1
|
Domínguez-Berzosa L, Cantarero L, Rodríguez-Sanz M, Tort G, Garrido E, Troya-Balseca J, Sáez M, Castro-Martínez XH, Fernandez-Lizarbe S, Urquizu E, Calvo E, López JA, Palomo T, Palau F, Hoenicka J. ANKK1 Is a Wnt/PCP Scaffold Protein for Neural F-ACTIN Assembly. Int J Mol Sci 2024; 25:10705. [PMID: 39409035 PMCID: PMC11477271 DOI: 10.3390/ijms251910705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The TaqIA polymorphism is a marker of both the Ankyrin Repeat and Kinase Domain containing I gene (ANKK1) encoding a RIP-kinase, and the DRD2 gene for the dopamine receptor D2. Despite a large number of studies of TaqIA in addictions and other psychiatric disorders, there is difficulty in interpreting this genetic phenomenon due to the lack of knowledge about ANKK1 function. In SH-SY5Y neuroblastoma models, we show that ANKK1 interacts with the synapse protein FERM ARH/RhoGEF and Pleckstrin Domain 1 (FARP1), which is a guanine nucleotide exchange factor (GEF) of the RhoGTPases RAC1 and RhoA. ANKK1-FARP1 colocalized in F-ACTIN-rich structures for neuronal maturation and migration, and both proteins activate the Wnt/PCP pathway. ANKK1, but not FARP1, promotes neuritogenesis, and both proteins are involved in neuritic spine outgrowth. Notably, the knockdown of ANKK1 or FARP1 affects RhoGTPases expression and neural differentiation. Additionally, ANKK1 binds WGEF, another GEF of Wnt/PCP, regulating its interaction with RhoA. During neuronal differentiation, ANKK1-WGEF interaction is downregulated, while ANKK1-FARP1 interaction is increased, suggesting that ANKK1 recruits Wnt/PCP components for bidirectional control of F-ACTIN assembly. Our results suggest a brain structural basis in TaqIA-associated phenotypes.
Collapse
Affiliation(s)
- Laura Domínguez-Berzosa
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (L.D.-B.); (L.C.); (M.R.-S.); (G.T.); (J.T.-B.); (X.H.C.-M.); (E.U.); (F.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 08950 Barcelona, Spain
| | - Lara Cantarero
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (L.D.-B.); (L.C.); (M.R.-S.); (G.T.); (J.T.-B.); (X.H.C.-M.); (E.U.); (F.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 08950 Barcelona, Spain
| | - María Rodríguez-Sanz
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (L.D.-B.); (L.C.); (M.R.-S.); (G.T.); (J.T.-B.); (X.H.C.-M.); (E.U.); (F.P.)
| | - Gemma Tort
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (L.D.-B.); (L.C.); (M.R.-S.); (G.T.); (J.T.-B.); (X.H.C.-M.); (E.U.); (F.P.)
| | - Elena Garrido
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario 12 de Octubre, Avda. Andalucía s/n, 28041 Madrid, Spain (T.P.)
| | - Johanna Troya-Balseca
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (L.D.-B.); (L.C.); (M.R.-S.); (G.T.); (J.T.-B.); (X.H.C.-M.); (E.U.); (F.P.)
| | - María Sáez
- Centro de Investigación Príncipe Felipe (CIPF), 45012 Valencia, Spain; (M.S.); (S.F.-L.)
| | - Xóchitl Helga Castro-Martínez
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (L.D.-B.); (L.C.); (M.R.-S.); (G.T.); (J.T.-B.); (X.H.C.-M.); (E.U.); (F.P.)
| | - Sara Fernandez-Lizarbe
- Centro de Investigación Príncipe Felipe (CIPF), 45012 Valencia, Spain; (M.S.); (S.F.-L.)
| | - Edurne Urquizu
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (L.D.-B.); (L.C.); (M.R.-S.); (G.T.); (J.T.-B.); (X.H.C.-M.); (E.U.); (F.P.)
| | - Enrique Calvo
- Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (E.C.); (J.A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, 28029 Madrid, Spain
| | - Juan Antonio López
- Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (E.C.); (J.A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, 28029 Madrid, Spain
| | - Tomás Palomo
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario 12 de Octubre, Avda. Andalucía s/n, 28041 Madrid, Spain (T.P.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, 28041 Madrid, Spain
| | - Francesc Palau
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (L.D.-B.); (L.C.); (M.R.-S.); (G.T.); (J.T.-B.); (X.H.C.-M.); (E.U.); (F.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 08950 Barcelona, Spain
- ÚNICAS SJD Center, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Janet Hoenicka
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (L.D.-B.); (L.C.); (M.R.-S.); (G.T.); (J.T.-B.); (X.H.C.-M.); (E.U.); (F.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 08950 Barcelona, Spain
| |
Collapse
|
2
|
Guo H, Zhao Q, Wang H, Zhu S, Dong H, Xie X, Wang L, Chen L, Han H. Molecular characterization and functional analysis of Eimeria tenella ankyrin repeat-containing protein. Eur J Protistol 2024; 94:126089. [PMID: 38749182 DOI: 10.1016/j.ejop.2024.126089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Chicken coccidiosis causes disastrous losses to the poultry industry all over the world. Eimeria tenella is the most prevalent of these disease-causing species. Our former RNA-seq indicated that E. tenella ankyrin repeat-containing protein (EtANK) was expressed differently between drug-sensitive (DS) and drug-resistant strains. In this study, we cloned EtANK and analyzed its translational and transcriptional levels using quantitative real-time PCR (qPCR) and western blotting. The data showed that EtANK was significantly upregulated in diclazuril-resistant (DZR) strain and maduramicin-resistant (MRR) strain compared with the drug-sensitive (DS) strain. In addition, the transcription levels in the DZR strains isolated from the field were higher than in the DS strain. The translation levels of EtANK were higher in unsporulated oocysts (UO) than in sporozoites (SZ), sporulated oocysts (SO), or second-generation merozoites (SM), and the protein levels in SM were significantly higher than in UO, SO, and SZ. The results of the indirect immunofluorescence localization showed that the protein was distributed mainly at the anterior region of SZ and on the surface and in the cytoplasm of SM. The fluorescence intensity increased further with its development in vitro. An anti-rEtANK polyclonal antibody inhibited the invasive ability of E. tenella in DF-1 cells. These results showed that EtANK may be related to host cell invasion, required for the parasite's growth in the host, and may be involved in the development of E. tenella resistance to some drugs.
Collapse
Affiliation(s)
- Huilin Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Haixia Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Xinrui Xie
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Lihui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Lang Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China.
| |
Collapse
|
3
|
Mikhailova SV, Ivanoshchuk DE, Orlov PS, Bairqdar A, Anisimenko MS, Denisova DV. Assessment of the Genetic Characteristics of a Generation Born during a Long-Term Socioeconomic Crisis. Genes (Basel) 2023; 14:2064. [PMID: 38003007 PMCID: PMC10671057 DOI: 10.3390/genes14112064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND A socioeconomic crisis in Russia lasted from 1991 to 1998 and was accompanied by a sharp drop in the birth rate. The main factor that influenced the refusal to have children during this period is thought to be prolonged social stress. METHODS comparing frequencies of common gene variants associated with stress-induced diseases among generations born before, after, and during this crisis may show which genes may be preferred under the pressure of natural selection during periods of increased social stress in urban populations. RESULTS In the "crisis" group, a statistically significant difference from the other two groups was found in rs6557168 frequency (p = 0.001); rs4522666 was not in the Hardy-Weinberg equilibrium in this group, although its frequency did not show a significant difference from the other groups (p = 0.118). Frequencies of VNTRs in SLC6A3 and MAOA as well as common variants rs17689918 in CRHR1, rs1360780 in FKBP5, rs53576 in OXTR, rs12720071 and rs806377 in CNR1, rs4311 in ACE, rs1800497 in ANKK1, and rs7412 and rs429358 in APOE did not differ among the groups. CONCLUSIONS a generation born during a period of prolonged destructive events may differ from the rest of the gene pool of the population in some variants associated with personality traits or stress-related disorders.
Collapse
Affiliation(s)
- Svetlana V. Mikhailova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Prospekt Ak. Lavrentyeva, 630090 Novosibirsk, Russia; (D.E.I.); (P.S.O.); (A.B.); (M.S.A.)
| | - Dinara E. Ivanoshchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Prospekt Ak. Lavrentyeva, 630090 Novosibirsk, Russia; (D.E.I.); (P.S.O.); (A.B.); (M.S.A.)
| | - Pavel S. Orlov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Prospekt Ak. Lavrentyeva, 630090 Novosibirsk, Russia; (D.E.I.); (P.S.O.); (A.B.); (M.S.A.)
| | - Ahmad Bairqdar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Prospekt Ak. Lavrentyeva, 630090 Novosibirsk, Russia; (D.E.I.); (P.S.O.); (A.B.); (M.S.A.)
| | - Maksim S. Anisimenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Prospekt Ak. Lavrentyeva, 630090 Novosibirsk, Russia; (D.E.I.); (P.S.O.); (A.B.); (M.S.A.)
| | - Diana V. Denisova
- Institute of Internal and Preventive Medicine—Branch of ICG SB RAS, 175/1 Borisa Bogatkova Str., 630089 Novosibirsk, Russia
| |
Collapse
|
4
|
Urwyler-Rösselet C, Tanghe G, Devos M, Hulpiau P, Saeys Y, Declercq W. Functions of the RIP kinase family members in the skin. Cell Mol Life Sci 2023; 80:285. [PMID: 37688617 PMCID: PMC10492769 DOI: 10.1007/s00018-023-04917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2023] [Accepted: 08/08/2023] [Indexed: 09/11/2023]
Abstract
The receptor interacting protein kinases (RIPK) are a family of serine/threonine kinases that are involved in the integration of various stress signals. In response to several extracellular and/or intracellular stimuli, RIP kinases engage signaling cascades leading to the activation of NF-κB and mitogen-activated protein kinases, cell death, inflammation, differentiation and Wnt signaling and can have kinase-dependent and kinase-independent functions. Although it was previously suggested that seven RIPKs are part of the RIPK family, phylogenetic analysis indicates that there are only five genuine RIPKs. RIPK1 and RIPK3 are mainly involved in controlling and executing necroptosis in keratinocytes, while RIPK4 controls proliferation and differentiation of keratinocytes and thereby can act as a tumor suppressor in skin. Therefore, in this review we summarize and discuss the functions of RIPKs in skin homeostasis as well as the signaling pathways involved.
Collapse
Affiliation(s)
- Corinne Urwyler-Rösselet
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Giel Tanghe
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Michael Devos
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Paco Hulpiau
- VIB Center for Inflammation Research, Ghent, Belgium
- Howest University of Applied Sciences, Brugge, Belgium
| | - Yvan Saeys
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics and Computer Science, Ghent University, Ghent, Belgium
| | - Wim Declercq
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- VIB Center for Inflammation Research, Ghent, Belgium.
| |
Collapse
|
5
|
Khani P, Ansari Dezfouli M, Nasri F, Rahemi M, Ahmadloo S, Afkhami H, Saeidi F, Tereshchenko S, Bigdeli MR, Modarressi MH. Genetic and epigenetic effects on couple adjustment in context of romantic relationship: A scoping systematic review. Front Genet 2023; 14:1002048. [PMID: 36816018 PMCID: PMC9937082 DOI: 10.3389/fgene.2023.1002048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction: Couples' relationships defined by a complex interaction between the two partners and their intrapersonal traits. Romantic; relationships and love are associated with marital satisfaction and stability, as well as couples' happiness and health. Personality traits influence romantic relationships and, personality influenced by genetical and non-genetically factors. The roles of non-genetically factors such as socioeconomic position and external appearance have revealed in determining the quality of romantic relationships. Methods: We; performed a scoping systematic review to assess the association between genetics and epigenetic factors and romantic relationship. Relevant articles were identified by PubMed, EMBASE, Web of Science, Scopus, and the APA PsycInfo searching between inception and 4 June 2022. Results: Different studies evaluated the associated polymorphisms in 15 different genes or chromosomal regions. In the first step; we classified them into four groups: (1) Oxytocin-related signaling pathway (OXTR, CD38, and AVPR1A); (2) Serotonin-related signaling pathway (SLC6A4, HTR1A, and HTR2A); (3) Dopamine and catecholamine-related signaling pathway (DRD1, DRD2, DRD4, ANKK1, and COMT); and (4) other genes (HLA, GABRA2, OPRM1, and Y-DNA haplogroup D-M55). Then, we evaluated and extracted significant polymorphisms that affect couple adjustment and romantic relationships. Discussion: Overall, the findings suggest that genetic and epigenetics variants play a key role in marital adjustment and romantic relationships over time.
Collapse
Affiliation(s)
- Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mitra Ansari Dezfouli
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Farzad Nasri
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Rahemi
- Department of stem cell technology and tissue regeneration, Faculty of Science, Tehran University, Tehran, Iran
| | - Salma Ahmadloo
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran,Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Sciences, Tehran, Iran
| | - Farzane Saeidi
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sergey Tereshchenko
- Research Institute of Medical Problems of the North, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, Krasnoyarsk, Russia,*Correspondence: Sergey Tereshchenko, ; Mohammad Reza Bigdeli, ; Mohammad Hossein Modarressi,
| | - Mohammad Reza Bigdeli
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran,Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran,*Correspondence: Sergey Tereshchenko, ; Mohammad Reza Bigdeli, ; Mohammad Hossein Modarressi,
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran,*Correspondence: Sergey Tereshchenko, ; Mohammad Reza Bigdeli, ; Mohammad Hossein Modarressi,
| |
Collapse
|
6
|
Ermine K, Yu J, Zhang L. Role of Receptor Interacting Protein (RIP) kinases in cancer. Genes Dis 2022; 9:1579-1593. [PMID: 36157481 PMCID: PMC9485196 DOI: 10.1016/j.gendis.2021.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
The Receptor Interacting Protein (RIP) kinase family consists of seven Serine/Threonine kinases, which plays a key signaling role in cell survival and cell death. Each RIP family member contains a conserved kinase domain and other domains that determine the specific kinase function through protein-protein interactions. RIP1 and RIP3 are best known for their critical roles in necroptosis, programmed necrosis and a non-apoptotic inflammatory cell death process. Dysregulation of RIP kinases contributes to a variety of pathogenic conditions such as inflammatory diseases, neurological diseases, and cancer. In cancer cells, alterations of RIP kinases at genetic, epigenetic and expression levels are frequently found, and suggested to promote tumor progression and metastasis, escape of antitumor immune response, and therapeutic resistance. However, RIP kinases can be either pro-tumor or anti-tumor depending on specific tumor types and cellular contexts. Therapeutic agents for targeting RIP kinases have been tested in clinical trials mainly for inflammatory diseases. Deregulated expression of these kinases in different types of cancer suggests that they represent attractive therapeutic targets. The focus of this review is to outline the role of RIP kinases in cancer, highlighting potential opportunities to manipulate these proteins in cancer treatment.
Collapse
Affiliation(s)
- Kaylee Ermine
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Lv S, Jiang Y, Li Y, Huang R, Peng L, Ma Z, Lu N, Lin X, Yan J. Comparative and evolutionary analysis of RIP kinases in immune responses. Front Genet 2022; 13:796291. [PMID: 36263437 PMCID: PMC9573974 DOI: 10.3389/fgene.2022.796291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
The group of receptor-interacting protein (RIP) kinases has seven members (RIPK1–7), with one homologous kinase domain but distinct non-kinase regions. Although RIPK1–3 have emerged as key modulators of inflammation and cell death, few studies have connected RIPK4–7 to immune responses. The divergence in domain structures and paralogue information in the Ensembl database have raised question about the phylogeny of RIPK1–7. In this study, phylogenetic trees of RIPK1–7 and paralogues constructed using full-length amino acid sequences or Kinase domain demonstrate that RIPK6 and RIPK7 are distinct from RIPK1–5 and paralogues shown in the Ensembl database are inaccurate. Comparative and evolutionary analyses were subsequently performed to gain new clues about the potential functions of RIPK3–7. RIPK3 gene loss in birds and animals that undergo torpor, a common physiological phenomenon in cold environments, implies that RIPK3 may be involved in ischemia-reperfusion injury and/or high metabolic rate. The negligible expression of RIPK4 and RIPK5 in immune cells is likely responsible for the lack of studies on the direct role of these members in immunity; RIPK6 and RIPK7 are conserved among plants, invertebrates and vertebrates, and dominantly expressed in innate immune cells, indicating their roles in innate immunity. Overall, our results provide insights into the multifaceted and conserved biochemical functions of RIP kinases.
Collapse
Affiliation(s)
- Shangge Lv
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health. University of Memphis, Memphis, TN, United States
| | - Yuzheng Li
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Ruilin Huang
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lingyu Peng
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhaoyin Ma
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Lu
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Nan Lu, ; Xiaoying Lin, ; Jie Yan,
| | - Xiaoying Lin
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Nan Lu, ; Xiaoying Lin, ; Jie Yan,
| | - Jie Yan
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Nan Lu, ; Xiaoying Lin, ; Jie Yan,
| |
Collapse
|
8
|
Kanarik M, Grimm O, Mota NR, Reif A, Harro J. ADHD co-morbidities: A review of implication of gene × environment effects with dopamine-related genes. Neurosci Biobehav Rev 2022; 139:104757. [PMID: 35777579 DOI: 10.1016/j.neubiorev.2022.104757] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/07/2023]
Abstract
ADHD is a major burden in adulthood, where co-morbid conditions such as depression, substance use disorder and obesity often dominate the clinical picture. ADHD has substantial shared heritability with other mental disorders, contributing to comorbidity. However, environmental risk factors exist but their interaction with genetic makeup, especially in relation to comorbid disorders, remains elusive. This review for the first time summarizes present knowledge on gene x environment (GxE) interactions regarding the dopamine system. Hitherto, mainly candidate (GxE) studies were performed, focusing on the genes DRD4, DAT1 and MAOA. Some evidence suggest that the variable number tandem repeats in DRD4 and MAOA may mediate GxE interactions in ADHD generally, and comorbid conditions specifically. Nevertheless, even for these genes, common variants are bound to suggest risk only in the context of gender and specific environments. For other polymorphisms, evidence is contradictory and less convincing. Particularly lacking are longitudinal studies testing the interaction of well-defined environmental with polygenic risk scores reflecting the dopamine system in its entirety.
Collapse
Affiliation(s)
- Margus Kanarik
- Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia
| | - Oliver Grimm
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Nina Roth Mota
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Jaanus Harro
- Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia; Psychiatry Clinic, North Estonia Medical Centre, Paldiski Road 52, 10614 Tallinn, Estonia.
| |
Collapse
|
9
|
Vereczkei A, Barta C, Magi A, Farkas J, Eisinger A, Király O, Belik A, Griffiths MD, Szekely A, Sasvári-Székely M, Urbán R, Potenza MN, Badgaiyan RD, Blum K, Demetrovics Z, Kotyuk E. FOXN3 and GDNF Polymorphisms as Common Genetic Factors of Substance Use and Addictive Behaviors. J Pers Med 2022; 12:jpm12050690. [PMID: 35629112 PMCID: PMC9144496 DOI: 10.3390/jpm12050690] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Abstract
Epidemiological and phenomenological studies suggest shared underpinnings between multiple addictive behaviors. The present genetic association study was conducted as part of the Psychological and Genetic Factors of Addictions study (n = 3003) and aimed to investigate genetic overlaps between different substance use, addictive, and other compulsive behaviors. Association analyses targeted 32 single-nucleotide polymorphisms, potentially addictive substances (alcohol, tobacco, cannabis, and other drugs), and potentially addictive or compulsive behaviors (internet use, gaming, social networking site use, gambling, exercise, hair-pulling, and eating). Analyses revealed 29 nominally significant associations, from which, nine survived an FDRbl correction. Four associations were observed between FOXN3 rs759364 and potentially addictive behaviors: rs759364 showed an association with the frequency of alcohol consumption and mean scores of scales assessing internet addiction, gaming disorder, and exercise addiction. Significant associations were found between GDNF rs1549250, rs2973033, CNR1 rs806380, DRD2/ANKK1 rs1800497 variants, and the “lifetime other drugs” variable. These suggested that genetic factors may contribute similarly to specific substance use and addictive behaviors. Specifically, FOXN3 rs759364 and GDNF rs1549250 and rs2973033 may constitute genetic risk factors for multiple addictive behaviors. Due to limitations (e.g., convenience sampling, lack of structured scales for substance use), further studies are needed. Functional correlates and mechanisms underlying these relationships should also be investigated.
Collapse
Affiliation(s)
- Andrea Vereczkei
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1094 Budapest, Hungary; (A.V.); (A.B.); (M.S.-S.)
| | - Csaba Barta
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1094 Budapest, Hungary; (A.V.); (A.B.); (M.S.-S.)
- Correspondence: (C.B.); (Z.D.)
| | - Anna Magi
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary; (A.M.); (J.F.); (A.E.); (O.K.); (A.S.); (R.U.); (E.K.)
- Doctoral School of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary
| | - Judit Farkas
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary; (A.M.); (J.F.); (A.E.); (O.K.); (A.S.); (R.U.); (E.K.)
- Nyírő Gyula National Institute of Psychiatry and Addictions, 1135 Budapest, Hungary
| | - Andrea Eisinger
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary; (A.M.); (J.F.); (A.E.); (O.K.); (A.S.); (R.U.); (E.K.)
- Doctoral School of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary
| | - Orsolya Király
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary; (A.M.); (J.F.); (A.E.); (O.K.); (A.S.); (R.U.); (E.K.)
| | - Andrea Belik
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1094 Budapest, Hungary; (A.V.); (A.B.); (M.S.-S.)
| | - Mark D. Griffiths
- International Gaming Research Unit, Psychology Department, Nottingham Trent University, Nottingham NG1 4FQ, UK;
| | - Anna Szekely
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary; (A.M.); (J.F.); (A.E.); (O.K.); (A.S.); (R.U.); (E.K.)
| | - Mária Sasvári-Székely
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1094 Budapest, Hungary; (A.V.); (A.B.); (M.S.-S.)
| | - Róbert Urbán
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary; (A.M.); (J.F.); (A.E.); (O.K.); (A.S.); (R.U.); (E.K.)
| | - Marc N. Potenza
- Departments of Psychiatry, Child Study and Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA;
- Connecticut Council on Problem Gambling, Wethersfield, CT 06109, USA
- Connecticut Mental Health Center, New Haven, CT 06519, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, Ichan School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, & Primary Care (Office of the Provost), Western University Health Sciences, Pomona, CA 91766, USA;
| | - Zsolt Demetrovics
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary; (A.M.); (J.F.); (A.E.); (O.K.); (A.S.); (R.U.); (E.K.)
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, & Primary Care (Office of the Provost), Western University Health Sciences, Pomona, CA 91766, USA;
- Correspondence: (C.B.); (Z.D.)
| | - Eszter Kotyuk
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary; (A.M.); (J.F.); (A.E.); (O.K.); (A.S.); (R.U.); (E.K.)
| |
Collapse
|
10
|
Leggieri A, García-González J, Torres-Perez JV, Havelange W, Hosseinian S, Mech AM, Keatinge M, Busch-Nentwich EM, Brennan CH. Ankk1 Loss of Function Disrupts Dopaminergic Pathways in Zebrafish. Front Neurosci 2022; 16:794653. [PMID: 35210987 PMCID: PMC8861280 DOI: 10.3389/fnins.2022.794653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Ankyrin repeat and kinase domain containing 1 (ANKK1) is a member of the receptor-interacting protein serine/threonine kinase family, known to be involved in cell proliferation, differentiation and activation of transcription factors. Genetic variation within the ANKK1 locus is suggested to play a role in vulnerability to addictions. However, ANKK1 mechanism of action is still poorly understood. It has been suggested that ANKK1 may affect the development and/or functioning of dopaminergic pathways. To test this hypothesis, we generated a CRISPR-Cas9 loss of function ankk1 zebrafish line causing a 27 bp insertion that disrupts the ankk1 sequence introducing an early stop codon. We found that ankk1 transcript levels were significantly lower in ankk1 mutant (ankk127ins) fish compared to their wild type (ankk1+/+) siblings. In ankk1+/+ adult zebrafish brain, ankk1 protein was detected in isocortex, hippocampus, basolateral amygdala, mesencephalon, and cerebellum, resembling the mammalian distribution pattern. In contrast, ankk1 protein was reduced in the brain of ankk127ins/27ins fish. Quantitative polymerase chain reaction analysis revealed an increase in expression of drd2b mRNA in ankk127ins at both larval and adult stages. In ankk1+/+ adult zebrafish brain, drd2 protein was detected in cerebral cortex, cerebellum, hippocampus, and caudate homolog regions, resembling the pattern in humans. In contrast, drd2 expression was reduced in cortical regions of ankk127ins/27ins being predominantly found in the hindbrain. No differences in the number of cell bodies or axonal projections detected by anti-tyrosine hydroxylase immunostaining on 3 days post fertilization (dpf) larvae were found. Behavioral analysis revealed altered sensitivity to effects of both amisulpride and apomorphine on locomotion and startle habituation, consistent with a broad loss of both pre and post synaptic receptors. Ankk127ins mutants showed reduced sensitivity to the effect of the selective dopamine receptor antagonist amisulpride on locomotor responses to acoustic startle and were differentially sensitive to the effects of the non-selective dopamine agonist apomorphine on both locomotion and habituation. Taken together, our findings strengthen the hypothesis of a functional relationship between ANKK1 and DRD2, supporting a role for ANKK1 in the maintenance and/or functioning of dopaminergic pathways. Further work is needed to disentangle ANKK1’s role at different developmental stages.
Collapse
Affiliation(s)
- Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Judit García-González
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jose V. Torres-Perez
- Department of Brain Sciences, UK Dementia Research Institute, Imperial College London, London, United Kingdom
| | - William Havelange
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Aleksandra M. Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Marcus Keatinge
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Elisabeth M. Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Caroline H. Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
- *Correspondence: Caroline H. Brennan,
| |
Collapse
|
11
|
Graham DP, Harding MJ, Nielsen DA. Pharmacogenetics of Addiction Therapy. Methods Mol Biol 2022; 2547:437-490. [PMID: 36068473 DOI: 10.1007/978-1-0716-2573-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Drug addiction is a serious relapsing disease that has high costs to society and to the individual addicts. Treatment of these addictions is still in its nascency, with only a few examples of successful therapies. Therapeutic response depends upon genetic, biological, social, and environmental components. A role for genetic makeup in the response to treatment has been shown for several addiction pharmacotherapies with response to treatment based on individual genetic makeup. In this chapter, we will discuss the role of genetics in pharmacotherapies, specifically for cocaine, alcohol, and opioid dependences. The continued elucidation of the role of genetics should aid in the development of new treatments and increase the efficacy of existing treatments.
Collapse
Affiliation(s)
- David P Graham
- Michael E. DeBakey Veterans Affairs Medical Center, and the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Mark J Harding
- Michael E. DeBakey Veterans Affairs Medical Center, and the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - David A Nielsen
- Michael E. DeBakey Veterans Affairs Medical Center, and the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
12
|
Korytina GF, Akhmadishina LZ, Kochetova OV, Nasibullin TR, Aznabaeva YG, Zulkarneev SR, Izmaǐlova SM, Zagidullin SZ, Victorova TV. Role of Neurotransmitter System Genes in Chronic Obstructive Pulmonary Disease. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421110065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Richter A, de Boer L, Guitart-Masip M, Behnisch G, Seidenbecher CI, Schott BH. Motivational learning biases are differentially modulated by genetic determinants of striatal and prefrontal dopamine function. J Neural Transm (Vienna) 2021; 128:1705-1720. [PMID: 34302222 PMCID: PMC8536632 DOI: 10.1007/s00702-021-02382-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/04/2021] [Indexed: 01/20/2023]
Abstract
Dopaminergic neurotransmission plays a pivotal role in appetitively motivated behavior in mammals, including humans. Notably, action and valence are not independent in motivated tasks, and it is particularly difficult for humans to learn the inhibition of an action to obtain a reward. We have previously observed that the carriers of the DRD2/ANKK1 TaqIA A1 allele, that has been associated with reduced striatal dopamine D2 receptor expression, showed a diminished learning performance when required to learn response inhibition to obtain rewards, a finding that was replicated in two independent cohorts. With our present study, we followed two aims: first, we aimed to replicate our finding on the DRD2/ANKK1 TaqIA polymorphism in a third independent cohort (N = 99) and to investigate the nature of the genetic effects more closely using trial-by-trial behavioral analysis and computational modeling in the combined dataset (N = 281). Second, we aimed to assess a potentially modulatory role of prefrontal dopamine availability, using the widely studied COMT Val108/158Met polymorphism as a proxy. We first report a replication of the above mentioned finding. Interestingly, after combining all three cohorts, exploratory analyses regarding the COMT Val108/158Met polymorphism suggest that homozygotes for the Met allele, which has been linked to higher prefrontal dopaminergic tone, show a lower learning bias. Our results corroborate the importance of genetic variability of the dopaminergic system in individual learning differences of action-valence interaction and, furthermore, suggest that motivational learning biases are differentially modulated by genetic determinants of striatal and prefrontal dopamine function.
Collapse
Affiliation(s)
- Anni Richter
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
| | - Lieke de Boer
- Ageing Research Centre, Karolinska Institute, Stockholm, Sweden
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
| | - Marc Guitart-Masip
- Ageing Research Centre, Karolinska Institute, Stockholm, Sweden
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Gusalija Behnisch
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Björn H Schott
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Göttingen, Germany
- Department of Neurology, University of Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|