1
|
Woodward BL, Lahiri S, Chauhan AS, Garcia MR, Goodley LE, Clarke TL, Pal M, Agathanggelou A, Jhujh SS, Ganesh AN, Hollins FM, Deforie VG, Maroofian R, Efthymiou S, Meinhardt A, Mathew CG, Simpson MA, Mefford HC, Faqeih EA, Rosenzweig SD, Volpi S, Di Matteo G, Cancrini C, Scardamaglia A, Shackley F, Davies EG, Ibrahim S, Arkwright PD, Zaki MS, Stankovic T, Taylor AMR, Mazur AJ, Di Donato N, Houlden H, Rothenberg E, Stewart GS. Inherited deficiency of DIAPH1 identifies a DNA double strand break repair pathway regulated by γ-actin. Nat Commun 2025; 16:4491. [PMID: 40368919 PMCID: PMC12078678 DOI: 10.1038/s41467-025-59553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 04/28/2025] [Indexed: 05/16/2025] Open
Abstract
DNA double strand break repair (DSBR) represents a fundamental process required to maintain genome stability and prevent the onset of disease. Whilst cell cycle phase and the chromatin context largely dictate which repair pathway is utilised to restore damaged DNA, it has been recently shown that nuclear actin filaments play a major role in clustering DNA breaks to facilitate DSBR by homologous recombination (HR). However, the mechanism with which nuclear actin and the different actin nucleating factors regulate HR is unclear. Interestingly, patients with biallelic mutations in the actin nucleating factor DIAPH1 exhibit a striking overlap of clinical features with the HR deficiency disorders, Nijmegen Breakage Syndrome (NBS) and Warsaw Breakage Syndrome (WABS). This suggests that DIAPH1 may play a role in regulating HR and that some of the clinical deficits associated with DIAPH1 mutations may be caused by an underlying DSBR defect. In keeping with this clinical similarity, we demonstrate that cells from DIAL (DIAPH1 Loss-of-function) Syndrome patients display an HR repair defect comparable to loss of NBS1. Moreover, we show that this DSBR defect is also observed in a subset of patients with Baraitser-Winter Cerebrofrontofacial (BWCFF) syndrome associated with mutations in ACTG1 (γ-actin) but not ACTB (β-actin). Lastly, we demonstrate that DIAPH1 and γ-actin promote HR-dependent repair by facilitating the relocalisation of the MRE11/RAD50/NBS1 complex to sites of DNA breaks to initiate end-resection. Taken together, these data provide a mechanistic explanation for the overlapping clinical symptoms exhibited by patients with DIAL syndrome, BWCFF syndrome and NBS.
Collapse
Affiliation(s)
- Beth L Woodward
- Department of Cancer and Genomic Sciences, College of Medical and Health, University of Birmingham, Birmingham, UK
| | - Sudipta Lahiri
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Anoop S Chauhan
- Department of Cancer and Genomic Sciences, College of Medical and Health, University of Birmingham, Birmingham, UK
| | - Marcos Rios Garcia
- Department of Cancer and Genomic Sciences, College of Medical and Health, University of Birmingham, Birmingham, UK
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Lucy E Goodley
- Department of Cancer and Genomic Sciences, College of Medical and Health, University of Birmingham, Birmingham, UK
| | - Thomas L Clarke
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Mohinder Pal
- School of Natural Sciences, University of Kent, Canterbury, UK
| | - Angelo Agathanggelou
- Department of Cancer and Genomic Sciences, College of Medical and Health, University of Birmingham, Birmingham, UK
| | - Satpal S Jhujh
- Department of Cancer and Genomic Sciences, College of Medical and Health, University of Birmingham, Birmingham, UK
| | - Anil N Ganesh
- Department of Cancer and Genomic Sciences, College of Medical and Health, University of Birmingham, Birmingham, UK
| | - Fay M Hollins
- Department of Cancer and Genomic Sciences, College of Medical and Health, University of Birmingham, Birmingham, UK
| | - Valentina Galassi Deforie
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Reza Maroofian
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Andrea Meinhardt
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
| | - Christopher G Mathew
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- Department of Medical and Molecular Genetics, Faculty of Life Science and Medicine, King's College London, Guy's Hospital, London, UK
| | - Michael A Simpson
- Department of Medical and Molecular Genetics, Faculty of Life Science and Medicine, King's College London, Guy's Hospital, London, UK
| | - Heather C Mefford
- Center for Pediatric Neurological Disease Research, St. Jude Children's Hospital, Memphis, TN, USA
| | - Eissa A Faqeih
- King Fahad Medical City, Children's Hospital,, Riyadh, Kingdom of Saudi Arabia
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Stefano Volpi
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- DINOGMI, Università degli Studi di Genova, Genoa, Italy
| | - Gigliola Di Matteo
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Research Unit of Primary Immunodeficiencies, Unit of Clinical Immunology and Vaccinology, Scientific Institute for Research and Healthcare (IRCCS) Bambino Gesù Children Hospital, Rome, Italy
| | - Caterina Cancrini
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Research Unit of Primary Immunodeficiencies, Unit of Clinical Immunology and Vaccinology, Scientific Institute for Research and Healthcare (IRCCS) Bambino Gesù Children Hospital, Rome, Italy
| | - Annarita Scardamaglia
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Fiona Shackley
- Paediatric Immunology, Allergy and Infectious Diseases, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - E Graham Davies
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Shahnaz Ibrahim
- Department of pediatrics and child health, Aga Khan University, Karachi, Pakistan
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Tatjana Stankovic
- Department of Cancer and Genomic Sciences, College of Medical and Health, University of Birmingham, Birmingham, UK
| | - A Malcolm R Taylor
- Department of Cancer and Genomic Sciences, College of Medical and Health, University of Birmingham, Birmingham, UK
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Nataliya Di Donato
- Institute for Human Genetics, Hannover Medical School, Hannover, Germany
| | - Henry Houlden
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Grant S Stewart
- Department of Cancer and Genomic Sciences, College of Medical and Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
2
|
Li X, Wang X, Ye Y, Zeng Z, Chen L, Peng K, Xiao H, Gao S, Luo H, Zeng Y. Screening the receptors for Mycoplasma penetrans P35 lipoprotein and characterization of its functional binding domains. Front Cell Infect Microbiol 2025; 15:1525789. [PMID: 40166371 PMCID: PMC11955645 DOI: 10.3389/fcimb.2025.1525789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Mycoplasma penetrans, a prokaryotic microorganism initially isolated from the urine of a patient infected with human immunodeficiency virus (HIV), possesses a distinctive elongated flask-like shape and a tip-like structure. This unique morphology has been shown to facilitate its ability to invade cells both in vitro and in vivo. The adhesion of M. penetrans to host cells relies on lipid-associated membrane proteins (LAMPs), especially P35 lipoprotein, which is exposed on the mycoplasmal surface. In this study, modified Virus Overlay Protein Binding Assay (VOPBA) was employed to identify P35-interacting proteins from membrane protein extracts of SV40-immortalized human uroepithelial (SV-HUC-1) cells. Through recombinant protein binding assays, siRNA-mediated knockdown, ELISA, Far-Western blot, and inhibition experiments, the binding mechanisms and functional domains were further elucidated. Results demonstrated that the P35 lipoprotein interacts with γ-actin (ACTG1). Recombinant P35 specifically bound to both recombinant and endogenous ACTG1 on the host cell membrane. ACTG1 partially inhibited the adhesion of P35 and M. penetrans to host cells. In SV-HUC-1 cells transfected with ACTG1-siRNA, adhesion of P35 and M. penetrans was significantly reduced. Further studies identified the functional domains responsible for binding between P35 and ACTG1 at amino acid residues 35-42 and 179-186. These findings suggest that ACTG1 on the host cell membrane may act as a receptor for the P35 lipoprotein, facilitating the adhesion of M. penetrans to host cells. The identified critical binding regions of P35 represent potential targets for therapeutic interventions against M. penetrans infections.
Collapse
Affiliation(s)
- Xia Li
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Xiaoliu Wang
- Department of Dermatology and Venereology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Youyuan Ye
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Zhuo Zeng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Li Chen
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Kailan Peng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Hua Xiao
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Siqi Gao
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Haodang Luo
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Department of Dermatology and Venereology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Maupérin M, Sun Y, Glandorf T, Oswald TA, Klatt N, Geil B, Mutero-Maeda A, Méan I, Jond L, Janshoff A, Yan J, Citi S. A feedback circuitry involving γ-actin, β-actin and nonmuscle myosin-2 A controls tight junction and apical cortex mechanics. Nat Commun 2025; 16:2514. [PMID: 40082413 PMCID: PMC11906862 DOI: 10.1038/s41467-025-57428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025] Open
Abstract
Cytoplasmic β- and γ-actin isoforms, along with non-muscle myosin 2 isoforms, are tightly regulated in epithelial cells and compose the actomyosin cytoskeleton at the apical junctional complex. However, their specific role in regulating the mechanics of the membrane cortex and the organization of junctions, and which biomechanical circuitries modulate their expression remain poorly understood. Here, we show that γ-actin depletion in MDCK and other epithelial cells results in increased expression and junctional accumulation of β-actin and increased tight junction membrane tortuosity, both dependent on nonmuscle myosin-2A upregulation. The knock-out of γ-actin also decreases apical membrane stiffness and increases dynamic exchange of the cytoplasmic tight junction proteins like ZO-1 and cingulin, without affecting tight junction organization and barrier function. In summary, our findings uncover a biomechanical circuitry linking γ-actin to β-actin expression through nonmuscle myosin-2A and reveal γ-actin as a key regulator of tight junction and apical membrane cortex mechanics, and the dynamics of cytoskeleton-associated tight junction proteins in epithelial cells.
Collapse
Affiliation(s)
- Marine Maupérin
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Yuze Sun
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Thomas Glandorf
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Tabea Anne Oswald
- Georg-August Universität, Institute for Organic and Biomolecular Chemistry, Göttingen, Germany
| | - Niklas Klatt
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Burkhard Geil
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Annick Mutero-Maeda
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Isabelle Méan
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Lionel Jond
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Andreas Janshoff
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Sandra Citi
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
4
|
Mazurkiewicz-Stanek E, Machnik J, Kopernyk I, Wiertelak W, Maszczak-Seneczko D, Jeruzalska E, Biernatowska A, Makowiecka A, Majkowski M, Biecek P, Trombik T, Donizy P, Mazur AJ. Gelsolin traps ribosomal protein SA (RPSA) within lipid nanodomains of the plasma membrane and modulates the level of protein synthesis in the submembranous region of human skin melanoma cells. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167686. [PMID: 39842520 DOI: 10.1016/j.bbadis.2025.167686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
The connection between the F-actin and ribosome docking to the PM has been reported, but the exact mechanism has remained unclear. Previously, we discovered that gelsolin (GSN) forms complexes with numerous ribosomal proteins, including ribosomal protein SA (RPSA). Now, we have unraveled the mechanism of ribosome recruitment to the lipid nanodomains of the PM, with GSN playing a pivotal role in this process. We demonstrate that GSN directly interacts with RPSA, and microscopic analyses reveal their colocalization in the cell's submembranous region. Through spot variation fluorescence correlation spectroscopy, we confirm that GSN is responsible for trapping RPSA within PM's lipid nanodomains, a process dependent on F-actin. Importantly, we establish a correlation between the GSN level and the level of protein synthesis in melanoma cells. Furthermore, we present compelling evidence that high levels of GSN and RPSA are associated with the progression of cutaneous melanoma and a poorer prognosis for patients.
Collapse
Affiliation(s)
- Ewa Mazurkiewicz-Stanek
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland.
| | - Joanna Machnik
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland
| | - Iryna Kopernyk
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland
| | - Wojciech Wiertelak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Estera Jeruzalska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland
| | - Agnieszka Biernatowska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Aleksandra Makowiecka
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland
| | - Michał Majkowski
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Przemysław Biecek
- Department of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Tomasz Trombik
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Wroclaw, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland.
| |
Collapse
|
5
|
Shah R, Panagiotou TC, Cole GB, Moraes TF, Lavoie BD, McCulloch CA, Wilde A. The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow. Nat Commun 2024; 15:5250. [PMID: 38897998 PMCID: PMC11187180 DOI: 10.1038/s41467-024-49427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Cytokinesis is the final step of the cell division cycle that leads to the formation of two new cells. Successful cytokinesis requires significant remodelling of the plasma membrane by spatially distinct β- and γ-actin networks. These networks are generated by the formin family of actin nucleators, DIAPH3 and DIAPH1 respectively. Here we show that β- and γ-actin perform specialized and non-redundant roles in cytokinesis and cannot substitute for one another. Expression of hybrid DIAPH1 and DIAPH3 proteins with altered actin isoform specificity relocalized cytokinetic actin isoform networks within the cell, causing cytokinetic failure. Consistent with this we show that β-actin networks, but not γ-actin networks, are required for the maintenance of non-muscle myosin II and RhoA at the cytokinetic furrow. These data suggest that independent and spatially distinct actin isoform networks form scaffolds of unique interactors that facilitate localized biochemical activities to ensure successful cell division.
Collapse
Affiliation(s)
- Riya Shah
- Department of Biochemistry, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | - Thomas C Panagiotou
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | - Gregory B Cole
- Department of Biochemistry, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | - Brigitte D Lavoie
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | | | - Andrew Wilde
- Department of Biochemistry, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada.
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
6
|
Wu A, Mazurkiewicz E, Donizy P, Kotowski K, Pieniazek M, Mazur AJ, Czogalla A, Trombik T. ABCA1 transporter promotes the motility of human melanoma cells by modulating their plasma membrane organization. Biol Res 2023; 56:32. [PMID: 37312227 DOI: 10.1186/s40659-023-00443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Melanoma is one of the most aggressive and deadliest skin tumor. Cholesterol content in melanoma cells is elevated, and a portion of it accumulates into lipid rafts. Therefore, the plasma membrane cholesterol and its lateral organization might be directly linked with tumor development. ATP Binding Cassette A1 (ABCA1) transporter modulates physico-chemical properties of the plasma membrane by modifying cholesterol distribution. Several studies linked the activity of the transporter with a different outcome of tumor progression depending on which type. However, no direct link between human melanoma progression and ABCA1 activity has been reported yet. METHODS An immunohistochemical study on the ABCA1 level in 110 patients-derived melanoma tumors was performed to investigate the potential association of the transporter with melanoma stage of progression and prognosis. Furthermore, proliferation, migration and invasion assays, extracellular-matrix degradation assay, immunochemistry on proteins involved in migration processes and a combination of biophysical microscopy analysis of the plasma membrane organization of Hs294T human melanoma wild type, control (scrambled), ABCA1 Knockout (ABCA1 KO) and ABCA1 chemically inactivated cells were used to study the impact of ABCA1 activity on human melanoma metastasis processes. RESULTS The immunohistochemical analysis of clinical samples showed that high level of ABCA1 transporter in human melanoma is associated with a poor prognosis. Depletion or inhibition of ABCA1 impacts invasion capacities of aggressive melanoma cells. Loss of ABCA1 activity partially prevented cellular motility by affecting active focal adhesions formation via blocking clustering of phosphorylated focal adhesion kinases and active integrin β3. Moreover, ABCA1 activity regulated the lateral organization of the plasma membrane in melanoma cells. Disrupting this organization, by increasing the content of cholesterol, also blocked active focal adhesion formation. CONCLUSION Human melanoma cells reorganize their plasma membrane cholesterol content and organization via ABCA1 activity to promote motility processes and aggressiveness potential. Therefore, ABCA1 may contribute to tumor progression and poor prognosis, suggesting ABCA1 to be a potential metastatic marker in melanoma.
Collapse
Affiliation(s)
- Ambroise Wu
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Ewa Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wrocław Medical University, Borowska 213, 50-556, Wrocław, Poland
| | - Krzysztof Kotowski
- Department of Clinical and Experimental Pathology, Wrocław Medical University, Borowska 213, 50-556, Wrocław, Poland
| | - Małgorzata Pieniazek
- Department of Oncology and Division of Surgical Oncology, Wrocław Medical University, Pl. Hirszfelda 12, 53-413, Wrocław, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Tomasz Trombik
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland.
- Department of Biochemistry and Molecular Biology, Faculty of Medical Sciences, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| |
Collapse
|
7
|
Ivanov AI, Lechuga S, Marino‐Melendez A, Naydenov NG. Unique and redundant functions of cytoplasmic actins and nonmuscle myosin II isoforms at epithelial junctions. Ann N Y Acad Sci 2022; 1515:61-74. [PMID: 35673768 PMCID: PMC9489603 DOI: 10.1111/nyas.14808] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The integrity and functions of epithelial barriers depend on the formation of adherens junctions (AJs) and tight junctions (TJs). A characteristic feature of AJs and TJs is their association with the cortical cytoskeleton composed of actin filaments and nonmuscle myosin II (NM-II) motors. Mechanical forces generated by the actomyosin cytoskeleton are essential for junctional assembly, stability, and remodeling. Epithelial cells express two different actin proteins and three NM-II isoforms, all known to be associated with AJs and TJs. Despite their structural similarity, different actin and NM-II isoforms have distinct biochemical properties, cellular distribution, and functions. The diversity of epithelial actins and myosin motors could be essential for the regulation of different steps of junctional formation, maturation, and disassembly. This review focuses on the roles of actin and NM-II isoforms in controlling the integrity and barrier properties of various epithelia. We discuss the effects of the depletion of individual actin isoforms and NM-II motors on the assembly and barrier function of AJs and TJs in model epithelial monolayers in vitro. We also describe the functional consequences of either total or tissue-specific gene knockout of different actins and NM-II motors, with a focus on the development and integrity of different epithelia in vivo.
Collapse
Affiliation(s)
- Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Armando Marino‐Melendez
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| |
Collapse
|
8
|
Gonzalez-Salinas F, Martinez-Amador C, Trevino V. Characterizing genes associated with cancer using the CRISPR/Cas9 system: A systematic review of genes and methodological approaches. Gene 2022; 833:146595. [PMID: 35598687 DOI: 10.1016/j.gene.2022.146595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022]
Abstract
The CRISPR/Cas9 system enables a versatile set of genomes editing and genetic-based disease modeling tools due to its high specificity, efficiency, and accessible design and implementation. In cancer, the CRISPR/Cas9 system has been used to characterize genes and explore different mechanisms implicated in tumorigenesis. Different experimental strategies have been proposed in recent years, showing dependency on various intrinsic factors such as cancer type, gene function, mutation type, and technical approaches such as cell line, Cas9 expression, and transfection options. However, the successful methodological approaches, genes, and other experimental factors have not been analyzed. We, therefore, initially considered more than 1,300 research articles related to CRISPR/Cas9 in cancer to finally examine more than 400 full-text research publications. We summarize findings regarding target genes, RNA guide designs, cloning, Cas9 delivery systems, cell enrichment, and experimental validations. This analysis provides valuable information and guidance for future cancer gene validation experiments.
Collapse
Affiliation(s)
- Fernando Gonzalez-Salinas
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Claudia Martinez-Amador
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Victor Trevino
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada avenue 2501, Monterrey, Nuevo Leon 64849, México.
| |
Collapse
|
9
|
Dugina VB, Shagieva GS, Kopnin PB. Cytoplasmic Beta and Gamma Actin Isoforms Reorganization and Regulation in Tumor Cells in Culture and Tissue. Front Pharmacol 2022; 13:895703. [PMID: 35721191 PMCID: PMC9204531 DOI: 10.3389/fphar.2022.895703] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
The cytoplasmic actin isoforms (β- and γ-actins) contribute greatly to cellular processes such as cel-cell and cell-matrix interactions, as well as cell polarization, motility and division. Distinct isoforms modulations are linked to serious pathologies, so investigations of underlying mechanisms would be of major relevance not only for fundamental research but also for clinical applications. Therefore, the study of the relevant mechanisms of change in the isoform’s balance is important for basic research and for clinical studies. The disruption of actin cytoskeleton and intercellular adhesions contribute to the neoplastic transformation, as it is important for the tumor growth, invasiveness and metastasis. Cytoplasmic actins display the functional diversity: β-actin is responsible for contractility, whereas γ-actin participates in the submembrane flexible cortex organization and direction cell motility. The involvement of β- and γ-actin in cell architecture, motility, division, and adhesion junctions in normal cells is not equivalent, and the major question was following: whether isoform ratio and the distribution in the cell corresponds to pathological function. Significant data were obtained in the study of tumor and normal cells in culture, as well as on clinical material of human tissues, and via selective regulation of β- and γ-actin’s expression. Investigation of the actins’ diversity and function in cancers may help to choose the benefit treatment strategies, and to design new therapies.
Collapse
Affiliation(s)
- V. B. Dugina
- A.N. Belozerskiy Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - G. S. Shagieva
- A.N. Belozerskiy Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - P. B. Kopnin
- Research Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, Moscow, Russia
- *Correspondence: P. B. Kopnin,
| |
Collapse
|
10
|
Orzeł-Gajowik K, Milewski K, Zielińska M. Insight into microRNAs-Mediated Communication between Liver and Brain: A Possible Approach for Understanding Acute Liver Failure? Int J Mol Sci 2021; 23:224. [PMID: 35008650 PMCID: PMC8745738 DOI: 10.3390/ijms23010224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/11/2023] Open
Abstract
Acute liver failure (ALF) is a life-threatening consequence of hepatic function rapid loss without preexisting liver disease. ALF may result in a spectrum of neuropsychiatric symptoms that encompasses cognitive impairment, coma, and often death, collectively defined as acute hepatic encephalopathy. Micro RNAs are small non-coding RNAs that modulate gene expression and are extensively verified as biomarker candidates in various diseases. Our systematic literature review based on the last decade's reports involving a total of 852 ALF patients, determined 205 altered circulating miRNAs, of which 25 miRNAs were altered in the blood, regardless of study design and methodology. Selected 25 miRNAs, emerging predominantly from the analyses of samples obtained from acetaminophen overdosed patients, represent the most promising biomarker candidates for a diagnostic panel for symptomatic ALF. We discussed the role of selected miRNAs in the context of tissue-specific origin and its possible regulatory role for molecular pathways involved in blood-brain barrier function. The defined several common pathways for 15 differently altered miRNAs were relevant to cellular community processes, indicating loss of intercellular, structural, and functional components, which may result in blood-brain barrier impairment and brain dysfunction. However, a causational relationship between circulating miRNAs differential expression, and particular clinical features of ALF, has to be demonstrated in a further study.
Collapse
Affiliation(s)
| | | | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland; (K.O.-G.); (K.M.)
| |
Collapse
|
11
|
Dugina VB, Shagieva GS, Shakhov AS, Alieva IB. The Cytoplasmic Actins in the Regulation of Endothelial Cell Function. Int J Mol Sci 2021; 22:ijms22157836. [PMID: 34360602 PMCID: PMC8345992 DOI: 10.3390/ijms22157836] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 01/22/2023] Open
Abstract
The primary function of the endothelial cells (EC) lining the inner surface of all vessels is to regulate permeability of vascular walls and to control exchange between circulating blood and tissue fluids of organs. The EC actin cytoskeleton plays a crucial role in maintaining endothelial barrier function. Actin cytoskeleton reorganization result in EC contraction and provides a structural basis for the increase in vascular permeability, which is typical for many diseases. Actin cytoskeleton in non-muscle cells presented two actin isoforms: non-muscle β-cytoplasmic and γ-cytoplasmic actins (β-actins and γ-actins), which are encoded by ACTB and ACTG1 genes, respectively. They are ubiquitously expressed in the different cells in vivo and in vitro and the β/γ-actin ratio depends on the cell type. Both cytoplasmic actins are essential for cell survival, but they perform various functions in the interphase and cell division and play different roles in neoplastic transformation. In this review, we briefly summarize the research results of recent years and consider the features of the cytoplasmic actins: The spatial organization in close connection with their functional activity in different cell types by focusing on endothelial cells.
Collapse
Affiliation(s)
- Vera B. Dugina
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.B.D.); (G.S.S.); (A.S.S.)
| | - Galina S. Shagieva
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.B.D.); (G.S.S.); (A.S.S.)
| | - Anton S. Shakhov
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.B.D.); (G.S.S.); (A.S.S.)
| | - Irina B. Alieva
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.B.D.); (G.S.S.); (A.S.S.)
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
- Correspondence:
| |
Collapse
|
12
|
Mazurkiewicz E, Makowiecka A, Mrówczyńska E, Kopernyk I, Nowak D, Mazur AJ. Gelsolin Contributes to the Motility of A375 Melanoma Cells and This Activity Is Mediated by the Fibrous Extracellular Matrix Protein Profile. Cells 2021; 10:1848. [PMID: 34440617 PMCID: PMC8394273 DOI: 10.3390/cells10081848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Skin melanocytes reside on the basement membrane (BM), which is mainly composed of laminin, collagen type IV, and proteoglycans. For melanoma cells, in order to invade into the skin, melanocytes must cross the BM. It has been reported that changes in the composition of the BM accompany melanocytes tumorigenesis. Previously, we reported high gelsolin (GSN)-an actin-binding protein-levels in melanoma cell lines and GSN's importance for migration of A375 cells. Here we investigate whether melanoma cells migrate differently depending on the type of fibrous extracellular matrix protein. We obtained A375 melanoma cells deprived of GSN synthesis and tested their migratory properties on laminin, collagens type I and IV, fibronectin, and Matrigel, which resembles the skin's BM. We applied confocal and structured illuminated microscopy (SIM), gelatin degradation, and diverse motility assays to assess GSN's influence on parameters associated with cells' ability to protrude. We show that GSN is important for melanoma cell migration, predominantly on laminin, which is one of the main components of the skin's BM.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (E.M.); (A.M.); (E.M.); (I.K.); (D.N.)
| |
Collapse
|
13
|
Impaired Expression of Cytoplasmic Actins Leads to Chromosomal Instability of MDA-MB-231 Basal-Like Mammary Gland Cancer Cell Line. Molecules 2021; 26:molecules26082151. [PMID: 33917969 PMCID: PMC8068389 DOI: 10.3390/molecules26082151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/03/2022] Open
Abstract
We have shown previously that two cytoplasmic actin isoforms play different roles in neoplastic cell transformation. Namely, β-cytoplasmic actin acts as a tumor suppressor, whereas γ-cytoplasmic actin enhances malignant features of tumor cells. The distinct participation of each cytoplasmic actin in the cell cycle driving was also observed. The goal of this study was to describe the diverse roles of cytoplasmic actins in the progression of chromosomal instability of MDA-MB-231 basal-like human carcinoma cell line. We performed traditional methods of chromosome visualization, as well as 3D-IF microscopy and western blotting for CENP-A detection/quantification, to investigate chromosome morphology. Downregulation of cytoplasmic actin isoforms alters the phenotype and karyotype of MDA-MB-231 breast cancer cells. Moreover, β-actin depletion leads to the progression of chromosomal instability with endoreduplication and aneuploidy increase. On the contrary, γ-actin downregulation results not only in reduced percentage of mitotic carcinoma cells, but leads to chromosome stability, reduced polyploidy, and aneuploidy.
Collapse
|
14
|
Makowiecka A, Mazurkiewicz E, Mrówczyńska E, Malek N, Battistella A, Lazzarino M, Nowak D, Mazur AJ. Changes in Biomechanical Properties of A375 Cells Due to the Silencing of TMSB4X Expression Are Not Directly Correlated with Alterations in Their Stemness Features. Cells 2021; 10:cells10040769. [PMID: 33807338 PMCID: PMC8067020 DOI: 10.3390/cells10040769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/27/2022] Open
Abstract
Thymosin β4 (Tβ4) is a small, 44-amino acid polypeptide. It has been implicated in multiple processes, including cell movement, angiogenesis, and stemness. Previously, we reported that melanoma cell lines differ in Tβ4 levels. Studies on stable clones with silenced TMSB4X expression showed that Tβ4 impacted adhesion and epithelial-mesenchymal transition progression. Here, we show that the cells with silenced TMSB4X expression exhibited altered actin cytoskeleton’s organization and subcellular relocalization of two intermediate filament proteins: Nestin and Vimentin. The rearrangement of the cell cytoskeleton resulted in changes in the cells’ topology, height, and stiffness defined by Young’s modulus. Simultaneously, only for some A375 clones with a lowered Tβ4 level, we observed a decreased ability to initiate colony formation in soft agar, tumor formation in vivo, and alterations in Nanog’s expression level transcription factor regulating stemness. Thus, we show for the first time that in A375 cells, biomechanical properties are not directly coupled to stemness features, and this cell line is phenotypically heterogeneous.
Collapse
Affiliation(s)
- Aleksandra Makowiecka
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wrocław, Poland; (E.M.); (E.M.); (N.M.); (D.N.)
- Istituto Officina dei Materiali-National Research Council, I-34149 Trieste, Italy; (A.B.); (M.L.)
- Correspondence: or (A.M.); (A.J.M.); Tel.: +48-71-375-6206 (A.J.M.)
| | - Ewa Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wrocław, Poland; (E.M.); (E.M.); (N.M.); (D.N.)
| | - Ewa Mrówczyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wrocław, Poland; (E.M.); (E.M.); (N.M.); (D.N.)
| | - Natalia Malek
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wrocław, Poland; (E.M.); (E.M.); (N.M.); (D.N.)
| | - Alice Battistella
- Istituto Officina dei Materiali-National Research Council, I-34149 Trieste, Italy; (A.B.); (M.L.)
| | - Marco Lazzarino
- Istituto Officina dei Materiali-National Research Council, I-34149 Trieste, Italy; (A.B.); (M.L.)
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wrocław, Poland; (E.M.); (E.M.); (N.M.); (D.N.)
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wrocław, Poland; (E.M.); (E.M.); (N.M.); (D.N.)
- Correspondence: or (A.M.); (A.J.M.); Tel.: +48-71-375-6206 (A.J.M.)
| |
Collapse
|
15
|
Cancer type-specific alterations in actin genes: Worth a closer look? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 360:133-184. [PMID: 33962749 DOI: 10.1016/bs.ircmb.2021.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Actins form a strongly conserved family of proteins that are central to the functioning of the actin cytoskeleton partaking in natural processes such as cell division, adhesion, contraction and migration. These processes, however, also occur during the various phases of cancer progression. Yet, surprisingly, alterations in the six human actin genes in cancer studies have received little attention and the focus was mostly on deregulated expression levels of actins and even more so of actin-binding or regulatory proteins. Starting from the early mutation work in the 1980s, we propose based on reviewing literature and data from patient cancer genomes that alterations in actin genes are different in distinct cancer subtypes, suggesting some specificity. These actin gene alterations include (missense) mutations, gene fusions and copy number alterations (deletions and amplifications) and we illustrate their occurrence for a limited number of examples including actin mutations in lymphoid cancers and nonmelanoma skin cancer and actin gene copy number alterations for breast, prostate and liver cancers. A challenge in the future will be to further sort out the specificity per actin gene, alteration type and cancer subtype. Even more challenging is (experimentally) distinguishing between cause and consequence: which alterations are passengers and which are involved in tumor progression of particular cancer subtypes?
Collapse
|
16
|
Malek N, Michrowska A, Mazurkiewicz E, Mrówczyńska E, Mackiewicz P, Mazur AJ. The origin of the expressed retrotransposed gene ACTBL2 and its influence on human melanoma cells' motility and focal adhesion formation. Sci Rep 2021; 11:3329. [PMID: 33558623 PMCID: PMC7870945 DOI: 10.1038/s41598-021-82074-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
We have recently found that β-actin-like protein 2 (actbl2) forms complexes with gelsolin in human melanoma cells and can polymerize. Phylogenetic and bioinformatic analyses showed that actbl2 has a common origin with two non-muscle actins, which share a separate history from the muscle actins. The actin groups' divergence started at the beginning of vertebrate evolution, and actbl2 actins are characterized by the largest number of non-conserved amino acid substitutions of all actins. We also discovered that ACTBL2 is expressed at a very low level in several melanoma cell lines, but a small subset of cells exhibited a high ACTBL2 expression. We found that clones with knocked-out ACTBL2 (CR-ACTBL2) or overexpressing actbl2 (OE-ACTBL2) differ from control cells in the invasion, focal adhesion formation, and actin polymerization ratio, as well as in the formation of lamellipodia and stress fibers. Thus, we postulate that actbl2 is the seventh actin isoform and is essential for cell motility.
Collapse
Affiliation(s)
- Natalia Malek
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Michrowska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Ewa Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Ewa Mrówczyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
17
|
Mazurkiewicz E, Mrówczyńska E, Simiczyjew A, Nowak D, Mazur AJ. A Fluorescent Gelatin Degradation Assay to Study Melanoma Breakdown of Extracellular Matrix. Methods Mol Biol 2021; 2265:47-63. [PMID: 33704704 DOI: 10.1007/978-1-0716-1205-7_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In order to protrude within a dense tissue, tumor cells have to develop the ability to digest the extracellular matrix (ECM). Melanoma cells, similarly to other types of tumor cells, form invadopodia, membranous invaginations rich in filamentous actin and several other proteins including matrix metalloproteinases (MMPs). MMPs degrade ECM structural proteins such as collagens, fibronectin, or laminin. Here we describe an assay that allows the detection of gelatinase activity exhibited by tumor cells under 2D conditions and methods to present obtained data in both a quantitative and a qualitative manner.
Collapse
Affiliation(s)
- Ewa Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland
| | - Ewa Mrówczyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland
| | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland.
| |
Collapse
|
18
|
Vanslembrouck B, Ampe C, Hengel J. Time for rethinking the different β‐actin transgenic mouse models? Cytoskeleton (Hoboken) 2020; 77:527-543. [DOI: 10.1002/cm.21647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Bieke Vanslembrouck
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences Ghent University Ghent Belgium
| | - Christophe Ampe
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences Ghent University Ghent Belgium
| | - Jolanda Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences Ghent University Ghent Belgium
| |
Collapse
|
19
|
Lechuga S, Naydenov NG, Feygin A, Cruise M, Ervasti JM, Ivanov AI. Loss of β-Cytoplasmic Actin in the Intestinal Epithelium Increases Gut Barrier Permeability in vivo and Exaggerates the Severity of Experimental Colitis. Front Cell Dev Biol 2020; 8:588836. [PMID: 33195251 PMCID: PMC7644907 DOI: 10.3389/fcell.2020.588836] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
Intestinal epithelial barrier is critical for the maintenance of normal gut homeostasis and disruption of this barrier may trigger or exaggerate mucosal inflammation. The actin cytoskeleton is a key regulator of barrier structure and function, controlling the assembly and permeability of epithelial adherens and tight junctions. Epithelial cells express two actin isoforms: a β-cytoplasmic actin and γ-cytoplasmic actin. Our previous in vitro studies demonstrated that these actin isoforms play distinctive roles in establishing the intestinal epithelial barrier, by controlling the organization of different junctional complexes. It remains unknown, whether β-actin and γ-actin have unique or redundant functions in regulating the gut barrier in vivo. To address this question, we selectively knocked out β-actin expression in mouse intestinal epithelium. Mice with intestinal epithelial knockout of β-actin do not display gastrointestinal abnormalities or gross alterations of colonic mucosal architecture. This could be due to compensatory upregulation of γ-actin expression. Despite such compensation, β-actin knockout mice demonstrate increased intestinal permeability. Furthermore, these animals show more severe clinical symptoms during dextran sodium sulfate induced colitis, compared to control littermates. Such exaggerated colitis is associated with the higher expression of inflammatory cytokines, increased macrophage infiltration in the gut, and accelerated mucosal cell death. Consistently, intestinal organoids generated from β-actin knockout mice are more sensitive to tumor necrosis factor induced cell death, ex vivo. Overall, our data suggests that β-actin functions as an essential regulator of gut barrier integrity in vivo, and plays a tissue protective role during mucosal injury and inflammation.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Nayden G Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Alex Feygin
- School of Nursing, Virginia Commonwealth University School of Nursing, Richmond, VA, United States
| | - Michael Cruise
- Department of Pathology, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - James M Ervasti
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Andrei I Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|