1
|
Liu B, Wang K, Li Q, Xiao Z, Chen Z, Zhang Y, Wu Y, Xu Y, Wu Y, Liu Z. Engineered VNP20009 expressing IL-15&15Rα augments anti-tumor immunity for bladder cancer treatment. Biomaterials 2025; 315:122951. [PMID: 39531748 DOI: 10.1016/j.biomaterials.2024.122951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Surgical resection combined with intravesical instillation of chemotherapeutics or Bacillus Calmette-Guerin (BCG) to remove residual cancer cells is the gold standard for the clinical treatment of patients with bladder cancer. In a recent clinical trial, a new super-agonist complex of IL-15 - N803, has shown promising results when used in combination with BCG to treat patients with bladder cancer who do not respond to BCG. Herein, we used temperature-controlled pBV220 plasmid encoding Interleukin-15 and its receptor alpha subunit (IL-15&15Rα) to transform VNP20009, an attenuated salmonella typhimurium strain, obtaining engineered bacteria named 15&15Rα@VNP. After induction at 42 °C, 15&15Rα@VNP can secrete functional IL-15&15Rα stably. It was found that intravesical instillation of thermally activated 15&15Rα@VNP could inhibit the growth of bladder tumors if used alone. Moreover, the sequential intravesical instillation of epirubicin (EPI), a first-line bladder cancer drug, followed by thermally activated 15&15Rα@VNP, could achieve further improved therapeutic responses, without causing significant side effects. Therefore, this study shows that 15&15Rα@VNP can be effectively used in the treatment of bladder cancer and can be used as a complementary therapy to chemotherapy agents, promising for potential clinical translation in bladder cancer treatment.
Collapse
Affiliation(s)
- Bo Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kaiwei Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qiaofeng Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhisheng Xiao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zihao Chen
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215124, China
| | - Yuting Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuzhe Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuchun Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yumin Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China; Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078 Macau SAR, China.
| |
Collapse
|
2
|
Kamala K, Ganapathy D, Sivaperumal P. Advancements in Cancer Therapy: Mycoviruses and Their Oncolytic Potential. Cell Biochem Biophys 2024:10.1007/s12013-024-01608-y. [PMID: 39535660 DOI: 10.1007/s12013-024-01608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Recent advancements in cancer research focus on reducing treatment side effects while enhancing efficacy against medication resistance and tumor antigen detection. Genetic therapies utilizing microbes like bacteria, fungi, and viruses have garnered attention, with mycoviruses emerging as promising candidates. Particularly, the smallest fungal virus, Myco-phage, exhibits oncolytic properties by lysing cancer cells in the mouth, oral cavity, head, and neck without adverse effects. Genetically Modified Myco-phage (GmMP) adapts quickly to target cancer cells through cell membrane damage, inducing apoptosis and dendritic cell activation. Additionally, GmMP inhibits angiogenesis and modulates immune responses via CAR cells and immune checkpoints, potentially transforming cancer treatment paradigms with enhanced specificity and efficacy.
Collapse
Affiliation(s)
- Kannan Kamala
- Marine Microbial Research Lab, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
- Centre for Marine and Aquatic Research (CMAR), Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 602105, India
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Pitchiah Sivaperumal
- Centre for Marine and Aquatic Research (CMAR), Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 602105, India.
- Marine Biomedical Research Lab & Environmental Toxicology Unit, Cellular and Molecular Research Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
3
|
Zhang Z, Su M, Jiang P, Wang X, Tong X, Wu G. Unlocking Apoptotic Pathways: Overcoming Tumor Resistance in CAR-T-Cell Therapy. Cancer Med 2024; 13:e70283. [PMID: 39377542 PMCID: PMC11459502 DOI: 10.1002/cam4.70283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T-cell therapy has transformed cancer treatment, leading to remarkable clinical outcomes. However, resistance continues to be a major obstacle, significantly limiting its efficacy in numerous patients. OBJECTIVES This review critically examines the challenges associated with CAR-T-cell therapy, with a particular focus on the role of apoptotic pathways in overcoming resistance. METHODS We explore various strategies to sensitize tumor cells to CAR-T-cell-mediated apoptosis, including the use of combination therapies with BH3 mimetics, Mcl-1 inhibitors, IAP inhibitors, and HDAC inhibitors. These agents inhibit anti-apoptotic proteins and activate intrinsic mitochondrial pathways, enhancing the susceptibility of tumor cells to apoptosis. Moreover, targeting the extrinsic pathway can increase the expression of death receptors on tumor cells, further promoting their apoptosis. The review also discusses the development of novel CAR constructs that enhance anti-apoptotic protein expression, such as Bcl-2, which may counteract CAR-T cell exhaustion and improve antitumor efficacy. We assess the impact of the tumor microenvironment (TME) on CAR-T cell function and propose dual-targeting CAR-T cells to simultaneously address both myeloid-derived suppressor cells (MDSCs) and tumor cells. Furthermore, we explore the potential of combining agents like PPAR inhibitors to activate the cGAS-STING pathway, thereby improving CAR-T cell infiltration into the tumor. CONCLUSIONS This review highlights that enhancing tumor cell sensitivity to apoptosis and increasing CAR-T cell cytotoxicity through apoptotic pathways could significantly improve therapeutic outcomes. Targeting apoptotic proteins, particularly those involved in the intrinsic mitochondrial pathway, constitutes a novel approach to overcoming resistance. The insights presented herein lay a robust foundation for future research and clinical applications aimed at optimizing CAR-T cell therapies.
Collapse
Affiliation(s)
- Zhanna Zhang
- Department of HematologyDongyang Hospital Affiliated to WenZhou Medical UniversityJinhuaZhejiangChina
| | - Manqi Su
- Department of HematologyDongyang Hospital Affiliated to WenZhou Medical UniversityJinhuaZhejiangChina
| | - Panruo Jiang
- Department of HematologyDongyang Hospital Affiliated to WenZhou Medical UniversityJinhuaZhejiangChina
| | - Xiaoxia Wang
- Department of HematologyDongyang Hospital Affiliated to WenZhou Medical UniversityJinhuaZhejiangChina
| | - Xiangmin Tong
- Department of Central LaboratorySchool of Medicine, Affiliated Hangzhou First People's Hospital, WestLake UniversityZhejiangHangzhouChina
| | - Gongqiang Wu
- Department of HematologyDongyang Hospital Affiliated to WenZhou Medical UniversityJinhuaZhejiangChina
| |
Collapse
|
4
|
Mikhailova VA, Sokolov DI, Grebenkina PV, Bazhenov DO, Nikolaenkov IP, Kogan IY, Totolian AA. Apoptotic Receptors and CD107a Expression by NK Cells in an Interaction Model with Trophoblast Cells. Curr Issues Mol Biol 2024; 46:8945-8957. [PMID: 39194745 DOI: 10.3390/cimb46080528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Natural killer cells (NK cells) exert cytotoxicity towards target cells in several ways, including the expression of apoptosis-mediating ligands (TRAIL, FasL). In addition, NK cells themselves may be susceptible to apoptosis due to the expression of TRAIL receptors. These receptors include TRAIL-R1 (DR4), TRAIL-R2 (DR5), capable of inducing apoptosis, and TRAIL-R3 (DcR1), TRAIL-R4 (DcR2), the so-called "decoy receptors", which lack an intracellular domain initiating activation of caspases. Of particular interest is the interaction of uterine NK cells with cells of fetal origin, trophoblasts, which are potential targets for natural killer cells to carry out cytotoxicity. The aim of this work was to evaluate the expression of proapoptotic receptors and their ligands as well as CD107a expression by NK cells in a model of interaction with trophoblast cells. To evaluate NK cells, we used cells of the NK-92 line; cells of the JEG-3 line were used as target cells. The cytokines IL-1β, IL-15, IL-18, TNFα, IL-10, TGFβ and conditioned media (CM) of the first and third trimester chorionic villi explants were used as inducers. We established that cytokines changed the expression of apoptotic receptors by NK cells: in the presence of TNFα, the amount and intensity of Fas expression increased, while in the presence of TGFβ, the amount and intensity of expression of the DR5 receptor decreased. Soluble chorionic villi factors alter the expression of TRAIL and FasL by NK-92 cells, which can reflect the suppression of the TRAIL-dependent mechanism of apoptosis in the first trimester and stimulating the Fas-dependent mechanism in the third trimester. In the presence of trophoblast cells, the expression of TRAIL and DcR1 by NK cells was reduced compared to intact cells, indicating an inhibitory effect of trophoblast cells on NK cell cytotoxicity. In the presence of chorionic villi CM and trophoblast cells, a reduced number of NK-92 cells expressing DR4 and DR5 was found. Therefore, soluble factors secreted by chorionic villi cells regulate the resistance of NK cells to death by binding TRAIL, likely maintaining their activity at a certain level in case of contact with trophoblast cells.
Collapse
Affiliation(s)
- Valentina A Mikhailova
- FSBSI "The Research Institute of Obstetrics Gynecology and Reproductology Named after D.O.Ott", 199034 Saint-Petersburg, Russia
| | - Dmitry I Sokolov
- FSBSI "The Research Institute of Obstetrics Gynecology and Reproductology Named after D.O.Ott", 199034 Saint-Petersburg, Russia
- Saint-Petersburg Pasteur Institute, 197101 Saint-Petersburg, Russia
| | - Polina V Grebenkina
- FSBSI "The Research Institute of Obstetrics Gynecology and Reproductology Named after D.O.Ott", 199034 Saint-Petersburg, Russia
- Saint-Petersburg Pasteur Institute, 197101 Saint-Petersburg, Russia
| | - Dmitry O Bazhenov
- FSBSI "The Research Institute of Obstetrics Gynecology and Reproductology Named after D.O.Ott", 199034 Saint-Petersburg, Russia
| | - Igor P Nikolaenkov
- FSBSI "The Research Institute of Obstetrics Gynecology and Reproductology Named after D.O.Ott", 199034 Saint-Petersburg, Russia
| | - Igor Yu Kogan
- FSBSI "The Research Institute of Obstetrics Gynecology and Reproductology Named after D.O.Ott", 199034 Saint-Petersburg, Russia
| | - Areg A Totolian
- Saint-Petersburg Pasteur Institute, 197101 Saint-Petersburg, Russia
| |
Collapse
|
5
|
Bakhtiyaridovvombaygi M, Yazdanparast S, Kheyrandish S, Safdari SM, Amiri Samani F, Sohani M, Jaafarian AS, Damirchiloo F, Izadpanah A, Parkhideh S, Mikanik F, Roshandel E, Hajifathali A, Gharehbaghian A. Harnessing natural killer cells for refractory/relapsed non-Hodgkin lymphoma: biological roles, clinical trials, and future prospective. Biomark Res 2024; 12:66. [PMID: 39020411 PMCID: PMC11253502 DOI: 10.1186/s40364-024-00610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/28/2024] [Indexed: 07/19/2024] Open
Abstract
Non-Hodgkin lymphomas (NHLs) are heterogeneous and are among the most common hematological malignancies worldwide. Despite the advances in the treatment of patients with NHLs, relapse or resistance to treatment is anticipated in several patients. Therefore, novel therapeutic approaches are needed. Recently, natural killer (NK) cell-based immunotherapy alone or in combination with monoclonal antibodies, chimeric antigen receptors, or bispecific killer engagers have been applied in many investigations for NHL treatment. The functional defects of NK cells and the ability of cancerous cells to escape NK cell-mediated cytotoxicity within the tumor microenvironment of NHLs, as well as the beneficial results from previous studies in the context of NK cell-based immunotherapy in NHLs, direct our attention to this therapeutic strategy. This review aims to summarize clinical studies focusing on the applications of NK cells in the immunotherapy of patients with NHL.
Collapse
Affiliation(s)
- Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Yazdanparast
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setare Kheyrandish
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mehrab Safdari
- Departments of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Amiri Samani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Mahsa Sohani
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akram Sadat Jaafarian
- Departments of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Damirchiloo
- Departments of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Izadpanah
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Parkhideh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Laboratory Hematology and Blood Bank Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ahmad Gharehbaghian
- Laboratory Hematology and Blood Bank Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Wang D, Dou L, Sui L, Xue Y, Xu S. Natural killer cells in cancer immunotherapy. MedComm (Beijing) 2024; 5:e626. [PMID: 38882209 PMCID: PMC11179524 DOI: 10.1002/mco2.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands-the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.
Collapse
Affiliation(s)
- DanRu Wang
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LingYun Dou
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LiHao Sui
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Yiquan Xue
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
- Shanghai Institute of Stem Cell Research and Clinical Translation Dongfang Hospital Shanghai China
| |
Collapse
|
7
|
Zhu T, Jin S, Tong D, Liu X, Liu Y, Zheng J. Enhancing the Anti-Tumor Efficacy of NK Cells on Canine Mammary Tumors through Resveratrol Activation. Animals (Basel) 2024; 14:1636. [PMID: 38891683 PMCID: PMC11171074 DOI: 10.3390/ani14111636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
In order to explore the therapeutic effect of Resveratrol (Res)-activated Natural Killer (NK) cells on canine mammary tumors, this study employed a range of assays, including wound healing, colony formation, Transwell, flow cytometry, and Western blot experiments, to investigate the impact of Res-pretreated NK cells on canine mammary tumor cells in vitro. Additionally, a tumor-bearing mouse model was utilized to further analyze the therapeutic effects of Res-pretreated NK cells in vivo. The results showed that Res enhances the capacity of NK cells to induce apoptosis, pyroptosis, and ferroptosis in canine breast tumor cells, while also augmenting their influence on the migration, invasion, and epithelial-mesenchymal transition of these cells. Furthermore, pretreatment of NK cells with Res significantly amplified their inhibitory effect on breast tumor growth in vivo and promoted tumor tissue apoptosis. Additionally, Res enhanced the recruitment of NK cells to other immune cells in the body. In summary, Res has been shown to enhance the anti-breast-tumor effect of NK cells both in vitro and in vivo, offering a new avenue for optimizing immunotherapy for canine breast tumors.
Collapse
Affiliation(s)
- Tingting Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (T.Z.); (S.J.); (D.T.); (X.L.)
| | - Shengzi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (T.Z.); (S.J.); (D.T.); (X.L.)
| | - Danning Tong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (T.Z.); (S.J.); (D.T.); (X.L.)
| | - Xingyao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (T.Z.); (S.J.); (D.T.); (X.L.)
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (T.Z.); (S.J.); (D.T.); (X.L.)
| | - Jiasan Zheng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| |
Collapse
|
8
|
Yue Y, Zi M, Feng J, Wang W, Ren Z, Wu C, Yang Z. Efficacy of nature killer cell combination chemotherapy for post-radical gastric cancer metastases: Case report. SAGE Open Med Case Rep 2024; 12:2050313X241254743. [PMID: 38803362 PMCID: PMC11129568 DOI: 10.1177/2050313x241254743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Nature killer cell therapy has shown strong efficacy in the field of oncology in recent years and has been applied to patients with metastases with the aim of improving the prognosis of advanced gastric cancer. A 59-year-old male with gastric adenocarcinoma with pancreatic metastasis (T4N0M1) who underwent radical surgery for gastric cancer with tumor metastasis was treated with oxaliplatin and tegafur combined with cellular reinfusion in stages. Computed tomograpy scan and serum tumor markers were monitored continuously after the treatment course. After five courses of combined treatment, the patient was in disease control with no significant side effects. At the last follow-up, the alpha fetoprotein had returned to its normal value with a poor display of low-density shadows in the body of the pancreas. Pancreatic cancer is insidious in origin and has a high mortality rate. The report provides clinical evidence for cell therapy of pancreatic metastatic cancer with improved quality of life.
Collapse
Affiliation(s)
- Yongting Yue
- North China University of Science and Technology, Tangshan, China
| | - Mengmeng Zi
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Jianing Feng
- North China University of Science and Technology, Tangshan, China
| | - Wenbang Wang
- North China University of Science and Technology, Tangshan, China
| | - Zhaoqi Ren
- Department of Transfusion Medicine, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Chuntao Wu
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Zhaoyong Yang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Sukocheva OA, Neganova ME, Aleksandrova Y, Burcher JT, Chugunova E, Fan R, Tse E, Sethi G, Bishayee A, Liu J. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal 2024; 22:251. [PMID: 38698424 PMCID: PMC11064425 DOI: 10.1186/s12964-024-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/21/2024] [Indexed: 05/05/2024] Open
Abstract
Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, including tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflammatory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveillance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecular mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolipids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be thoroughly assessed in future studies.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Ruitai Fan
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Junqi Liu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
10
|
Yang F, Hua Q, Zhu X, Xu P. Surgical stress induced tumor immune suppressive environment. Carcinogenesis 2024; 45:185-198. [PMID: 38366618 DOI: 10.1093/carcin/bgae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024] Open
Abstract
Despite significant advances in cancer treatment over the decades, surgical resection remains a prominent management approach for solid neoplasms. Unfortunately, accumulating evidence suggests that surgical stress caused by tumor resection may potentially trigger postoperative metastatic niche formation. Surgical stress not only activates the sympathetic-adrenomedullary axis and hypothalamic-pituitary-adrenocortical axis but also induces hypoxia and hypercoagulable state. These adverse factors can negatively impact the immune system by downregulating immune effector cells and upregulating immune suppressor cells, which contribute to the colonization and progression of postoperative tumor metastatic niche. This review summarizes the effects of surgical stress on four types of immune effector cells (neutrophils, macrophages, natural killer cells and cytotoxic T lymphocytes) and two types of immunosuppressive cells (regulatory T cells and myeloid-derived suppressor cells), and discusses the immune mechanisms of postoperative tumor relapse and progression. Additionally, relevant therapeutic strategies to minimize the pro-tumorigenic effects of surgical stress are elucidated.
Collapse
Affiliation(s)
- Fan Yang
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Research Center for Neuro-Oncology Interaction, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qing Hua
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Pingbo Xu
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Research Center for Neuro-Oncology Interaction, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
11
|
de Moraes FCA, Sano VKT, Lôbo ADOM, Kelly FA, Morbach V, Pasqualotto E, Burbano RMR. Efficacy and Safety of Anti-CD38 Monoclonal Antibodies in Patients with Relapsed or Refractory Multiple Myeloma: A Meta-Analysis of Randomized Clinical Trials. J Pers Med 2024; 14:360. [PMID: 38672988 PMCID: PMC11051236 DOI: 10.3390/jpm14040360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The benefit of associating anti-CD38 monoclonal antibodies to proteasome inhibitor (PI)/immunomodulatory agent (IA) and dexamethasone in the treatment of patients with relapsed or refractory multiple myeloma (MM) remains unclear. PubMed, Embase, and Cochrane Library databases were searched for randomized controlled trials that investigated the addition of anti-CD38 monoclonal antibodies to a therapy composed of PI/IA and dexamethasone versus PI/IA and dexamethasone alone for treating relapsed or refractory MM. Hazard ratios (HRs) or risk ratios (RRs) were computed for binary endpoints, with 95% confidence intervals (CIs). Six studies comprising 2191 patients were included. Anti-CD38 monoclonal antibody significantly improved progression-free survival (HR 0.52; 95% CI 0.43-0.61; p < 0.001) and overall survival (HR 0.72; 95% CI 0.63-0.83; p < 0.001). There was a significant increase in hematological adverse events, such as neutropenia (RR 1.41; 95% CI 1.26-1.58; p < 0.01) and thrombocytopenia (RR 1.14; 95% CI 1.02-1.27; p = 0.02), in the group treated with anti-CD38 monoclonal antibody. Also, there was a significant increase in non-hematological adverse events, such as dyspnea (RR 1.72; 95% CI 1.38-2.13; p < 0.01) and pneumonia (RR 1.34; 95% CI 1.13-1.59; p < 0.01), in the group treated with anti-CD38 monoclonal antibody. In conclusion, the incorporation of an anti-CD38 monoclonal antibody demonstrated a promising prospect for reshaping the established MM treatment paradigms.
Collapse
Affiliation(s)
| | | | | | | | - Victória Morbach
- Department of Medicine, Feevale University, Novo Hamburgo 93510-235, Brazil;
| | - Eric Pasqualotto
- Department of Medicine, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil;
| | | |
Collapse
|
12
|
Reggiani F, Talarico G, Gobbi G, Sauta E, Torricelli F, Manicardi V, Zanetti E, Orecchioni S, Falvo P, Piana S, Lococo F, Paci M, Bertolini F, Ciarrocchi A, Sancisi V. BET inhibitors drive Natural Killer activation in non-small cell lung cancer via BRD4 and SMAD3. Nat Commun 2024; 15:2567. [PMID: 38519469 PMCID: PMC10960013 DOI: 10.1038/s41467-024-46778-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
Non-small-cell lung carcinoma (NSCLC) is the most common lung cancer and one of the pioneer tumors in which immunotherapy has radically changed patients' outcomes. However, several issues are emerging and their implementation is required to optimize immunotherapy-based protocols. In this work, we investigate the ability of the Bromodomain and Extra-Terminal protein inhibitors (BETi) to stimulate a proficient anti-tumor immune response toward NSCLC. By using in vitro, ex-vivo, and in vivo models, we demonstrate that these epigenetic drugs specifically enhance Natural Killer (NK) cell cytotoxicity. BETi down-regulate a large set of NK inhibitory receptors, including several immune checkpoints (ICs), that are direct targets of the transcriptional cooperation between the BET protein BRD4 and the transcription factor SMAD3. Overall, BETi orchestrate an epigenetic reprogramming that leads to increased recognition of tumor cells and the killing ability of NK cells. Our results unveil the opportunity to exploit and repurpose these drugs in combination with immunotherapy.
Collapse
Affiliation(s)
- Francesca Reggiani
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Giovanna Talarico
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Giulia Gobbi
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elisabetta Sauta
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Federica Torricelli
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Veronica Manicardi
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Biobank, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Paolo Falvo
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Simonetta Piana
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Biobank, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Filippo Lococo
- Università Cattolica del Sacro Cuore, Rome, Italy
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Massimiliano Paci
- Thoracic Surgery Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Alessia Ciarrocchi
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Valentina Sancisi
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
13
|
Liang T, Dong H, Wang Z, Lu L, Song X, Qi J, Zhang Y, Wang J, Du G. Discovery of novel urea derivatives as ferroptosis and autophagy inducer for human colon cancer treatment. Eur J Med Chem 2024; 268:116277. [PMID: 38422700 DOI: 10.1016/j.ejmech.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
A series of novel urea derivatives were designed, synthesized and evaluated for their inhibitory activities against HT-29 cells, and structure-activity relationships (SAR) were summarized. Compound 10p stood out from these derivatives, exhibiting the most potent antiproliferative activity. Further biological studies demonstrated that 10p arrested cell cycle at G2/M phase via regulating cell cycle-related proteins CDK1 and Cyclin B1. The underlying molecular mechanisms demonstrated that 10p induced cell death through ferroptosis and autophagy, but not apoptosis. Moreover, 10p-induced ferroptosis and autophagy were both related with accumulation of ROS, but they were independent of each other. Our findings substantiated that 10p combines ferroptosis induction and autophagy trigger in single molecule, making it a potential candidate for colon cancer treatment and is worth further development.
Collapse
Affiliation(s)
- Tingting Liang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China
| | - Haiyang Dong
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China
| | - Zhuangzhuang Wang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China
| | - Lu Lu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China
| | - Xueting Song
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China
| | - Jianguo Qi
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China
| | - Yahong Zhang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China.
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China; Huaihe Hospital of Henan University, Kaifeng, 475004, Henan, China.
| | - Guanhua Du
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China; School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
14
|
Dai C, Wang D, Tao Q, Li Z, Zhai P, Wang Y, Hou M, Cheng S, Qi W, Zheng L, Yao H. CD8 + T and NK cells characterized by upregulation of NPEPPS and ABHD17A are associated with the co-occurrence of type 2 diabetes and coronary artery disease. Front Immunol 2024; 15:1267963. [PMID: 38464509 PMCID: PMC10921359 DOI: 10.3389/fimmu.2024.1267963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/22/2024] [Indexed: 03/12/2024] Open
Abstract
Background Coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM) are closely related. The function of immunocytes in the pathogenesis of CAD and T2DM has not been extensively studied. The quantitative bioinformatics analysis of the public RNA sequencing database was applied to study the key genes that mediate both CAD and T2DM. The biological characteristics of associated key genes and mechanism of CD8+ T and NK cells in CAD and T2DM are our research focus. Methods With expression profiles of GSE66360 and GSE78721 from the Gene Expression Omnibus (GEO) database, we identified core modules associated with gene co-expression relationships and up-regulated genes in CAD and T2DM using Weighted Gene Co-expression Network Analysis (WGCNA) and the 'limma' software package. The enriched pathways of the candidate hub genes were then explored using GO, KEGG and GSEA in conjunction with the immune gene set (from the MSigDB database). A diagnostic model was constructed using logistic regression analysis composed of candidate hub genes in CAD and T2DM. Univariate Cox regression analysis revealed hazard ratios (HRs), 95% confidence intervals (CIs), and p-values for candidate hub genes in diagnostic model, while CIBERSORT and immune infiltration were used to assess the immune microenvironment. Finally, monocytes from peripheral blood samples and their immune cell ratios were analyzed by flow cytometry to validate our findings. Results Sixteen candidate hub genes were identified as being correlated with immune infiltration. Univariate Cox regression analysis revealed that NPEPPS and ABHD17A were highly correlated with the diagnosis of CAD and T2DM. The results indicate that CD8+ T cells (p = 0.04) and NKbright cells (p = 3.7e-3) are significantly higher in healthy controls than in individuals with CAD or CAD combined with T2DM. The bioinformatics results on immune infiltration were well validated by flow cytometry. Conclusions A series of bioinformatics studies have shown ABHD17A and NPEPPS as key genes for the co-occurrence of CAD and T2DM. Our study highlights the important effect of CD8+ T and NK cells in the pathogenesis of both diseases, indicating that they may serve as viable targets for diagnosis and therapeutic intervention.
Collapse
Affiliation(s)
- Chenyu Dai
- Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Damu Wang
- Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Qianqian Tao
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
| | - Ziyi Li
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
| | - Peng Zhai
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Yingying Wang
- Anhui Provincial Children’s Hospital, Children’s Hospital of Fudan University, Hefei, Anhui, China
| | - Mei Hou
- Cancer Research Center, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Simin Cheng
- Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wei Qi
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
| | - Longyi Zheng
- Department of Endocrinology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Huaifang Yao
- Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
15
|
Saadh MJ, Rasulova I, Khalil M, Farahim F, Sârbu I, Ciongradi CI, Omar TM, Alhili A, Jawad MJ, Hani T, Ali T, Lakshmaiya N. Natural killer cell-mediated immune surveillance in cancer: Role of tumor microenvironment. Pathol Res Pract 2024; 254:155120. [PMID: 38280274 DOI: 10.1016/j.prp.2024.155120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/29/2024]
Abstract
In the immunological surveillance against cancer, natural killer (NK) cells are essential effectors that help eradicate altered cells. The complex interactions that occur between NK cells and the tumor microenvironment (TME) are thoroughly examined in this review. The review examines how cytokine stimulation affects NK cell activation, focusing on the dynamic modulation of NK cell function within the TME. It looks at NK cell-related biomarkers such as PD-1/PD-L1, methylation HOXA9 (Homeobox A9), Stroma AReactive Invasion Front Areas (SARIFA), and NKG2A/HLA-E, providing critical information about prognosis and treatment outcomes. The changing landscape of immunotherapies-including checkpoint inhibitors, CAR-NK cells, and cytokine-based interventions-is examined in the context of enhancing NK cell activity. The review highlights the potential pathways for precision medicine going forward, focusing on customized immunotherapies based on unique biomarker profiles and investigating combination medicines to produce more robust anti-tumor responses.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | - Irodakhon Rasulova
- MD, PhD, Senior Researcher, School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent, 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur street 18, Samarkand, Uzbekistan
| | | | - Farha Farahim
- Department of Nursing, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Carmen Iulia Ciongradi
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Ahmed Alhili
- Medical Technical College, Al-Farahidi University, Iraq
| | | | - Thamer Hani
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | - Talat Ali
- Department of Basic Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| |
Collapse
|
16
|
Shin GC, Lee HM, Kim N, Seo SU, Kim KP, Kim KH. PRKCSH contributes to TNFSF resistance by extending IGF1R half-life and activation in lung cancer. Exp Mol Med 2024; 56:192-209. [PMID: 38200153 PMCID: PMC10834952 DOI: 10.1038/s12276-023-01147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 01/12/2024] Open
Abstract
Tumor necrosis factor superfamily (TNFSF) resistance contributes to the development and progression of tumors and resistance to various cancer therapies. Tumor-intrinsic alterations involved in the adaptation to the TNFSF response remain largely unknown. Here, we demonstrate that protein kinase C substrate 80K-H (PRKCSH) abundance in lung cancers boosts oncogenic IGF1R activation, leading to TNFSF resistance. PRKCSH abundance is correlated with IGF1R upregulation in lung cancer tissues. Specifically, PRKCSH interacts with IGF1R and extends its half-life. The PRKCSH-IGF1R axis in tumor cells impairs caspase-8 activation, increases Mcl-1 expression, and inhibits caspase-9, leading to an imbalance between cell death and survival. PRKCSH deficiency augmented the antitumor effects of natural killer (NK) cells, representative TNFSF effector cells, in a tumor xenograft IL-2Rg-deficient NOD/SCID (NIG) mouse model. Our data suggest that PRKCSH plays a critical role in TNFSF resistance and may be a potential target to improve the efficacy of NK cell-based cancer therapy.
Collapse
Affiliation(s)
- Gu-Choul Shin
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Hyeong Min Lee
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, 446-701, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Nayeon Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, 446-701, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Kyun-Hwan Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
17
|
赵 祥, 刘 佳, 黄 会, 陆 智, 白 自, 李 霞, 祁 荆. [Interferon-α mediating the functional damage of CD56 dimCD57 +natural killer cells in peripheral blood of systemic lupus erythematosuss]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2023; 55:975-981. [PMID: 38101777 PMCID: PMC10723978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 12/17/2023]
Abstract
OBJECTIVE To investigate the regulatory effect of interferon-α (IFN-α) on the apoptosis and killing function of CD56dimCD57+ natural killer (NK) cells in systemic lupus erythematosus (SLE) patients, and to explore the specific mechanism. METHODS A total of sixty-four newly treated SLE patients and sixteen healthy controls (HC) enrolled in the Second Hospital of Dalian Medical University were selected as the research subjects. And the gene expression levels of molecules related to NK cell-killing function were detected by real-time quantitative polymerase chain reaction. CD56dimCD57+ NK cells were co-cultured with the K562 cells, and the apoptotic K562 cells were labeled with Annexin-Ⅴ and 7-amino-actinomycin D. Peripheral blood mononuclear cells were treated with 20, 40, and 80 μmol/L hydrogen peroxide (H2O2), and treated without H2O2 as control, the expression level of perforin (PRF) was detected by flow cytometry. The concentration of IFN-α in serum was determined by enzyme linked immunosorbent assay. The expression levels of IFN-α receptors (IFNAR) on the surface of CD56dimCD57+ NK cells were detected by flow cytometry, and were represented by mean fluorescence intensity (MFI). CD56dimCD57+ NK cells were treated with 1 000 U/mL IFN-α for 24, 48 and 72 h, and no IFN-α treatment was used as the control, the apoptosis and the expression levels of mitochondrial reactive oxygen species (mtROS) were measured by flow cytometry and represented by MFI. RESULTS Compared with HC(n=3), the expression levels of PRF1 gene in peripheral blood NK cells of the SLE patients (n=3) were decreased (1.24±0.41 vs. 0.57±0.12, P=0.05). Compared with HC(n=5), the ability of peripheral blood CD56dimCD57+ NK cells in the SLE patients (n=5) to kill K562 cells was significantly decreased (58.61%±10.60% vs. 36.74%±6.27%, P < 0.01). Compared with the control (n=5, 97.51%±1.67%), different concentrations of H2O2 treatment significantly down-regulated the PRF expression levels of CD56dimCD57+ NK cells in a dose-dependent manner, the 20 μmol/L H2O2 PRF was 83.23%±8.48% (n=5, P < 0.05), the 40 μmol/L H2O2 PRF was 79.53%±8.56% (n=5, P < 0.01), the 80 μmol/L H2O2 PRF was 76.67%±7.16% (n=5, P < 0.01). Compared to HC (n=16), the serum IFN-α levels were significantly increased in the SLE patients (n=45) with moderate to high systemic lupus erythematosus disease activity index (SLEDAI≥10) [(55.07±50.36) ng/L vs. (328.2±276.3) ng/L, P < 0.001]. Meanwhile, compared with HC (n=6), IFNAR1 expression in peripheral blood CD56dimCD57+ NK cells of the SLE patients (n=6) were increased (MFI: 292.7±91.9 vs. 483.2±160.3, P < 0.05), and compared with HC (n=6), IFNAR2 expression in peripheral blood CD56dimCD57+ NK cells of the SLE patients (n=7) were increased (MFI: 643.5±113.7 vs. 919.0±246.9, P < 0.05). Compared with control (n=6), the stimulation of IFN-α (n=6) significantly promoted the apoptosis of CD56dimCD57+ NK cells (20.48%±7.01% vs. 37.82%±5.84%, P < 0.05). In addition, compared with the control (n=4, MFI: 1 049±174.5), stimulation of CD56dimCD57+ NK cells with IFN-α at different times significantly promoted the production of mtROS in a time-dependent manner, 48 h MFI was 3 437±1 472 (n=4, P < 0.05), 72 h MFI was 6 495±1 089 (n=4, P < 0.000 1), but there was no significant difference at 24 h of stimulation. CONCLUSION High serum IFN-α level in SLE patients may induce apoptosis by promoting mtROS production and inhibit perforin expression, which can down-regulate CD56dimCD57+ NK killing function.
Collapse
Affiliation(s)
- 祥格 赵
- />大连医科大学基础医学院免疫学教研室, 辽宁大连 116044Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, China
| | - 佳庆 刘
- />大连医科大学基础医学院免疫学教研室, 辽宁大连 116044Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, China
| | - 会娜 黄
- />大连医科大学基础医学院免疫学教研室, 辽宁大连 116044Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, China
| | - 智敏 陆
- />大连医科大学基础医学院免疫学教研室, 辽宁大连 116044Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, China
| | - 自然 白
- />大连医科大学基础医学院免疫学教研室, 辽宁大连 116044Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, China
| | - 霞 李
- />大连医科大学基础医学院免疫学教研室, 辽宁大连 116044Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, China
| | - 荆荆 祁
- />大连医科大学基础医学院免疫学教研室, 辽宁大连 116044Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, China
| |
Collapse
|
18
|
Steitz AM, Schröder C, Knuth I, Keber CU, Sommerfeld L, Finkernagel F, Jansen JM, Wagner U, Müller-Brüsselbach S, Worzfeld T, Huber M, Beutgen VM, Graumann J, Pogge von Strandmann E, Müller R, Reinartz S. TRAIL-dependent apoptosis of peritoneal mesothelial cells by NK cells promotes ovarian cancer invasion. iScience 2023; 26:108401. [PMID: 38047087 PMCID: PMC10692662 DOI: 10.1016/j.isci.2023.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
A crucial requirement for metastasis formation in ovarian high-grade serous carcinoma (HGSC) is the disruption of the protective peritoneal mesothelium. Using co-culture systems of primary human cells, we discovered that tumor-associated NK cells induce TRAIL-dependent apoptosis in mesothelial cells via death receptors DR4 and DR5 upon encounter with activated T cells. Upregulation of TRAIL expression in NK cells concomitant with enhanced cytotoxicity toward mesothelial cells was driven predominantly by T-cell-derived TNFα, as shown by affinity proteomics-based analysis of the T cell secretome in conjunction with functional studies. Consistent with these findings, we detected apoptotic mesothelial cells in the peritoneal fluid of HGSC patients. In contrast to mesothelial cells, HGSC cells express negligible levels of both DR4 and DR5 and are TRAIL resistant, indicating cell-type-selective killing by NK cells. Our data point to a cooperative action of T and NK in breaching the mesothelial barrier in HGSC patients.
Collapse
Affiliation(s)
- Anna Mary Steitz
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Clarissa Schröder
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Isabel Knuth
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Corinna U. Keber
- Institute for Pathology, Philipps University, 35043 Marburg, Germany
| | - Leah Sommerfeld
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Florian Finkernagel
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Julia M. Jansen
- Clinic for Gynecology, Gynecological Oncology, Gynecological Endocrinology, University Hospital (UKGM), 35043 Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology, Gynecological Endocrinology, University Hospital (UKGM), 35043 Marburg, Germany
| | - Sabine Müller-Brüsselbach
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), Philipps University, 35043 Marburg, Germany
| | - Magdalena Huber
- Institute of Systems Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Vanessa M. Beutgen
- Institute of Translational Proteomics, Philipps University, 35043 Marburg, Germany
- Core Facility Translational Proteomics, Philipps University, 35043 Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics, Philipps University, 35043 Marburg, Germany
- Core Facility Translational Proteomics, Philipps University, 35043 Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Clinic for Hematology, Oncology and Immunology, Philipps University, 35043 Marburg, Germany
| | - Rolf Müller
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Silke Reinartz
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| |
Collapse
|
19
|
Hossenipour Khodaei S, Sabetnam S, Nozad Charoudeh H, Dizaji Asl K, Rafat A, Mazloumi Z. The effect of mitochondria inhibition on natural killer cells cytotoxicity in triple-negative breast cancer cells. Eur J Pharmacol 2023; 960:176106. [PMID: 37839666 DOI: 10.1016/j.ejphar.2023.176106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
Triple-Negative Breast Cancer (TNBC), the most common invasive breast cancer, depicts cancer poor response to conventional therapies. The clinical management of TNBC is a challenging issue. Natural killer (NK) cell therapy in the field of cancer treatment is rapidly growing however, regarding the immunogenicity of breast cancer cells, this type of therapy has shown limited efficacy. Recently, targeting tumor biomarkers has revolutionized the field of cancer therapy. Mitochondria affects apoptosis and innate immunity. Therefore, in this study, mitochondria were inhibited with Tigecycline in stimulating the cytotoxicity of NK cells against TNBC cell lines. MDA-MB-468 and MDA-MB-231 were cultured and treated with IC50 (the half-maximal inhibitory concentration) level of Tigecycline for 48 h and afterward co-cultured with peripheral blood NK cells for 5 h. Lastly, the inhibitory effects of mitochondria on the cytotoxicity of NK cells and apoptosis of TNBC cells were evaluated. Moreover, the expression of apoptotic-related genes was studied. The results showed that mitochondria inhibition increased NK cells cytotoxicity against TNBC cells. Moreover, NK cell/mitochondria inhibition in a combinative form improved apoptosis in TNBC cells by the upregulation of Bad and Bid expression. In conclusion, Tigecycline inhibited mitochondria and sensitized TNBC cells to NK cell therapy. Therefore, mitochondria inhibition could help NK cells function properly.
Collapse
Affiliation(s)
- Sepide Hossenipour Khodaei
- Department of Dentistry, Eastern Mediterranean University (EMU) Famagusta, North Cyprus Mersin 10, Turkey
| | - Shahbaz Sabetnam
- Department of Anatomy, Faculty of Medicine, University of Kyrenia, Mersin 10, Kyrenia, Turkey; Department of Histopathology and Anatomy, Faculty of Medicine Sciences, Tabriz Medical Sciences, Islamic Azad Tabriz University, Tabriz, Iran
| | | | - Khadijeh Dizaji Asl
- Department of Histopathology and Anatomy, Faculty of Medicine Sciences, Tabriz Medical Sciences, Islamic Azad Tabriz University, Tabriz, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Mazloumi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Nersesian S, Carter EB, Lee SN, Westhaver LP, Boudreau JE. Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Front Immunol 2023; 14:1269614. [PMID: 38090565 PMCID: PMC10715270 DOI: 10.3389/fimmu.2023.1269614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells integrate heterogeneous signals for activation and inhibition using germline-encoded receptors. These receptors are stochastically co-expressed, and their concurrent engagement and signaling can adjust the sensitivity of individual cells to putative targets. Against cancers, which mutate and evolve under therapeutic and immunologic pressure, the diversity for recognition provided by NK cells may be key to comprehensive cancer control. NK cells are already being trialled as adoptive cell therapy and targets for immunotherapeutic agents. However, strategies to leverage their naturally occurring diversity and agility have not yet been developed. In this review, we discuss the receptors and signaling pathways through which signals for activation or inhibition are generated in NK cells, focusing on their roles in cancer and potential as targets for immunotherapies. Finally, we consider the impacts of receptor co-expression and the potential to engage multiple pathways of NK cell reactivity to maximize the scope and strength of antitumor activities.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B. Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
21
|
Espinosa-Gil S, Ivanova S, Alari-Pahissa E, Denizli M, Villafranca-Magdalena B, Viñas-Casas M, Bolinaga-Ayala I, Gámez-García A, Faundez-Vidiella C, Colas E, Lopez-Botet M, Zorzano A, Lizcano JM. MAP kinase ERK5 modulates cancer cell sensitivity to extrinsic apoptosis induced by death-receptor agonists. Cell Death Dis 2023; 14:715. [PMID: 37919293 PMCID: PMC10622508 DOI: 10.1038/s41419-023-06229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Death receptor ligand TRAIL is a promising cancer therapy due to its ability to selectively trigger extrinsic apoptosis in cancer cells. However, TRAIL-based therapies in humans have shown limitations, mainly due inherent or acquired resistance of tumor cells. To address this issue, current efforts are focussed on dissecting the intracellular signaling pathways involved in resistance to TRAIL, to identify strategies that sensitize cancer cells to TRAIL-induced cytotoxicity. In this work, we describe the oncogenic MEK5-ERK5 pathway as a critical regulator of cancer cell resistance to the apoptosis induced by death receptor ligands. Using 2D and 3D cell cultures and transcriptomic analyses, we show that ERK5 controls the proteostasis of TP53INP2, a protein necessary for full activation of caspase-8 in response to TNFα, FasL or TRAIL. Mechanistically, ERK5 phosphorylates and induces ubiquitylation and proteasomal degradation of TP53INP2, resulting in cancer cell resistance to TRAIL. Concordantly, ERK5 inhibition or genetic deletion, by stabilizing TP53INP2, sensitizes cancer cells to the apoptosis induced by recombinant TRAIL and TRAIL/FasL expressed by Natural Killer cells. The MEK5-ERK5 pathway regulates cancer cell proliferation and survival, and ERK5 inhibitors have shown anticancer activity in preclinical models of solid tumors. Using endometrial cancer patient-derived xenograft organoids, we propose ERK5 inhibition as an effective strategy to sensitize cancer cells to TRAIL-based therapies.
Collapse
Affiliation(s)
- Sergio Espinosa-Gil
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Protein Kinases in Cancer Research. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Saska Ivanova
- IRB Institute for Research in Biomedicine, Barcelona, Spain
- CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Melek Denizli
- Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona. CIBERONC, Barcelona, Spain
| | - Beatriz Villafranca-Magdalena
- Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona. CIBERONC, Barcelona, Spain
| | - Maria Viñas-Casas
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Protein Kinases in Cancer Research. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Idoia Bolinaga-Ayala
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Protein Kinases in Cancer Research. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Andrés Gámez-García
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Claudia Faundez-Vidiella
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Protein Kinases in Cancer Research. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Eva Colas
- Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona. CIBERONC, Barcelona, Spain
| | - Miguel Lopez-Botet
- University Pompeu Fabra, Barcelona, Spain
- Immunology laboratory, Dpt. of Pathology, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Antonio Zorzano
- IRB Institute for Research in Biomedicine, Barcelona, Spain
- CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biología, Universitat de Barcelona, Barcelona, Spain
| | - José Miguel Lizcano
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
- Protein Kinases in Cancer Research. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.
| |
Collapse
|
22
|
Hu B, Xin Y, Hu G, Li K, Tan Y. Fluid shear stress enhances natural killer cell's cytotoxicity toward circulating tumor cells through NKG2D-mediated mechanosensing. APL Bioeng 2023; 7:036108. [PMID: 37575881 PMCID: PMC10423075 DOI: 10.1063/5.0156628] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Tumor cells metastasize to distant organs mainly via hematogenous dissemination, in which circulating tumor cells (CTCs) are relatively vulnerable, and eliminating these cells has great potential to prevent metastasis. In vasculature, natural killer (NK) cells are the major effector lymphocytes for efficient killing of CTCs under fluid shear stress (FSS), which is an important mechanical cue in tumor metastasis. However, the influence of FSS on the cytotoxicity of NK cells against CTCs remains elusive. We report that the death rate of CTCs under both NK cells and FSS is much higher than the combined death induced by either NK cells or FSS, suggesting that FSS may enhance NK cell's cytotoxicity. This death increment is elicited by shear-induced NK activation and granzyme B entry into target cells rather than the death ligand TRAIL or secreted cytokines TNF-α and IFN-γ. When NK cells form conjugates with CTCs or adhere to MICA-coated substrates, NK cell activating receptor NKG2D can directly sense FSS to induce NK activation and degranulation. These findings reveal the promotive effect of FSS on NK cell's cytotoxicity toward CTCs, thus providing new insight into immune surveillance of CTCs within circulation.
Collapse
Affiliation(s)
| | | | | | | | - Youhua Tan
- Author to whom correspondence should be addressed:
| |
Collapse
|
23
|
Zhao R, Jiang Y, Zhang J, Huang Y, Xiong C, Zhao Z, Huang T, Liu W, Zhou N, Li Z, Luo X, Tang Y. Development and validation of a novel necroptosis-related gene signature for predicting prognosis and therapeutic response in Ewing sarcoma. Front Med (Lausanne) 2023; 10:1239487. [PMID: 37663658 PMCID: PMC10470467 DOI: 10.3389/fmed.2023.1239487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Ewing sarcoma (ES) is the second most common malignant bone tumor in children and has a poor prognosis due to early metastasis and easy recurrence. Necroptosis is a newly discovered cell death method, and its critical role in tumor immunity and therapy has attracted widespread attention. Thus, the emergence of necroptosis may provide bright prospects for the treatment of ES and deserves our further study. Here, based on the random forest algorithm, we identified 6 key necroptosis-related genes (NRGs) and used them to construct an NRG signature with excellent predictive performance. Subsequent analysis showed that NRGs were closely associated with ES tumor immunity, and the signature was also good at predicting immunotherapy and chemotherapy response. Next, a comprehensive analysis of key genes showed that RIPK1, JAK1, and CHMP7 were potential therapeutic targets. The Cancer Dependency Map (DepMap) results showed that CHMP7 is associated with ES cell growth, and the Gene Set Cancer Analysis (GSCALite) results revealed that the JAK1 mutation frequency was the highest. The expression of 3 genes was all negatively correlated with methylation and positively with copy number variation (CNV). Finally, an accurate nomogram was constructed with this signature and clinical traits. In short, this study constructed an accurate prognostic signature and identified 3 novel therapeutic targets against ES.
Collapse
Affiliation(s)
- Runhan Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Yu Jiang
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Jun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Chuang Xiong
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Zenghui Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Tianji Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Wei Liu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Nian Zhou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Zefang Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Orthopedics, Qianjiang Central Hospital of Chongqing, Chongqing, China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Yongli Tang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Suliman IH, Kim K, Chen W, Kim Y, Moon JH, Son S, Nam J. Metal-Based Nanoparticles for Cancer Metalloimmunotherapy. Pharmaceutics 2023; 15:2003. [PMID: 37514189 PMCID: PMC10385358 DOI: 10.3390/pharmaceutics15072003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Although the promise of cancer immunotherapy has been partially fulfilled with the unprecedented clinical success of several immunotherapeutic interventions, some issues, such as limited response rate and immunotoxicity, still remain. Metalloimmunotherapy offers a new form of cancer immunotherapy that utilizes the inherent immunomodulatory features of metal ions to enhance anticancer immune responses. Their versatile functionalities for a multitude of direct and indirect anticancer activities together with their inherent biocompatibility suggest that metal ions can help overcome the current issues associated with cancer immunotherapy. However, metal ions exhibit poor drug-like properties due to their intrinsic physicochemical profiles that impede in vivo pharmacological performance, thus necessitating an effective pharmaceutical formulation strategy to improve their in vivo behavior. Metal-based nanoparticles provide a promising platform technology for reshaping metal ions into more drug-like formulations with nano-enabled engineering approaches. This review provides a general overview of cancer immunotherapy, the immune system and how it works against cancer cells, and the role of metal ions in the host response and immune modulation, as well as the impact of metal ions on the process via the regulation of immune cells. The preclinical studies that have demonstrated the potential of metal-based nanoparticles for cancer metalloimmunotherapy are presented for the representative nanoparticles constructed with manganese, zinc, iron, copper, calcium, and sodium ions. Lastly, the perspectives and future directions of metal-based nanoparticles are discussed, particularly with respect to their clinical applications.
Collapse
Affiliation(s)
| | - Kidong Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Weihsuan Chen
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
- Department of Biological Sciences and Bioengineering, Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon 22212, Republic of Korea
| | - Yubin Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
- Department of Biological Sciences and Bioengineering, Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Hyun Moon
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Sejin Son
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
- Department of Biological Sciences and Bioengineering, Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon 22212, Republic of Korea
| | - Jutaek Nam
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
25
|
Tang Y, Qian C. Research progress in leveraging biomaterials for enhancing NK cell immunotherapy. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:267-278. [PMID: 37476938 PMCID: PMC10409897 DOI: 10.3724/zdxbyxb-2022-0728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/09/2023] [Indexed: 07/22/2023]
Abstract
NK cell immunotherapy is a promising antitumor therapeutic modality after the development of T cell immunotherapy. Structural modification of NK cells with biomaterials may provide a precise, efficient, and low-cost strategy to enhance NK cell immunotherapy. The biomaterial modification of NK cells can be divided into two strategies: surface engineering with biomaterials and intracellular modification. The surface engineering strategies include hydrophobic interaction of lipids, receptor-ligand interaction between membrane proteins, covalent binding to amino acid residues, click reaction and electrostatic interaction. The intracellular modification strategies are based on manipulation by nanotechnology using membranous materials from various sources of NK cells (such as exosome, vesicle and cytomembranes). Finally, the biomaterials-based strategies regulate the recruitment, recognition and cytotoxicity of NK cells in the solid tumor site in situ to boost the activity of NK cells in the tumor. This article reviews the recent research progress in enhancing NK cell therapy based on biomaterial modification, to provide a reference for further researches on engineering NK cell therapy with biomaterials.
Collapse
Affiliation(s)
- Yingqi Tang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, State Key Laboratory of Natural Medicines, Nanjing 210009, China.
| | - Chenggen Qian
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, State Key Laboratory of Natural Medicines, Nanjing 210009, China.
| |
Collapse
|
26
|
Kim IY, Kim HY, Song HW, Park JO, Choi YH, Choi E. Functional enhancement of exosomes derived from NK cells by IL-15 and IL-21 synergy against hepatocellular carcinoma cells: The cytotoxicity and apoptosis in vitro study. Heliyon 2023; 9:e16962. [PMID: 37484408 PMCID: PMC10361042 DOI: 10.1016/j.heliyon.2023.e16962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/25/2023] Open
Abstract
Exosomes are released by various cells, including natural killer (NK) cells and transport signaling molecules for the intercellular communication. Hepatocellular carcinoma (HCC), also known as primary liver cancer, is often inoperable and difficult to accurate diagnosis. Notably, the prognosis and underlying mechanisms of HCC are not fully understood. Exosomes-derived NK cells (NK-exos) express unique cytotoxic proteins with a killing ability in tumors and can easily penetrate tumor tissues to improve their targeting ability. NK cell functions, inducing cellular cytotoxicity are modulated by cytokines such as interleukin (IL)-15 and IL-21. However, the mechanisms and effects of cytokines-stimulated NK-exos for the treatment of liver cancer, including HCC, are not well known. In this study, we aimed to investigate the synergistic anti-tumor effects of NK-exos stimulated with IL-15 and IL-21 (NK-exosIL-15/21) in Hep3B cells. Our findings revealed that NK-exosIL-15/21 expressed cytotoxic proteins (perforin and granzyme B) and contained typical exosome markers (CD9 and CD63) within the size range of 100-150 nm. Moreover, we demonstrated that NK-exosIL-15/21 induced the enhancement of cytotoxicity and apoptotic activity in Hep3B cells by activating the specific pro-apoptotic proteins (Bax, cleaved caspase 3, cleaved PARP, perforin, and granzyme B) and inhibiting the anti-apoptotic protein (Bcl-2). In summary, our results suggest that NK-exosIL-15/21 regulate strong anti-tumor effects of HCC cells, by increasing the cytotoxicity and apoptosis through the activation of specific cytotoxic molecules.
Collapse
Affiliation(s)
- In-Young Kim
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - Ho Yong Kim
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - Hyeong-woo Song
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - You Hee Choi
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - Eunpyo Choi
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
27
|
Zhao Z, Meng M, Yao J, Zhou H, Chen Y, Liu J, Wang J, Liu Y, Qiao Y, Zhang M, Qi J, Zhang T, Zhou Z, Jiang T, Shang B, Zhou Q. The long non-coding RNA keratin-7 antisense acts as a new tumor suppressor to inhibit tumorigenesis and enhance apoptosis in lung and breast cancers. Cell Death Dis 2023; 14:293. [PMID: 37185462 PMCID: PMC10130017 DOI: 10.1038/s41419-023-05802-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023]
Abstract
Expression of the long non-coding RNA (lncRNA) keratin-7 antisense (KRT7-AS) is downregulated in various types of cancer; however, the impact of KRT7-AS deficiency on tumorigenesis and apoptosis is enigmatic. We aim to explore the influence of KRT7-AS in carcinogenesis and apoptosis. We found that KRT7-AS was deficient in breast and lung cancers, and low levels of KRT7-AS were a poor prognostic factor in breast cancer. Cellular studies showed that silencing of KRT7-AS in lung cancer cells increased oncogenic Keratin-7 levels and enhanced tumorigenesis, but diminished cancer apoptosis of the cancer cells; by contrast, overexpression of KRT7-AS inhibited lung cancer cell tumorigenesis. Additionally, KRT7-AS sensitized cancer cells to the anti-cancer drug cisplatin, consequently enhancing cancer cell apoptosis. In vivo, KRT7-AS overexpression significantly suppressed tumor growth in xenograft mice, while silencing of KRT7-AS promoted tumor growth. Mechanistically, KRT7-AS reduced the levels of oncogenic Keratin-7 and significantly elevated amounts of the key tumor suppressor PTEN in cancer cells through directly binding to PTEN protein via its core nucleic acid motif GGCAAUGGCGG. This inhibited the ubiquitination-proteasomal degradation of PTEN protein, therefore elevating PTEN levels in cancer cells. We also found that KRT7-AS gene transcription was driven by the transcription factor RXRα; intriguingly, the small molecule berberine enhanced KRT7-AS expression, reduced tumorigenesis, and promoted apoptosis of cancer cells. Collectively, KRT7-AS functions as a new tumor suppressor and an apoptosis enhancer in lung and breast cancers, and we unraveled that the RXRα-KRT7-AS-PTEN signaling axis controls carcinogenesis and apoptosis. Our findings highlight a tumor suppressive role of endogenous KRT7-AS in cancers and an important effect the RXRα-KRT7-AS-PTEN axis on control of cancer cell tumorigenesis and apoptosis, and offer a new platform for developing novel therapeutics against cancers.
Collapse
Affiliation(s)
- Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, PR China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Jun Yao
- Department of General Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Hao Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Yu Chen
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Juntao Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Jie Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Yuxi Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Yingnan Qiao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Mengli Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Jindan Qi
- School of Nursing, Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Tong Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Zhou Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Tao Jiang
- Department of Pathology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Bingxue Shang
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Soochow University, 215123, Suzhou, PR China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, PR China
- The First Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China.
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, PR China.
- National Clinical Research Center for Hematologic Diseases, The Affiliated Hospital of Soochow University, Suzhou, PR China.
- Key Laboratory of Thrombosis and Hemostasis, Ministry of Health; Soochow University, Suzhou, Jiangsu, 215123, PR China.
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China.
- The Ninth Affiliated Hospital, Soochow University, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
28
|
Ying P, Xu Y, Jiang X, Wang K, Xue Y, Wang Q, Ding W, Dai X. Analysis of the regulatory role of miR-34a-5p/PLCD3 in the progression of osteoarthritis. Funct Integr Genomics 2023; 23:131. [PMID: 37079115 DOI: 10.1007/s10142-023-01058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Osteoarthritis is a heterogeneous disease with a complex etiology. However, there is no effective treatment strategy at present. The purpose of this study was to explore the miRNA‒mRNA regulatory network and molecular mechanism that regulate the progression of osteoarthritis. In this article, we downloaded datasets (GSE55457, GSE82107, GSE143514 and GSE55235) from Gene Expression Omnibus (GEO) to screen differentially expressed mRNAs in osteoarthritis. Then, through weighted gene coexpression network (WGCNA), functional enrichment, protein‒protein interaction (PPI) network, miRNA‒mRNA coexpression network, ROC curve, and immune infiltration analyses and qPCR, the mRNA PLCD3, which was highly expressed in osteoarthritis and had clinical predictive value, was screened. We found that PLCD3 directly targets miR-34a-5p through DIANA and dual-luciferase experiments. The expression levels of PLCD3 and miR-34a-5p were negatively correlated. In addition, CCK-8 and wound healing assays showed that the miR-34a-5p mimic inhibited hFLS-OA cell proliferation and promoted hFLS-OA cell migration. PLCD3 overexpression showed the opposite trend. Western blotting further found that overexpression of miR-34a-5p reduced the protein expression levels of p-PI3K and p-AKT, while overexpression of PLCD3 showed the opposite trend. In addition, combined with the effect of the PI3K/AKT pathway inhibitor BIO (IC50 = 5.95 μM), the results showed that overexpression of miR-34a-5p increased the inhibitory effects of BIO on p-PI3K and p-AKT protein expression, while overexpression of PLCD3 significantly reversed these inhibitory effects. Overall, the miR-34a-5p/PLCD3 axis may mediate the PI3K/AKT pathway in regulating cartilage homeostasis in synovial osteoarthritis. These data indicate that miR-34a-5p/PLCD3 may be a new prognostic factor in the pathology of synovial osteoarthritis.
Collapse
Affiliation(s)
- Pu Ying
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Yue Xu
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Xiaowei Jiang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Kejie Wang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yi Xue
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Qiang Wang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Wenge Ding
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaoyu Dai
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
29
|
Kwon S, Jung S, Baek SH. Combination Therapy of Radiation and Hyperthermia, Focusing on the Synergistic Anti-Cancer Effects and Research Trends. Antioxidants (Basel) 2023; 12:antiox12040924. [PMID: 37107299 PMCID: PMC10136118 DOI: 10.3390/antiox12040924] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Despite significant therapeutic advances, the toxicity of conventional therapies remains a major obstacle to their application. Radiation therapy (RT) is an important component of cancer treatment. Therapeutic hyperthermia (HT) can be defined as the local heating of a tumor to 40-44 °C. Both RT and HT have the advantage of being able to induce and regulate oxidative stress. Here, we discuss the effects and mechanisms of RT and HT based on experimental research investigations and summarize the results by separating them into three phases. Phase (1): RT + HT is effective and does not provide clear mechanisms; phase (2): RT + HT induces apoptosis via oxygenation, DNA damage, and cell cycle arrest; phase (3): RT + HT improves immunological responses and activates immune cells. Overall, RT + HT is an effective cancer modality complementary to conventional therapy and stimulates the immune response, which has the potential to improve cancer treatments, including immunotherapy, in the future.
Collapse
Affiliation(s)
- Seeun Kwon
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Sumin Jung
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| |
Collapse
|
30
|
Althaus J, Nilius-Eliliwi V, Maghnouj A, Döring S, Schroers R, Hudecek M, Hahn SA, Mika T. Cytotoxicity of CD19-CAR-NK92 cells is primarily mediated via perforin/granzyme pathway. Cancer Immunol Immunother 2023:10.1007/s00262-023-03443-1. [PMID: 37052701 PMCID: PMC10361870 DOI: 10.1007/s00262-023-03443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023]
Abstract
Chimeric antigen receptors (CARs) have improved cancer immunotherapy in recent years. Immune cells, such as Natural killer cells (NK-cells) or T cells, are used as effector cells in CAR-therapy. NK92-cells, a cell line with known cytotoxic activity, are of particular interest in CAR-therapy since culturing conditions are simple and anti-tumor efficacy combined with a manageable safety profile was proven in clinical trials. The major pathways of immune effector cells, including NK92-cells, to mediate cytotoxicity, are the perforin/granzyme and the death-receptor pathway. Detailed knowledge of CAR-effector cells' cytotoxic mechanisms is essential to unravel resistance mechanisms, which potentially arise by resistance against apoptosis-inducing signaling. Since mutations in apoptosis pathways are frequent in lymphoma, the impact on CAR-mediated cytotoxicity is of clinical interest. In this study, knockout models of CD19-CAR-NK92 cells were designed, to investigate cytotoxic pathways in vitro. Knockout of perforin 1 (Prf1) and subsequent abrogation of the perforin/granzyme pathway dramatically reduced the cytotoxicity of CD19-CAR-NK92 cells. In contrast, knockout of FasL and inhibition of TRAIL (tumor necrosis factor-related apoptosis-inducing ligands) did not impair cytotoxicity in most conditions. In conclusion, these results indicate the perforin/granzyme pathway as the major pathway to mediate cytotoxicity in CD19-CAR-NK92 cells.
Collapse
Affiliation(s)
- Jonas Althaus
- Department of Molecular Gastrointestinal Oncology, Ruhr University Bochum, Bochum, Germany
| | - Verena Nilius-Eliliwi
- Department of Molecular Gastrointestinal Oncology, Ruhr University Bochum, Bochum, Germany
- Department of Medicine, Hematology and Oncology, Knappschaftskrankenhaus Bochum, Ruhr University Bochum, In der Schornau 23-25, D-44892, Bochum, Germany
| | - Abdelouahid Maghnouj
- Department of Molecular Gastrointestinal Oncology, Ruhr University Bochum, Bochum, Germany
| | - Sascha Döring
- Department of Molecular Gastrointestinal Oncology, Ruhr University Bochum, Bochum, Germany
| | - Roland Schroers
- Department of Medicine, Hematology and Oncology, Knappschaftskrankenhaus Bochum, Ruhr University Bochum, In der Schornau 23-25, D-44892, Bochum, Germany
| | - Michael Hudecek
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Stephan A Hahn
- Department of Molecular Gastrointestinal Oncology, Ruhr University Bochum, Bochum, Germany
| | - Thomas Mika
- Department of Molecular Gastrointestinal Oncology, Ruhr University Bochum, Bochum, Germany.
- Department of Medicine, Hematology and Oncology, Knappschaftskrankenhaus Bochum, Ruhr University Bochum, In der Schornau 23-25, D-44892, Bochum, Germany.
| |
Collapse
|
31
|
Ye Z, Zhang H, Liang J, Yi S, Zhan X. Significance of logistic regression scoring model based on natural killer cell-mediated cytotoxic pathway in the diagnosis of colon cancer. Front Immunol 2023; 14:1117908. [PMID: 36742322 PMCID: PMC9895796 DOI: 10.3389/fimmu.2023.1117908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
Background The poor clinical accuracy to predict the survival of colon cancer patients is associated with a high incidence rate and a poor 3-year survival rate. This study aimed to identify the poor prognostic biomarkers of colon cancer from natural killer cell-mediated cytotoxic pathway (NKCP), and establish a logistical regression scoring model to predict its prognosis. Methods Based on the expressions and methylations of NKCP-related genes (NRGs) and the clinical information, dimensionality reduction screening was performed to establish a logistic regression scoring model to predict survival and prognosis. Risk score, clinical stage, and ULBP2 were used to establish a logistic regression scoring model to classify the 3-year survival period and compare with each other. Comparison of survival, tumor mutation burden (TMB), estimation of immune invasion, and prediction of chemotherapeutic drug IC50 were performed between low- and high-risk score groups. Results This study found that ULBP2 was significantly overexpressed in colon cancer tissues and colon cancer cell lines. The logistic regression scoring model was established to include six statistically significant features: S = 1.70 × stage - 9.32 × cg06543087 + 6.19 × cg25848557 + 1.29 × IFNA1 + 0.048 × age + 4.37 × cg21370856 - 8.93, which was used to calculate risk score of each sample. The risk scores, clinical stage, and ULBP2 were classified into three-year survival, the 3-year prediction accuracy based on 10-fold cross-validation was 80.17%, 67.24, and 59.48%, respectively. The survival time of low-risk score group was better than that of the high-risk score group. Moreover, compared to high-risk score group, low-risk score group had lower TMB [2.20/MB (log10) vs. 2.34/MB (log10)], higher infiltration score of M0 macrophages (0.17 vs. 0.14), and lower mean IC50 value of oxaliplatin (3.65 vs 3.78) (p < 0.05). Conclusions The significantly upregulated ULBP2 was a poor prognostic biomarker of colon cancer. The risk score based on the six-feature logistic regression model can effectively predict the 3-year survival time. High-risk score group demonstrated a poorer prognosis, higher TMB, lower M0 macrophage infiltration score, and higher IC50 value of oxaliplatin. The six-feature logistic scoring model has certain clinical significance in colon cancer.
Collapse
Affiliation(s)
- Zhen Ye
- Medical Science and Technology Innovation Center, The Second Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Huanhuan Zhang
- Medical Science and Technology Innovation Center, The Second Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Jianwei Liang
- Department of General Surgery, Tai ‘an Central Hospital, Taian, Shandong, China
| | - Shuying Yi
- Medical Science and Technology Innovation Center, The Second Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China,*Correspondence: Xianquan Zhan, ; Shuying Yi,
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, The Second Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China,*Correspondence: Xianquan Zhan, ; Shuying Yi,
| |
Collapse
|
32
|
Yu X, Zhu L, Wang T, Chen J. Immune microenvironment of cholangiocarcinoma: Biological concepts and treatment strategies. Front Immunol 2023; 14:1037945. [PMID: 37138880 PMCID: PMC10150070 DOI: 10.3389/fimmu.2023.1037945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Cholangiocarcinoma is characterized by a poor prognosis with limited treatment and management options. Chemotherapy using gemcitabine with cisplatin is the only available first-line therapy for patients with advanced cholangiocarcinoma, although it offers only palliation and yields a median survival of < 1 year. Recently there has been a resurgence of immunotherapy studies focusing on the ability of immunotherapy to inhibit cancer growth by impacting the tumor microenvironment. Based on the TOPAZ-1 trial, the US Food and Drug Administration has approved the combination of durvalumab and gemcitabine with cisplatin as the first-line treatment of cholangiocarcinoma. However, immunotherapy, like immune checkpoint blockade, is less effective in cholangiocarcinoma than in other types of cancer. Although several factors such as the exuberant desmoplastic reaction are responsible for cholangiocarcinoma treatment resistance, existing literature on cholangiocarcinoma cites the inflammatory and immunosuppressive environment as the most common factor. However, mechanisms activating the immunosuppressive tumor microenvironment contributing to cholangiocarcinoma drug resistance are complicated. Therefore, gaining insight into the interplay between immune cells and cholangiocarcinoma cells, as well as the natural development and evolution of the immune tumor microenvironment, would provide targets for therapeutic intervention and improve therapeutic efficacy by developing multimodal and multiagent immunotherapeutic approaches of cholangiocarcinoma to overcome the immunosuppressive tumor microenvironment. In this review, we discuss the role of the inflammatory microenvironment-cholangiocarcinoma crosstalk and reinforce the importance of inflammatory cells in the tumor microenvironment, thereby highlighting the explanatory and therapeutic shortcomings of immunotherapy monotherapy and proposing potentially promising combinational immunotherapeutic strategies.
Collapse
Affiliation(s)
- Xianzhe Yu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Gastrointestinal Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ting Wang
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiang Chen
- Department of General Surgery, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- *Correspondence: Jiang Chen,
| |
Collapse
|
33
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
34
|
Deng X, Terunuma H. Harnessing NK Cells to Control Metastasis. Vaccines (Basel) 2022; 10:vaccines10122018. [PMID: 36560427 PMCID: PMC9781233 DOI: 10.3390/vaccines10122018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
In recent years, tumor immunotherapy has produced remarkable results in tumor treatment. Nevertheless, its effects are severely limited in patients with low or absent pre-existing T cell immunity. Accordingly, metastasis remains the major cause of tumor-associated death. On the other hand, natural killer (NK) cells have the unique ability to recognize and rapidly act against tumor cells and surveil tumor cell dissemination. The role of NK cells in metastasis prevention is undisputable as an increase in the number of these cells mostly leads to a favorable prognosis. Hence, it is reasonable to consider that successful metastasis involves evasion of NK-cell-mediated immunosurveillance. Therefore, harnessing NK cells to control metastasis is promising. Circulating tumor cells (CTCs) are the seeds for distant metastasis, and the number of CTCs detected in the blood of patients with tumor is associated with a worse prognosis, whereas NK cells can eliminate highly motile CTCs especially in the blood. Here, we review the role of NK cells during metastasis, particularly the specific interactions of NK cells with CTCs, which may provide essential clues on how to harness the power of NK cells against tumor metastasis. As a result, a new way to prevent or treat metastatic tumor may be developed.
Collapse
Affiliation(s)
- Xuewen Deng
- Biotherapy Institute of Japan Inc., 2-4-8 Edagawa, Koto-ku, Tokyo 135-0051, Japan
- Correspondence: ; Tel.: +81-3-5632-6080; Fax: +81-3-5632-6083
| | - Hiroshi Terunuma
- Biotherapy Institute of Japan Inc., 2-4-8 Edagawa, Koto-ku, Tokyo 135-0051, Japan
- N2 Clinic Yotsuya, 5F 2-6 Samon-cho, Shinjuku-ku, Tokyo 160-0017, Japan
| |
Collapse
|
35
|
Sterling KG, Dodd GK, Alhamdi S, Asimenios PG, Dagda RK, De Meirleir KL, Hudig D, Lombardi VC. Mucosal Immunity and the Gut-Microbiota-Brain-Axis in Neuroimmune Disease. Int J Mol Sci 2022; 23:13328. [PMID: 36362150 PMCID: PMC9655506 DOI: 10.3390/ijms232113328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Recent advances in next-generation sequencing (NGS) technologies have opened the door to a wellspring of information regarding the composition of the gut microbiota. Leveraging NGS technology, early metagenomic studies revealed that several diseases, such as Alzheimer's disease, Parkinson's disease, autism, and myalgic encephalomyelitis, are characterized by alterations in the diversity of gut-associated microbes. More recently, interest has shifted toward understanding how these microbes impact their host, with a special emphasis on their interactions with the brain. Such interactions typically occur either systemically, through the production of small molecules in the gut that are released into circulation, or through signaling via the vagus nerves which directly connect the enteric nervous system to the central nervous system. Collectively, this system of communication is now commonly referred to as the gut-microbiota-brain axis. While equally important, little attention has focused on the causes of the alterations in the composition of gut microbiota. Although several factors can contribute, mucosal immunity plays a significant role in shaping the microbiota in both healthy individuals and in association with several diseases. The purpose of this review is to provide a brief overview of the components of mucosal immunity that impact the gut microbiota and then discuss how altered immunological conditions may shape the gut microbiota and consequently affect neuroimmune diseases, using a select group of common neuroimmune diseases as examples.
Collapse
Affiliation(s)
| | - Griffin Kutler Dodd
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shatha Alhamdi
- Clinical Immunology and Allergy Division, Department of Pediatrics, King Abdullah Specialist Children’s Hospital, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | | | - Ruben K. Dagda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | | | - Dorothy Hudig
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
36
|
Mukherjee AG, Wanjari UR, Namachivayam A, Murali R, Prabakaran DS, Ganesan R, Renu K, Dey A, Vellingiri B, Ramanathan G, Doss C. GP, Gopalakrishnan AV. Role of Immune Cells and Receptors in Cancer Treatment: An Immunotherapeutic Approach. Vaccines (Basel) 2022; 10:1493. [PMID: 36146572 PMCID: PMC9502517 DOI: 10.3390/vaccines10091493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/07/2022] Open
Abstract
Cancer immunotherapy moderates the immune system's ability to fight cancer. Due to its extreme complexity, scientists are working to put together all the puzzle pieces to get a clearer picture of the immune system. Shreds of available evidence show the connection between cancer and the immune system. Immune responses to tumors and lymphoid malignancies are influenced by B cells, γδT cells, NK cells, and dendritic cells (DCs). Cancer immunotherapy, which encompasses adoptive cancer therapy, monoclonal antibodies (mAbs), immune checkpoint therapy, and CART cells, has revolutionized contemporary cancer treatment. This article reviews recent developments in immune cell regulation and cancer immunotherapy. Various options are available to treat many diseases, particularly cancer, due to the progress in various immunotherapies, such as monoclonal antibodies, recombinant proteins, vaccinations (both preventative and curative), cellular immunotherapies, and cytokines.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - George Priya Doss C.
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
37
|
Minimally invasive detection of cancer using metabolic changes in tumor-associated natural killer cells with Oncoimmune probes. Nat Commun 2022; 13:4527. [PMID: 35927264 PMCID: PMC9352900 DOI: 10.1038/s41467-022-32308-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Natural Killer (NK) cells, a subset of innate immune cells, undergo cancer-specific changes during tumor progression. Therefore, tracking NK cell activity in circulation has potential for cancer diagnosis. Identification of tumor associated NK cells remains a challenge as most of the cancer antigens are unknown. Here, we introduce tumor-associated circulating NK cell profiling (CNKP) as a stand-alone cancer diagnostic modality with a liquid biopsy. Metabolic profiles of NK cell activation as a result of tumor interaction are detected with a SERS functionalized OncoImmune probe platform. We show that the cancer stem cell-associated NK cell is of value in cancer diagnosis. Through machine learning, the features of NK cell activity in patient blood could identify cancer from non-cancer using 5uL of peripheral blood with 100% accuracy and localization of cancer with 93% accuracy. These results show the feasibility of minimally invasive cancer diagnostics using circulating NK cells. NK cells can be affected by tumour cells and this difference could be utilised as a cancer diagnostic. Here the authors use a nickel based plasmonic spectroscopy system to measure metabolic differences in NK cells that have been exposed to cancer cells as a method of cancer detection.
Collapse
|
38
|
Chiawpanit C, Panwong S, Sawasdee N, Yenchitsomanus PT, Panya A. Genistein Sensitizes Human Cholangiocarcinoma Cell Lines to Be Susceptible to Natural Killer Cells. BIOLOGY 2022; 11:biology11081098. [PMID: 35892954 PMCID: PMC9330512 DOI: 10.3390/biology11081098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
Cholangiocarcinoma (CCA) is a lethal bile duct cancer, which has poor treatment outcomes due to its high resistance to chemotherapy and cancer recurrence. Activation of aberrant anti-apoptotic signaling pathway has been reported to be a mechanism of chemoresistance and immune escape of CCA. Therefore, reversal of anti-apoptotic signaling pathway represents a feasible approach to potentiate effective treatments, especially for CCA with high chemoresistance. In this study, we demonstrated the effects of genistein on reactivation of apoptosis cascade and increase the susceptibility of CCA cells to natural killer (NK-92) cells. Genistein at 50 and 100 µM significantly activated extrinsic apoptotic pathway in CCA cells (KKU055, KKU100, and KKU213A), which was evident by reduction of procaspase-8 and -3 expression. Pretreatment of CCA cells with genistein at 50 µM, but not NK-92 cells, significantly increased NK-92 cell killing ability over the untreated control, suggesting the ability of genistein to sensitize CCA cells. Interestingly, genistein treatment could greatly lower the expression of cFLIP, an anti-apoptotic protein involved in the immune escape pathway, in addition to upregulation of death receptors, Fas- and TRAIL-receptors, in CCA cells, which might be the underlying molecular mechanism of genistein to sensitize CCA to be susceptible to NK-92 cells. Taken together, this finding revealed the benefit of genistein as a sensitizer to enhance the efficiency of NK cell immunotherapy for CCA.
Collapse
Affiliation(s)
- Chutipa Chiawpanit
- Doctoral Program in Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Suthida Panwong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Doctoral Program in Applied Microbiology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nunghathai Sawasdee
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (P.-t.Y.)
- Division of Molecular Medicine, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (P.-t.Y.)
- Division of Molecular Medicine, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-943346
| |
Collapse
|
39
|
Zhang Z, Kong X, Ligtenberg MA, van Hal-van Veen SE, Visser NL, de Bruijn B, Stecker K, van der Helm PW, Kuilman T, Hoefsmit EP, Vredevoogd DW, Apriamashvili G, Baars B, Voest EE, Klarenbeek S, Altelaar M, Peeper DS. RNF31 inhibition sensitizes tumors to bystander killing by innate and adaptive immune cells. Cell Rep Med 2022; 3:100655. [PMID: 35688159 PMCID: PMC9245005 DOI: 10.1016/j.xcrm.2022.100655] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/17/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
Tumor escape mechanisms for immunotherapy include deficiencies in antigen presentation, diminishing adaptive CD8+ T cell antitumor activity. Although innate natural killer (NK) cells are triggered by loss of MHC class I, their response is often inadequate. To increase tumor susceptibility to both innate and adaptive immune elimination, we performed parallel genome-wide CRISPR-Cas9 knockout screens under NK and CD8+ T cell pressure. We identify all components, RNF31, RBCK1, and SHARPIN, of the linear ubiquitination chain assembly complex (LUBAC). Genetic and pharmacologic ablation of RNF31, an E3 ubiquitin ligase, strongly sensitizes cancer cells to NK and CD8+ T cell killing. This occurs in a tumor necrosis factor (TNF)-dependent manner, causing loss of A20 and non-canonical IKK complexes from TNF receptor complex I. A small-molecule RNF31 inhibitor sensitizes colon carcinoma organoids to TNF and greatly enhances bystander killing of MHC antigen-deficient tumor cells. These results merit exploration of RNF31 inhibition as a clinical pharmacological opportunity for immunotherapy-refractory cancers. Parallel CRISPR screens in tumor cells identify NK and T cell susceptibility genes Ablation of LUBAC ubiquitination complex sensitizes tumors to immune elimination Small-molecule RNF31 inhibition sensitizes tumor cells in TNF-dependent fashion RNF31 inhibition strongly enhances immune bystander killing
Collapse
Affiliation(s)
- Zhengkui Zhang
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Xiangjun Kong
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten A Ligtenberg
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Susan E van Hal-van Veen
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Nils L Visser
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Beaunelle de Bruijn
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Kelly Stecker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, and Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Pim W van der Helm
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Thomas Kuilman
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Esmée P Hoefsmit
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Georgi Apriamashvili
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Beau Baars
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Emile E Voest
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten Altelaar
- Proteomics Core Facility, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, and Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
40
|
Ramírez-Labrada A, Pesini C, Santiago L, Hidalgo S, Calvo-Pérez A, Oñate C, Andrés-Tovar A, Garzón-Tituaña M, Uranga-Murillo I, Arias MA, Galvez EM, Pardo J. All About (NK Cell-Mediated) Death in Two Acts and an Unexpected Encore: Initiation, Execution and Activation of Adaptive Immunity. Front Immunol 2022; 13:896228. [PMID: 35651603 PMCID: PMC9149431 DOI: 10.3389/fimmu.2022.896228] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
NK cells are key mediators of immune cell-mediated cytotoxicity toward infected and transformed cells, being one of the main executors of cell death in the immune system. NK cells recognize target cells through an array of inhibitory and activating receptors for endogenous or exogenous pathogen-derived ligands, which together with adhesion molecules form a structure known as immunological synapse that regulates NK cell effector functions. The main and best characterized mechanisms involved in NK cell-mediated cytotoxicity are the granule exocytosis pathway (perforin/granzymes) and the expression of death ligands. These pathways are recognized as activators of different cell death programmes on the target cells leading to their destruction. However, most studies analyzing these pathways have used pure recombinant or native proteins instead of intact NK cells and, thus, extrapolation of the results to NK cell-mediated cell death might be difficult. Specially, since the activation of granule exocytosis and/or death ligands during NK cell-mediated elimination of target cells might be influenced by the stimulus received from target cells and other microenvironment components, which might affect the cell death pathways activated on target cells. Here we will review and discuss the available experimental evidence on how NK cells kill target cells, with a special focus on the different cell death modalities that have been found to be activated during NK cell-mediated cytotoxicity; including apoptosis and more inflammatory pathways like necroptosis and pyroptosis. In light of this new evidence, we will develop the new concept of cell death induced by NK cells as a new regulatory mechanism linking innate immune response with the activation of tumour adaptive T cell responses, which might be the initiating stimulus that trigger the cancer-immunity cycle. The use of the different cell death pathways and the modulation of the tumour cell molecular machinery regulating them might affect not only tumour cell elimination by NK cells but, in addition, the generation of T cell responses against the tumour that would contribute to efficient tumour elimination and generate cancer immune memory preventing potential recurrences.
Collapse
Affiliation(s)
- Ariel Ramírez-Labrada
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Centro de Investigación Biomédica de Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Cecilia Pesini
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Llipsy Santiago
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Sandra Hidalgo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Adanays Calvo-Pérez
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Carmen Oñate
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Alejandro Andrés-Tovar
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Marcela Garzón-Tituaña
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Maykel A Arias
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Eva M Galvez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Julián Pardo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, Fundación Agencia Aragonesa para la Investigación y el Desarrollo ARAID Foundation, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
41
|
Peña-Romero AC, Orenes-Piñero E. Dual Effect of Immune Cells within Tumour Microenvironment: Pro- and Anti-Tumour Effects and Their Triggers. Cancers (Basel) 2022; 14:1681. [PMID: 35406451 PMCID: PMC8996887 DOI: 10.3390/cancers14071681] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Our body is constantly exposed to pathogens or external threats, but with the immune response that our body can develop, we can fight off and defeat possible attacks or infections. Nevertheless, sometimes this threat comes from an internal factor. Situations such as the existence of a tumour also cause our immune system (IS) to be put on alert. Indeed, the link between immunology and cancer is evident these days, with IS being used as one of the important targets for treating cancer. Our IS is able to eliminate those abnormal or damaged cells found in our body, preventing the uncontrolled proliferation of tumour cells that can lead to cancer. However, in several cases, tumour cells can escape from the IS. It has been observed that immune cells, the extracellular matrix, blood vessels, fat cells and various molecules could support tumour growth and development. Thus, the developing tumour receives structural support, irrigation and energy, among other resources, making its survival and progression possible. All these components that accompany and help the tumour to survive and to grow are called the tumour microenvironment (TME). Given the importance of its presence in the tumour development process, this review will focus on one of the components of the TME: immune cells. Immune cells can support anti-tumour immune response protecting us against tumour cells; nevertheless, they can also behave as pro-tumoural cells, thus promoting tumour progression and survival. In this review, the anti-tumour and pro-tumour immunity of several immune cells will be discussed. In addition, the TME influence on this dual effect will be also analysed.
Collapse
Affiliation(s)
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, 30120 Murcia, Spain;
| |
Collapse
|
42
|
Venglar O, Bago JR, Motais B, Hajek R, Jelinek T. Natural Killer Cells in the Malignant Niche of Multiple Myeloma. Front Immunol 2022; 12:816499. [PMID: 35087536 PMCID: PMC8787055 DOI: 10.3389/fimmu.2021.816499] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells represent a subset of CD3- CD7+ CD56+/dim lymphocytes with cytotoxic and suppressor activity against virus-infected cells and cancer cells. The overall potential of NK cells has brought them to the spotlight of targeted immunotherapy in solid and hematological malignancies, including multiple myeloma (MM). Nonetheless, NK cells are subjected to a variety of cancer defense mechanisms, leading to impaired maturation, chemotaxis, target recognition, and killing. This review aims to summarize the available and most current knowledge about cancer-related impairment of NK cell function occurring in MM.
Collapse
Affiliation(s)
- Ondrej Venglar
- Faculty of Science, University of Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Julio Rodriguez Bago
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Benjamin Motais
- Faculty of Science, University of Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Roman Hajek
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Tomas Jelinek
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| |
Collapse
|
43
|
Yang Q, Zhang S, Wu S, Yao B, Wang L, Li Y, Peng H, Huang M, Bi Q, Xiong P, Li L, Deng Y, Deng Y. Identification of nafamostat mesylate as a selective stimulator of NK cell IFN-γ production via metabolism-related compound library screening. Immunol Res 2022; 70:354-364. [PMID: 35167033 PMCID: PMC8852993 DOI: 10.1007/s12026-022-09266-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells play important roles in controlling virus-infected and malignant cells. The identification of new molecules that can activate NK cells may effectively improve the antiviral and antitumour activities of these cells. In this study, by using a commercially available metabolism-related compound library, we initially screened the capacity of compounds to activate NK cells by determining the ratio of interferon-gamma (IFN-γ)+ NK cells by flow cytometry after the incubation of peripheral blood mononuclear cells (PBMCs) with IL-12 or IL-15 for 18 h. Our data showed that eight compounds (nafamostat mesylate (NM), loganin, fluvastatin sodium, atorvastatin calcium, lovastatin, simvastatin, rosuvastatin calcium, and pitavastatin calcium) and three compounds (NM, elesclomol, and simvastatin) increased the proportions of NK cells and CD3+ T cells that expressed IFN-γ among PBMCs cultured with IL-12 and IL-15, respectively. When incubated with enriched NK cells (purity ≥ 80.0%), only NM enhanced NK cell IFN-γ production in the presence of IL-12 or IL-15. When incubated with purified NK cells (purity ≥ 99.0%), NM promoted NK cell IFN-γ secretion in the presence or absence of IL-18. However, NM showed no effect on NK cell cytotoxicity. Collectively, our study identifies NM as a selective stimulator of IFN-γ production by NK cells, providing a new strategy for the prevention and treatment of infection or cancer in select populations.
Collapse
Affiliation(s)
- Qinglan Yang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Shuju Zhang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Shuting Wu
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Baige Yao
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China.,Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Lili Wang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Yana Li
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Hongyan Peng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Minghui Huang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Qinghua Bi
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Peiwen Xiong
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Liping Li
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China. .,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China.
| | - Yafei Deng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China. .,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China.
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
44
|
da Silva LHR, Catharino LCC, da Silva VJ, Evangelista GCM, Barbuto JAM. The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Battle? Biomedicines 2022; 10:biomedicines10020400. [PMID: 35203609 PMCID: PMC8962431 DOI: 10.3390/biomedicines10020400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role in immunosurveillance, acting alongside other immune cells in the response against various types of malignant tumors and the prevention of metastasis. Since their discovery in the 1970s, they have been thoroughly studied for their capacity to kill neoplastic cells without the need for previous sensitization, executing rapid and robust cytotoxic activity, but also helper functions. In agreement with this, NK cells are being exploited in many ways to treat cancer. The broad arsenal of NK-based therapies includes adoptive transfer of in vitro expanded and activated cells, genetically engineered cells to contain chimeric antigen receptors (CAR-NKs), in vivo stimulation of NK cells (by cytokine therapy, checkpoint blockade therapies, etc.), and tumor-specific antibody-guided NK cells, among others. In this article, we review pivotal aspects of NK cells’ biology and their contribution to immune responses against tumors, as well as providing a wide perspective on the many antineoplastic strategies using NK cells. Finally, we also discuss those approaches that have the potential to control glioblastoma—a disease that, currently, causes inevitable death, usually in a short time after diagnosis.
Collapse
Affiliation(s)
- Lucas Henrique Rodrigues da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Luana Correia Croda Catharino
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Viviane Jennifer da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
| | - Gabriela Coeli Menezes Evangelista
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - José Alexandre Marzagão Barbuto
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
- Correspondence: ; Tel.: +55-11-3091-7375
| |
Collapse
|
45
|
Kusowska A, Kubacz M, Krawczyk M, Slusarczyk A, Winiarska M, Bobrowicz M. Molecular Aspects of Resistance to Immunotherapies-Advances in Understanding and Management of Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2022; 23:ijms23031501. [PMID: 35163421 PMCID: PMC8835809 DOI: 10.3390/ijms23031501] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 12/28/2022] Open
Abstract
Despite the unquestionable success achieved by rituximab-based regimens in the management of diffuse large B-cell lymphoma (DLBCL), the high incidence of relapsed/refractory disease still remains a challenge. The widespread clinical use of chemo-immunotherapy demonstrated that it invariably leads to the induction of resistance; however, the molecular mechanisms underlying this phenomenon remain unclear. Rituximab-mediated therapeutic effect primarily relies on complement-dependent cytotoxicity and antibody-dependent cell cytotoxicity, and their outcome is often compromised following the development of resistance. Factors involved include inherent genetic characteristics and rituximab-induced changes in effectors cells, the role of ligand/receptor interactions between target and effector cells, and the tumor microenvironment. This review focuses on summarizing the emerging advances in the understanding of the molecular basis responsible for the resistance induced by various forms of immunotherapy used in DLBCL. We outline available models of resistance and delineate solutions that may improve the efficacy of standard therapeutic protocols, which might be essential for the rational design of novel therapeutic regimens.
Collapse
Affiliation(s)
- Aleksandra Kusowska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Matylda Kubacz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
| | - Marta Krawczyk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Aleksander Slusarczyk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, 02-005 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Malgorzata Bobrowicz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
- Correspondence:
| |
Collapse
|
46
|
Wu Z, Huang X, Cai M, Huang P, Guan Z. Novel necroptosis-related gene signature for predicting the prognosis of pancreatic adenocarcinoma. Aging (Albany NY) 2022; 14:869-891. [PMID: 35077391 PMCID: PMC8833111 DOI: 10.18632/aging.203846] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022]
Abstract
Pancreatic adenocarcinoma (PAAD) is a deadly digestive system tumor with a poor prognosis. Recently, necroptosis has been considered as a type of inflammatory programmed cell death. However, the expression of necroptosis-related genes (NRGs) in PAAD and their associations with prognosis remain unclear. NRGs' prediction potential in PAAD samples from The TCGA and GEO datasets was investigated. The prediction model was constructed using Lasso regression. Co-expression analysis showed that gene expression was closely related to necroptosis. NRGs were shown to be somewhat overexpressed in high-risk people even when no other clinical symptoms were present, indicating that they may be utilized in a model to predict PAAD prognosis. GSEA showed immunological and tumor-related pathways in the high-risk group. Based on the findings, immune function and m6A genes differ significantly between the low-risk and high-risk groups. MET, AM25C, MROH9, MYEOV, FAM111B, Y6D, and PPP2R3A might be related to the oncology process for PAAD patients. Moreover, CASKIN2, TLE2, USP20, SPRN, ARSG, MIR106B, and MIR98 might be associated with low-risk patients with PAAD. NRGs and the relationship of the immune function, immune checkpoints, and m6A gene expression with NRGs in PAAD may be considered as potential therapeutic targets that should be further studied.
Collapse
Affiliation(s)
- Zixuan Wu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Xuyan Huang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Minjie Cai
- Shantou Health School, Shantou, Guangdong Province 515061, China
| | - Peidong Huang
- Yunnan University of Chinese Medicine, Kunming, Yunnan Province 650500, China
| | - Zunhui Guan
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan Province 650011, China
| |
Collapse
|
47
|
Ray SK, Mukherjee S. Directing hypoxic tumor microenvironment and HIF to illuminate cancer immunotherapy's existing prospects and challenges in drug targets. Curr Drug Targets 2022; 23:471-485. [PMID: 35021970 DOI: 10.2174/1389450123666220111114649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
Cancer is now also reflected as a disease of the tumor microenvironment, primarily supposed to be a decontrolled genetic and cellular expression disease. Over the past two decades, significant and rapid progress has been made in recognizing the dynamics of the tumor's microenvironment and its contribution to influencing the response to various anti-cancer therapies and drugs. Modulations in the tumor microenvironment and immune checkpoint blockade are interesting in cancer immunotherapy and drug targets. Simultaneously, the immunotherapeutic strategy can be done by modulating the immune regulatory pathway; however, the tumor microenvironment plays an essential role in suppressing the antitumor's immunity by its substantial heterogeneity. Hypoxia inducible factor (HIF) is a significant contributor to solid tumor heterogeneity and a key stressor in the tumor microenvironment to drive adaptations to prevent immune surveillance. Checkpoint inhibitors here halt the ability of cancer cells to stop the immune system from activating, and in turn, amplify your body's immune system to help destroy cancer cells. Common checkpoints that these inhibitors affect are the PD-1/PD-L1 and CTLA-4 pathways and important drugs involved are Ipilimumab and Nivolumab, mainly along with other drugs in this group. Targeting the hypoxic tumor microenvironment may provide a novel immunotherapy strategy, break down traditional cancer therapy resistance, and build the framework for personalized precision medicine and cancer drug targets. We hope that this knowledge can provide insight into the therapeutic potential of targeting Hypoxia and help to develop novel combination approaches of cancer drugs to increase the effectiveness of existing cancer therapies, including immunotherapy.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya pradesh-462020. India
| |
Collapse
|
48
|
Terrén I, Borrego F. Role of NK Cells in Tumor Progression. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:169-187. [PMID: 35165864 DOI: 10.1007/978-3-030-91311-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Natural Killer (NK) cells are effector lymphocytes with the ability to generate an antitumor response. NK cells encompass a diverse group of subsets with different properties and have the capacity to kill cancer cells by different means. However, tumor cells have developed several mechanisms to evade NK cell-mediated killing. In this chapter, we summarize some aspects of NK cell biology with the aim to understand the competence of these cells and explore some of the challenges that NK cells have to face in different malignancies. Moreover, we will review the current knowledge about the role of NK cells in tumor progression and describe their phenotype and effector functions in tumor tissues and peripheral blood from cancer patients. Finally, we will recapitulate several findings from different studies focused on determining the prognostic value of NK cells in distinct cancers.
Collapse
Affiliation(s)
- Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
49
|
Zhang L, Li J, Zhang M, Wang L, Yang T, Shao Q, Liang X, Ma M, Zhang N, Jing M, Song R, Fan J. Identification of a Six-Gene Prognostic Signature Characterized by Tumor Microenvironment Immune Profiles in Clear Cell Renal Cell Carcinoma. Front Genet 2021; 12:722421. [PMID: 34868201 PMCID: PMC8637193 DOI: 10.3389/fgene.2021.722421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is widely acknowledged to be extremely sensitive to immunotherapy, emphasizing the tremendous impacts on which the tumor microenvironment (TME) has shown. However, the molecular subgroups characterized by the TME features scarcely serve as the risk stratification guides in clinical practice for survival outcomes and immunotherapy response prediction. This study generated fresh insights into a novel TME-related prognostic signature derived from The Cancer Genome Atlas database using integrated bioinformatics analyses. Subsequently, Kaplan–Meier survival analysis, receiver operating characteristic analysis, and univariate and multivariate Cox regression analysis were performed to evaluate and validate the efficacy and the accuracy of the signature in ccRCC prognosis. Furthermore, we discovered that the risk score presented an increased likelihood of correlation with miscellaneous clinicopathological characteristics, natural killer cell-mediated cytotoxicity, immune cell infiltration levels, and immune checkpoint expression. These findings highlighted the notion that the six-gene signature characterized by the TME features may have implications on the risk stratification for personalized and precise immunotherapeutic management.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianlong Li
- Department of Urology, Xi'an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, China
| | - Mengzhao Zhang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lu Wang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Yang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiuya Shao
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao Liang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minghai Ma
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nan Zhang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minxuan Jing
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rundong Song
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinhai Fan
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| |
Collapse
|
50
|
Kulbay M, Paimboeuf A, Ozdemir D, Bernier J. Review of cancer cell resistance mechanisms to apoptosis and actual targeted therapies. J Cell Biochem 2021; 123:1736-1761. [PMID: 34791699 DOI: 10.1002/jcb.30173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/04/2021] [Accepted: 10/22/2021] [Indexed: 11/11/2022]
Abstract
The apoptosis pathway is a programmed cell death mechanism that is crucial for cellular and tissue homeostasis and organ development. There are three major caspase-dependent pathways of apoptosis that ultimately lead to DNA fragmentation. Cancerous cells are known to highly regulate the apoptotic pathway and its role in cancer hallmark acquisition has been discussed over the past decades. Numerous mutations in cancer cell types have been reported to be implicated in chemoresistance and treatment outcome. In this review, we summarize the mutations of the caspase-dependant apoptotic pathways that are the source of cancer development and the targeted therapies currently available or in trial.
Collapse
Affiliation(s)
- Merve Kulbay
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada.,Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Adeline Paimboeuf
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Derman Ozdemir
- Department of Medicine, One Brooklyn Health-Brookdale Hospital Medical Center, Brooklyn, New York, USA
| | - Jacques Bernier
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| |
Collapse
|