regulation. Yet, the potential immunological effects of ASCs-derived exosomes and their interaction with lymphocytes during transplant immunity remain understudied. Methods: ASCs from BALB/c mice, along with their conditioned culture medium, were collected for the extraction, isolation, and comprehensive characterization of exosomes. Splenic cell suspensions were isolated from BALB/c mice and subsequently processed for downstream analyses. Lymphocytes were isolated via gradient centrifugation and stimulated in vitro with the purified exosomes to assess their functional responses. Lymphocyte proliferation was quantified using the CCK8 assay, and the relative frequencies of CD4+ T cells, CD8+ T cells, Treg cells, NK (natural killer) cells, macrophages, B cells, dendritic cells (DCs), and Th17 cells were determined through flow cytometric analysis. Before establishing the skin transplantation model, the mice were administered PBS, 0.5 × 108 exosomes, 1 × 108 exosomes, 1.5 × 108 exosomes, or ASCs via intravenous injection through the tail vein. Seven days after transplantation, the spleens, drainage lymph nodes, and blood samples were harvested for lymphocyte isolation and further downstream analyses. Results: Exosomes derived from ASCs significantly increased the CD4+/CD8+ ratio and Treg cell levels, without inducing any notable changes in Th17 cell content or CTLA-4 protein expression in CD4+ T cells. Compared to the PBS-treated group, both ASC and exosome treatment groups demonstrated an enhanced CD4+/CD8+ ratio, increased Treg cell content, and elevated CTLA-4 protein expression in spleen tissue following skin transplantation, while Th17 cell levels remained unaffected. Compared to the ASC treatment group, the exosome group exhibited a higher CD4+/CD8+ ratio and Treg cell levels, alongside a reduced proportion of PD-1+ Treg cells and lower CTLA-4 protein expression in CD3+CD4+ T cells. No significant differences were observed in the proportions of NK cells, macrophages, B cells, and DCs in the spleens across all treatment groups. In peripheral blood, an increased proportion of CD3+ T cells, macrophages, and DCs was detected, accompanied by a reduced proportion of NK cells and B cells. In the draining lymph nodes, no significant changes were observed in the proportions of CD3+ T cells and B cells, while macrophages, NK cells, and DCs showed elevated proportions. In the exosome-treated group, mouse grafts exhibited a disorganized and thinner granular layer, accompanied by focal regions of inflammatory cell infiltration. Both exosome and ASC treatments significantly extended the survival of skin grafts. Conclusion: Exosomes derived from ASCs promote lymphocyte proliferation and modulate their phenotypic profiles in mouse skin graft models, effectively extending graft survival.
Collapse
Affiliation(s)
- Xinqiang Li
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao 266100, Shandong, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao 266100, Shandong, China
- Authors contributed equally
| | - Xueteng Wang
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao 266100, Shandong, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao 266100, Shandong, China
- Authors contributed equally
| | - Hailun Cai
- Organ Transplant Center, Fujian Medical University Union Hospital, Fuzhou 350000, Fujian, China
| | - Ye Wang
- Pathology Department, the Affiliated Hospital of Qingdao University, Qingdao 266100, Shandong, China
| | - Xin Zhou
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao 266100, Shandong, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao 266100, Shandong, China
| | - Bin Wu
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao 266100, Shandong, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao 266100, Shandong, China
- Organ Transplant Center, Fujian Medical University Union Hospital, Fuzhou 350000, Fujian, China
| | - Jinzhen Cai
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao 266100, Shandong, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao 266100, Shandong, China
- Organ Transplant Center, Fujian Medical University Union Hospital, Fuzhou 350000, Fujian, China
| | - Dahong Teng
- Organ Transplant Center, Fujian Medical University Union Hospital, Fuzhou 350000, Fujian, China
| |
Collapse
|
4
|
Ning J, Sah RK, Wang J. Coculture of mesenchymal stem cells and macrophage: A narrative review. J Pharmacol Exp Ther 2025; 392:103531. [PMID: 40154096 DOI: 10.1016/j.jpet.2025.103531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/24/2025] [Indexed: 04/01/2025] Open
Abstract
Stem cell transplantation is a promising treatment for repairing damaged tissues, but challenges like immune rejection and ethical concerns remain. Mesenchymal stem cells (MSCs) offer high differentiation potential and immune regulatory activity, showing promise in treating diseases such as gynecological, neurological, and kidney disorders. With scientific progress, MSC applications are overcoming traditional treatment limitations. In MSCs-macrophage coculture, MSCs transform macrophages into anti-inflammatory M2 macrophages, reducing inflammation, whereas macrophages enhance MSCs osteogenic differentiation. This coculture is vital for immune modulation and tissue repair, with models varying by contact type and dimensional arrangements. Factors such as coculture techniques and cell ratios influence outcomes. Benefits include improved heart function, wound healing, reduced lung inflammation, and accelerated bone repair. Challenges include optimizing coculture conditions. This study reviews the methodologies, factors, and mechanisms of MSC-macrophage coculture, providing a foundation for tissue engineering applications. SIGNIFICANCE STATEMENT: This review underlines the significant role of mesenchymal stem cell-macrophage coculture, providing a foundation for tissue engineering application.
Collapse
Affiliation(s)
- Jun Ning
- Department of General Gynecology II, Gynecology and Obstetrics Center, the First Hospital of Jilin University, Changchun, China
| | - Rajiv Kumar Sah
- Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital, Houston, Texas
| | - Jing Wang
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Ding X, Xie S, Zhang W, Zhu Y, Xu D, Xian S, Sun H, Guo X, Li Y, Lu J, Tong X, Huang R, Ji S, Xia Z. Current application of tissue-engineered dermal scaffolds mimicking the extracellular matrix microenvironment in wound healing. Regen Ther 2025; 28:371-382. [PMID: 39896445 PMCID: PMC11786805 DOI: 10.1016/j.reth.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
With the continuous advancement of materials science, cell biology, and biotechnology, tissue engineering has introduced novel solutions to traditional wound healing approaches, particularly demonstrating significant potential in addressing complex or non-healing wounds. One of the key technologies in this field, dermal scaffolds, serve as wound coverage materials that mimic the structural framework of the dermis. They primarily assume the function of extracellular matrix, providing space for cell attachment, migration, and proliferation, thus supporting cellular growth and regulating multiple biological processes in healing. Tissue engineering utilizes combinations of natural or synthetic scaffolds, seeded cells, or growth factors to induce distinct effects in angiogenesis, extracellular matrix deposition, and functional recovery. Therefore, various bioengineered dermal scaffolds hold significant potential for clinical translation in wound healing. This review outlines various extracellular matrix molecules utilized in the development of dermal scaffolds, emphasizes recent progress in cell- and growth factor-modified scaffolds, and discusses the challenges and future perspectives in this evolving field.
Collapse
Affiliation(s)
| | | | | | - Yushu Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Dayuan Xu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Shuyuan Xian
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Hanlin Sun
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Xinya Guo
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Yixu Li
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
6
|
Ei ZZ, Mutirangura A, Chanvorachote P. Secretome from HMGB1 Box A-over-expressing Adipose-derived Stem Cells Shows Potential for Skin Rejuvenation by Senescence Reversal in PM2.5-induced Senescence Cells via Stem Cell Induction. In Vivo 2025; 39:766-777. [PMID: 40010963 PMCID: PMC11884463 DOI: 10.21873/invivo.13881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 02/28/2025]
Abstract
BACKGROUND/AIM Exposure to particulate matter 2.5 (PM2.5) can lead to cellular senescence by generating reactive oxygen species (ROS). Box A, a DNA-binding domain found in HMGB1, is known for its ability to counteract aging characteristics. This study explored whether BoxA-induced adipose-derived stem cells secretome (BoxA-SC) can reverse senescence in DP and HWPc cells. MATERIALS AND METHODS The stemness characteristics and reversal of senescence by BoxA-SC in PM2.5-induced DP and HWPc cells were assessed at the mRNA level using RT-qPCR and at the protein level using immunofluorescence analysis. RESULTS BoxA-SC (1:20) treatment for 48 h induced stemness and reversed PM2.5-induced cell senescence in DP and HWPc cells. BoxA-SC significantly reduced senescence markers, including SA-β-gal staining, and decreased mRNA levels of senescence-associated secretory phenotype factors (IL1α, IL7, CXCL1) in PM2.5-induced senescent cells. DP and HWPc cells exposed to PM2.5 exhibited an increase in p21 and p16 mRNA and protein levels, which was reversed by BoxA-SC. BoxA-SC reduced p21 and p16 in DP senescent cells approximately 3- and 2-fold, respectively, compared to untreated senescent cells. CONCLUSION BoxA-SC can potentially reverse cellular senescence, highlighting the therapeutic potential of stem cells in skin rejuvenation and anti-aging treatments.
Collapse
Affiliation(s)
- Zin Zin Ei
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand;
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Sustainable Environment Research Institute, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Li K, Luo R, Yu X, Dong W, Hao G, Hu D, Yu Z, Liu M, Lu T, Wang X, Tang X, Lin X, Wang H, Wang W, Fu W. Enhanced human adipose-derived stem cells with VEGFA and bFGF mRNA promote stable vascular regeneration and improve cardiac function following myocardial infarction. Clin Transl Med 2025; 15:e70250. [PMID: 40008489 PMCID: PMC11862888 DOI: 10.1002/ctm2.70250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Mesenchymal stem cell therapy involves the secretion of various factors to regulate the local microenvironment in various of diseases. This therapy offers hope for treating acute myocardial infarction (MI), which poses a serious threat to human health. However, challenges such as low paracrine efficiency and poor cell survival persist due to the harsh post-infarction conditions, such as hypoxia. Recently, enhanced cell therapy, in which vascular endothelial growth factor A (VEGFA) and basic fibroblast growth factor (bFGF) are used as therapeutic agents to limit myocardial injury and simultaneously induce neovascularisation, has been recognised as a promising new strategy to improve the efficacy of cell therapy. Chemically synthetic modified messenger RNA (modRNA), a novel protein expression technology, enables safe, rapid, efficient and pulsatile expression of target proteins in vivo and in vitro settings. It has been widely applied in the fields of vaccine research and tissue regeneration. In this study, human adipose-derived stem cells (hADSCs) were transfected with VEGFA and bFGF modRNA to transiently overexpress these proteins before transplantation. This modification enhanced the paracrine effect of transplanted hADSCs and promoted stability in the vascular network at the transplantation site. Overexpression of VEGFA and bFGF in hADSCs not only inhibited apoptosis but also reduced ventricular remodelling and improved cardiac function and left ventricular conduction. Overall, the additive effects of VEGFA modRNA, bFGF modRNA and hADSCs hold promise for comprehensive cardiac repair post-MI and show substantial potential for treating ischemic heart diseases. KEY POINTS: ModRNAs-transfected hADSCs exhibit pulsed and transient expression, enabling efficient production of functional VEGFA and bFGF proteins. Intracardiac injection of these engineered hADSCs leads to the enhancement of cardiac function and the improvement of electrical conduction. The hADSCsdual mainly exerts its effect on myocardial infarction by promoting stable vascular regeneration and suppressing cell apoptosis.
Collapse
Affiliation(s)
- Kaixiang Li
- Department of Pediatric Cardiothoracic SurgeryShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Runjiao Luo
- Department of Pediatric Cardiothoracic SurgeryShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xindi Yu
- Department of Pediatric Cardiothoracic SurgeryShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Wei Dong
- Department of Pediatric Cardiothoracic SurgeryShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Guoliang Hao
- Institute of ElectrophysiologyHenan Academy of Innovations in Medical ScienceZhengzhouChina
- Henan Key Laboratory of Cardiac ElectrophysiologyHenan SCOPE Research Institute of Electrophysiology Co. Ltd.KaifengChina
| | - Dan Hu
- School of Mathematical SciencesInstitute of Natural Sciencesand MOE‐LSCShanghai Jiao Tong UniversityShanghaiChina
| | - Ziyou Yu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Minglu Liu
- Department of Pediatric Cardiothoracic SurgeryShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Tingting Lu
- Institute of Pediatric Translational MedicineShanghai Institute of Pediatric Congenital Heart DiseaseShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiangying Wang
- Institute of Pediatric Translational MedicineShanghai Institute of Pediatric Congenital Heart DiseaseShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xin Tang
- Institute of Pediatric Translational MedicineShanghai Institute of Pediatric Congenital Heart DiseaseShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xinjun Lin
- Basic Medical College of Bengbu Medical UniversityBengbuChina
| | - Huijing Wang
- Institute of Pediatric Translational MedicineShanghai Institute of Pediatric Congenital Heart DiseaseShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Wei Wang
- Department of Pediatric Cardiothoracic SurgeryShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Wei Fu
- Institute of Pediatric Translational MedicineShanghai Institute of Pediatric Congenital Heart DiseaseShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Basic Medical College of Bengbu Medical UniversityBengbuChina
- Hainan BranchShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversitySanyaChina
- Shanghai Key Laboratory of Tissue EngineeringShanghai 9th People's HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
8
|
Zhu Y, Chen P, Zhang Z, He X, Wang R, Fang Q, Xu Z, He W. aFGF gene-modified adipose-derived mesenchymal stem cells promote healing of full-thickness skin defects in diabetic rats. Stem Cell Res Ther 2025; 16:93. [PMID: 40001190 PMCID: PMC11863861 DOI: 10.1186/s13287-025-04241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Chronic diabetic wounds pose a significant clinical challenge due to the limited efficacy of current treatments. This study aimed to investigate the role and potential mechanisms of adipose-derived mesenchymal stem cells (ADSCs) overexpressing acidic fibroblast growth factor (aFGF) in diabetic wound healing in a rat model. METHODS ADSCs were genetically modified to achieve stable overexpression of aFGF. Varying doses of aFGF-ADSCs (1 × 106, 2 × 106, 3 × 106, 4 × 106) were injected into the muscular tissue surrounding diabetic rat wounds. We assessed aFGF expression and its impact on various stages of wound healing, including angiogenesis, inflammatory response, epithelialization, and collagen deposition. Transcriptomic sequencing was performed to explore the underlying mechanisms driving enhanced wound healing. RESULTS Lentiviral transduction successfully induced stable aFGF overexpression in ADSCs. In vivo experiments revealed that varying doses of aFGF-ADSCs markedly enhanced wound healing in diabetic rats in a dose-dependent manner. The dose of 3 × 10⁶ aFGF-ADSCs demonstrated the most significant effect. In the 3 × 106 aFGF-ADSCs group, expression levels of aFGF, CD31, and CD163 were significantly higher than in other groups (p < 0.05), while CD86 expression was significantly lower (p < 0.05). CONCLUSION Single doses of aFGF-ADSCs comprehensively improved various aspects of wound repair in diabetic rats, offering a potential new approach for treating chronic diabetic wounds. The mechanism of action involves promoting angiogenesis, modulating inflammatory responses, accelerating epithelialization, and optimizing collagen deposition.
Collapse
Affiliation(s)
- Yiren Zhu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Pinhua Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fujian Trauma Medicine Center, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, Fujian, 350001, China
| | - Zhengchao Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fujian Trauma Medicine Center, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, Fujian, 350001, China
| | - XueYi He
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fujian Trauma Medicine Center, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, Fujian, 350001, China
| | - Ruoli Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fujian Trauma Medicine Center, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, Fujian, 350001, China
| | - Qi Fang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fujian Trauma Medicine Center, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, Fujian, 350001, China
| | - Zhixian Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fujian Trauma Medicine Center, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, Fujian, 350001, China
| | - Wubing He
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China.
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China.
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China.
- Fujian Trauma Medicine Center, Fuzhou, Fujian, 350001, China.
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
9
|
Zhang Y, Wang X, Wang Z, Xu J, Xu M, Zhou J, Fang S. The efficacy of miR-141-3p to facilitate the healing of wounds and prevent scarring in mice by blocking the JNK/ERK pathway via HDAC6 silencing. Mol Biol Rep 2025; 52:237. [PMID: 39955473 DOI: 10.1007/s11033-025-10347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
PURPOSE Adipose-derived mesenchymal stem cells (ADSCs) exosomes (AD-Exos) are a novel and promising therapeutic approach for skin damage repair. This investigation seeks to assess the potential clinical utility of miR-141-3p found in AD-exos for expediting wound healing. METHODS ADSCs were isolated from the wounded patients' tissue and validated via flow cytometry, and the mineralization and adipogenic capabilities of ADSCs were assessed respectively. Additionally, exosomes were isolated and identified. miR-141-3p and HDAC6.protein level were tested. Full-thickness wound models were created on the backs of mice, HE staining, ELISA, and immunohistochemistry were used to assess the influences of AD-exos on wound healing, inflammation, and new blood vessel formation Western blot was to assess the related-protein levels of JNK/ERK pathway. AQ1 Meanwhile, Dual-Luciferase assay confirmed the relationship between miR-141-3p and HDAC6. RESULTS The isolated cells highly express surface markers of mesenchymal stem cells and possess the potential for multidirectional differentiation, confirming them to be ADSCs. And miR-141-3p down-regulated but HDAC6 up-regulated in the serum and AD-exos of wounded patients. miR-141-3p could negatively modulate HDAC6. The miR-141-3p in AD-exos accelerated wound healing in mice, mitigated inflammatory responses and scarring in the injured skin tissue, and promoted angiogenesis, moreover, AD-exos could diminish the phosphorylation of JNK and ERK, while HDAC6 overexpressed could weaken these impacts. CONCLUSION miR-141-3p in AD-exos can target down regulate HDAC6 expression and inhibit JNK/ERK signaling pathway activation, thereby reducing wound inflammation and promoting angiogenesis and wound healing in mice.
Collapse
Affiliation(s)
- YunTong Zhang
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Navy Medical University, Shanghai, China
| | - XuHui Wang
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Navy Medical University, Shanghai, China
| | - ZiShuo Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - JianGuo Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Miao Xu
- Department of Burn and Plastic, PLA Naval Medical Center, Shanghai, 200052, China
| | - JieSong Zhou
- Department of Plastic Surgery, The First Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Shuo Fang
- Department of Plastic Surgery, The First Affiliated Hospital of Navy Medical University, Shanghai, China.
| |
Collapse
|
10
|
Zhou X, Li H, Xie Z. METTL3-modified exosomes from adipose-derived stem cells enhance the proliferation and migration of dermal fibroblasts by mediating m6A modification of CCNB1 mRNA. Arch Dermatol Res 2025; 317:418. [PMID: 39954139 DOI: 10.1007/s00403-025-03896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
Skin scalded injury is a devastating condition. Exosomes derived from adipose-derived mesenchymal stem cells (ASC-exos) have been shown encouraging therapeutic potential in wound healing. Here, we explored the activity and mechanism of methyltransferase-like 3 (METTL3)-modified ASC-exos in the migration and proliferation of dermal fibroblasts. ASC-exos were isolated from mouse ASCs, characterized, and used to incubate mouse dermal fibroblasts. Fluorescence microscopy was used to analyze the transfer of ASC-exos into fibroblasts. Cell migration, invasion, proliferation, and viability were assessed by wound healing, transwell, 5-Ethynyl-2'-deoxyuridine (EdU), and Cell Counting Kit-8 (CCK-8) assays, respectively. Protein expression was tested by western blotting. The influence of METTL3 in cyclin B1 (CCNB1) was evaluated by methylated RNA immunoprecipitation (MeRIP), actinomycin D treatment and quantitative PCR assays. ASC-exos significantly increased the proliferative, invasive, and migratory potentials of dermal fibroblasts. Overexpression of METTL3 resulted in elevated proliferation, invasiveness, and migratory capacity in dermal fibroblasts. Furthermore, METTL3-modified ASC-exos derived from METTL3-increased ASCs exerted more significantly promoting effects on fibroblast proliferation and migration than ASC-exos. Mechanistically, METTL3 upregulated CCNB1 by affecting its mRNA m6A modification. Additionally, reduction of CCNB1 had a counteracting impact on the effects of METTL3-modified ASC-exos in dermal fibroblasts. Our study shows that METTL3-modified ASC-exos enhance the migration and invasion of dermal fibroblasts by mediating CCNB1 mRNA m6A modification, raising hopes that these exosomes might serve as a therapeutic option for scalded skin wound repair.
Collapse
Affiliation(s)
- Xiaolong Zhou
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha, 410219, Hunan, China.
- College of Pharmacy, Changsha Medical University, No.1501 Leifeng Avenue, Wangcheng District, Changsha, Hunan, China.
| | - Hongde Li
- School of Laboratory Medical, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Zijing Xie
- College of Pharmacy, Changsha Medical University, No.1501 Leifeng Avenue, Wangcheng District, Changsha, Hunan, China
| |
Collapse
|
11
|
Zhang Y, Zhao H, Su Y, Yang S, Kang T, Li L. Hypoxic human adipose mesenchymal stem cells-derived extracellular vesicles induce P311 expression and inhibit activation and injury of human brain microvascular endothelial cells. Clin Hemorheol Microcirc 2025:13860291241291326. [PMID: 39973441 DOI: 10.1177/13860291241291326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
OBJECTIVE Stem cell therapy can modify angiogenic pathways. Neural protein 3.1 (P311) possesses the pro-angiogenic property. This study strived to explore the action and mechanism of human adipose mesenchymal stem cells (hADSCs) in human brain microvascular endothelial cell (hBMEC) injury by regulating P311. METHODS The hADSCs of the 3rd passage were stained with oil red O, Alizarin red, and Alcian blue to assess adipogenic, osteogenic, and chondrogenic differentiation, followed by an analysis of immune phenotype via flow cytometry. After culturing hADSCs in hypoxic (5% oxygen) and normoxic (20% oxygen) conditions, extracellular vesicles (EVs) were extracted via ultracentrifugation, followed by morphology observation by microscopy, size distribution analysis via Nanoparticle tracking analysis, and surface marker determination by Western blot. hBMECs were treated with lipopolysaccharide (LPS) and cultured with normoxia or hypoxic hADSC-EVs. The effects of normoxia and hypoxic hADSC-EVs on proliferation, migration, and tube formation of hBMECs were assessed via CCK-8, Transwell, and tube formation assays. hBMECs were transfected with pcDNA3.0-P311 or P311 siRNA to evaluate the action of P311 on hBMEC injury. RESULTS Hypoxic hADSC-EVs had a larger mean diameter, a wider diameter distribution range, and a higher particle concentration than normoxic hADSC-EVs. Hypoxia and normoxic hADSC-EVs were internalized by hBMECs, and hypoxic hADSC-EVs were more internalized. LPS suppressed hBMEC proliferation, migration, and tube formation and induced hBMEC injury. Hypoxia and normoxic hADSC-EVs ameliorated hBMEC injury, and hypoxic hADSC-EVs were superior to normoxic hADSC-EVs. P311 overexpression mitigated hBMEC injury, whereas P311 knockdown partly averted hypoxic hADSC-EV-exerted suppression on hBMEC injury. CONCLUSION Hypoxic hADSC-EVs can protect against LPS-induced hBMEC injury by upregulating P311.
Collapse
Affiliation(s)
- Yun Zhang
- Hospital for Chronic Neurological diseases, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an, China
| | - Hanghang Zhao
- Hospital for Chronic Neurological diseases, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an, China
| | - Yu Su
- Hospital for Chronic Neurological diseases, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an, China
| | - Shudong Yang
- Hospital for Chronic Neurological diseases, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an, China
| | - Tao Kang
- Hospital for Chronic Neurological diseases, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an, China
| | - Li Li
- Hospital for Chronic Neurological diseases, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an, China
| |
Collapse
|
12
|
Dutra Alves NS, Reigado GR, Santos M, Caldeira IDS, Hernandes HDS, Freitas-Marchi BL, Zhivov E, Chambergo FS, Nunes VA. Advances in regenerative medicine-based approaches for skin regeneration and rejuvenation. Front Bioeng Biotechnol 2025; 13:1527854. [PMID: 40013305 PMCID: PMC11861087 DOI: 10.3389/fbioe.2025.1527854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Significant progress has been made in regenerative medicine for skin repair and rejuvenation. This review examines core technologies including stem cell therapy, bioengineered skin substitutes, platelet-rich plasma (PRP), exosome-based therapies, and gene editing techniques like CRISPR. These methods hold promise for treating a range of conditions, from chronic wounds and burns to age-related skin changes and genetic disorders. Challenges remain in optimizing these therapies for broader accessibility and ensuring long-term safety and efficacy.
Collapse
Affiliation(s)
- Nathalia Silva Dutra Alves
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Gustavo Roncoli Reigado
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Mayara Santos
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Izabela Daniel Sardinha Caldeira
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Henrique dos Santos Hernandes
- Laboratory of Proteins and Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | | | - Elina Zhivov
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, FL, United States
| | - Felipe Santiago Chambergo
- Laboratory of Proteins and Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Viviane Abreu Nunes
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Morabbi A, Karimian M. Therapeutic potential of exosomal lncRNAs derived from stem cells in wound healing: focusing on mesenchymal stem cells. Stem Cell Res Ther 2025; 16:62. [PMID: 39934913 DOI: 10.1186/s13287-025-04200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
The self-renewal ability and multipotency of stem cells give them great potential for use in wound healing. Stem cell-derived exosomes, owing to their close biological resemblance to their parent cells, offer a more efficient, safer, and economical approach for facilitating cellular communication and interactions within different environments. This potential makes them particularly valuable in the treatment of both acute and chronic wounds, such as lacerations, burns, and diabetic ulcers. Long non-coding RNAs (lncRNAs) enclosed in exosomes, as one of the leading actors of these extracellular microvesicles, through interaction with miRNAs and regulation of various signaling pathways involved in inflammation, angiogenesis, cell proliferation, and migration, could heal the wounds. Exosome-derived lncRNAs from stem cells facilitate extracellular matrix remodeling through interaction between macrophages and fibroblasts. Moreover, alongside regulating the expression of inflammatory cytokines, controlling reactive oxygen species levels, and enhancing autophagic activity, they also modulate immune responses to support wound healing. Regulating the expression of genes and signaling pathways related to angiogenesis, by increasing blood supply and accelerating the delivery of essential substances to the wound environment, is another effect exosomal lncRNAs derived from stem cells for wound healing. These lncRNAs can also enhance skin wound healing by regulating homeostasis, increasing the proliferation and differentiation of cells involved in the wound-healing process, and enhancing fibroblast viability and migration to the injury site. Ultimately, exosome-derived lncRNAs from stem cells offer valuable and novel insights into the molecular mechanisms underlying improved wound healing. They can pave the way for potential therapeutic strategies, fostering further research for a better future. Meanwhile, exosomes derived from mesenchymal stem cells, due to their exceptional regenerative properties, as well as the lncRNAs derived from these exosomes, have emerged as one of the innovative tools in wound healing. This review article aims to narrate the cellular and molecular roles of exosome-derived lncRNAs from stem cells in enhancing wound healing with a focus on mesenchymal stem cells.
Collapse
Affiliation(s)
- Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|
14
|
Lin X, Lin Q. Heat shock-pretreated bone marrow mesenchymal stem cells accelerate wound healing in a diabetic foot ulcer rat model. Diabet Med 2025:e15507. [PMID: 39924779 DOI: 10.1111/dme.15507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 02/11/2025]
Abstract
BACKGROUND Diabetic foot ulcers (DFUs) are the severe chronic complications of diabetes, amputation is required when ulcers cause severe loss of tissue or evoke a life-threatening infection. Mesenchymal stem cells (MSCs) have shown a good effect in helping DFU healing, though the efficiency needs to be improved. This study aimed to investigate the effects of heat shock pretreatment on the improvement of the therapeutic effects of MSCs. METHODS Primary rat bone marrow MSCs (BMSCs) were isolated and stimulated with heat shock pretreatment and then tested on a DFU rat model. Alkaline phosphatase, Alizarin Red S, and Oil Red O were stained to check the osteogenic differentiation ability of heat shock-pretreated BMSCs. The effect of heat shock pretreatment on the inflammatory response of macrophages was studied with the lipopolysaccharides stimulation model on a mouse macrophage cell line RAW264.7. The impact of heat shock-pretreated BMSCs on dermal fibroblasts was also checked. Last, heat shock-pretreated BMSCs were tested on a DFU rat model. RESULTS Heat shock-pretreated BMSCs were characterized by the expression of CD105 and CD44. Heat shock pre-stimulation did not affect cell viability when cultured up to 96 h. Heat shock pre-stimulated BMSCs inhibited the inflammatory response by reducing the pro-inflammatory cytokine production (IL-1β, IL-6, and TNF-α) and enhancing the anti-inflammatory cytokine production (IL-10) (at least all p < 0.01), as well as increasing the ratio of M2 polarization macrophages to M1 polarization in vitro (p < 0.001). Heat shock pre-stimulated BMSCs enhanced the growth and migration of dermal fibroblasts in vitro (p < 0.001). Heat shock-BMSCs promoted the M2 polarization level of macrophages in wound tissues in a DFU rat model. CONCLUSION Heat shock pretreatment could enhance the therapeutic effect of BMSCs on wound healing in a DFU rat model.
Collapse
Affiliation(s)
- Xi Lin
- Department of Emergency Surgery, Center for Trauma Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Qi Lin
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Alsaab HO, Almutairy B, Almobarki AO, Mughaedh MAA, Alzahrani MS. Exosome's role in ovarian disease pathogenesis and therapy; Focus on ovarian cancer and failure. J Reprod Immunol 2025; 167:104403. [PMID: 39662240 DOI: 10.1016/j.jri.2024.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
In the eukaryotic system, exosomes are categorized as unique extracellular vesicles with dimensions ranging from 30 to 150 nm. These vesicles contain a variety of endogenous molecules, such as proteins, DNA, mRNA, microRNA, and circular RNA. They are essential for a wide range of metabolic events and have the potential to be used as therapeutic or diagnostic targets for a number of diseases, including ovarian diseases. By inducing changes in the surrounding environment, the donor exosomes transfer their contents to the receiving cells, so demonstrating the biological implications of major interactions between cells. Mesenchymal stem cells (MSCs) have produced exosomes have shown promise as a treatment for premature organ failure (POF or POI). Furthermore, exosomal transport has many complexities, and contributes to the pathophysiology of ovarian cancer by affecting cell growth, migration, metastastsis and etc. Owing to these facts, in this paper, we present the progress developed in the understanding of exosomes as a viable therapeutic avenue and indisputable prognostic targets in ovarian disorders.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia.
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| | | | | | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif , Saudi Arabia
| |
Collapse
|
16
|
Liu H, Ji M, Yang T, Zou S, Qiu X, Zhan F, Chen J, Yan F, Ding F, Li P. Regulation of fibroblast phenotype in osteoarthritis using CDKN1A-loaded copper sulfide nanoparticles delivered by mesenchymal stem cells. Am J Physiol Cell Physiol 2025; 328:C679-C698. [PMID: 39819042 DOI: 10.1152/ajpcell.00573.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/26/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
This study aimed to investigate the regulation of fibroblast phenotypes by mesenchymal stem cells (MSCs) delivering copper sulfide (CuS) nanoparticles (NPs) loaded with CDKN1A plasmids and their role in cartilage repair during osteoarthritis (OA). Single-cell RNA sequencing data from the GEO database were analyzed to identify subpopulations within the OA immune microenvironment. Quality control, filtering, principal component analysis (PCA) dimensionality reduction, and tSNE clustering were performed to obtain detailed cell subtypes. Pseudotime analysis was used to understand the developmental trajectory of fibroblasts, and GO/KEGG enrichment analyses highlighted biological processes related to fibroblast function. Transcriptomic data and WGCNA identified CDKN1A as a key regulatory gene. A biomimetic CuS@CDKN1A nanosystem was constructed and loaded into MSCs to create MSCs@CuS@CDKN1A. The characterization of this system confirmed its efficient cellular uptake by fibroblasts. In vitro experiments demonstrated that MSCs@CuS@CDKN1A significantly modulated fibroblast phenotypes and improved the structure, proliferation, reduced apoptosis, and enhanced migration of IL-1β-stimulated chondrocytes. In vivo, an OA mouse model was treated with intra-articular injections of MSCs@CuS@CDKN1A. Micro-CT scans revealed a significant reduction in osteophyte formation and improved joint space compared with control groups. Histological analysis, including H&E, Safranin O-Fast Green, and toluidine blue staining, confirmed improved cartilage integrity, whereas the International Osteoarthritis Research Society (OARSI) scoring indicated reduced disease severity. Immunofluorescence showed upregulated CDKN1A expression, decreased MMP13, and reduced α-SMA expression in fibroblast subtypes. Major organs exhibited no signs of toxicity, confirming the biocompatibility and safety of the treatment. These findings suggest that MSCs@CuS@CDKN1A can effectively regulate fibroblast activity and promote cartilage repair, providing a promising therapeutic strategy for OA treatment.NEW & NOTEWORTHY This study introduces MSCs@CuS@CDKN1A, a nanoengineered MSC platform that targets fibroblast phenotypes in osteoarthritis (OA). By modulating CDKN1A expression, this innovative approach not only enhances cartilage repair but also effectively mitigates fibroblast-driven inflammation, marking a significant advancement in OA therapeutics with demonstrated efficacy and biocompatibility.
Collapse
Affiliation(s)
- Hong Liu
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
| | - Ming Ji
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
| | - Tao Yang
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
| | - Shihua Zou
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
| | - Xingan Qiu
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
| | - Fangbiao Zhan
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
- School of Medicine, Chongqing University, Chongqing, People's Republic of China
| | - Jian Chen
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
- School of Medicine, Chongqing University, Chongqing, People's Republic of China
| | - Fei Yan
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
- School of Medicine, Chongqing University, Chongqing, People's Republic of China
| | - Fan Ding
- Department of Orthopedics, General Hospital of Central Theater Command, Wuhan, People's Republic of China
| | - Ping Li
- Division of Orthopedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
17
|
Abdallah S, Tabebi M, Qanadilo S, Ali N, Wang J, D'Arcy P, Zhong W, Sjoberg F, Elmasry M, El-Serafi A. Modulation of biological activities in adipose derived stem cells by histone deacetylation. Sci Rep 2025; 15:3629. [PMID: 39880862 PMCID: PMC11779964 DOI: 10.1038/s41598-024-84652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/25/2024] [Indexed: 01/31/2025] Open
Abstract
Difficult-to-heal wounds management accounts for about 4% of healthcare costs, highlighting the need for innovative solutions. Extracellular signals drive cell proliferation during tissue regeneration, while epigenetic mechanisms regulate stem cell homeostasis, differentiation, and skin repair. Exploring epigenetic regulation in adipose-derived stem cells (ADSCs) holds promise for improving skin injury treatments. We investigated the effects of histone deacetylase inhibitor (SAHA) on ADSCs to better understand its cellular and molecular impacts. ADSCs were treated with SAHA for 72 h, showing no change in cell viability at the studied concentrations. However, the expression of histone deacetylase decreased at 1000 nM, while the cell proliferation marker Ki-67 increased after SAHA treatment, as confirmed by immunofluorescence. CCND1 gene expression increased, whereas protein expression of the proliferating cell nuclear antigen (PCNA) decreased. Cell cycle analysis showed an increase in G2 phase in SAHA-treated cells. Microarray analysis revealed 74 upregulated and 40 downregulated differentially expressed genes, including upregulation of P53 targets, CDKN1A and MDM2. Proteomic analysis identified 631 upregulated and 823 downregulated proteins compared to the vehicle. Pathway enrichment analysis showed cell cycle, ATP-dependent chromatin remodeling and DNA processes were among the affected pathways. This study suggests SAHA modulates ADSCs' biological processes, highlighting its potential for skin regeneration.
Collapse
Affiliation(s)
- Sallam Abdallah
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Mouna Tabebi
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Clinical Genomics Linköping, Linköping University, Linköping, Sweden
| | - Sawsan Qanadilo
- Department of Biological Sciences, The University of Jordan, Amman, Jordan
| | - Neserin Ali
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jing Wang
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Pádraig D'Arcy
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Wen Zhong
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Folke Sjoberg
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Moustafa Elmasry
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Department of Hand Surgery and Plastic Surgery and Burns, University Hospital, Linköping, Sweden
| | - Ahmed El-Serafi
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden.
- Department of Hand Surgery and Plastic Surgery and Burns, University Hospital, Linköping, Sweden.
| |
Collapse
|
18
|
Zhao S, Kong H, Qi D, Qiao Y, Li Y, Cao Z, Wang H, He X, Liu H, Yang H, Gao S, Liu T, Xie J. Epidermal stem cell derived exosomes-induced dedifferentiation of myofibroblasts inhibits scarring via the miR-203a-3p/PIK3CA axis. J Nanobiotechnology 2025; 23:56. [PMID: 39881312 PMCID: PMC11776291 DOI: 10.1186/s12951-025-03157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation. Epidermal stem cell-derived extracellular vesicles (EpiSC-EVs) were isolated via ultracentrifugation and filtration, followed by miRNA sequencing to identify miRNAs targeting key molecules. After in vitro and in vivo treatment with EpiSC-EVs, we assessed antifibrotic effects through scratch assays, collagen contraction assays, Western blotting, and immunofluorescence. Transcriptomic sequencing and rescue experiments were used to investigate the molecular mechanism by which miR-203a-3p in EpiSC-EVs induces myofibroblast dedifferentiation. Our results indicate that PIK3CA is overexpressed in HS tissues and positively correlates with fibrosis. EpiSC-EVs were absorbed by scar-derived fibroblasts, promoting dedifferentiation from myofibroblasts to quiescent fibroblasts. Mechanistically, miR-203a-3p in EpiSC-EVs plays an essential role in inhibiting PIK3CA expression and PI3K/AKT/mTOR pathway hyperactivation, thereby reducing scar formation. In vivo studies confirmed that EpiSC-EVs attenuate excessive scarring through the miR-203a-3p/PIK3CA axis, suggesting EpiSC-EVs as a promising therapeutic approach for HS.
Collapse
Affiliation(s)
- Shixin Zhao
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Haoran Kong
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Dahu Qi
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Yushuang Qiao
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Yu Li
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Zhiming Cao
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Hanwen Wang
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xuefeng He
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Hengdeng Liu
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Hao Yang
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Suyue Gao
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Tao Liu
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China.
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China.
| | - Julin Xie
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
19
|
Galbiati M, Maiullari F, Ceraolo MG, Bousselmi S, Fratini N, Gega K, Recchia S, Ferretti AM, Scala G, Costantini M, Sciarra T, Rizzi R, Bearzi C. Bioactive Hydrogel Supplemented with Stromal Cell-Derived Extracellular Vesicles Enhance Wound Healing. Pharmaceutics 2025; 17:162. [PMID: 40006529 PMCID: PMC11859224 DOI: 10.3390/pharmaceutics17020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Skin regeneration is a rapidly advancing field with significant implications for regenerative medicine, particularly in treating wounds and burns. This study explores the potential of hydrogels functionalized with fibroblast-derived extracellular vesicles (EVs) to enhance skin regeneration in vivo. Being immunoprivileged, EVs minimize immune rejection, offering an attractive alternative to whole-cell therapies by replicating fibroblasts' key roles in tissue repair. Methods: To promote EVs' versatility and effective application across different conditions, a lyophilization method with lyoprotectants was optimized. Then, EVs were used to functionalize a hydrogel to perform experiments on murine cutaneous wound models. Results: Gelatin methacrylate (GelMA) was selected as the polymeric hydrogel due to its biocompatibility, tunable mechanical properties, and ability to support wound healing. Mechanical tests confirmed GelMA's strength and elasticity for this application. Fibroblast-derived EVs were characterized using Western blot, Transmission Electron Microscopy, and NanoSight analysis, proving their integrity, size distribution, and stability. miRNome profiling identified enriched biological pathways related to cell migration, differentiation, and angiogenesis, emphasizing the critical role of EV cargo in promoting wound repair. In a murine model, hydrogels loaded with fibroblast-derived EVs significantly accelerated wound healing compared to controls (mean wound area 0.62 mm2 and 4.4 mm2, respectively), with faster closure, enhanced epithelialization, increased vascularization, and reduced fibrosis. Notably, the lyoprotectants successfully preserved the EVs' structure and bioactivity during freeze-drying, reducing EVs loss by 35% compared to the control group and underscoring the feasibility of this approach for long-term storage and clinical application. Conclusions: This study introduces a novel scalable and adaptable strategy for regenerative medicine by combining fibroblast-derived EVs with GelMA, optimizing EVs' stability and functionality for enhanced wound healing in clinical settings, even in challenging contexts such as combat zones or large-scale natural disasters.
Collapse
Affiliation(s)
- Matteo Galbiati
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, Segrate, 20054 Milan, Italy; (M.G.); (F.M.); (K.G.)
| | - Fabio Maiullari
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, Segrate, 20054 Milan, Italy; (M.G.); (F.M.); (K.G.)
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland;
| | - Maria Grazia Ceraolo
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.G.C.); (S.B.)
| | - Salma Bousselmi
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.G.C.); (S.B.)
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 1, 00133 Rome, Italy
| | - Nicole Fratini
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena, 324, 00161 Rome, Italy;
| | - Klajdi Gega
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, Segrate, 20054 Milan, Italy; (M.G.); (F.M.); (K.G.)
| | - Sandro Recchia
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy;
| | - Anna Maria Ferretti
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “G. Natta”, Via G. Fantoli 16/15, 20138 Milan, Italy;
| | - Giovanni Scala
- Department of Biology, University Federico II, 80128 Naples, Italy;
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland;
| | - Tommaso Sciarra
- Joint Veteran Center, Scientific Department, Army Medical Center, 00184 Rome, Italy;
| | - Roberto Rizzi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Corso della Repubblica 79, 04100 Latina, Italy
| | - Claudia Bearzi
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, Segrate, 20054 Milan, Italy; (M.G.); (F.M.); (K.G.)
| |
Collapse
|
20
|
Li X, Cui J, Ning LJ, Hu RN, Zhao LL, Luo JJ, Xie XY, Zhang YJ, Luo JC, Li ZY, Qin TW. Response of a tenomodulin-positive subpopulation of human adipose-derived stem cells to decellularized tendon slices. Biomed Mater 2025; 20:025004. [PMID: 39746323 DOI: 10.1088/1748-605x/ada509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
The selection of appropriate cell sources is vital for the regeneration and repair of tendons using stem cell-based approaches. Human adipose-derived stem cells (hADSCs) have emerged as a promising therapeutic strategy for tendon injuries. However, the heterogeneity of hADSCs can lead to inconsistent or suboptimal therapeutic outcomes. In this study, we isolated and identified a tenomodulin (TNMD)-positive subpopulation from hADSCs (TNMD+hADSCs) using flow cytometry and then assessed the cellular response of this subpopulation to decellularized tendon slices (DTSs), including cell proliferation, migration, and tenogenic differentiation, using the CCK-8 assay, transwell migration assay, and quantitative real-time polymerase chain reaction. Our findings revealed that TNMD+hADSCs maintained the general characteristics of stem cells and exhibited significantly higher expressions of tendon-related markers compared to hADSCs. Importantly, DTSs significantly enhanced the proliferation, migration, and tenogenic differentiation of TNMD+hADSCs. This study provides preliminary experimental evidence for the translational application of ADSCs for tendon regeneration and repair.
Collapse
Affiliation(s)
- Xuan Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cells and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jing Cui
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cells and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Liang-Ju Ning
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cells and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ruo-Nan Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cells and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Lei-Lei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cells and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jia-Jiao Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cells and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xin-Yue Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cells and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yan-Jing Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cells and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jing-Cong Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cells and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zheng-Yong Li
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ting-Wu Qin
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cells and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
21
|
Li P, Cao L, Liu T, Lu X, Ma Y, Wang H. The Effect of Adipose-Derived Stem Cell (ADSC)-Exos on the Healing of Autologous Skin Grafts in Miniature Pigs. Int J Mol Sci 2025; 26:479. [PMID: 39859193 PMCID: PMC11764972 DOI: 10.3390/ijms26020479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The skin functions as the body's primary defense barrier; when compromised, it can lead to dehydration, infection, shock, or potentially life-threatening conditions. Miniature pigs exhibit skin characteristics and healing processes highly analogous to humans. Mesenchymal stem cells contribute to skin injury repair through a paracrine mechanism involving exosomes. This research examines whether adipose-derived MSC exosomes effectively enhance healing following autologous skin grafting in miniature pigs. It also compares the roles and distinctions of ADSCs and ADSC-Exos in inflammatory responses and tissue regeneration. This study found significantly reduced levels of oxidative stress products and pro-inflammatory factors, while antioxidant factors, anti-inflammatory factors, and pro-regenerative factors were elevated, and anti-regenerative factor levels decreased. Moreover, the expression levels of key markers-namely, PI3K, Akt, and mTOR-in the regeneration-associated signaling pathway were increased. The alterations in these indicators indicate that ADSC-Exos can regulate inflammatory responses and promote regeneration. This study provides a novel theoretical foundation for the implementation of acellular therapy in clinical settings.
Collapse
Affiliation(s)
- Pujun Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150300, China; (P.L.); (L.C.); (T.L.); (X.L.); (Y.M.)
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150300, China
| | - Lei Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150300, China; (P.L.); (L.C.); (T.L.); (X.L.); (Y.M.)
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150300, China
| | - Tao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150300, China; (P.L.); (L.C.); (T.L.); (X.L.); (Y.M.)
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150300, China
| | - Xiangyu Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150300, China; (P.L.); (L.C.); (T.L.); (X.L.); (Y.M.)
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150300, China
| | - Yajun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150300, China; (P.L.); (L.C.); (T.L.); (X.L.); (Y.M.)
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150300, China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150300, China; (P.L.); (L.C.); (T.L.); (X.L.); (Y.M.)
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150300, China
| |
Collapse
|
22
|
Dean J, Hoch C, Wollenberg B, Navidzadeh J, Maheta B, Mandava A, Knoedler S, Sherwani K, Baecher H, Schmitz A, Alfertshofer M, Heiland M, Kreutzer K, Koerdt S, Knoedler L. Advancements in bioengineered and autologous skin grafting techniques for skin reconstruction: a comprehensive review. Front Bioeng Biotechnol 2025; 12:1461328. [PMID: 39840132 PMCID: PMC11747595 DOI: 10.3389/fbioe.2024.1461328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/03/2024] [Indexed: 01/23/2025] Open
Abstract
The reconstruction of complex skin defects challenges clinical practice, with autologous skin grafts (ASGs) as the traditional choice due to their high graft take rate and patient compatibility. However, ASGs have limitations such as donor site morbidity, limited tissue availability, and the necessity for multiple surgeries in severe cases. Bioengineered skin grafts (BSGs) aim to address these drawbacks through advanced tissue engineering and biomaterial science. This study conducts a systematic review to describe the benefits and shortcomings of BSGs and ASGs across wound healing efficacy, tissue integration, immunogenicity, and functional outcomes focusing on wound re-epithelialization, graft survival, and overall aesthetic outcomes. Preliminary findings suggest ASGs show superior early results, while BSGs demonstrate comparable long-term outcomes with reduced donor site morbidity. This comparative analysis enhances understanding of bioengineered alternatives in skin reconstruction, potentially redefining best practices based on efficacy, safety, and patient-centric outcomes, highlighting the need for further innovation in bioengineered solutions.
Collapse
Affiliation(s)
- Jillian Dean
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cosima Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Justin Navidzadeh
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bhagvat Maheta
- California Northstate University College of Medicine, Elk Grove, CA, United States
| | - Anisha Mandava
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samuel Knoedler
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Khalil Sherwani
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Helena Baecher
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Alina Schmitz
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Michael Alfertshofer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Max Heiland
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Kilian Kreutzer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Steffen Koerdt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Leonard Knoedler
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| |
Collapse
|
23
|
Huang Z, Niu R, Xu Q, Zhang R, Hu W, Qin Y, Wang X, Xu Q, Xia Y, Fan Y, Lu C. Impact of Maternal BPA Exposure during Pregnancy on Obesity in Male Offspring: A Mechanistic Mouse Study of Adipose-Derived Exosomal miRNA. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:17011. [PMID: 39886984 PMCID: PMC11783688 DOI: 10.1289/ehp14888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 02/01/2025]
Abstract
BACKGROUND The widespread use of bisphenol A (BPA) has led to universal exposure among the population, raising concerns about its health effects. Epidemiological studies have linked environmentally relevant levels of BPA exposure to obesity. OBJECTIVES We aimed to uncover the complex mechanisms by which oral exposure during pregnancy with BPA affects the offspring. METHODS We conducted a two-stage mouse study. In stage 1, we gavaged dams with BPA at 0.05, 0.5, and 5 mg / kg per day during pregnancy, and we tracked the offspring's weight and diet to 12 wk of age. In stage 2, exosomes from BPA-exposed dams and offspring were injected into pregnant mice and 3-wk-old males, respectively, and the mice were observed up to 12 wk. We then sequenced exosomal microRNAs (miRNAs) in male offspring whose dams had been exposed to BPA during pregnancy and checked their expression in adipose, liver, and serum samples at weeks 3, 6, 9, and 12. Finally, we explored the functions of exosomes and exosomal miRNAs secreted by adipose-derived mesenchymal stem cells, and we investigated whether the exosomes and miRNAs they secreted could affect glucose uptake, triglyceride synthesis, and the expression of genes related to glucose and lipid metabolism in alpha mouse liver 12 cells. RESULTS Gavage of 0.05 mg / kg per day of BPA during pregnancy in dams led to obesity in male offspring mice, and injection of exosomes from male offspring with BPA exposure during pregnancy also induced similar outcomes in the next generation of male pups. Exosomal miRNA sequencing identified differentially expressed miRNAs associated with BPA-induced obesity in male offspring, revealing sustained high expression of miRNAs in adipose tissue and a gradual increase in the liver and serum over time. Further mechanistic studies showed that exosomes derived from BPA-treated adipose-derived stem cells reduced the expression of peroxisome proliferator-activated receptor-gamma and fibroblast growth factor 21, leading to impaired insulin signaling and lipid metabolism in hepatocytes. Overexpression of miR-124-3p in hepatocytes mimicked these effects; in contrast, knockdown of miR-124-3p or inhibition of exosome secretion reversed them. DISCUSSION The present study corroborates the regulatory function of adipose-derived exosomal miRNAs in obesity in male offspring mice resulting from BPA exposure during pregnancy. Exosomal miRNA may be a key and novel molecular biomarker in the adverse effects of chemical exposure during pregnancy. https://doi.org/10.1289/EHP14888.
Collapse
Affiliation(s)
- Zhenyao Huang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Rui Niu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yufeng Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiujin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yun Fan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Zou X, Xu H, Qian W. Macrophage Polarization in the Osteoarthritis Pathogenesis and Treatment. Orthop Surg 2025; 17:22-35. [PMID: 39638774 PMCID: PMC11735378 DOI: 10.1111/os.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative disorder that severely impacts quality of life due to pain and disability. Although the pathophysiology of OA remains incompletely understood, recent research highlights the role of synovial inflammation in OA onset and progression, driven primarily by inflammatory infiltrates, especially macrophages, in the synovium. These macrophages respond to the local microenvironment, polarizing into either pro-inflammatory (M1) or anti-inflammatory (M2) subtypes. This review focuses on the role of macrophage polarization in OA pathogenesis and treatment, emphasizing how M1/M2 polarization is influenced by pathways such as STAT, NF-κB, caspase, and MAPK. These pathways induce low-grade inflammation within OA-affected joints, altering chondrocyte metabolism, inhibiting cartilage repair, and impairing mesenchymal stem cell chondrogenesis, thereby contributing to OA progression. Additionally, this review discusses potential therapies targeting macrophage polarization, encompassing compounds, proteins, cells, and microRNAs, to offer insights into novel treatment strategies for OA.
Collapse
Affiliation(s)
- Xiongfei Zou
- Department of Orthopedic SurgeryPeking Union Medical College HospitalBeijingChina
| | - Hongjun Xu
- Department of Orthopedic SurgeryPeking Union Medical College HospitalBeijingChina
| | - Wenwei Qian
- Department of Orthopedic SurgeryPeking Union Medical College HospitalBeijingChina
| |
Collapse
|
25
|
Rubini A, Zanotti F, Licastro D, Calogero G, Bettini G, Piccoli C, Rubini G, Lovatti L, Zavan B. Therapeutic Potential of Feline Adipose-Derived Stem Cell Exosomes in the Treatment of Feline Idiopathic Cystitis: A Characterization and Functional Analysis of miRNA Content. Nanotheranostics 2025; 9:38-51. [PMID: 39744099 PMCID: PMC11667565 DOI: 10.7150/ntno.99383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/28/2024] [Indexed: 04/05/2025] Open
Abstract
Feline Idiopathic Cystitis (FIC), is a chronic lower urinary tract condition in cats analogous to PBS/IC in women, which presents significant treatment challenges due to its idiopathic nature. Recent advancements in regenerative medicine highlight the potential of Adipose Tissue-Derived Stem Cells (ADSCs), particularly through their secretome, which includes mediators, bioactive molecules, and extracellular vesicles (EVs). Notably, exosomes, a subset of EVs, facilitate cell-to-cell communication and, when derived from ADSCs, exhibit anti-inflammatory properties and contribute to tissue regeneration. In this work, we aim to characterize the content of exosomes derived from feline ADSCs (fADSCs) to elucidate their mechanisms of action on recipient cells and assess their therapeutic potential for FIC. Exosomes were isolated from fADSCs and their microRNA (miRNA) content sequenced using Illumina technology. Our findings demonstrate that fADSC-derived exosomes harbor miRNAs that can induce regenerative processes, such as cell proliferation, immune modulation, angiogenesis, and anti-inflammatory responses. Key miRNAs identified include fca-miR-221, fca-let-7f-5p, fca-miR-337-5p, fca-miR-542-5p, fca-miR-24-3p, fca-miR-205, and fca-miR-23a, which promote proliferative, angiogenic, differentiation, and regenerative mechanisms. Additionally, miRNAs with anti-inflammatory effects, such as fca-miR-193a-5p and fca-miR-127-3p, and those positively regulating the immune system, including fca-let-7a-5p and fca-miR-chrC1_18846-5p, were identified. Of particular interest, fca-miR-219-5p (has-miR-6766-3p) has been reported to suppress liver fibrosis.These results underline the therapeutic potential of fADSC-derived exosomes in treating FIC and suggest innovative strategies for feline veterinary medicine.
Collapse
Affiliation(s)
- Andrea Rubini
- Ultravet Diagnostics, 40017, San Giovanni in Persiceto, Italy
| | - Federica Zanotti
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Giulia Calogero
- Ultravet Diagnostics, 40017, San Giovanni in Persiceto, Italy
| | - Gisella Bettini
- Clinica Veterinaria Estense, Via Pianelle, 31, 44123 Francolino (Ferrara), Italy
| | - Cristiana Piccoli
- Clinica Veterinaria Estense, Via Pianelle, 31, 44123 Francolino (Ferrara), Italy
| | | | - Luca Lovatti
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
26
|
Hou B, Li C, Yang F, Deng W, Hu C, Liu C, Chen Y, Xiao X, Huang X, Deng J, Xie S. Ultrasmall Antioxidant Copper Nanozyme to Enhance Stem Cell Microenvironment for Promoting Diabetic Wound Healing. Int J Nanomedicine 2024; 19:13563-13578. [PMID: 39720217 PMCID: PMC11668326 DOI: 10.2147/ijn.s487647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024] Open
Abstract
Purpose Stem cell therapy is a promising approach for treating chronic diabetic wounds. However, its effectiveness is significantly limited by the high oxidative stress environment and persistent inflammation induced by diabetes. Strategies to overcome these challenges are essential to enhance the therapeutic potential of stem cell therapy. Methods Cu5.4O ultrasmall nanoparticles (Cu5.4O-USNPs), known for their excellent reactive oxygen species (ROS) scavenging properties, were utilized to protect adipose-derived stem cells (ADSCs) from oxidative stress injury. In vitro experiments were conducted to evaluate the viability, paracrine activity, and anti-inflammatory capabilities of ADSCs loaded with Cu5.4O-USNPs under oxidative stress conditions. In vivo experiments in diabetic mice were performed to assess the therapeutic effects of Cu5.4O-USNP-loaded ADSCs on wound healing, including their impact on inflammation, collagen synthesis, angiogenesis, and wound closure. Results ADSCs treated with Cu5.4O-USNPs showed significantly enhanced viability, paracrine activity, and anti-inflammatory properties under oxidative stress conditions in vitro. In diabetic mice, Cu5.4O-USNP-loaded ADSCs reduced inflammatory responses in wound tissues, promoted collagen synthesis and angiogenesis, and accelerated diabetic wound healing. These findings suggest that Cu5.4O-USNPs effectively mitigate the adverse effects of oxidative stress and inflammation, enhancing the therapeutic efficacy of ADSCs. Conclusion This study presents a simple and effective approach to improve the therapeutic potential of stem cell therapy for diabetic wounds. By incorporating Cu5.4O-USNPs, the antioxidative and anti-inflammatory capabilities of ADSCs are significantly enhanced, offering a promising strategy for ROS-related tissue repair and chronic wound healing.
Collapse
Affiliation(s)
- Biao Hou
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Chengyuan Li
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Fen Yang
- Department of Infectious Diseases, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Wanjun Deng
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Chao Hu
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Changxiong Liu
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Yanming Chen
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Xiangjun Xiao
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Xiongjie Huang
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Jun Deng
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, People’s Republic of China
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, People’s Republic of China
| | - Songlin Xie
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, People’s Republic of China
| |
Collapse
|
27
|
Wang YW, Tan PC, Li QF, Xu XW, Zhou SB. Adipose tissue protects against skin photodamage through CD151- and AdipoQ- EVs. Cell Commun Signal 2024; 22:594. [PMID: 39696450 DOI: 10.1186/s12964-024-01978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
To clarify the protective effects of subcutaneous adipose tissue (SAT) against photodamage, we utilized nude mouse skin with or without SAT. Skin and fibroblasts were treated with adipose tissue-derived extracellular vesicles (AT-EVs) or extracellular vesicles derived from adipose-derived stem cells (ADSC-EVs) to demonstrate that SAT protects the overlying skin from photodamage primarily through AT-EVs. Surprisingly, AT-EVs stimulated fibroblast proliferation more rapidly than ADSC-EVs did. The yield of AT-EVs from the same volume of AT was 200 times greater than that of ADSC-EVs. To compare the differences between AT-EVs and ADSC-EVs, we used a proximity barcoding assay (PBA) to analyze the surface proteins on individual particles of these two types of EVs. PBA analysis revealed that AT-EVs contain diverse subpopulations, with 83.42% expressing CD151, compared to only 1.98% of ADSC-EVs. Furthermore, AT-EVs are internalized more rapidly by cells than ADSC-EVs, as our study demonstrated that CD151-positive AT-EVs were endocytosed more quickly than their CD151-negative counterparts. Additionally, adiponectin in AT-EVs activated the AMPK pathway and inhibited the NF-κB pathway, enhancing fibroblast protection against photodamage. The significantly higher yield and faster acquisition of AT-EVs compared to ADSC-EVs underscore their potential for broader applications.
Collapse
Affiliation(s)
- Yan-Wen Wang
- Department of Plastic & Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Poh-Ching Tan
- Department of Plastic & Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Feng Li
- Department of Plastic & Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xue-Wen Xu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.
| | - Shuang-Bai Zhou
- Department of Plastic & Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
28
|
Hekimoglu ER, Esrefoglu M, Cimen FBK, Pasin Ö, Dedeakayogullari H. Therapeutic Potential of Stromal Vascular Fraction in Enhancing Wound Healing: A Preclinical Study. Aesthetic Plast Surg 2024:10.1007/s00266-024-04554-5. [PMID: 39681692 DOI: 10.1007/s00266-024-04554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Adipose tissue provides an abundant source of stromal vascular fraction (SVF) cells for immediate administration. It can also give rise to many multipotent adipose-derived stromal cells. SVF is the population of cells obtained from mechanical or enzymatic digestion of lipoaspirate with no necessity for cell culture or expansion. Recently, the heterogeneous cell population found in the SVF gained wide-ranging translational significance in regenerative medicine. METHODS Forty-eight male rats were randomly divided into two main groups, including the control and SVF groups. Each group was further divided into four groups as follows: 0th-, 3rd-, 7th-, and 10th-day groups. A skin excision of 1 × 1 cm covering the epidermis and dermis was performed on the back skin. Just after the wound was created, a subepidermal injection of SVF was applied. SVF was obtained from human adipose tissue using Lipocube SVFTM. On the 0th (1 h after the injections), 3rd, 7th, and 10th days, rats were killed, and skin excisions from the wound areas tissues were performed. Histopathological, biochemical, and western blotting analyses were performed on tissues. RESULTS Our data showed that SVF obtained from a healthy woman improved wound healing in healthy rats. SVF has promoted wound healing mainly because of its antioxidant, antiapoptotic, and fibroblast/myofibroblast stimulating effects. SVF stimulated collagen production and contraction of the wound lips, supporting the closure. CONCLUSIONS Our study provides additional data about the efficacy and pathophysiological and molecular mechanisms of the action of SVF on wound healing in healthy subjects. Our study is an experimental animal study. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
Affiliation(s)
- Emine Rumeysa Hekimoglu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Fatih, Istanbul, Turkey.
| | - Mukaddes Esrefoglu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Fatih, Istanbul, Turkey
| | - Fatma Bedia Karakaya Cimen
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Fatih, Istanbul, Turkey
| | - Özge Pasin
- Department of Biostatistics, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Huri Dedeakayogullari
- Department of Medical Biochemistry, Faculty of Medicine, Istinye University, Istanbul, Turkey
| |
Collapse
|
29
|
Wang S, Gao D, Li M, Wang Q, Du X, Yuan S. Enhanced Wound Healing and Autogenesis Through Lentiviral Transfection of Adipose-Derived Stem Cells Combined with Dermal Substitute. Biomedicines 2024; 12:2844. [PMID: 39767750 PMCID: PMC11673073 DOI: 10.3390/biomedicines12122844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Burns and chronic ulcers may cause severe skin loss, leading to critical health issues like shock, infection, sepsis, and multiple organ failure. Effective healing of full-thickness wounds may be challenging, with traditional methods facing limitations due to tissue shortage, infection, and lack of structural support. METHODS This study explored the combined use of gene transfection and dermal substitutes to improve wound healing. We used the DGTM (genes: DNP63A, GRHL2, TFAP2A, and MYC) factors to transfect adipose-derived stem cells (ADSCs), inducing their differentiation into keratinocytes. These transfected ADSCs were then incorporated into Pelnac® dermal substitutes to enhance vascularization and cellular proliferation for better healing outcomes. RESULTS Gene transfer using DGTM factors successfully induced keratinocyte differentiation in ADSCs. The application of these differentiated cells with Pelnac® dermal substitute to dermal wounds in mice resulted in the formation of skin tissue with a normal epidermal layer and proper collagen organization. This method alleviates the tediousness of the multiple transfection steps in previous protocols and the safety issues caused by using viral transfection reagents directly on the wound. Additionally, the inclusion of dermal substitutes addressed the lack of collagen and elastic fibers, promoting the formation of tissue resembling healthy skin rather than scar tissue. CONCLUSION Integrating DGTM factor-transfected ADSCs with dermal substitutes represents a novel strategy for enhancing the healing of full-thickness wounds. Further research and clinical trials are warranted to optimize and validate this innovative approach for broader clinical applications.
Collapse
Affiliation(s)
- Shiqi Wang
- Department of Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China; (S.W.); (D.G.); (M.L.)
- Department of Plastic Surgery, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, Nanjing 210002, China;
| | - Dinghui Gao
- Department of Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China; (S.W.); (D.G.); (M.L.)
| | - Mingyu Li
- Department of Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China; (S.W.); (D.G.); (M.L.)
| | - Qian Wang
- Department of Plastic Surgery, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, Nanjing 210002, China;
| | - Xuanyu Du
- Department of Plastic Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing 210002, China;
| | - Siming Yuan
- Department of Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China; (S.W.); (D.G.); (M.L.)
- Department of Plastic Surgery, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, Nanjing 210002, China;
| |
Collapse
|
30
|
Razavi ZS, Farokhi S, Mahmoudvand G, Karimi-Rouzbahani A, Farasati-Far B, Tahmasebi-Ghorabi S, Pazoki-Toroudi H, Saadat-Fakhr M, Afkhami H. Stem cells and bio scaffolds for the treatment of cardiovascular diseases: new insights. Front Cell Dev Biol 2024; 12:1472103. [PMID: 39726717 PMCID: PMC11669526 DOI: 10.3389/fcell.2024.1472103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/01/2024] [Indexed: 12/28/2024] Open
Abstract
Mortality and morbidity from cardiovascular diseases are common worldwide. In order to improve survival and quality of life for this patient population, extensive efforts are being made to establish effective therapeutic modalities. New treatment options are needed, it seems. In addition to treating cardiovascular diseases, cell therapy is one of the most promising medical platforms. One of the most effective therapeutic approaches in this area is stem cell therapy. In stem cell biology, multipotent stem cells and pluripotent stem cells are divided into two types. There is evidence that stem cell therapy could be used as a therapeutic approach for cardiovascular diseases based on multiple lines of evidence. The effectiveness of stem cell therapies in humans has been studied in several clinical trials. In spite of the challenges associated with stem cell therapy, it appears that resolving them may lead to stem cells being used in cardiovascular disease patients. This may be an effective therapeutic approach. By mounting these stem cells on biological scaffolds, their effect can be enhanced.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Arian Karimi-Rouzbahani
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Bahareh Farasati-Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Samaneh Tahmasebi-Ghorabi
- Master of Health Education, Research Expert, Clinical Research Development Unit, Emam Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Masoud Saadat-Fakhr
- Faculty of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
31
|
Cao X, Wu X, Zhang Y, Qian X, Sun W, Zhao Y. Emerging biomedical technologies for scarless wound healing. Bioact Mater 2024; 42:449-477. [PMID: 39308549 PMCID: PMC11415838 DOI: 10.1016/j.bioactmat.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Complete wound healing without scar formation has attracted increasing attention, prompting the development of various strategies to address this challenge. In clinical settings, there is a growing preference for emerging biomedical technologies that effectively manage fibrosis following skin injury, as they provide high efficacy, cost-effectiveness, and minimal side effects compared to invasive and costly surgical techniques. This review gives an overview of the latest developments in advanced biomedical technologies for scarless wound management. We first introduce the wound healing process and key mechanisms involved in scar formation. Subsequently, we explore common strategies for wound treatment, including their fabrication methods, superior performance and the latest research developments in this field. We then shift our focus to emerging biomedical technologies for scarless wound healing, detailing the mechanism of action, unique properties, and advanced practical applications of various biomedical technology-based therapies, such as cell therapy, drug therapy, biomaterial therapy, and synergistic therapy. Finally, we critically assess the shortcomings and potential applications of these biomedical technologies and therapeutic methods in the realm of scar treatment.
Collapse
Affiliation(s)
- Xinyue Cao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiangyi Wu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuanjin Zhao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518071, China
| |
Collapse
|
32
|
Bugajska-Liedtke M, Fatyga N, Brzozowski A, Bajek A, Maj M. Anaesthetics reduce the viability of adipose-derived stem cells. Adipocyte 2024; 13:2351870. [PMID: 38779963 PMCID: PMC11123512 DOI: 10.1080/21623945.2024.2351870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) are characterized by their low immunogenicity and unique immunosuppressive properties, providing many opportunities for autologous transplantation in regenerative medicine and plastic surgery. These methods are characterized by low rejection rates and intense stimulation of tissue regeneration. However, procedures during which fat tissue is harvested occur under local anaesthesia. To better understand the effects and mechanisms of anaesthetic compounds in cosmetic and therapeutic procedures, the present study used a mixture of these compounds (0.1% epinephrine, 8.4% sodium bicarbonate, and 4% articaine) and examined their impact on a human adipose-derived stem cell line. The results showed anesthetics' negative, dose-dependent effect on cell viability and proliferation, especially during the first 24 h of incubation. After extending the exposure to 48 and 72 h of incubation, cells adapted to new culture conditions. In contrast, no significant changes were observed in immunophenotype, cell cycle progression, and apoptosis. The results obtained from this study provide information on the effect of the selected mixture of anaesthetics on the characteristics and function of ASC52telo cells. The undesirable changes in the metabolic activity of cells suggest the need to search for new drugs to harvest cells with unaltered properties and higher efficacy in aesthetic medicine treatments.
Collapse
Affiliation(s)
- Maria Bugajska-Liedtke
- Department of Tissue Engineering, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Nadia Fatyga
- Department of Tissue Engineering, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Aleksander Brzozowski
- Department of Tissue Engineering, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Anna Bajek
- Department of Oncology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Małgorzata Maj
- Department of Tissue Engineering, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
33
|
Jung H, Jung Y, Seo J, Bae Y, Kim HS, Jeong W. Roles of extracellular vesicles from mesenchymal stem cells in regeneration. Mol Cells 2024; 47:100151. [PMID: 39547584 DOI: 10.1016/j.mocell.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are highly valued in regenerative medicine due to their ability to self-renew and differentiate into various cell types. Their therapeutic benefits are primarily due to their paracrine effects, in particular through extracellular vesicles (EVs), which are related to intercellular communication. Recent advances in EV production and extraction technologies highlight the potential of MSC-derived EVs (MSC-EVs) in tissue engineering and regenerative medicine. MSC-EVs offer several advantages over traditional cell therapies, including reduced toxicity and immunogenicity compared with whole MSCs. EVs carrying functional molecules such as growth factors, cytokines, and miRNAs play beneficial roles in tissue repair, fibrosis treatment, and scar prevention by promoting angiogenesis, skin cell migration, proliferation, extracellular matrix remodeling, and reducing inflammation. Despite the potential of MSC-EVs, there are several limitations to their use, including variability in quality, the need for standardized methods, low yield, and concerns about the composition of EVs and the potential risks. Overall, MSC-EVs are a promising alternative to cell-based therapies, and ongoing studies aim to understand their actions and optimize their use for better clinical outcomes in wound healing and skin regeneration.
Collapse
Affiliation(s)
- Hyeseong Jung
- Department of Biomedical Science, Catholic Kwandong University, Gangneung 25601, Republic of Korea
| | - Yuyeon Jung
- Department of Dental Hygiene, Catholic Kwandong University, Gangneung 25601, Republic of Korea
| | - Junsik Seo
- Department of Biomedical Science, Catholic Kwandong University, Gangneung 25601, Republic of Korea
| | - Yeongju Bae
- Department of Biomedical Science, Catholic Kwandong University, Gangneung 25601, Republic of Korea; Research Center for Marine Bio-Food and Medicine, Catholic Kwandong University, Gangneung 25601, Republic of Korea
| | - Han-Soo Kim
- Department of Biomedical Science, Catholic Kwandong University, Gangneung 25601, Republic of Korea
| | - Wooyoung Jeong
- Department of Biomedical Science, Catholic Kwandong University, Gangneung 25601, Republic of Korea; Research Center for Marine Bio-Food and Medicine, Catholic Kwandong University, Gangneung 25601, Republic of Korea.
| |
Collapse
|
34
|
Moreira MS, Mota ME, Ariga SKK, Jaguar GC, Marques MM. Mesenchymal stem cell therapies evidence in the treatment of irradiated salivary glands: A scoping review. J Clin Exp Dent 2024; 16:e1547-e1554. [PMID: 39822783 PMCID: PMC11733895 DOI: 10.4317/jced.62242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/08/2024] [Indexed: 01/19/2025] Open
Abstract
Background Radiotherapy is one of the main treatments for head and neck cancer; however, due to its non-selectivity the glandular tissue can be affected. This scoping review aimed to identify the evidence about mesenchymal stem cell therapies for irradiated salivary gland regeneration. Material and Methods Two independent reviewers performed a literature search in MEDLINE/PubMed, Scopus, and Web of Science. The inclusion criteria were: 1) studies evaluation regeneration of irradiated salivary glands by stem cell therapies (cell-based or cell-free), (2) in vivo studies. Results The search resulted in 13 included studies. In general, both therapies demonstrated increased salivary levels, with mucin and amylase increased and structural protection of acinar cells. The cell-free therapy based on labial glands stem cell extract demonstrated a higher number of parasympathetic nerves. Conclusions Stem cell therapies (cell-free and cell-based) appear promising strategies for recovering saliva production in patients presenting irradiation-induced hyposalivation, with positive results toward regeneration of the form and function of the glands. However, due to the scarcity and heterogenicity of these pre-clinical studies, it is not possible to indicate which is the more indicated therapy. Key words:Mesenchymal stem cells, extracellular vesicles, exosomes, salivary glands, stem cell biology, hyposalivation, radiotherapy.
Collapse
Affiliation(s)
- Maria Stella Moreira
- Department of Stomatology, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Maria Emília Mota
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Suely Kunimi Kubo Ariga
- School of Medicine, Emergency Medicine Laboratory, University of São Paulo, São Paulo, SP, Brazil
| | | | - Márcia Martins Marques
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
- AALZ, Sigmund Freud University, Vienna, Austria
| |
Collapse
|
35
|
Wang W, Ren Y, Yu Q, Jiang L, Yu C, Yue Z, Wang Y, Lu J, Che P, Li J, Sun H. Biodegradable exosome-engineered hydrogels for the prevention of peritoneal adhesions via anti-oxidation and anti-inflammation. Mater Today Bio 2024; 29:101312. [PMID: 39525394 PMCID: PMC11550211 DOI: 10.1016/j.mtbio.2024.101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/16/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Peritoneal adhesions (PA) are a common and severe complication after abdominal surgery, impacting millions of patients worldwide. The use of anti-adhesion materials as physical barriers is an effective strategy to prevent postoperative adhesions. However, the local inflammatory microenvironment exerts a significant impact on the efficacy of anti-adhesion therapies. In this study, an injectable hydrogel based on oxidized dextran/carboxymethyl chitosan (DCC) is designed and prepared. Furthermore, the DCC hydrogel is specifically engineered to load the adipose mesenchymal stem cells (ADSCs)-derived exosomes (Exos) for the treatment of PA. The prepared DCC hydrogel can act as the physical barrier via covering the irregular wound surface effectively. Moreover, it shows controlled degradation property, enabling the regulated release of Exos. The DCC hydrogel loaded Exos (DCC/Exo) system has high antioxidant capacity, and can effectively modulate the inflammatory microenvironments and diminish apoptosis. Notably, it promotes a polarization shift towards the M2-like phenotype in macrophages. The RNA-seq analysis confirms that the DCC/Exo system exhibits significant anti-inflammatory properties and promotes a reduction in collagen deposition. Consequently, the DCC/Exo system can inhibit peritoneal adhesions significantly in a mouse cecum-abdominal wall injury model. These results demonstrate the DCC/Exo is an ideal material for preventing postoperative adhesions.
Collapse
Affiliation(s)
- Weitong Wang
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Yuchen Ren
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Qingyu Yu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Lijie Jiang
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Chaojie Yu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Zhiwei Yue
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Yue Wang
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Jiajun Lu
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Pengcheng Che
- School of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, 063210, China
| | - Junjie Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hong Sun
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| |
Collapse
|
36
|
Yang G, Liu L, Xiao L, Ke S, Yang H, Lu Q. Accelerated scarless wound healing by dynamical regulation of angiogenesis and inflammation with immobilized asiaticoside and magnesium ions in silk nanofiber hydrogels. J Mater Chem B 2024; 12:11670-11684. [PMID: 39380345 DOI: 10.1039/d4tb01584c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
It remains a challenge to effectively regulate the complicated microenvironment during the wound healing process. The optimization of synergistic action of angiogenesis and inflammation is considered critical for quicker scarless wound regeneration. Here, the silk nanofiber (SNF) acts as a multifunctional carrier to load hydrophobic asiaticoside (AC) and hydrophilic Mg2+, and also serves as an element to assemble injectable hydrogels, forming a bioactive matrix with improved angiogenic and anti-inflammatory capacities (SNF-AC-Mg). Mg2+ and AC distributed homogeneously inside the silk nanofiber hydrogels without compromising the mechanical performance. Both Mg2+ and AC released slowly to continuously tune both angiogenic and inflammatory behaviors. The hydrogels exhibited good biocompatibility, inflammation inhibition, and pro-angiogenic properties in vitro, suggesting the synergistic bioactivity of AC and Mg2+. In vivo analysis revealed that the synergistic action of AC and Mg2+ resulted in better M2-type polarization of macrophages and angiogenesis during the inflammatory phase, while effectively achieving the inhibition of excessive accumulation of collagen and scar formation during the remodeling phases. The quicker scarless regeneration of the defects treated with SNF-AC-Mg implies the priority of SNFs in designing bioactive niches with complicated cues, which will favor the functional recovery of different tissues in the future.
Collapse
Affiliation(s)
- Gongwen Yang
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China.
| | - Lutong Liu
- Beijing Allgens Medical Science and Technology Co., Ltd., Beijing 100176, People's Republic of China
| | - Liying Xiao
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China.
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Shiyu Ke
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Huaxiang Yang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
37
|
Xu J, Zhang C, Yan Z, Fan C, Yuan S, Wang J, Zhu Y, Luo L, Shi K, Deng J. Dental Pulp Stem Cell Lysate-Based Hydrogel Improves Diabetic Wound Healing via the Regulation of Anti-Inflammatory Macrophages and Keratinocytes. ACS APPLIED BIO MATERIALS 2024; 7:7684-7699. [PMID: 39503733 DOI: 10.1021/acsabm.4c01157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The prolonged existence of chronic wounds heightens the risk of patients experiencing chronic pain, necrosis, and amputation. Dental pulp stem cells (DPSCs) have garnered attention due to their potential immunomodulatory and tissue repair regenerative effects in the management of chronic wounds. However, stem-cell-based therapy faces challenges such as malignant differentiation, immune rejection, and long-term effectiveness. To overcome these challenges, we proposed a chronic wound therapy using a hydrogel derived from human-originated dental pulp stem cell lysate (DPSCL). Our data indicate that, with the degradation of the dental pulp stem cell lysate-based hydrogel (DPSCLH), the slowly released cell lysates recruit anti-inflammatory M2 macrophages and promote the proliferation, migration, and keratinization of HacaT cells. In addition, in vivo studies revealed that DPSCLH avoids immune rejection reactions and induces a long-term accumulation of endogenous M2 macrophages. In a mouse model of diabetic wounds, DPSCLH effectively modulates the inflammatory microenvironment around diabetic wounds, promotes the formation of the stratum corneum, and facilitates the healing of wounds, thus holding tremendous potential for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Jianghua Xu
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Changhuan Zhang
- First People's Hospital of Linping District, Hangzhou, Hangzhou, Zhejiang 311100, China
| | - Zhuo Yan
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Chen Fan
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Shanshan Yuan
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Jilong Wang
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Yuting Zhu
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Keqing Shi
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Junjie Deng
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
38
|
Trotzier C, Bellanger C, Abdessadeq H, Delannoy P, Mojallal A, Auxenfans C. Deciphering influence of donor age on adipose-derived stem cells: in vitro paracrine function and angiogenic potential. Sci Rep 2024; 14:27589. [PMID: 39528480 PMCID: PMC11555058 DOI: 10.1038/s41598-024-73875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND As fat grafting is commonly used as a filler, Adipose-derived stem/stromal cells (ASC) have been reported to be key player in retention rate. Paracrine and differentiation potential of those cells confer them strong pro-angiogenic capacities. However, a full characterization of the influence of aging on ASC has not been reported yet. Here we've investigated the effect of age on paracrine function, stemness and angiogenic potential of ASC. METHODS ASC were extracted from young and old adult donors. We assessed stromal vascular fraction cell populations repartition, ASC stemness potential, capability to differentiate into mesenchymal lineages as well as their secretome. Angiogenic potential was assessed using a sprouting assay, an indirect co-culture of ASC and dermal microvascular endothelial cells (EC). Total vascular sprout length was measured, and co-culture soluble factors were quantified. Pro-angiogenic factors alone or in combination as well as ASC-conditioned medium (CM) were added to EC to assess sprouting induction. RESULTS Decrease of endothelial cells yield and percentage is observed in cells extracted from adipose tissue of older patients, whereas ASC percentage increased with age. Clonogenic potential of ASC is stable with age. ASC can differentiate into adipocytes, chondrocytes and osteoblasts, and aging does not alter this potential. Among the 25 analytes quantified, high levels of pro-angiogenic factors were found, but none is significantly modulated with age. ASC induce a significantly longer vascular sprouts compared to fibroblasts, and no difference was found between young and old ASC donors on that parameter. Higher concentrations of FGF-2, G-CSF, HGF and IL-8, and lower concentrations of VEGF-C were quantified in EC/ASC co-cultures compared to EC/fibroblasts co-cultures. EC/ASC from young donors secrete higher levels of VEGF-A compared to old ones. Neither soluble factor nor CM without cells are able to induce organized sprouts, highlighting the requirement of cell communication for sprouting. CM produced by ASC supporting development of long vascular sprouts promote sprouting in co-cultures that establish shorter sprouts. CONCLUSION Our results show cells from young and old donors exhibit no difference in all assessed parameters, suggesting all patients could be included in clinical applications. We emphasized the leading role of ASC in angiogenesis, without impairment with age, where secretome is a key but not sufficient actor.
Collapse
Affiliation(s)
- Chloe Trotzier
- Advanced Research, L'Oréal Research and Innovation, 1, Av. Eugene Schueller, 93600, Aulnay sous Bois, France.
| | - Clement Bellanger
- Advanced Research, L'Oréal Research and Innovation, 1, Av. Eugene Schueller, 93600, Aulnay sous Bois, France
| | - Hakima Abdessadeq
- Advanced Research, L'Oréal Research and Innovation, 1, Av. Eugene Schueller, 93600, Aulnay sous Bois, France
| | - Philippe Delannoy
- Advanced Research, L'Oréal Research and Innovation, 1, Av. Eugene Schueller, 93600, Aulnay sous Bois, France
| | - Ali Mojallal
- Department of Plastic, Reconstructive and Aesthetic Surgery, La Croix Rousse Hospital, Bernard Lyon 1 University, Lyon, France
| | - Celine Auxenfans
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
39
|
Li C, Ren S, Yan C, Wang C, Jiang T, Kang Y, Chen J, Xiong H, Guo J, Jiang G, Liu S, Nie P, Chen Z. HES1 revitalizes the functionality of aged adipose-derived stem cells by inhibiting the transcription of STAT1. Stem Cell Res Ther 2024; 15:399. [PMID: 39501364 PMCID: PMC11539794 DOI: 10.1186/s13287-024-04002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The effectiveness of adipose-derived stem cells (ADSCs) in therapy diminishes with age. It has been reported that transcription factors (TFs) play a crucial role in the aging and functionality of stem cells. Nevertheless, there is limited understanding regarding the involvement of TFs in the aging mechanism of ADSCs. METHODS RNA sequencing (RNA-seq) was utilized to discern the differentially expressed genes in ADSCs obtained from donors of varying ages. TFs exhibiting significant variations across age groups were identified and subsequently validated. ADSCs were manipulated to exhibit either enhanced expression or reduced levels of HES1 and STAT1 via lentivirus transfection and small interfering RNA (siRNA) techniques. The impact of these genetic alterations on ADSCs' proliferation, migration, and cellular senescence was assessed using EdU, transwell, and senescence-activated β-galactosidase (SA-β-gal) staining assays. The DNA sequences bound by HES1 were investigated through the CUT & Tag assay. Lastly, the therapeutic efficacy of aged ADSCs with HES1 overexpression was evaluated in skin injury model of male Sprague-Dawley rats. RESULTS 678 genes showed differential expression between ADSCs obtained from young and old donors (Y-ADSCs and O-ADSCs), with 47 of these genes being TFs. Notably, the expression of the TF hairy and enhancer of split 1 (HES1) was notably reduced in ADSCs from old donors. Introducing HES1 overexpression in aged ADSCs resulted in improved cellular function and the suppression of cellular senescence, while reducing HES1 levels in young ADSCs had the opposite effect. Mechanistically, HES1 was found to interact with the promoter region of another TF, signal transducer and activator of transcription 1 (STAT1), to inhibit its transcription. Knocking down STAT1 could fully reverse the negative effects caused by decreased HES1 in ADSCs, leading to a reduction in the secretion of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-8. Ultimately, restoring HES1 expression in aged ADSCs demonstrated enhanced therapeutic potential in promoting skin wound healing. CONCLUSION HES1 acts as an inhibitor of cellular senescence in the aging progression of ADSCs through the modulation of STAT1 expression, suggesting a promising avenue for rejuvenating senescent ADSCs and improving wound healing.
Collapse
Affiliation(s)
- Chengcheng Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Sen Ren
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jing Chen
- Department of Dermatology, Wuhan No.1 Hospital, Wuhan, Hubei, 430000, China
| | - Hewei Xiong
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guoyong Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Shuoyuan Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Pengjuan Nie
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
40
|
Zhao W, Erhan D, Liu S, Zhang L, Hai C, Zhang Y, Li H, Wang H, Wang C. Adipose-derived stem cells exosomal circHIPK3 protects ovarian function by regulating MAPK signaling. Indian J Pharmacol 2024; 56:411-419. [PMID: 39973830 PMCID: PMC11913337 DOI: 10.4103/ijp.ijp_499_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Accepted: 12/19/2024] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Exosomes derived from adipose-derived stem cells (ADSCs) have garnered significant attention for their therapeutic potential in various diseases. These vesicles are capable of transporting bioactive molecules such as noncoding RNAs and proteins. Among these noncoding RNAs, circular RNAs (circRNAs) are characterized as end-to-end circular structures, which are notably enriched within exosomes. OBJECTIVE This study aims to investigate the impact of the circHIPK3 delivered via ADSC-derived exosomes on ovarian aging. MATERIALS AND METHODS ADSCs were isolated, and exosomes were obtained from a cell culture medium. The exosomes were labeled with PKH26, and uptake by primary granulosa cells (pGCs) was detected. ADSCs were transfected with circHIPK3 siRNAs, and the exosomes were isolated for the treatment of aging female mice. Ovary weight was recorded, and HE staining, Masson's trichrome, and TUNEL staining were performed to detect tissue morphology and apoptosis in ovary tissues. In addition, the senescence and apoptosis of pGCs were evaluated using the S-β-gal staining kit and Annexin V/PI detection kit. Further experiments included immunoprecipitation and RNA pulldown, determined the ubiquitination of p38 protein under circHIPK3 alteration. RESULTS Results showed that ADSC-derived exosomes effectively delivered circHIPK3 to pGCs. Treatment with these exosomes significantly increased ovary weight and enhanced follicular development in aged mice. Conversely, the depletion of circHIPK3 reversed these effects, promoting cell apoptosis. ADSC-derived exosomes also mitigated senescence and apoptosis in pGCs, while circHIPK3 depletion hindered these benefits. CONCLUSION Exosomal circHIPK3 modulated the ubiquitination of p38 in pGCs to improve ovarian function in aging mice and to promote pGC cell viability.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Reproductive Center, Xilingol League Central Hospital, Inner Mongolia Xilingol League, China
- The Obstetric and Gynecologic, Grand Hospital of Shuozhou, Shanxi Shuozhou, China
| | - Da Erhan
- The Second Xiangya Hospital, Central South University, Hunan Changsha, China
| | - Shujun Liu
- Department of Science and Education Section, Xilingol League Central Hospital, Inner Mongolia Xilingol League, China
| | - Liyan Zhang
- Department of Reproductive Center, Xilingol League Central Hospital, Inner Mongolia Xilingol League, China
| | - Caizhu Hai
- Department of Reproductive Center, Xilingol League Central Hospital, Inner Mongolia Xilingol League, China
| | - Yanan Zhang
- Department Of Gynecology, Xilingol League Central Hospital, Inner Mongolia Xilingol League, China
| | - Haiyan Li
- Department Of Gynecology, Xilingol League Central Hospital, Inner Mongolia Xilingol League, China
| | - Hongwu Wang
- Xilingol League Central Hospital, Inner Mongolia Xilingol League, China
| | - Caisheng Wang
- Xilingol League Central Hospital, Inner Mongolia Xilingol League, China
| |
Collapse
|
41
|
Yang Z, Yang M, Rui S, Hao W, Wu X, Guo L, Armstrong DG, Yang C, Deng W. Exosome-based cell therapy for diabetic foot ulcers: Present and prospect. Heliyon 2024; 10:e39251. [PMID: 39498056 PMCID: PMC11532254 DOI: 10.1016/j.heliyon.2024.e39251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Diabetic foot ulcers (DFUs) represent a serious complication of diabetes with high incidence, requiring intensive treatment, prolonged hospitalization, and high costs. It poses a severe threat to the patient's life, resulting in substantial burdens on patient and healthcare system. However, the therapy of DFUs remains challenging. Therefore, exploring cell-free therapies for DFUs is both critical and urgent. Exosomes, as crucial mediators of intercellular communication, have been demonstrated potentially effective in anti-inflammation, angiogenesis, cell proliferation and migration, and collagen deposition. These functions have been proven beneficial in all stages of diabetic wound healing. This review aims to summarize the role and mechanisms of exosomes from diverse cellular sources in diabetic wound healing research. In addition, we elaborate on the challenges for clinical application, discuss the advantages of membrane vesicles as exosome mimics in wound healing, and present the therapeutic potential of exosomes and their mimetic vesicles for future clinical applications.
Collapse
Affiliation(s)
- Zhou Yang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Mengling Yang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Shunli Rui
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Wei Hao
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Xiaohua Wu
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Lian Guo
- Department of Endocrinology, School of Medicine, Chongqing University Three Gorges Central Hospital, Chongqing, 404000, China
| | - David G. Armstrong
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Cheng Yang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Wuquan Deng
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| |
Collapse
|
42
|
Zhang K, Xiao D, Li F, Song G, Huang G, Wang Y, Liu H. Combination therapy of placenta-derived mesenchymal stem cells and artificial dermal scaffold promotes full-thickness skin defects vascularization in rat animal model. Adv Med Sci 2024; 70:8-16. [PMID: 39424001 DOI: 10.1016/j.advms.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/14/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE Recently, placenta-derived mesenchymal stem cells (PMSCs) have garnered considerable attention in tissue repair and regeneration. The present study was conducted to evaluate the effect of PMSCs on artificial dermal scaffold (ADS) angiogenesis and their combination therapy on wound closure. MATERIAL AND METHODS Herein, the growth and survival of PMSCs in ADS were explored. CCK8, scratch wound, and tubule formation assays were employed to investigate the effects of ADS conditioned medium (CM) and ADS-PMSCs CM on human umbilical vein endothelial cells (HUVECs). The effect of ADS-PMSCs on full-thickness skin defects healing was evaluated based on a rat model. Wound healing progresses was meticulously investigated through hematoxylin and eosin (HE), Masson's trichrome, and immunohistochemical staining analyses. RESULTS In vitro cell culture results demonstrated the proliferation of PMSCs in ADS. The ADS-PMSCs CM notably stimulated the proliferation, migration, and tube formation of HUVECs compared to the ADS CM group. In the rat full-thickness skin defect model, the ADS-PMSCs treatment significantly accelerated the vascularization area of ADS after 2 weeks. Besides, HE and Masson's trichrome staining results indicated that ADS-PMSCs treatment significantly enhanced fibroblast proliferation and collagen fiber 2 weeks after surgical procedure. Compared to the ADS group, collagen fiber arrangement was thicker in the ADS-PMSCs group. Immunohistochemical staining reinforced this finding, illustrating a substantial increase in CD31 expression within the ADS-PMSCs group. CONCLUSIONS The results suggest that the combination of ADS with PMSCs accelerates ADS vascularization by fostering granulation tissue development and boosting the formation of new blood vessels.
Collapse
Affiliation(s)
- Kun Zhang
- Cell Therapy Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dongjie Xiao
- Cell Therapy Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fang Li
- Cell Therapy Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guodong Song
- Department of Burns and Plastic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guobao Huang
- Department of Burns and Plastic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yunshan Wang
- Cell Therapy Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hua Liu
- Cell Therapy Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
43
|
Matsuoka T, Dan K, Takanashi K, Ogino A. Early Effects of Porcine Placental Extracts and Stem Cell-Derived Exosomes on Aging Stress in Skin Cells. J Funct Biomater 2024; 15:306. [PMID: 39452604 PMCID: PMC11509013 DOI: 10.3390/jfb15100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
The initial efficacy of placental extracts (Pla-Exts) and human mesenchymal stem-cell-derived exosomes (hMSC-Exo) against aging-induced stress in human dermal fibroblasts (HDFs) was examined. The effect of Pla-Ext alone, hMSC-Exo alone, the combined effect of Pla-Ext and hMSC-Exo, and the effect of hMSC-Exo (Pla/MSC-Exo) recovered from cultures with Pla-Ext added to hMSC were verified using collagen, elastin, and hyaluronic acid synthase mRNA levels for each effect. Cells were subjected to photoaging (UV radiation), glycation (glycation end-product stimulation), and oxidation (H2O2 stimulation) as HDF stressors. Pla-Ext did not significantly affect normal skin fibroblasts with respect to intracellular parameters; however, a pro-proliferative effect was observed. Pla-Ext induced resistance to several stresses in skin fibroblasts (UV irradiation, glycation stimulation, H2O2 stimulation) and inhibited reactive oxygen species accumulation following H2O2 stimulation. Although the effects of hMSC-Exo alone or the combination of hMSC-Exo and Pla-Ext are unknown, pretreated hMSC-Exo stimulated with Pla-Ext showed changes that conferred resistance to aging stress. This suggests that Pla-Ext supplementation may cause some changes in the surface molecules or hMSC-Exo content (e.g., microRNA). In skin cells, the direct action of Pla-Ext and exosomes secreted from cultured hMSCs pretreated with Pla-Ext (Pla/MSC-Exo) also conferred resistance to early aging stress.
Collapse
Affiliation(s)
| | - Katsuaki Dan
- Department of Pathophysiology, Yokohama University of Pharmacy, Yokohama-shi 245-0066, Kanagawa, Japan; (K.D.); (K.T.)
- Division of Research and Development, Research Organization of Biological Activity, Shibuya-ku 150-0001, Tokyo, Japan
| | - Keita Takanashi
- Department of Pathophysiology, Yokohama University of Pharmacy, Yokohama-shi 245-0066, Kanagawa, Japan; (K.D.); (K.T.)
| | - Akihiro Ogino
- Department of Plastic and Reconstructive Surgery, Toho University Omori Medical Center, Ota-ku 143-8541, Tokyo, Japan;
| |
Collapse
|
44
|
Kong W, Bao Y, Li W, Guan D, Yin Y, Xiao Y, Zhu S, Sun Y, Xia Z. Collaborative Enhancement of Diabetic Wound Healing and Skin Regeneration by Recombinant Human Collagen Hydrogel and hADSCs. Adv Healthc Mater 2024:e2401012. [PMID: 39388509 DOI: 10.1002/adhm.202401012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Stem cell-based therapies hold significant promise for chronic wound healing and skin appendages regeneration, but challenges such as limited stem cell lifespan and poor biocompatibility of delivery systems hinder clinical application. In this study, an in situ delivery system for human adipose-derived stem cells is developed (hADSCs) to enhance diabetic wound healing. The system utilizes a photo-crosslinking recombinant human type III collagen (rHCIII) hydrogel to encapsulate hADSCs, termed the hADSCs@rHCIII hydrogel. This hydrogel undergoes local crosslinking at the wound site, establishing a sturdy 3D niche suitable for stem cell function. Consequently, the encapsulated hADSCs exhibit strong attachment and spreading within the hydrogels, maintaining their proliferation, metabolic activity, and viability for up to three weeks in vitro. Importantly, in vivo studies demonstrate that the hADSCs@rHCIII hydrogel achieves significant in situ delivery of stem cells, prolonging their retention within the wound. This ultimately enhances their immunomodulatory capabilities, promotes neovascularization and granulation tissue formation, facilitates matrix remodeling, and accelerates healing in a diabetic mouse wound model. Collectively, these findings highlight the potential of the conveniently-prepared and user-friendly hADSCs@rHCIII hydrogel as a promising therapeutic approach for diabetic wound treatment and in situ skin regeneration.
Collapse
Affiliation(s)
- Weishi Kong
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Yulu Bao
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Wei Li
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Dingding Guan
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Yating Yin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- Department of Burn and Plastic Surgery, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, P. R. China
| | - Yongqiang Xiao
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, P. R. China
| | - Shihui Zhu
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
- Department of Burns and Plastic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yu Sun
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Zhaofan Xia
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| |
Collapse
|
45
|
Xue C, Chen L, Wang N, Chen H, Xu W, Xi Z, Sun Q, Kang R, Xie L, Liu X. Stimuli-responsive hydrogels for bone tissue engineering. BIOMATERIALS TRANSLATIONAL 2024; 5:257-273. [PMID: 39734705 PMCID: PMC11681187 DOI: 10.12336/biomatertransl.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 08/30/2024] [Indexed: 12/31/2024]
Abstract
The treatment of bone defects remains a great clinical challenge. With the development of science and technology, bone tissue engineering technology has emerged, which can mimic the structure and function of natural bone tissues and create solutions for repairing or replacing human bone tissues based on biocompatible materials, cells and bioactive factors. Hydrogels are favoured by researchers due to their high water content, degradability and good biocompatibility. This paper describes the hydrogel sources, roles and applications. According to the different types of stimuli, hydrogels are classified into three categories: physical, chemical and biochemical responses, and the applications of different stimuli-responsive hydrogels in bone tissue engineering are summarised. Stimuli-responsive hydrogels can form a semi-solid with good adhesion based on different physiological environments, which can carry a variety of bone-enhancing bioactive factors, drugs and cells, and have a long retention time in the local area, which is conducive to a long period of controlled release; they can also form a scaffold for constructing tissue repair, which can jointly promote the repair of bone injury sites. However, it also has many defects, such as poor biocompatibility, immunogenicity and mechanical stability. Further studies are still needed in the future to facilitate its clinical translation.
Collapse
Affiliation(s)
- Congyang Xue
- Department of Orthopaedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Liping Chen
- Department of Orthopaedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Nan Wang
- Department of Orthopaedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Heng Chen
- Department of Orthopaedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Wenqiang Xu
- Department of Orthopaedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Zhipeng Xi
- Department of Orthopaedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Qing Sun
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Ran Kang
- Department of Orthopaedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Lin Xie
- Department of Orthopaedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Xin Liu
- Department of Orthopaedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
46
|
Liu C, Khairullina L, Qin Y, Zhang Y, Xiao Z. Adipose stem cell exosomes promote mitochondrial autophagy through the PI3K/AKT/mTOR pathway to alleviate keloids. Stem Cell Res Ther 2024; 15:305. [PMID: 39278919 PMCID: PMC11403874 DOI: 10.1186/s13287-024-03928-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Fibrosis with unrelieved chronic inflammation is an important pathological change in keloids. Mitochondrial autophagy plays a crucial role in reducing inflammation and inhibiting fibrosis. Adipose stem cell-derived exosomes, a product of adipose stem cell paracrine secretion, have pharmacological effects, such as anti-inflammatory and antiapoptotic effects, and mediate autophagy. Therefore, this study aims to investigate the function and mechanism of adipose stem cell exosomes in the treatment of keloids. METHOD We isolated adipose stem cell exosomes under normoxic and hypoxic condition to detect their effects on keloid fibroblast proliferation, migration, and collagen synthesis. Meanwhile, 740YPDGFR (PI3K/AKT activator) was applied to detect the changes in autophagic flow levels and mitochondrial morphology and function in keloid fibroblasts. We constructed a human keloid mouse model by transplanting human keloid tissues into six-week-old (20-22 g; female) BALB/c nude mice, meanwhile, we applied adipose stem cell exosomes to treat the mouse model and observed the retention and effect of ADSC exosomes in vivo. RESULTS ADSC exosomes can inhibit the PI3K/AKT/mTOR signaling pathway. The exosomes of ADSCs decreased the inflammatory level of KFs, enhanced the interaction between P62 and LC3, and restored the mitochondrial membrane potential. In the human keloid mouse model, ADSC exosomes can exist stably, promote mitochondrial autophagy in keloid tissue, improve mitochondrial morphology, reduce inflammatory reaction and fibrosis. Meanwhile, At the same time, the exosomes derived from hypoxic adipose stem cells have played a more effective role in both in vitro and in vivo experiments. CONCLUSIONS Adipose stem cell exosomes inhibited the PI3K/AKT/mTOR pathway, activated mitochondrial autophagy, and alleviated keloid scars.
Collapse
Affiliation(s)
- Chang Liu
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Liliia Khairullina
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Youyou Qin
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yingbo Zhang
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Zhibo Xiao
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
47
|
Gu Y, Mu Z, Chen Y, Wu C, Shi J, Bai N. Therapeutic potential of ADSCs in diabetic wounds: a proteomics-based approach. Front Cell Dev Biol 2024; 12:1468220. [PMID: 39345337 PMCID: PMC11427884 DOI: 10.3389/fcell.2024.1468220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Background Diabetes mellitus (DM), a chronic metabolic disease characterized by elevated blood sugar, leads to delayed or non-healing wounds, increasing amputation risks, and placing a significant burden on patients and society. While extensive research has been conducted on adipose-derived stem cells (ADSCs) for promoting wound healing, there is a scarcity of studies focusing on diabetic wounds, particularly those employing proteomics and bioinformatics approaches. Objective This study aimed to investigate the mechanisms by which ADSCs promote diabetic wound healing using proteomics and bioinformatics techniques. Methods Healthy rat fat tissue was used to isolate ADSCs. A T2DM rat model with back wounds was established. The experimental group received ADSC injections around the wound, while the control group received PBS injections. Wound healing rates were documented and photographed on days 0, 3, 7, 10, and 14. On day 7, wound tissues were excised for HE and Masson's staining. Additionally, on day 7, tissues were analyzed for protein quantification using 4D-DIA, with subsequent GO and KEGG analyses for differentially expressed proteins (DEPs) and protein-protein interaction (PPI) network analysis using STRING database (String v11.5). Finally, Western blot experiments were performed on day 7 wounds to verify target proteins. Results and Conclusions In all measured days postoperatively, the wound healing rate was significantly higher in the ADSC group than in the PBS group (day 7: p < 0.001, day 10: p = 0.001, day 14: p < 0.01), except on day 3 (p > 0.05). Proteomic analysis identified 474 differentially expressed proteins, with 224 key proteins after PPI analysis (78 upregulated and 146 downregulated in the ADSC group). The main cellular locations of these proteins were "cellular anatomical entity" and "protein-containing complex", while the biological processes were "cellular processes" and "biological regulation". The primary molecular functions were "binding" and "catalytic activity", with GO enrichment focused on "Wnt-protein binding", "neural development", and "collagen-containing extracellular matrix". Further analysis of PPI network nodes using LASSO regression identified Thy1 and Wls proteins, significantly upregulated in the ADSC group, as potentially crucial targets for ADSC application in diabetic wound treatment.
Collapse
Affiliation(s)
- Yuan Gu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Zelan Mu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yuanzheng Chen
- Department of Burns and Plastic Surgery, Emergency General Hospital, Beijing, China
| | - Can Wu
- Medical Cosmetic Plastic Surgery, Linyi People′s Hospital, Linyi, China
| | - Jie Shi
- Plastic and Cosmetic Surgery, People′s Hospital of Liaoning Province, Shenyang, China
| | - Nan Bai
- Medical Cosmetic Plastic Surgery, Linyi People′s Hospital, Linyi, China
| |
Collapse
|
48
|
Ma Z, Ding J, Liu J, Zhao Z, Long Q, Zhang T, Huang J. Effect of baicalin combined with adipose stem cells on promoting angiogenesis and improving wound healing in diabetes. Panminerva Med 2024; 66:324-326. [PMID: 38990211 DOI: 10.23736/s0031-0808.24.05068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Affiliation(s)
- Zhibing Ma
- Department of Plastic Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Ding
- Department of Pathology, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Jia Liu
- Department of Plastic Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhijie Zhao
- Department of Plastic Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiuzi Long
- Department of Plastic Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianqi Zhang
- Department of Plastic Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinlong Huang
- Department of Plastic Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China -
| |
Collapse
|
49
|
Tang W, Du X, Wu Z, Nie Z, Yu C, Gao Y. circ-Erbb2ip from adipose-derived mesenchymal stem cell-derived exosomes promotes wound healing in diabetic mice by inducing the miR-670-5p/Nrf1 axis. Cell Signal 2024; 121:111245. [PMID: 38849105 DOI: 10.1016/j.cellsig.2024.111245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/16/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND To investigate the mechanism of exosomes (Exo) secretion by hypoxic pretreated adipose-derived mesenchymal stem cells (ADSCs) promoting skin wound healing in diabetic (DM) mice. METHODS High-throughput sequencing was used to investigate abnormal expression of circRNA in hypoxic pretreatment ADSCs exosome (HExo) and ADSCs exosome (Exo). Bioinformatics analysis and luciferase reporting analysis were used to clarify the interacted relationship among circRNA, miRNA and mRNA. EPCs cells were employ to analysis the ROS, inflammatory cytokines expression, angiogenic differentiation function under hypoxic condition by using immunofluorescence, ELISA detection and tube forming experiment. DM ulceration mice model were constructed and the therapeutic effect of Exo were detected using immunohistochemistry, immunofluorescence. RESULTS The result show that HExo have more treatment effect than Exo in promotes cutaneous wound healing of DM mice. High-throughput sequencing found that circ-Erbb2ip play a role in HExo mediated tissues repair. Downregulation circ-Erbb2ip decreased the therapeutic effect of HExo to wound healing in diabetic mice. Bioinformatics analysis and luciferase reporting analysis confirmed that both miR-670-5p and Nrf1 were downstream targets of circ-Erbb2ip. Downregulation of Nrf1 or overexpression of miR-670-5p reversed the protective effect of circ-Erbb2ip to EPCs after exposure to high glucose microenvironment. Upregulation circ-Erbb2ip increased the therapeutic effect of Exo to wound healing in diabetic mice by increased angiogenesis and decreased ROS, inflammatory cytokines expression. CONCLUSION In conclusion, ADSC-Exos containing circ-Erbb2ip promotes wound healing by targeting miR-670-5p/Nrf1 pathway, and their effects in promoting soft tissue wound healing warrant further study.
Collapse
Affiliation(s)
- Wenbo Tang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China; The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Xiaoying Du
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China; The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Zifu Wu
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Zhonglin Nie
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Chaowen Yu
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China.
| | - Yong Gao
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China; The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China.
| |
Collapse
|
50
|
Ou H, Yang Q, Zhang Y, Tang X, Xiao M, Li S, Lei L, Xie Z. The role of cells and their derivatives in otorhinolaryngologic diseases treatment. Life Sci 2024; 352:122898. [PMID: 38997061 DOI: 10.1016/j.lfs.2024.122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Otolaryngology is an important specialty in the field of surgery that deals with the diagnosis and treatment of the ear, nose, throat, trachea, as well as related anatomical structures. Various otolaryngological disorders are difficult to treat using established pharmacological and surgical approaches. The advent of molecular and cellular therapies led to further progress in this respect. This article reviews the therapeutic strategies of using stem cells, immune cells, and chondrocytes in otorhinolaryngology. As the most widely recognized cell derivatives, exosomes were also systematically reviewed for their therapeutic potential in head and neck cancer, otitis media, and allergic rhinitis. Finally, we summarize the limitations of stem cells, chondrocytes, and exosomes, as well as possible solutions, and provide an outlook on the future direction of cell- and derivative-based therapies in otorhinolaryngology, to offer a theoretical foundation for the clinical translation of this therapeutic modality.
Collapse
Affiliation(s)
- Haibo Ou
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Xiaojun Tang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China.
| | - Zuozhong Xie
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|