1
|
Pellicci DG, Tavakolinia N, Perriman L, Berzins SP, Menne C. Thymic development of human natural killer T cells: recent advances and implications for immunotherapy. Front Immunol 2024; 15:1441634. [PMID: 39267746 PMCID: PMC11390520 DOI: 10.3389/fimmu.2024.1441634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are a subset of lipid-reactive, unconventional T cells that have anti-tumor properties that make them a promising target for cancer immunotherapy. Recent studies have deciphered the developmental pathway of human MAIT and Vγ9Vδ2 γδ-T cells as well as murine iNKT cells, yet our understanding of human NKT cell development is limited. Here, we provide an update in our understanding of how NKT cells develop in the human body and how knowledge regarding their development could enhance human treatments by targeting these cells.
Collapse
Affiliation(s)
- Daniel G Pellicci
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Naeimeh Tavakolinia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Louis Perriman
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Fiona Elsey Cancer Institute, Ballarat, VIC, Australia
- Federation University Australia, Ballarat, VIC, Australia
| | - Stuart P Berzins
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
- Federation University Australia, Ballarat, VIC, Australia
| | | |
Collapse
|
2
|
Luo M, Li Q, Gu Q, Zhang C. Fusobacterium nucleatum: a novel regulator of antitumor immune checkpoint blockade therapy in colorectal cancer. Am J Cancer Res 2024; 14:3962-3975. [PMID: 39267665 PMCID: PMC11387864 DOI: 10.62347/myza2640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Neoadjuvant immune checkpoint blockade (ICB) has achieved significant success in treating various cancers, leading to improved therapeutic responses and survival rates among patients. However, in colorectal cancer (CRC), ICB has yielded poor results in tumors that are mismatch repair proficient, microsatellite-stable, or have low levels of microsatellite instability (MSI-L), which account for up to 95% of CRC cases. The underlying mechanisms behind the lack of immune response in MSI-negative CRC to immune checkpoint inhibitors remain an open conundrum. Consequently, there is an urgent need to explore the intrinsic mechanisms and related biomarkers to enhance the intratumoral immune response and render the tumor "immune-reactive". Intestinal microbes, such as the oral microbiome member Fusobacterium nucleatum (F. nucleatum), have recently been thought to play a crucial role in regulating effective immunotherapeutic responses. Herein, we advocate the idea that a complex interplay involving F. nucleatum, the local immune system, and the tumor microenvironment (TME) significantly influences ICB responses. Several mechanisms have been proposed, including the regulation of immune cell proliferation, inhibition of T lymphocyte, natural killer (NK) cell function, and invariant natural killer T (iNKT) cell function, as well as modification of the TME. This review aims to summarize the latest potential roles and mechanisms of F. nucleatum in antitumor immunotherapies for CRC. Additionally, it discusses the clinical application value of F. nucleatum as a biomarker for CRC and explores novel strategies, such as nano-delivery systems, for modulating F. nucleatum to enhance the efficacy of ICB therapy.
Collapse
Affiliation(s)
- Mengjie Luo
- Department of Clinical Laboratory Science, Shenzhen Yantian District People's Hospital Shenzhen 518081, Guangdong, China
| | - Qi Li
- Department of Clinical Laboratory Science, Shenzhen Yantian District People's Hospital Shenzhen 518081, Guangdong, China
| | - Qingdan Gu
- Department of Clinical Laboratory Science, Shenzhen Yantian District People's Hospital Shenzhen 518081, Guangdong, China
| | - Chunlei Zhang
- Department of Clinical Laboratory Science, Shenzhen Yantian District People's Hospital Shenzhen 518081, Guangdong, China
| |
Collapse
|
3
|
Dekojová T, Gmucová H, Macečková D, Klieber R, Ostašov P, Leba M, Vlas T, Jungová A, Caputo VS, Čedíková M, Lysák D, Jindra P, Holubová M. Lymphocyte profile in peripheral blood of patients with multiple myeloma. Ann Hematol 2024:10.1007/s00277-024-05820-x. [PMID: 38832999 DOI: 10.1007/s00277-024-05820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Multiple myeloma (MM) is a disease which remains incurable. One of the main reasons is a weakened immune system that allows MM cells to survive. Therefore, the current research is focused on the study of immune system imbalance in MM to find the most effective immunotherapy strategies. Aiming to identify the key points of immune failure in MM patients, we analysed peripheral lymphocytes subsets from MM patients (n = 57) at various stages of the disease course and healthy individuals (HI, n = 15) focusing on T, NK, iNKT, B cells and NK-cell cytokines. Our analysis revealed that MM patients exhibited immune alterations in all studied immune subsets. Compared to HI, MM patients had a significantly lower proportion of CD4 + T cells (19.55% vs. 40.85%; p < 0.001) and CD4 + iNKT cells (18.8% vs. 40%; p < 0.001), within B cells an increased proportion of CD21LCD38L subset (4.5% vs. 0.4%; p < 0.01) and decreased level of memory cells (unswitched 6.1% vs. 14.7%; p < 0.001 and switched 7.8% vs. 11.2%; NS), NK cells displaying signs of activation and exhaustion characterised by a more than 2-fold increase in SLAMF7 MFI (p < 0.001), decreased expression of NKG2D (MFI) and NKp46 (%) on CD16 + 56 + and CD16 + 56- subset respectively (p < 0.05), Effective immunotherapy needs to consider these immune defects and monitoring of the immune status of MM patients is essential to define better interventions in the future.
Collapse
Affiliation(s)
- Tereza Dekojová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Hana Gmucová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Diana Macečková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Robin Klieber
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Pavel Ostašov
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Martin Leba
- Faculty of Applied Science, University of West Bohemia, Pilsen, 301 00, Czech Republic
| | - Tomáš Vlas
- Institute of Allergology and Immunology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Alexandra Jungová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Valentina S Caputo
- Cancer Biology and Therapy laboratory, School of Applied Sciences, London South Bank University, London, UK
| | - Miroslava Čedíková
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Daniel Lysák
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Pavel Jindra
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Monika Holubová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic.
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic.
| |
Collapse
|
4
|
Meulewaeter S, Aernout I, Deprez J, Engelen Y, De Velder M, Franceschini L, Breckpot K, Van Calenbergh S, Asselman C, Boucher K, Impens F, De Smedt SC, Verbeke R, Lentacker I. Alpha-galactosylceramide improves the potency of mRNA LNP vaccines against cancer and intracellular bacteria. J Control Release 2024; 370:379-391. [PMID: 38697317 DOI: 10.1016/j.jconrel.2024.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Although various types of mRNA-based vaccines have been explored, the optimal conditions for induction of both humoral and cellular immunity remain rather unknown. In this study, mRNA vaccines of nucleoside-modified mRNA in lipoplexes (LPXs) or lipid nanoparticles (LNPs) were evaluated after administration in mice through different routes, assessing mRNA delivery, tolerability and immunogenicity. In addition, we investigated whether mRNA vaccines could benefit from the inclusion of the adjuvant alpha-galactosylceramide (αGC), an invariant Natural Killer T (iNKT) cell ligand. Intramuscular (IM) vaccination with ovalbumin (OVA)-encoding mRNA encapsulated in LNPs adjuvanted with αGC showed the highest antibody- and CD8+ T cell responses. Furthermore, we observed that addition of signal peptides and endocytic sorting signals of either LAMP1 or HLA-B7 in the OVA-encoding mRNA sequence further enhanced CD8+ T cell activation although reducing the induction of IgG antibody responses. Moreover, mRNA LNPs with the ionizable lipidoid C12-200 exhibited higher pro-inflammatory- and reactogenic activity compared to mRNA LNPs with SM-102, correlating with increased T cell activation and antitumor potential. We also observed that αGC could further enhance the cellular immunity of clinically relevant mRNA LNP vaccines, thereby promoting therapeutic antitumor potential. Finally, a Listeria monocytogenes mRNA LNP vaccine supplemented with αGC showed synergistic protective effects against listeriosis, highlighting a key advantage of co-activating iNKT cells in antibacterial mRNA vaccines. Taken together, our study offers multiple insights for optimizing the design of mRNA vaccines for disease applications, such as cancer and intracellular bacterial infections.
Collapse
Affiliation(s)
- Sofie Meulewaeter
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - Ilke Aernout
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - Joke Deprez
- Inflammation Research Center, VIB-UGent, Zwijnaarde, Belgium
| | - Yanou Engelen
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - Margo De Velder
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - Lorenzo Franceschini
- Translational Oncology Research Center, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Translational Oncology Research Center, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Serge Van Calenbergh
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| | - Caroline Asselman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katie Boucher
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Proteomics Core, VIB, Ghent, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Proteomics Core, VIB, Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium.
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
5
|
Cui G, Abe S, Kato R, Ikuta K. Insights into the heterogeneity of iNKT cells: tissue-resident and circulating subsets shaped by local microenvironmental cues. Front Immunol 2024; 15:1349184. [PMID: 38440725 PMCID: PMC10910067 DOI: 10.3389/fimmu.2024.1349184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are a distinct subpopulation of innate-like T lymphocytes. They are characterized by semi-invariant T cell receptors (TCRs) that recognize both self and foreign lipid antigens presented by CD1d, a non-polymorphic MHC class I-like molecule. iNKT cells play a critical role in stimulating innate and adaptive immune responses, providing an effective defense against infections and cancers, while also contributing to chronic inflammation. The functions of iNKT cells are specific to their location, ranging from lymphoid to non-lymphoid tissues, such as the thymus, lung, liver, intestine, and adipose tissue. This review aims to provide insights into the heterogeneity of development and function in iNKT cells. First, we will review the expression of master transcription factors that define subsets of iNKT cells and their production of effector molecules such as cytokines and granzymes. In this article, we describe the gene expression profiles contributing to the kinetics, distribution, and cytotoxicity of iNKT cells across different tissue types. We also review the impact of cytokine production in distinct immune microenvironments on iNKT cell heterogeneity, highlighting a recently identified circulating iNKT cell subset. Additionally, we explore the potential of exploiting iNKT cell heterogeneity to create potent immunotherapies for human cancers in the future.
Collapse
Affiliation(s)
- Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryoma Kato
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Ji S, Shi Y, Yin B. Macrophage barrier in the tumor microenvironment and potential clinical applications. Cell Commun Signal 2024; 22:74. [PMID: 38279145 PMCID: PMC10811890 DOI: 10.1186/s12964-023-01424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024] Open
Abstract
The tumor microenvironment (TME) constitutes a complex microenvironment comprising a diverse array of immune cells and stromal components. Within this intricate context, tumor-associated macrophages (TAMs) exhibit notable spatial heterogeneity. This heterogeneity contributes to various facets of tumor behavior, including immune response modulation, angiogenesis, tissue remodeling, and metastatic potential. This review summarizes the spatial distribution of macrophages in both the physiological environment and the TME. Moreover, this paper explores the intricate interactions between TAMs and diverse immune cell populations (T cells, dendritic cells, neutrophils, natural killer cells, and other immune cells) within the TME. These bidirectional exchanges form a complex network of immune interactions that influence tumor immune surveillance and evasion strategies. Investigating TAM heterogeneity and its intricate interactions with different immune cell populations offers potential avenues for therapeutic interventions. Additionally, this paper discusses therapeutic strategies targeting macrophages, aiming to uncover novel approaches for immunotherapy. Video Abstract.
Collapse
Affiliation(s)
- Shuai Ji
- Department of Urinary Surgery, The Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Yuqing Shi
- Department of Respiratory Medicine, Shenyang 10th People's Hospital, Shenyang, 110096, China
| | - Bo Yin
- Department of Urinary Surgery, The Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
7
|
Díaz-Basabe A, Lattanzi G, Perillo F, Amoroso C, Baeri A, Farini A, Torrente Y, Penna G, Rescigno M, Ghidini M, Cassinotti E, Baldari L, Boni L, Vecchi M, Caprioli F, Facciotti F, Strati F. Porphyromonas gingivalis fuels colorectal cancer through CHI3L1-mediated iNKT cell-driven immune evasion. Gut Microbes 2024; 16:2388801. [PMID: 39132842 PMCID: PMC11321422 DOI: 10.1080/19490976.2024.2388801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
The interaction between the gut microbiota and invariant Natural Killer T (iNKT) cells plays a pivotal role in colorectal cancer (CRC). The pathobiont Fusobacterium nucleatum influences the anti-tumor functions of CRC-infiltrating iNKT cells. However, the impact of other bacteria associated with CRC, like Porphyromonas gingivalis, on their activation status remains unexplored. In this study, we demonstrate that mucosa-associated P. gingivalis induces a protumour phenotype in iNKT cells, subsequently influencing the composition of mononuclear-phagocyte cells within the tumor microenvironment. Mechanistically, in vivo and in vitro experiments showed that P. gingivalis reduces the cytotoxic functions of iNKT cells, hampering the iNKT cell lytic machinery through increased expression of chitinase 3-like-1 protein (CHI3L1). Neutralization of CHI3L1 effectively restores iNKT cell cytotoxic functions suggesting a therapeutic potential to reactivate iNKT cell-mediated antitumour immunity. In conclusion, our data demonstrate how P. gingivalis accelerates CRC progression by inducing the upregulation of CHI3L1 in iNKT cells, thus impairing their cytotoxic functions and promoting host tumor immune evasion.
Collapse
Affiliation(s)
- Angélica Díaz-Basabe
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Georgia Lattanzi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Baeri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Yvan Torrente
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Centro Dino Ferrari, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Giuseppe Penna
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Michele Ghidini
- Medical Oncology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Cassinotti
- Department of General and Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Ludovica Baldari
- Department of General and Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Luigi Boni
- Department of General and Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesco Strati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
8
|
Ikuta K, Asahi T, Cui G, Abe S, Takami D. Control of the Development, Distribution, and Function of Innate-Like Lymphocytes and Innate Lymphoid Cells by the Tissue Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:111-127. [PMID: 38467976 DOI: 10.1007/978-981-99-9781-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Recently, considerable attention has been directed toward innate-like T cells (ITCs) and innate lymphoid cells (ILCs) owing to their indispensable contributions to immune responses, tissue homeostasis, and inflammation. Innate-like T cells include NKT cells, MAIT cells, and γδ T cells, whereas ILCs include NK cells, type 1 ILCs (ILC1s), type 2 ILCs (ILC2s), and type 3 ILCs (ILC3s). Many of these ITCs and ILCs are distributed to specific tissues and remain tissue-resident, while others, such as NK cells and some γδ T cells, circulate through the bloodstream. Nevertheless, recent research has shed light on novel subsets of innate immune cells that exhibit characteristics intermediate between tissue-resident and circulating states under normal and pathological conditions. The local microenvironment frequently influences the development, distribution, and function of these innate immune cells. This review aims to consolidate the current knowledge on the functional heterogeneity of ITCs and ILCs, shaped by local environmental cues, with particular emphasis on IL-15, which governs the activities of the innate immune cells involved in type 1 immune responses.
Collapse
Affiliation(s)
- Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Takuma Asahi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Daichi Takami
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Ertveldt T, Meulewaeter S, De Vlaeminck Y, Olarte O, Broos K, Van Calenbergh S, Bourgeois S, Deprez J, Heremans Y, Goyvaerts C, Staels W, De Smedt S, Dewitte H, Devoogdt N, Keyaerts M, Verbeke R, Barbé K, Lentacker I, Breckpot K. Nanobody-mediated SPECT/CT imaging reveals the spatiotemporal expression of programmed death-ligand 1 in response to a CD8 + T cell and iNKT cell activating mRNA vaccine. Theranostics 2023; 13:5483-5500. [PMID: 37908728 PMCID: PMC10614673 DOI: 10.7150/thno.85106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/06/2023] [Indexed: 11/02/2023] Open
Abstract
Rationale: Although promising responses are obtained in patients treated with immune checkpoint inhibitors targeting programmed death ligand 1 (PD-L1) and its receptor programmed death-1 (PD-1), only a fraction of patients benefits from this immunotherapy. Cancer vaccination may be an effective approach to improve the response to immune checkpoint inhibitors anti-PD-L1/PD-1 therapy. However, there is a lack of research on the dynamics of PD-L1 expression in response to cancer vaccination. Methods: We performed non-invasive whole-body imaging to visualize PD-L1 expression at different timepoints after vaccination of melanoma-bearing mice. Mice bearing ovalbumin (OVA) expressing B16 tumors were i.v. injected with the Galsome mRNA vaccine: OVA encoding mRNA lipoplexes co-encapsulating a low or a high dose of the atypical adjuvant α-galactosylceramide (αGC) to activate invariant natural killer T (iNKT) cells. Serial non-invasive whole-body immune imaging was performed using a technetium-99m (99mTc)-labeled anti-PD-L1 nanobody, single-photon emission computerized tomography (SPECT) and X-ray computed tomography (CT) images were quantified. Additionally, cellular expression of PD-L1 was evaluated with flow cytometry. Results: SPECT/CT-imaging showed a rapid and systemic upregulation of PD-L1 after vaccination. PD-L1 expression could not be correlated to the αGC-dose, although we observed a dose-dependent iNKT cell activation. Dynamics of PD-L1 expression were organ-dependent and most pronounced in lungs and liver, organs to which the vaccine was distributed. PD-L1 expression in lungs increased immediately after vaccination and gradually decreased over time, whereas in liver, vaccination-induced PD-L1 upregulation was short-lived. Flow cytometric analysis of these organs further showed myeloid cells as well as non-immune cells with elevated PD-L1 expression in response to vaccination. SPECT/CT imaging of the tumor demonstrated that the expression of PD-L1 remained stable over time and was overall not affected by vaccination although flow cytometric analysis at the cellular level demonstrated changes in PD-L1 expression in various immune cell populations following vaccination. Conclusion: Repeated non-invasive whole-body imaging using 99mTc-labeled anti-PD-L1 nanobodies allows to document the dynamic nature of PD-L1 expression upon vaccination. Galsome vaccination rapidly induced systemic upregulation of PD-L1 expression with the most pronounced upregulation in lungs and liver while flow cytometry analysis showed upregulation of PD-L1 in the tumor microenvironment. This study shows that imaging using nanobodies may be useful for monitoring vaccine-mediated PD-L1 modulation in patients and could provide a rationale for combination therapy. To the best of our knowledge, this is the first report that visualizes PD-L1 expression upon cancer vaccination.
Collapse
Affiliation(s)
- Thomas Ertveldt
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Sofie Meulewaeter
- Ghent research Group on Nanomedicines, Laboratory of Physical Pharmacy and General Biochemistry, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent B-9000, Belgium
| | - Yannick De Vlaeminck
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Oscar Olarte
- Biostatistics and Medical Informatics Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Katrijn Broos
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Serge Van Calenbergh
- Laboratory of Medicinal Chemistry, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000, Belgium
| | - Stephanie Bourgeois
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Joke Deprez
- Ghent research Group on Nanomedicines, Laboratory of Physical Pharmacy and General Biochemistry, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent B-9000, Belgium
| | - Yves Heremans
- Visual and Spatial Tissue Analysis (VSTA) Core Facility, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Willem Staels
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
- Universitair Ziekenhuis Brussel (UZ Brussel), Department of Pediatrics, Division of Pediatric Endocrinology, Brussels, Belgium
| | - Stefaan De Smedt
- Ghent research Group on Nanomedicines, Laboratory of Physical Pharmacy and General Biochemistry, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent B-9000, Belgium
| | - Heleen Dewitte
- Ghent research Group on Nanomedicines, Laboratory of Physical Pharmacy and General Biochemistry, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent B-9000, Belgium
| | - Nick Devoogdt
- Medical Imaging department, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Marleen Keyaerts
- Medical Imaging department, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Nuclear Medicine Department, UZ Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium
| | - Rein Verbeke
- Ghent research Group on Nanomedicines, Laboratory of Physical Pharmacy and General Biochemistry, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent B-9000, Belgium
| | - Kurt Barbé
- Biostatistics and Medical Informatics Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Ine Lentacker
- Ghent research Group on Nanomedicines, Laboratory of Physical Pharmacy and General Biochemistry, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent B-9000, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| |
Collapse
|
10
|
Pierzchalski A, Zenclussen AC, Herberth G. OMIP-94: Twenty-four-color (thirty-marker) panel for deep immunophenotyping of immune cells in human peripheral blood. Cytometry A 2023; 103:695-702. [PMID: 37254600 DOI: 10.1002/cyto.a.24766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023]
Abstract
This newly established 24-color (30-marker) panel focuses on the characterization of the main human immune cell subtypes and was optimized for the analysis of human whole blood using a full spectrum flow cytometer. The panel covers all main leukocyte populations: neutrophils, eosinophils and basophils, monocytes (with additional subsets), dendritic cells, innate lymphoid cells and lymphocytes. As for lymphocytes, this panel includes CD4+ T helper, Treg cells, and CD8+ cytotoxic T cells. Further T cells subsets are included with special focus on invariant T cells: γδ T cells (including δ2TCR variant), invariant NKT cells and MAIT (mucosal-associated invariant T cells) cells. Additionally, total B cells (including Bregs and plasmocytes), NK cells, and NKT cells are included. For the overall check of activation status of the analyzed immune cells we used HLA-DR, CD38, CD57, CD69, PD-1, and CD94. In addition, we used CD62L, CD45RA, CD27, and CD39 to describe the differentiation status of these cells. The panel was designed to maximize the information that can be obtained from surface markers in order to avoid the need for fixation and permeabilization steps. The presented multimarker panel offers the possibility to discover new immune cell subtypes which in patients and in cohort studies may lead to the identification of altered immune phenotypes and might give a link to immune system based or to certain other diseases. This panel was developed for a full spectrum flow cytometer equipped with a minimum of three lasers. We developed this panel using healthy human fresh blood, however it was also successfully used for staining of isolated human peripheral blood mononuclear cells (PBMC).
Collapse
Affiliation(s)
- Arkadiusz Pierzchalski
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Perinatal Immunology Research Group, Medical Faculty, Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
11
|
Torre E, Pinton G, Lombardi G, Fallarini S. Melanoma Cells Inhibit iNKT Cell Functions via PGE2 and IDO1. Cancers (Basel) 2023; 15:3498. [PMID: 37444608 DOI: 10.3390/cancers15133498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a distinct group of immune cells known for their immunoregulatory and cytotoxic activities, which are crucial in immune surveillance against tumors. They have been extensively investigated as a potential target for adoptive cell immunotherapy. Despite the initial promise of iNKT cell-based immunotherapy as a treatment for melanoma patients, its effective utilization has unfortunately yielded inconsistent outcomes. The primary cause of this failure is the immunosuppressive tumor microenvironment (TME). In this study, we specifically directed our attention towards melanoma cells, as their roles within the TME remain partially understood and require further elucidation. Methods: We conducted co-culture experiments involving melanoma cell lines and iNKT cells. Results: We demonstrated that melanoma cell lines had a significant impact on the proliferation and functions of iNKT cells. Our findings revealed that co-culture with melanoma cell lines led to a significant impairment in the expression of the NKG2D receptor and cytolytic granules in iNKT cells. Moreover, we observed a strong impairment of their cytotoxic capability induced by the presence of melanoma cells. Furthermore, through the use of selective inhibitors targeting IDO1 and COX-2, we successfully demonstrated that the melanoma cell line's ability to impair iNKT cell activation and functions was attributed to the up-regulation of IDO1 expression and PGE2 production.
Collapse
Affiliation(s)
- Enza Torre
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Giulia Pinton
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Grazia Lombardi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Silvia Fallarini
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
12
|
Lattanzi G, Strati F, Díaz-Basabe A, Perillo F, Amoroso C, Protti G, Rita Giuffrè M, Iachini L, Baeri A, Baldari L, Cassinotti E, Ghidini M, Galassi B, Lopez G, Noviello D, Porretti L, Trombetta E, Messuti E, Mazzarella L, Iezzi G, Nicassio F, Granucci F, Vecchi M, Caprioli F, Facciotti F. iNKT cell-neutrophil crosstalk promotes colorectal cancer pathogenesis. Mucosal Immunol 2023; 16:326-340. [PMID: 37004750 DOI: 10.1016/j.mucimm.2023.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
iNKT cells account for a relevant fraction of effector T-cells in the intestine and are considered an attractive platform for cancer immunotherapy. Although iNKT cells are cytotoxic lymphocytes, their functional role in colorectal cancer (CRC) is still controversial, limiting their therapeutic use. Thus, we examined the immune cell composition and iNKT cell phenotype of CRC lesions in patients (n = 118) and different murine models. High-dimensional single-cell flow-cytometry, metagenomics, and RNA sequencing experiments revealed that iNKT cells are enriched in tumor lesions. The tumor-associated pathobiont Fusobacterium nucleatum induces IL-17 and Granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in iNKT cells without affecting their cytotoxic capability but promoting iNKT-mediated recruitment of neutrophils with polymorphonuclear myeloid-derived suppressor cells-like phenotype and functions. The lack of iNKT cells reduced the tumor burden and recruitment of immune suppressive neutrophils. iNKT cells in-vivo activation with α-galactosylceramide restored their anti-tumor function, suggesting that iNKT cells can be modulated to overcome CRC-associated immune evasion. Tumor co-infiltration by iNKT cells and neutrophils correlates with negative clinical outcomes, highlighting the importance of iNKT cells in the pathophysiology of CRC. Our results reveal a functional plasticity of iNKT cells in CRC, suggesting a pivotal role of iNKT cells in shaping the tumor microenvironment, with relevant implications for treatment.
Collapse
Affiliation(s)
- Georgia Lattanzi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Francesco Strati
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Angélica Díaz-Basabe
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Protti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Maria Rita Giuffrè
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Iachini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alberto Baeri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Ludovica Baldari
- General and Emergency Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Cassinotti
- General and Emergency Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Michele Ghidini
- Medical Oncology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Galassi
- Medical Oncology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluca Lopez
- Pathology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Noviello
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Laura Porretti
- Clinical Chemistry and Microbiology Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Trombetta
- Clinical Chemistry and Microbiology Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eleonora Messuti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Mazzarella
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Giandomenica Iezzi
- Department of Visceral Surgery, EOC Translational Research Laboratory, Bellinzona, Switzerland
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
13
|
Look A, Burns D, Tews I, Roghanian A, Mansour S. Towards a better understanding of human iNKT cell subpopulations for improved clinical outcomes. Front Immunol 2023; 14:1176724. [PMID: 37153585 PMCID: PMC10154573 DOI: 10.3389/fimmu.2023.1176724] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique T lymphocyte population expressing semi-invariant T cell receptors (TCRs) that recognise lipid antigens presented by CD1d. iNKT cells exhibit potent anti-tumour activity through direct killing mechanisms and indirectly through triggering the activation of other anti-tumour immune cells. Because of their ability to induce potent anti-tumour responses, particularly when activated by the strong iNKT agonist αGalCer, they have been the subject of intense research to harness iNKT cell-targeted immunotherapies for cancer treatment. However, despite potent anti-tumour efficacy in pre-clinical models, the translation of iNKT cell immunotherapy into human cancer patients has been less successful. This review provides an overview of iNKT cell biology and why they are of interest within the context of cancer immunology. We focus on the iNKT anti-tumour response, the seminal studies that first reported iNKT cytotoxicity, their anti-tumour mechanisms, and the various described subsets within the iNKT cell repertoire. Finally, we discuss several barriers to the successful utilisation of iNKT cells in human cancer immunotherapy, what is required for a better understanding of human iNKT cells, and the future perspectives facilitating their exploitation for improved clinical outcomes.
Collapse
Affiliation(s)
- Alex Look
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Daniel Burns
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ivo Tews
- Biological Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Salah Mansour
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
14
|
Taggenbrock RLRE, van Gisbergen KPJM. ILC1: Development, maturation, and transcriptional regulation. Eur J Immunol 2023; 53:e2149435. [PMID: 36408791 PMCID: PMC10099236 DOI: 10.1002/eji.202149435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
Type 1 Innate Lymphoid cells (ILC1s) are tissue-resident cells that partake in the regulation of inflammation and homeostasis. A major feature of ILC1s is their ability to rapidly respond after infections. The effector repertoire of ILC1s includes the pro-inflammatory cytokines IFN-γ and TNF-α and cytotoxic mediators such as granzymes, which enable ILC1s to establish immune responses and to directly kill target cells. Recent advances in the characterization of ILC1s have considerably furthered our understanding of ILC1 development and maintenance in tissues. In particular, it has become clear how ILC1s operate independently from conventional natural killer cells, with which they share many characteristics. In this review, we discuss recent developments with regards to the differentiation, polarization, and effector maturation of ILC1s. These processes may underlie the observed heterogeneity in ILC1 populations within and between different tissues. Next, we highlight transcriptional programs that control each of the separate steps in the differentiation of ILC1s. These transcriptional programs are shared with other tissue-resident type-1 lymphocytes, such as tissue-resident memory T cells (TRM ) and invariant natural killer T cells (iNKT), highlighting that ILC1s utilize networks of transcriptional regulation that are conserved between lymphocyte lineages to respond effectively to tissue-invading pathogens.
Collapse
Affiliation(s)
- Renske L R E Taggenbrock
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Avraham R, Melamed S, Achdout H, Erez N, Israeli O, Barlev-Gross M, Pasmanik-Chor M, Paran N, Israely T, Vitner EB. Antiviral activity of glucosylceramide synthase inhibitors in alphavirus infection of the central nervous system. Brain Commun 2023; 5:fcad086. [PMID: 37168733 PMCID: PMC10165247 DOI: 10.1093/braincomms/fcad086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 12/23/2022] [Accepted: 03/23/2023] [Indexed: 05/13/2023] Open
Abstract
Virus-induced CNS diseases impose a considerable human health burden worldwide. For many viral CNS infections, neither antiviral drugs nor vaccines are available. In this study, we examined whether the synthesis of glycosphingolipids, major membrane lipid constituents, could be used to establish an antiviral therapeutic target. We found that neuroinvasive Sindbis virus altered the sphingolipid levels early after infection in vitro and increased the levels of gangliosides GA1 and GM1 in the sera of infected mice. The alteration in the sphingolipid levels appears to play a role in neuroinvasive Sindbis virus replication, as treating infected cells with UDP-glucose ceramide glucosyltransferase (UGCG) inhibitors reduced the replication rate. Moreover, the UGCG inhibitor GZ-161 increased the survival rates of Sindbis-infected mice, most likely by reducing the detrimental immune response activated by sphingolipids in the brains of Sindbis virus-infected mice. These findings suggest a role for glycosphingolipids in the host immune response against neuroinvasive Sindbis virus and suggest that UGCG inhibitors should be further examined as antiviral therapeutics for viral infections of the CNS.
Collapse
Affiliation(s)
- Roy Avraham
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Sharon Melamed
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Hagit Achdout
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Noam Erez
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Moria Barlev-Gross
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Science, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Einat B Vitner
- Correspondence to: Einat B. Vitner Department of Infectious Diseases Israel Institute for Biological Research P.O.B 19, 7410001 Ness-Ziona, Israel E-mail:
| |
Collapse
|
16
|
Lingel I, Wilburn AN, Hargis J, McAlees JW, Laumonnier Y, Chougnet CA, Deshmukh H, König P, Lewkowich IP, Schmudde I. Prenatal antibiotics exposure does not influence experimental allergic asthma in mice. Front Immunol 2022; 13:937577. [PMID: 36032166 PMCID: PMC9399857 DOI: 10.3389/fimmu.2022.937577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Changes in microbiome (dysbiosis) contribute to severity of allergic asthma. Preexisting epidemiological studies in humans correlate perinatal dysbiosis with increased long-term asthma severity. However, these studies cannot discriminate between prenatal and postnatal effects of dysbiosis and suffer from a high variability of dysbiotic causes ranging from antibiotic treatment, delivery by caesarian section to early-life breastfeeding practices. Given that maternal antibiotic exposure in mice increases the risk of newborn bacterial pneumonia in offspring, we hypothesized that prenatal maternal antibiotic-induced dysbiosis induces long-term immunological effects in the offspring that also increase long-term asthma severity. Therefore, dams were exposed to antibiotics (gentamycin, ampicillin, vancomycin) from embryonic day 15 until birth. Six weeks later, asthma was induced in the offspring by repeated applications of house dust mite extract. Airway function, cytokine production, pulmonary cell composition and distribution were assessed. Our study revealed that prenatally induced dysbiosis in mice led to an increase in pulmonary Th17+ non-conventional T cells with limited functional effect on airway resistance, pro-asthmatic Th2/Th17 cytokine production, pulmonary localization and cell-cell contacts. These data indicate that dysbiosis-related immune-modulation with long-term effects on asthma development occurs to a lesser extent prenatally and will allow to focus future studies on more decisive postnatal timeframes.
Collapse
Affiliation(s)
- Imke Lingel
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Adrienne N. Wilburn
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - Julie Hargis
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jaclyn W. McAlees
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Yves Laumonnier
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Hitesh Deshmukh
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Peter König
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Ian P. Lewkowich
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Inken Schmudde
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
- *Correspondence: Inken Schmudde,
| |
Collapse
|
17
|
Loureiro JP, Cruz MS, Cardoso AP, Oliveira MJ, Macedo MF. Human iNKT Cells Modulate Macrophage Survival and Phenotype. Biomedicines 2022; 10:1723. [PMID: 35885028 PMCID: PMC9313099 DOI: 10.3390/biomedicines10071723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
CD1d-restricted invariant Natural Killer T (iNKT) cells are unconventional innate-like T cells whose functions highly depend on the interactions they establish with other immune cells. Although extensive studies have been reported on the communication between iNKT cells and macrophages in mice, less data is available regarding the relevance of this crosstalk in humans. Here, we dove into the human macrophage-iNKT cell axis by exploring how iNKT cells impact the survival and polarization of pro-inflammatory M1-like and anti-inflammatory M2-like monocyte-derived macrophages. By performing in vitro iNKT cell-macrophage co-cultures followed by flow cytometry analysis, we demonstrated that antigen-stimulated iNKT cells induce a generalized activated state on all macrophage subsets, leading to upregulation of CD40 and CD86 expression. CD40L blocking with a specific monoclonal antibody prior to co-cultures abrogated CD40 and CD86 upregulation, thus indicating that iNKT cells required CD40-CD40L co-stimulation to trigger macrophage activation. In addition, activated iNKT cells were cytotoxic towards macrophages in a CD1d-dependent manner, killing M1-like macrophages more efficiently than their naïve M0 or anti-inflammatory M2-like counterparts. Hence, this work highlighted the role of human iNKT cells as modulators of macrophage survival and phenotype, untangling key features of the human macrophage-iNKT cell axis and opening perspectives for future therapeutic modulation.
Collapse
Affiliation(s)
- J. Pedro Loureiro
- Cell Activation and Gene Expression Group, Institute for Molecular and Cell Biology (IBMC), Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (J.P.L.); (M.S.C.)
- Experimental Immunology Group, Department of Biomedicine (DBM), University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Mariana S. Cruz
- Cell Activation and Gene Expression Group, Institute for Molecular and Cell Biology (IBMC), Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (J.P.L.); (M.S.C.)
- Department of Medical Sciences, University of Aveiro (UA), 3810-193 Aveiro, Portugal
| | - Ana P. Cardoso
- Tumour and Microenvironment Interactions Group, Institute of Biomedical Engineering (INEB), Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.C.); (M.J.O.)
| | - Maria J. Oliveira
- Tumour and Microenvironment Interactions Group, Institute of Biomedical Engineering (INEB), Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.C.); (M.J.O.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - M. Fátima Macedo
- Cell Activation and Gene Expression Group, Institute for Molecular and Cell Biology (IBMC), Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (J.P.L.); (M.S.C.)
- Department of Medical Sciences, University of Aveiro (UA), 3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
Li YR, Zhou Y, Wilson M, Kramer A, Hon R, Zhu Y, Fang Y, Yang L. Tumor-Localized Administration of α-GalCer to Recruit Invariant Natural Killer T Cells and Enhance Their Antitumor Activity against Solid Tumors. Int J Mol Sci 2022; 23:7547. [PMID: 35886891 PMCID: PMC9317565 DOI: 10.3390/ijms23147547] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022] Open
Abstract
Invariant natural killer T (iNKT) cells have the capacity to mount potent anti-tumor reactivity and have therefore become a focus in the development of cell-based immunotherapy. iNKT cells attack tumor cells using multiple mechanisms with a high efficacy; however, their clinical application has been limited because of their low numbers in cancer patients and difficulties in infiltrating solid tumors. In this study, we aimed to overcome these critical limitations by using α-GalCer, a synthetic glycolipid ligand specifically activating iNKT cells, to recruit iNKT to solid tumors. By adoptively transferring human iNKT cells into tumor-bearing humanized NSG mice and administering a single dose of tumor-localized α-GalCer, we demonstrated the rapid recruitment of human iNKT cells into solid tumors in as little as one day and a significantly enhanced tumor killing ability. Using firefly luciferase-labeled iNKT cells, we monitored the tissue biodistribution and pharmacokinetics/pharmacodynamics (PK/PD) of human iNKT cells in tumor-bearing NSG mice. Collectively, these preclinical studies demonstrate the promise of an αGC-driven iNKT cell-based immunotherapy to target solid tumors with higher efficacy and precision.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (M.W.); (A.K.); (R.H.); (Y.Z.); (Y.F.)
| | - Yang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (M.W.); (A.K.); (R.H.); (Y.Z.); (Y.F.)
| | - Matthew Wilson
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (M.W.); (A.K.); (R.H.); (Y.Z.); (Y.F.)
| | - Adam Kramer
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (M.W.); (A.K.); (R.H.); (Y.Z.); (Y.F.)
| | - Ryan Hon
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (M.W.); (A.K.); (R.H.); (Y.Z.); (Y.F.)
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (M.W.); (A.K.); (R.H.); (Y.Z.); (Y.F.)
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (M.W.); (A.K.); (R.H.); (Y.Z.); (Y.F.)
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (M.W.); (A.K.); (R.H.); (Y.Z.); (Y.F.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
19
|
Herrera-Campos AB, Zamudio-Martinez E, Delgado-Bellido D, Fernández-Cortés M, Montuenga LM, Oliver FJ, Garcia-Diaz A. Implications of Hyperoxia over the Tumor Microenvironment: An Overview Highlighting the Importance of the Immune System. Cancers (Basel) 2022; 14:2740. [PMID: 35681719 PMCID: PMC9179641 DOI: 10.3390/cancers14112740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperoxia is used in order to counteract hypoxia effects in the TME (tumor microenvironment), which are described to boost the malignant tumor phenotype and poor prognosis. The reduction of tumor hypoxic state through the formation of a non-aberrant vasculature or an increase in the toxicity of the therapeutic agent improves the efficacy of therapies such as chemotherapy. Radiotherapy efficacy has also improved, where apoptotic mechanisms seem to be implicated. Moreover, hyperoxia increases the antitumor immunity through diverse pathways, leading to an immunopermissive TME. Although hyperoxia is an approved treatment for preventing and treating hypoxemia, it has harmful side-effects. Prolonged exposure to high oxygen levels may cause acute lung injury, characterized by an exacerbated immune response, and the destruction of the alveolar-capillary barrier. Furthermore, under this situation, the high concentration of ROS may cause toxicity that will lead not only to cell death but also to an increase in chemoattractant and proinflammatory cytokine secretion. This would end in a lung leukocyte recruitment and, therefore, lung damage. Moreover, unregulated inflammation causes different consequences promoting tumor development and metastasis. This process is known as protumor inflammation, where different cell types and molecules are implicated; for instance, IL-1β has been described as a key cytokine. Although current results show benefits over cancer therapies using hyperoxia, further studies need to be conducted, not only to improve tumor regression, but also to prevent its collateral damage.
Collapse
Affiliation(s)
- Ana Belén Herrera-Campos
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain; (A.B.H.-C.); (E.Z.-M.); (D.D.-B.); (M.F.-C.)
| | - Esteban Zamudio-Martinez
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain; (A.B.H.-C.); (E.Z.-M.); (D.D.-B.); (M.F.-C.)
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Daniel Delgado-Bellido
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain; (A.B.H.-C.); (E.Z.-M.); (D.D.-B.); (M.F.-C.)
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Mónica Fernández-Cortés
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain; (A.B.H.-C.); (E.Z.-M.); (D.D.-B.); (M.F.-C.)
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Luis M. Montuenga
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
- Program in Solid Tumors, CIMA-University of Navarra, 31008 Pamplona, Spain
- Navarra Health Research Institute (IDISNA), 31008 Pamplona, Spain
| | - F. Javier Oliver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain; (A.B.H.-C.); (E.Z.-M.); (D.D.-B.); (M.F.-C.)
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Angel Garcia-Diaz
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain; (A.B.H.-C.); (E.Z.-M.); (D.D.-B.); (M.F.-C.)
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
| |
Collapse
|
20
|
Fang F, Xie S, Chen M, Li Y, Yue J, Ma J, Shu X, He Y, Xiao W, Tian Z. Advances in NK cell production. Cell Mol Immunol 2022; 19:460-481. [PMID: 34983953 PMCID: PMC8975878 DOI: 10.1038/s41423-021-00808-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy based on natural killer (NK) cells is a promising approach for treating a variety of cancers. Unlike T cells, NK cells recognize target cells via a major histocompatibility complex (MHC)-independent mechanism and, without being sensitized, kill the cells directly. Several strategies for obtaining large quantities of NK cells with high purity and high cytotoxicity have been developed. These strategies include the use of cytokine-antibody fusions, feeder cells or membrane particles to stimulate the proliferation of NK cells and enhance their cytotoxicity. Various materials, including peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs) and NK cell lines, have been used as sources to generate NK cells for immunotherapy. Moreover, genetic modification technologies to improve the proliferation of NK cells have also been developed to enhance the functions of NK cells. Here, we summarize the recent advances in expansion strategies with or without genetic manipulation of NK cells derived from various cellular sources. We also discuss the closed, automated and GMP-controlled large-scale expansion systems used for NK cells and possible future NK cell-based immunotherapy products.
Collapse
Affiliation(s)
- Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Siqi Xie
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Minhua Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Yutong Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Jingjing Yue
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Jie Ma
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Xun Shu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Yongge He
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Weihua Xiao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Zhigang Tian
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
21
|
Cruz MS, Loureiro JP, Oliveira MJ, Macedo MF. The iNKT Cell-Macrophage Axis in Homeostasis and Disease. Int J Mol Sci 2022; 23:ijms23031640. [PMID: 35163561 PMCID: PMC8835952 DOI: 10.3390/ijms23031640] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are CD1d-restricted, lipid-reactive T cells that exhibit preponderant immunomodulatory properties. The ultimate protective or deleterious functions displayed by iNKT cells in tissues are known to be partially shaped by the interactions they establish with other immune cells. In particular, the iNKT cell–macrophage crosstalk has gained growing interest over the past two decades. Accumulating evidence has highlighted that this immune axis plays central roles not only in maintaining homeostasis but also during the development of several pathologies. Hence, this review summarizes the reported features of the iNKT cell–macrophage axis in health and disease. We discuss the pathophysiological significance of this interplay and provide an overview of how both cells communicate with each other to regulate disease onset and progression in the context of infection, obesity, sterile inflammation, cancer and autoimmunity.
Collapse
Affiliation(s)
- Mariana S. Cruz
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.S.C.); (J.P.L.)
- Department of Medical Sciences, University of Aveiro (UA), 3810-193 Aveiro, Portugal
| | - José Pedro Loureiro
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.S.C.); (J.P.L.)
- Experimental Immunology Group, Department of Biomedicine (DBM), University of Basel and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Maria J. Oliveira
- Tumour and Microenvironment Interactions Group, Instituto Nacional de Engenharia Biomédica (INEB), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
- Department of Molecular Biology, ICBAS-Institute of Biomedical Sciences Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Fatima Macedo
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.S.C.); (J.P.L.)
- Department of Medical Sciences, University of Aveiro (UA), 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
22
|
Anti-PD-1 therapy activates tumoricidic properties of NKT cells and contributes to the overall deceleration of tumor progression in a model of murine mammary carcinoma. VOJNOSANIT PREGL 2022. [DOI: 10.2298/vsp210126039j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background/Aim. Immune checkpoint therapy is a well-established therapeutic approach in the treatment of malignant diseases and is thought to be mostly based on facilitating the adaptive immune response. However, the cells of the innate immune response, such as natural killer T (NKT) cells, might also be important for a successful anti-programmed cell death protein-1 (anti-PD-1) therapy, as they initiate the antitumor immune response. The aim of this study was to investigate the influence of anti-PD-1 therapy on the immune response against tumors. Methods. For tumor induction, 4T1 cells synergic to BALB/c back-ground were used, after which mice underwent anti-PD-1 treatment. After the mice were sacrificed, NKT cells, dendritic cells (DCs), and macrophages derived from spleen and primary tumor tissue were analyzed using flow cytometry. Results. Anti-PD-1 therapy enhanced the expression of activating molecules CD69, NKp46, and NKG2D in NKT cells of the tumor and spleen. This therapy activated NKT cells directly and indirectly via DCs. Activated NKT cells acquired tumoricidic properties directly, by secreting perforin, and indirectly by stimulating M1 macrophages polarization. Conclusion. Anti-PD-1 therapy activates changes in DCs and macrophages of primary tumor tissue towards protumoricidic activity. Since anti-PD-1 therapy induces significant changes in NKT cells, DCs, and macrophages, the efficacy of the overall antitumor response is increased and has significantly decelerated tumor growth.
Collapse
|
23
|
Hsu CY, Chueh YS, Kuo ML, Lee PT, Hsiao HS, Huang JL, Lin SJ. Expansion of invariant natural killer T cells from systemic lupus erythematosus patients by alpha-Galactosylceramide and IL-15. PLoS One 2021; 16:e0261727. [PMID: 34936686 PMCID: PMC8694473 DOI: 10.1371/journal.pone.0261727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/07/2021] [Indexed: 11/19/2022] Open
Abstract
CD1d-restricted invariant natural killer T cells (iNKT cells) may play an important role in the pathogenesis of systemic lupus erythematosus (SLE). Interleukin (IL)-15 is a pro-inflammatory cytokine which is over-expressed in SLE patients. In the present study, we investigated the iNKT cell expansion of mononuclear cells (MNCs) from SLE patients following 10 days’ culture with α-galactosylceramide (α-Galcer) and /or IL-15. We sought to determine the phenotypic and functional characteristics of the expanded iNKT cells compared to healthy controls and correlated with disease activity. We observed that 1. The percentages of Vα24+/Vβ11+ iNKT cells following 10-day incubation was lower in SLE groups compared to controls; 2. The percentages and absolute numbers of Vα24+/Vβ11+ iNKT cells were expanded by α-galactosylceramide (α-Galcer), and further enhanced with IL-15 in SLE patient, but the effect of IL-15 was much lower than controls; 3.IL-15 +α-Galcer expanded CD3+/CD56+ NKT-like cells from SLE patients, especially with active disease 4. The CD161+ Vα24+/Vβ11+ iNKT cells in SLE were more responsive to α-Galcer stimulation than the CD161- counterpart; 5. IL-15 decreased apoptosis of α-Galcer activated SLE iNKT cells; 6. IL-15 enhanced CD69, CD1d and CD11a expression on α-Galcer treated iNKT cells; 7. The IL-4 production of iNKT cells was decreased in SLE patients compared to controls; 8. IL-15 increased IFN-γ and IL-4 production of SLE iNKT cells; 8. IL-15 failed to augment the ability of iNKT cells to aid NK-mediated K562 cytolysis in SLE patients; 9. CD161 positivity, granzyme B and perforin expression of α-Galcer+IL-15 expanded iNKT cells correlated with C3 levels in SLE patients. Taken together, our results demonstrated numeric and functional deficiency of iNKT cells and their response to IL-15 in SLE patients. Our finding may provide insight for using adoptive iNKT cell therapy in autoimmune diseases.
Collapse
Affiliation(s)
- Chien-Ya Hsu
- Division of Asthma, Allergy, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Shan Chueh
- Division of Asthma, Allergy, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Ling Kuo
- Division of Asthma, Allergy, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Medical and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Pediatrics, New Taipei Municipal Tu Cheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Pei-Tzu Lee
- Division of Asthma, Allergy, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiu-Shan Hsiao
- Division of Asthma, Allergy, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jing-Long Huang
- Division of Asthma, Allergy, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Pediatrics, New Taipei Municipal Tu Cheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- * E-mail: (SJL); (JLH)
| | - Syh-Jae Lin
- Division of Asthma, Allergy, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (SJL); (JLH)
| |
Collapse
|
24
|
Li YR, Dunn ZS, Zhou Y, Lee D, Yang L. Development of Stem Cell-Derived Immune Cells for Off-the-Shelf Cancer Immunotherapies. Cells 2021; 10:cells10123497. [PMID: 34944002 PMCID: PMC8700013 DOI: 10.3390/cells10123497] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cell-based cancer immunotherapy has revolutionized the treatment of hematological malignancies. Specifically, autologous chimeric antigen receptor-engineered T (CAR-T) cell therapies have received approvals for treating leukemias, lymphomas, and multiple myeloma following unprecedented clinical response rates. A critical barrier to the widespread usage of current CAR-T cell products is their autologous nature, which renders these cellular products patient-selective, costly, and challenging to manufacture. Allogeneic cell products can be scalable and readily administrable but face critical concerns of graft-versus-host disease (GvHD), a life-threatening adverse event in which therapeutic cells attack host tissues, and allorejection, in which host immune cells eliminate therapeutic cells, thereby limiting their antitumor efficacy. In this review, we discuss recent advances in developing stem cell-engineered allogeneic cell therapies that aim to overcome the limitations of current autologous and allogeneic cell therapies, with a special focus on stem cell-engineered conventional αβ T cells, unconventional T (iNKT, MAIT, and γδ T) cells, and natural killer (NK) cells.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
| | - Zachary Spencer Dunn
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA;
| | - Yang Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
| | - Derek Lee
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
25
|
Babes L, Shim R, Kubes P. Imaging α-GalCer-activated iNKT cells in a hepatic metastatic environment. Cancer Immunol Res 2021; 10:12-25. [PMID: 34785505 DOI: 10.1158/2326-6066.cir-21-0445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/12/2021] [Accepted: 11/15/2021] [Indexed: 01/10/2023]
Abstract
Colorectal cancer patients frequently develop liver metastases after, and perhaps as a consequence of, lifesaving surgical resection of the primary tumor. This creates a potential opportunity for prophylactic metastatic treatment with novel immunostimulatory molecules. Here, we used state-of-the-art intravital imaging of an experimental liver metastasis model to visualize the early behavior and function of invariant (i)NKT cells stimulated with α-galactosylceramide (α-GalCer). Intravenous α-GalCer prior to tumor cell seeding in the liver significantly inhibited tumor growth. However, some seeding tumor cells survived. A multiple dosing regimen reduced tumor burden and prolonged the life of mice, whereas tumors returned within 5 days after a single dose of α-GalCer. With multiple doses of α-GalCer, iNKT cells increased in number and granularity (as did NK cells). As a result, the total number of contacts and time in contact with tumors increased substantially. In the absence of iNKT cells, the beneficial effect of α-GalCer was lost. Robust cytokine production dissipated over time. Repeated therapy, even after cytokine dissipation, led to reduced tumor burden and prolonged survival. Serial transplantation of tumors exposed to α-GalCer-activated iNKT cells did not induce greater resistance, suggesting no obvious epigenetic or genetic immunoediting in tumors exposed to activated iNKT cells. Very few tumor cells expressed CD1d in this model, and as such, adding monomers of CD1d-α-GalCer further reduced tumor growth. The data suggest early and repeated stimulation of iNKT cells with α-GalCer could have direct therapeutic benefit for colorectal cancer patients that develop metastatic liver disease.
Collapse
Affiliation(s)
- Liane Babes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute and Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Raymond Shim
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
26
|
Luo S, Kwon J, Crossman A, Park PW, Park JH. CD138 expression is a molecular signature but not a developmental requirement for RORγt+ NKT17 cells. JCI Insight 2021; 6:148038. [PMID: 34549726 PMCID: PMC8492317 DOI: 10.1172/jci.insight.148038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/30/2021] [Indexed: 01/12/2023] Open
Abstract
Invariant NKT (iNKT) cells are potent immunomodulatory cells that acquire effector function during their development in the thymus. IL-17-producing iNKT cells are commonly referred to as NKT17 cells, and they are unique among iNKT cells to express the heparan sulfate proteoglycan CD138 and the transcription factor RORγt. Whether and how CD138 and RORγt contribute to NKT17 cell differentiation, and whether there is an interplay between RORγt and CD138 expression to control iNKT lineage fate, remain mostly unknown. Here, we showed that CD138 expression was only associated with and not required for the differentiation and IL-17 production of NKT17 cells. Consequently, CD138-deficient mice still generated robust numbers of IL-17-producing RORγt+ NKT17 cells. Moreover, forced expression of RORγt significantly promoted the generation of thymic NKT17 cells, but did not induce CD138 expression on non-NKT17 cells. These results indicated that NKT17 cell generation and IL-17 production were driven by RORγt, employing mechanisms that were independent of CD138. Therefore, our study effectively dissociated CD138 expression from the RORγt-driven molecular pathway of NKT17 cell differentiation.
Collapse
Affiliation(s)
- Shunqun Luo
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Juntae Kwon
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Assiatu Crossman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Pyong Woo Park
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
27
|
NKT and NKT-like Cells in Autoimmune Neuroinflammatory Diseases-Multiple Sclerosis, Myasthenia Gravis and Guillain-Barre Syndrome. Int J Mol Sci 2021; 22:ijms22179520. [PMID: 34502425 PMCID: PMC8431671 DOI: 10.3390/ijms22179520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
NKT cells comprise three subsets—type I (invariant, iNKT), type II, and NKT-like cells, of which iNKT cells are the most studied subset. They are capable of rapid cytokine production after the initial stimulus, thus they may be important for polarisation of Th cells. Due to this, they may be an important cell subset in autoimmune diseases. In the current review, we are summarising results of NKT-oriented studies in major neurological autoimmune diseases—multiple sclerosis, myasthenia gravis, and Guillain-Barre syndrome and their corresponding animal models.
Collapse
|
28
|
Salminen A. Feed-forward regulation between cellular senescence and immunosuppression promotes the aging process and age-related diseases. Ageing Res Rev 2021; 67:101280. [PMID: 33581314 DOI: 10.1016/j.arr.2021.101280] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Aging is a progressive degenerative process involving a chronic low-grade inflammation and the accumulation of senescent cells. One major issue is to reveal the mechanisms which promote the deposition of pro-inflammatory senescent cells within tissues. The accumulation involves mechanisms which increase cellular senescence as well as those inhibiting the clearance of senescent cells from tissues. It is known that a persistent inflammatory state evokes a compensatory immunosuppression which inhibits pro-inflammatory processes by impairing the functions of effector immune cells, e.g., macrophages, T cells and natural killer (NK) cells. Unfortunately, these cells are indispensable for immune surveillance and the subsequent clearance of senescent cells, i.e., the inflammation-induced counteracting immunosuppression prevents the cleansing of host tissues. Moreover, senescent cells can also repress their own clearance by expressing inhibitors of immune surveillance and releasing the ligands of NKG2D receptors which impair their surveillance by NK and cytotoxic CD8+ T cells. It seems that cellular senescence and immunosuppression establish a feed-forward process which promotes the aging process and age-related diseases. I will examine in detail the immunosuppressive mechanisms which impair the surveillance and clearance of pro-inflammatory senescent cells with aging. In addition, I will discuss several therapeutic strategies to halt the degenerative feed-forward circuit associated with the aging process and age-related diseases.
Collapse
|
29
|
Tanno H, Kanno E, Sato S, Asao Y, Shimono M, Kurosaka S, Oikawa Y, Ishi S, Shoji M, Sato K, Kasamatsu J, Miyasaka T, Yamamoto H, Ishii K, Imai Y, Tachi M, Kawakami K. Contribution of Invariant Natural Killer T Cells to the Clearance of Pseudomonas aeruginosa from Skin Wounds. Int J Mol Sci 2021; 22:3931. [PMID: 33920301 PMCID: PMC8070359 DOI: 10.3390/ijms22083931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic infections are considered one of the most severe problems in skin wounds, and bacteria are present in over 90% of chronic wounds. Pseudomonas aeruginosa is frequently isolated from chronic wounds and is thought to be a cause of delayed wound healing. Invariant natural killer T (iNKT) cells, unique lymphocytes with a potent regulatory ability in various inflammatory responses, accelerate the wound healing process. In the present study, we investigated the contribution of iNKT cells in the host defense against P. aeruginosa inoculation at the wound sites. We analyzed the re-epithelialization, bacterial load, accumulation of leukocytes, and production of cytokines and antimicrobial peptides. In iNKT cell-deficient (Jα18KO) mice, re-epithelialization was significantly decreased, and the number of live colonies was significantly increased, when compared with those in wild-type (WT) mice on day 7. IL-17A, and IL-22 production was significantly lower in Jα18KO mice than in WT mice on day 5. Furthermore, the administration of α-galactosylceramide (α-GalCer), a specific activator of iNKT cells, led to enhanced host protection, as shown by reduced bacterial load, and to increased production of IL-22, IL-23, and S100A9 compared that of with WT mice. These results suggest that iNKT cells promote P. aeruginosa clearance during skin wound healing.
Collapse
Grants
- a Grant-in-Aid for Scientific Research (B) (19H03918), The Ministry of Education, Culture, Sports, Science and Technology of Japan
- a Grant-in-Aid for Challenging Exploratory Research (17K19710) The Ministry of Education, Culture, Sports, Science and Technology of Japan
- a Grant-in-Aid for Young Scientists (17K17393) the Ministry of Education, Culture, Sports, Science and Technology of Japan
- a Grant-in-Aid for Young Scientists (19K19494) The Ministry of Education, Culture, Sports, Science and Technology of Japan
Collapse
Affiliation(s)
- Hiromasa Tanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (E.K.); (S.S.); (Y.A.); (M.S.)
| | - Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (E.K.); (S.S.); (Y.A.); (M.S.)
| | - Suzuna Sato
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (E.K.); (S.S.); (Y.A.); (M.S.)
| | - Yu Asao
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (E.K.); (S.S.); (Y.A.); (M.S.)
| | - Mizuki Shimono
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (E.K.); (S.S.); (Y.A.); (M.S.)
| | - Shiho Kurosaka
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (Y.I.); (M.T.)
| | - Yukari Oikawa
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (Y.O.); (K.I.); (K.K.)
| | - Shinyo Ishi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (Y.I.); (M.T.)
| | - Miki Shoji
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (Y.I.); (M.T.)
| | - Ko Sato
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (K.S.); (J.K.)
| | - Jun Kasamatsu
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (K.S.); (J.K.)
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan;
| | - Hideki Yamamoto
- Graduate School of Health Sciences, Niigata University, 2-746 Asahimachi-dori, Chuo-ku, Niigata 951-8518, Japan;
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (Y.O.); (K.I.); (K.K.)
| | - Yoshimichi Imai
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (Y.I.); (M.T.)
| | - Masahiro Tachi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (Y.I.); (M.T.)
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (Y.O.); (K.I.); (K.K.)
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (K.S.); (J.K.)
| |
Collapse
|
30
|
Translating Unconventional T Cells and Their Roles in Leukemia Antitumor Immunity. J Immunol Res 2021; 2021:6633824. [PMID: 33506055 PMCID: PMC7808823 DOI: 10.1155/2021/6633824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Recently, cell-mediated immune response in malignant neoplasms has become the focus in immunotherapy against cancer. However, in leukemia, most studies on the cytotoxic potential of T cells have concentrated only on T cells that recognize peptide antigens (Ag) presented by polymorphic molecules of the major histocompatibility complex (MHC). This ignores the great potential of unconventional T cell populations, which include gamma-delta T cells (γδ), natural killer T cells (NKT), and mucosal-associated invariant T cells (MAIT). Collectively, these T cell populations can recognize lipid antigens, specially modified peptides and small molecule metabolites, in addition to having several other advantages, which can provide more effective applications in cancer immunotherapy. In recent years, these cell populations have been associated with a repertoire of anti- or protumor responses and play important roles in the dynamics of solid tumors and hematological malignancies, thus, encouraging the development of new investigations in the area. This review focuses on the current knowledge regarding the role of unconventional T cell populations in the antitumor immune response in leukemia and discusses why further studies on the immunotherapeutic potential of these cells are needed.
Collapse
|