1
|
Xing Y, Lv X, Chen X, Du J, Hu D, He R, Liang X, Yang Y. Maackiain induces apoptosis and autophagy via ROS-mediated endoplasmic reticulum stress in endometrial cancer. Int Immunopharmacol 2025; 147:113935. [PMID: 39756166 DOI: 10.1016/j.intimp.2024.113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025]
Abstract
Endometrial cancer (EC) is a common gynecological cancer, characterized by increasing incidence and mortality rates. Maackiain (MA), a natural flavonoid compound, has multiple biological activities, but little is known about how it affects EC cells. In the present study, CCK-8, EdU, colony formation, and flow cytometry assays were used to evaluate the effects of MA on EC cell proliferation, apoptosis, and reactive oxygen species (ROS) levels. The effect of MA on autophagy in EC cells were examined through the observation of cell morphology and ultrastructure, and cells were transfected with AdPlus-mCherry-GFP-LC3B for further analysis. Transcriptomic and western blot analyses revealed the underlying mechanism. To evaluate the anti-EC effect of MA in vivo, a xenograft model was established. The results demonstrated that MA inhibited KLE and Ishikawa cell growth in a dose-dependent manner. Furthermore, MA significantly suppressed EC xenograft tumor growth in vivo while exhibiting low toxicity. In addition, EC cells treated with MA exhibited pro-apoptotic and pro-autophagic responses, with the latter exhibiting cytoprotective properties. MA also induced the accumulation of ROS, which promoted endoplasmic reticulum (ER) stress. Notably, the use of the N-acetyl-L-cysteine (NAC) ROS scavenger and the 4-phenylbutyric acid (4-PBA) ER stress inhibitor effectively mitigated the autophagy and apoptosis induced by MA. These results collectively implied that MA triggers autophagy and apoptosis in EC cells through ROS-mediated ER stress, highlighting its potential as a therapeutic agent against EC.
Collapse
Affiliation(s)
- Yijuan Xing
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China
| | - Xiao Lv
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Xi Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China
| | - Junhong Du
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China
| | - Dan Hu
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000 Gansu, China.
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000 Gansu, China.
| |
Collapse
|
2
|
Haider W, Pan W, Wang D, Niaz W, Zaman MK, Ullah R, Ullah S, Rafiq M, Yu B, Cong H. Maackiain: A comprehensive review of its pharmacology, synthesis, pharmacokinetics and toxicity. Chem Biol Interact 2025; 405:111294. [PMID: 39477181 DOI: 10.1016/j.cbi.2024.111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Maackiain is an important component of some herbs in traditional Chinese medicine (TCM), such as Sophora flavescens Aiton, Spatholobus suberectus Dunn and Paeonia lactiflora Pall. Maackiain belongs to the second largest group of isoflavonoids the pterocarpans that is widespread in several plant genera, for example Maackia, Sophora, Caragana, Trifolium and Millettia. Recently, maackiain has attracting more attention because of its numerous pharmacological properties. This review offers the first extensive overview of maackiain natural isolation sources, pharmacological activities, synthesis, toxicity, and pharmacokinetic properties. The literature search published between 1962 and 2023 were reported by collecting the data from Google Scholar, Science Direct, SpringerLink, Web of Science, PubMed, Wiley Online, China National Knowledge Infrastructure, Scopus and structure search in SciFinder. Finding reveals the broad range of pharmacological activities of maackiain, such as anti-inflammatory, sepsis prevention, anti-cancer, anti-allergic, anti-osteolytic, anti-obesity, nephroprotective, antifungal, neuroprotective, anti-leukemic, antimalarial and inflammasome activation. Based on findings of pharmacokinetic studies, it is observed that maackiain possesses a low level of bioavailability and absorption and a rapid rate of elimination, but maackiain absorption rates in the extract were comparatively much higher than pure forms because of higher solubility and may reduce the metabolism by other ingredients present in the extract. Toxicity investigations revealed that maackiain is non-toxic to the majority of cells and selectively cytotoxic. After witnessing the beneficial pharmacological properties of maackiain, it is believed to be an emerging drug candidate for the treatment of inflammation, allergic, nephroprotection in T2D, depression, or Alzheimer's disease and obesity. However, future research topics should likely to include that elucidates its mechanism of toxicity and in vivo proper tracking of its conducts in drug delivery system. Integrating toxicity and efficiency, as well as structure modification, are critical approaches to enhancing its pharmacological properties and oral bioavailability.
Collapse
Affiliation(s)
- Waqas Haider
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Wei Pan
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Dayang Wang
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Waqas Niaz
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Muhammad Kashif Zaman
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
| | - Raza Ullah
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Shakir Ullah
- College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles. Qingdao University, Qingdao, 266000, Shandong, China
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
3
|
Xing Y, Wang W, Cheng Y, Hu D, Du J, He R, Lv X, Yang Y. Network pharmacology and metabolomics elucidate the underlying effects and mechanisms of maackiain against endometrial cancer. Biochem Biophys Res Commun 2025; 742:151119. [PMID: 39657356 DOI: 10.1016/j.bbrc.2024.151119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
Endometrial carcinoma (EC), a prevalent gynecological cancer, is characterized by rising incidence and mortality rates, highlighting the need for novel treatments to improve patient outcomes. Maackiain (MA) is a natural compound isolated from common herbal medicines, that has been reported to have anti-cancer effects. However, the underlying roles and mechanisms concerning EC remain unclear. This study focused on deeply exploring the potential roles and mechanisms of MA against EC by network pharmacology, experimentally validated, metabolomics, and molecular docking. A total of 86 potential targets of MA against EC were identified by network pharmacology. In vitro experiments further confirmed network pharmacology' predictions. In addition to suppressing EC cell proliferation, MA also paused the cell cycle at the G2/M phase in a dose-dependent manner. This effect is accompanied by increased p21 and phospho-p53 expression, as well as reduced expression of CDK1 and CCNB1. Furthermore, cell metabolomics analysis revealed that 285 metabolites were changed after MA administration, which majorly affects glycerophospholipid metabolism, nucleotide metabolism, choline metabolism in cancer, and purine metabolism. Combination network pharmacology, metabolomics, and molecular docking, PLA2G10, PDE4D, and PDE5A were found to be potential targets for therapeutic intervention. These findings underlined that MA has anti-EC potential by modulating multiple targets including PLA2G10, PDE4D, and PDE5A, inhibiting EC cell proliferation, inducing G2/M phase arrest, and causing metabolic shifts. This study provides theoretical support for advanced experimental research on its clinical applications.
Collapse
Affiliation(s)
- Yijuan Xing
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Wenhua Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Yuemei Cheng
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Dan Hu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Junhong Du
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Xiao Lv
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
4
|
Mishra J, Walecha V, Sophronea T, Singh A, Agrawal S, Luthra PM. BBPT attenuated 6-OHDA-induced toxicity by modulating oxidative stress, apoptotic, and inflammatory proteins in primary neurons and rat models of Parkinson's disease. Neurotoxicology 2024; 105:67-81. [PMID: 39216605 DOI: 10.1016/j.neuro.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) results from the degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Adenosine A2AR acting through the striato-pallidal pathway has emerged as a non-dopaminergic target in the therapy of PD. In the present work, the anti-parkinsonian potential of (4E)-4-(4-bromobenzylideneamino)-3-phenyl-2,3-dihydro-2-thioxo- thiazole-5-carbonitrile (BBPT) was explored. BBPT exhibited significant antioxidant activity in situ. In the MTT assay, the BBPT treatment showed insignificant toxicity to the primary midbrain neuronal (PMDN) cells. 6-OHDA induced PMDN cells, 3 h post-treated with BBPT showed 80-85 % survival of the cells and restoration of dopamine and TNF-α levels. The acute and sub-acute toxicity test for BBPT was performed with Sprague Dawley (SD) rats. In toxicity assay, any significant physical, hematological, or biochemical changes in the rats were not observed. To evaluate the effect of BBPT in vivo, a 6-OHDA-induced unilaterally lesioned SD rat model of PD was established. We observed that the BBPT treatment improved the behavioral symptoms in 6-OHDA-induced unilaterally lesioned rats. The proteins of 6-OHDA-induced BBPT-treated rats were isolated from the brain tissue to assess the antioxidant effect (GSH, catalase, SOD, lipid-peroxidation, nitrite), dopamine levels, and the restoration in the apoptosis and inflammation. Our results demonstrated that BBPT increased the anti-oxidant enzyme levels, restored the caspase-3/Bcl-2 levels to arrest apoptosis, and attenuated the TNF-α/IL-6 levels, thus restoring the neuronal damage in unilaterally lesioned 6-OHDA-induced SD rats. Precisely, the findings suggested that BBPT possessed significant anti-parkinsonian activity and has the potential to prevent dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Jyoti Mishra
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi 110007, India
| | - Vaishali Walecha
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi 110007, India
| | - Tuithung Sophronea
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi 110007, India
| | - Ankit Singh
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi 110007, India
| | - Saurabh Agrawal
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi 110007, India
| | - Pratibha Mehta Luthra
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi 110007, India.
| |
Collapse
|
5
|
Naskar R, Ghosh A, Bhattacharya R, Chakraborty S. A critical appraisal of geroprotective activities of flavonoids in terms of their bio-accessibility and polypharmacology. Neurochem Int 2024; 180:105859. [PMID: 39265701 DOI: 10.1016/j.neuint.2024.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Flavonoids, a commonly consumed natural product, elicit health-benefits such as antioxidant, anti-inflammatory, antiviral, anti-allergic, hepatoprotective, anti-carcinogenic and neuroprotective activities. Several studies have reported the beneficial role of flavonoids in improving memory, learning, and cognition in clinical settings. Their mechanism of action is mediated through the modulation of multiple signalling cascades. This polypharmacology makes them an attractive natural scaffold for designing and developing new effective therapeutics for complex neurological disorders like Alzheimer's disease and Parkinson's disease. Flavonoids are shown to inhibit crucial targets related to neurodegenerative disorders (NDDs), including acetylcholinesterase, butyrylcholinesterase, β-secretase, γ-secretase, α-synuclein, Aβ protein aggregation and neurofibrillary tangles formation. Conserved neuro-signalling pathways related to neurotransmitter biogenesis and inactivation, ease of genetic manipulation and tractability, cost-effectiveness, and their short lifespan make Caenorhabditis elegans one of the most frequently used models in neuroscience research and high-throughput drug screening for neurodegenerative disorders. Here, we critically appraise the neuroprotective activities of different flavonoids based on clinical trials and epidemiological data. This review provides critical insights into the absorption, metabolism, and tissue distribution of various classes of flavonoids, as well as detailed mechanisms of the observed neuroprotective activities at the molecular level, to rationalize the clinical data. We further extend the review to critically evaluate the scope of flavonoids in the disease management of neurodegenerative disorders and review the suitability of C. elegans as a model organism to study the neuroprotective efficacy of flavonoids and natural products.
Collapse
Affiliation(s)
- Roumi Naskar
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| | - Anirrban Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Raja Bhattacharya
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India.
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
6
|
Nwe SY, Uttarawichien T, Boonsom T, Thongphichai W, Dasuni Wasana PW, Sritularak B, Payuhakrit W, Sukrong S, Towiwat P. Bioassay-guided isolation of two antiproliferative metabolites from Pterocarpus indicus Willd. against TGF-β-induced prostate stromal cells (WPMY-1) proliferation via PI3K/AKT signaling pathway. Front Pharmacol 2024; 15:1452887. [PMID: 39421674 PMCID: PMC11483373 DOI: 10.3389/fphar.2024.1452887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Benign prostatic hyperplasia (BPH) is the enlargement of the prostate gland, primarily occurring in aging men, in which transforming growth factor-beta (TGF-β) plays a critical role in prostate cell hyperproliferation and leads to uncomfortable urinary symptoms in BPH patients. Pterocarpus indicus Willd. is well known for its ethnopharmacological applications for treating ailments such as diuresis and bladder stones. Methods This study aimed to examine the effect of P. indicus extract (PI extract) on TGF-β-induced WPMY-1 cell proliferation, followed by bioassay-guided fractionation to isolate the active metabolites. Angolensin (Ang) and maackiain (Mac) were isolated from bioassay-guided fractionation. Network analysis was performed to investigate the potential mechanisms. Furthermore, network analysis of the Ang-Mac combination in BPH highlighted the potential top ten pathways, including PI3K/AKT signaling pathway. Accordingly, subsequent investigation focused on evaluating the effect of PI extract, Ang, Mac, and Ang-Mac combination on the expression of PCNA, p53, and PI3K/AKT protein localization and expression. Results and discussion Results revealed inhibition of cell proliferation in TGF-β-induced WPMY-1 cells, correlating with downregulated PCNA expression. While PI extract and Mac induced apoptosis via p53 upregulation, Ang and Ang-Mac combination did not significantly affect apoptosis through the p53 pathway. Additionally, both metabolites exhibited potent inhibition of p-PI3K and p-AKT protein localization and expression in the nucleus of TGF-β-induced WPMY-1 cells. This study suggests that PI extract, Ang, and Mac are promising compounds for treating BPH, as evidenced by in silico and in vitro studies. Additionally, Ang and Mac could be used to standardize PI extract in future investigations.
Collapse
Affiliation(s)
- San Yoon Nwe
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, Thailand
- Herb Guardian Co., Ltd., Nonthaburi, Thailand
| | - Tamonwan Uttarawichien
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, Thailand
| | - Teerawat Boonsom
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, Thailand
| | - Wisuwat Thongphichai
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, Thailand
| | - Peththa Wadu Dasuni Wasana
- Animal Models of Chronic Inflammation-associated Diseases for Drug Discovery Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacy, Faculty of Allied Health Sciences, University of Ruhuna, Galle, Sri Lanka
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Witchuda Payuhakrit
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suchada Sukrong
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, Thailand
- Chulalongkorn School of Integrated Innovation, Chulalongkorn University, Bangkok, Thailand
| | - Pasarapa Towiwat
- Animal Models of Chronic Inflammation-associated Diseases for Drug Discovery Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
An J, Wen L, Yu H, Bu Z, Feng J. Insulin-Like Growth Factor Binding Protein 2 Drives Neurodegeneration in Parkinson's Disease: Insights From In Vivo and In Vitro Studies. CNS Neurosci Ther 2024; 30:e70076. [PMID: 39412224 PMCID: PMC11480970 DOI: 10.1111/cns.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/22/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
AIMS Insulin-like growth factor binding protein 2 (IGFBP2) is implicated in various neurodegenerative diseases. However, its role in Parkinson's disease (PD) is unclear. METHODS PD rat model was established by 6-OHDA injection. After 3 weeks, mRNA-seq was conducted. Rats received rIGFBP2 via intra-MFB injection 6 h prior to 6-OHDA infusion, and the effect of IGFBP2 in PD rats was investigated by western blotting, IHC, specific kits, JC-1 staining, and TUNEL analysis. In vitro, PC12 cells were treated with 6-OHDA, and CCK-8, specific kits, Hoechst 33258 staining, Western blotting, and JC-1 staining were performed to assess the IGFBP2's role. RESULTS mRNA-seq revealed DEGs in PD, with attention to downregulated IGFBP2. rIGFBP2 treatment aggravated neurobehavioral deficits, decreased TH expression, Ψm, ATP level and SOD, GSH-Px activities but increased α-synuclein, ROS, MDA, mitochondrial cytochrome c contents, cell apoptosis in 6-OHDA-lesioned rats, which might be mediated through inactivating IGF-1R/AKT pathway. In 6-OHDA-treated PC12 cells, rIGFBP2 aggravated cell injury, demonstrated by decreased cell viability and increased apoptosis, oxidative stress, and mitochondrial dysfunction. Co-treatment with rIGFBP2 and rIGF-1 partially reversed the effect of rIGFBP2 on cell damage. CONCLUSION IGFBP2 exacerbates neurodegeneration in PD through increasing oxidative stress, mitochondrial dysfunction, and apoptosis via inhibiting IGF-1R/AKT pathway.
Collapse
Affiliation(s)
- Jing An
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Lulu Wen
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Haiyang Yu
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zhongqi Bu
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Juan Feng
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
8
|
Thangavelu L, Moglad E, Afzal M, Almalki WH, Malathi H, Bansal P, Rani B, Walia C, Sivaprasad GV, Rajput P, Imran M. Non-coding RNAs in Parkinson's disease: Regulating SNCA and alpha-synuclein aggregation. Pathol Res Pract 2024; 261:155511. [PMID: 39094523 DOI: 10.1016/j.prp.2024.155511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Parkinson's disease is one of the vital neurodegenerative ailments attributed to a rise in Alpha-synuclein proteins leading to the advancement of motor and cognitive deterioration. Interestingly, in PD lncRNAs, miRNAs and siRNAs are also key regulators of SNCA and alpha-synuclein aggregation. This review will focus on the roles of these three types of small RNAs in trebling the development of PD through regulating SNCA expression or alpha-synuclein protein mediating the RNA from acting. Parkinson's disease is defined by the build-up of alpha-synuclein protein resulting predominantly from the elevated expression level of the SNCA gene. Non-coding RNAs have gained broad appeal as fundamental modulators of gene expression and protein aggregation dynamics, with significant implications on the aetiology of PD. LncRNAs modulate SNCA transcription and edit epigenetic modifications, while miRNA target mRNA is involved in the stability and translation of count alpha-synuclein. Considering all these data, siRNAs can achieve the precise gene silencing effect that directly induces the downregulation of SNCA mRNA. This review also summarizes some recent reports about the interaction between these ncRNAs with the SNCA gene and alpha-synuclein protein, each through its independent in addition to synergistic mechanisms. This review highlights the possibility of therapeutic interventions to perturb SNCA expression to prevent alpha-synuclein aggregation via targeting ncRNAs that might be spun off novel drug development for PD.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Chakshu Walia
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Pranchal Rajput
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
9
|
Ullah I, Uddin S, Zhao L, Wang X, Li H. Autophagy and UPS pathway contribute to nicotine-induced protection effect in Parkinson's disease. Exp Brain Res 2024:10.1007/s00221-023-06765-9. [PMID: 38430248 DOI: 10.1007/s00221-023-06765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/11/2023] [Indexed: 03/03/2024]
Abstract
The gradual nature of age-related neurodegeneration causes Parkinson's disease (PD) and impairs movement, memory, intellectual ability, and social interaction. One of the most prevalent neurodegenerative conditions affecting the central nervous system (CNS) among the elderly is PD. PD affects both motor and cognitive functions. Degeneration of dopaminergic (DA) neurons and buildup of the protein α-synuclein (α-Syn) in the substantia nigra pars compacta (SNpc) are two major causes of this disorder. Both UPS and ALS systems serve to eliminate α-Syn. Autophagy and UPS deficits, shortened life duration, and lipofuscin buildup accelerate PD. This sickness has no cure. Innovative therapies are halting PD progression. Bioactive phytochemicals may provide older individuals with a natural substitute to help delay the onset of neurodegenerative illnesses. This study examines whether nicotine helps transgenic C. elegans PD models. According to numerous studies, nicotine enhances synaptic plasticity and dopaminergic neuronal survival. Upgrades UPS pathways, increases autophagy, and decreases oxidative stress and mitochondrial dysfunction. At 100, 150, and 200 µM nicotine levels, worms showed reduced α-Syn aggregation, repaired DA neurotoxicity after 6-OHDA intoxication, increased lifetime, and reduced lipofuscin accumulation. Furthermore, nicotine triggered autophagy and UPS. We revealed nicotine's potential as a UPS and autophagy activator to prevent PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shahab Uddin
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Longhe Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, Lanzhou, China.
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| |
Collapse
|
10
|
Gu Y, Zhang J, Zhao X, Nie W, Xu X, Liu M, Zhang X. Olfactory dysfunction and its related molecular mechanisms in Parkinson's disease. Neural Regen Res 2024; 19:583-590. [PMID: 37721288 PMCID: PMC10581567 DOI: 10.4103/1673-5374.380875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 09/19/2023] Open
Abstract
Changes in olfactory function are considered to be early biomarkers of Parkinson's disease. Olfactory dysfunction is one of the earliest non-motor features of Parkinson's disease, appearing in about 90% of patients with early-stage Parkinson's disease, and can often predate the diagnosis by years. Therefore, olfactory dysfunction should be considered a reliable marker of the disease. However, the mechanisms responsible for olfactory dysfunction are currently unknown. In this article, we clearly explain the pathology and medical definition of olfactory function as a biomarker for early-stage Parkinson's disease. On the basis of the findings of clinical olfactory function tests and animal model experiments as well as neurotransmitter expression levels, we further characterize the relationship between olfactory dysfunction and neurodegenerative diseases as well as the molecular mechanisms underlying olfactory dysfunction in the pathology of early-stage Parkinson's disease. The findings highlighted in this review suggest that olfactory dysfunction is an important biomarker for preclinical-stage Parkinson's disease. Therefore, therapeutic drugs targeting non-motor symptoms such as olfactory dysfunction in the early stage of Parkinson's disease may prevent or delay dopaminergic neurodegeneration and reduce motor symptoms, highlighting the potential of identifying effective targets for treating Parkinson's disease by inhibiting the deterioration of olfactory dysfunction.
Collapse
Affiliation(s)
- Yingying Gu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Jiaying Zhang
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xinru Zhao
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Wenyuan Nie
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaole Xu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Mingxuan Liu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaoling Zhang
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
11
|
da Silva LPD, da Cruz Guedes E, Fernandes ICO, Pedroza LAL, da Silva Pereira GJ, Gubert P. Exploring Caenorhabditis elegans as Parkinson's Disease Model: Neurotoxins and Genetic Implications. Neurotox Res 2024; 42:11. [PMID: 38319410 DOI: 10.1007/s12640-024-00686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, the first being Alzheimer's disease. Patients with PD have a loss of dopaminergic neurons in the substantia nigra of the basal ganglia, which controls voluntary movements, causing a motor impairment as a result of dopaminergic signaling impairment. Studies have shown that mutations in several genes, such as SNCA, PARK2, PINK1, DJ-1, ATP13A2, and LRRK2, and the exposure to neurotoxic agents can potentially increase the chances of PD development. The nematode Caenorhabditis elegans (C. elegans) plays an important role in studying the risk factors, such as genetic factors, aging, exposure to chemicals, disease progression, and drug treatments for PD. C. elegans has a conserved neurotransmission system during evolution; it produces dopamine, through the eight dopaminergic neurons; it can be used to study the effect of neurotoxins and also has strains that express human α-synuclein. Furthermore, the human PD-related genes, LRK-1, PINK-1, PDR-1, DJR-1.1, and CATP-6, are present and functional in this model. Therefore, this review focuses on highlighting and discussing the use of C. elegans an in vivo model in PD-related studies. Here, we identified that nematodes exposed to the neurotoxins, such as 6-OHDA, MPTP, paraquat, and rotenone, had a progressive loss of dopaminergic neurons, dopamine deficits, and decreased survival rate. Several studies have reported that expression of human LRRK2 (G2019S) caused neurodegeneration and pink-1, pdr-1, and djr-1.1 deletion caused several effects PD-related in C. elegans, including mitochondrial dysfunctions. Of note, the deletion of catp-6 in nematodes caused behavioral dysfunction, mitochondrial damage, and reduced survival. In addition, nematodes expressing α-synuclein had neurodegeneration and dopamine-dependent deficits. Therefore, C. elegans can be considered an accurate animal model of PD that can be used to elucidate to assess the underlying mechanisms implicated in PD to find novel therapeutic targets.
Collapse
Affiliation(s)
- Larissa Pereira Dantas da Silva
- Keizo Asami Institute, iLIKA, Universidade Federal de Pernambuco, Moraes Rego Avenue, 1235, Recife, Pernambuco, 50670-901, Brazil
| | - Erika da Cruz Guedes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Isabel Cristina Oliveira Fernandes
- Keizo Asami Institute, iLIKA, Universidade Federal de Pernambuco, Moraes Rego Avenue, 1235, Recife, Pernambuco, 50670-901, Brazil
- Postgraduate Program in Biological Science, Universidade Federal de Pernambuco, Pernambuco, Recife, Brazil
| | - Lucas Aleixo Leal Pedroza
- Keizo Asami Institute, iLIKA, Universidade Federal de Pernambuco, Moraes Rego Avenue, 1235, Recife, Pernambuco, 50670-901, Brazil
| | | | - Priscila Gubert
- Keizo Asami Institute, iLIKA, Universidade Federal de Pernambuco, Moraes Rego Avenue, 1235, Recife, Pernambuco, 50670-901, Brazil.
- Postgraduate Program in Biological Science, Universidade Federal de Pernambuco, Pernambuco, Recife, Brazil.
- Postgraduate Program in Pure and Applied Chemistry, Universidade Federal do Oeste da Bahia, Bahia, Brazil.
| |
Collapse
|
12
|
Hu K, Zhu S, Wu F, Zhang Y, Li M, Yuan L, Huang W, Zhang Y, Wang J, Ren J, Yang H. Aureusidin ameliorates 6-OHDA-induced neurotoxicity via activating Nrf2/HO-1 signaling pathway and preventing mitochondria-dependent apoptosis pathway in SH-SY5Y cells and Caenorhabditis elegans. Chem Biol Interact 2024; 387:110824. [PMID: 38056806 DOI: 10.1016/j.cbi.2023.110824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Movement disorder Parkinson's disease (PD) is the second most common neurodegenerative disease in the world after Alzheimer's disease, which severely affects the quality of patients' lives and imposes an increasingly heavy socioeconomic burden. Aureusidin is a kind of natural flavonoid compound with anti-inflammatory and anti-oxidant activities, while its pharmacological action and mechanism are rarely reported in PD. This study aimed to explore the neuroprotective effects and potential mechanisms of Aureusidin in PD. The present study demonstrated that Aureusidin protected SH-SY5Y cells from cell damage induced by 6-hydroxydopamine (6-OHDA) via inhibiting the mitochondria-dependent apoptosis and activating the Nrf2/HO-1 antioxidant signaling pathway. Additionally, Aureusidin diminished dopaminergic (DA) neuron degeneration induced by 6-OHDA and reduced the aggregation toxicity of α-synuclein (α-Syn) in Caenorhabditis elegans (C. elegans.) In conclusion, Aureusidin showed a neuroprotective effect in the 6-OHDA-induced PD model via activating Nrf2/HO-1 signaling pathway and prevented mitochondria-dependent apoptosis pathway, and these findings suggested that Aureusidin may be an effective drug for the treatment of PD.
Collapse
Affiliation(s)
- Kun Hu
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Susu Zhu
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Fanyu Wu
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Yongzhen Zhang
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Minyue Li
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Ling Yuan
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Wenjing Huang
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Yichi Zhang
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Jie Wang
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Jie Ren
- School of Pharmacy, Changzhou University, Changzhou, China.
| | - Hao Yang
- Department of Pharmacy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.
| |
Collapse
|
13
|
Mladenova SG, Todorova MN, Savova MS, Georgiev MI, Mihaylova LV. Maackiain Mimics Caloric Restriction through aak-2-Mediated Lipid Reduction in Caenorhabditis elegans. Int J Mol Sci 2023; 24:17442. [PMID: 38139270 PMCID: PMC10744277 DOI: 10.3390/ijms242417442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Obesity prevalence is becoming a serious global health and economic issue and is a major risk factor for concomitant diseases that worsen the quality and duration of life. Therefore, the urgency of the development of novel therapies is of a particular importance. A previous study of ours revealed that the natural pterocarpan, maackiain (MACK), significantly inhibits adipogenic differentiation in human adipocytes through a peroxisome proliferator-activated receptor gamma (PPARγ)-dependent mechanism. Considering the observed anti-adipogenic potential of MACK, we aimed to further elucidate the molecular mechanisms that drive its biological activity in a Caenorhabditis elegans obesity model. Therefore, in the current study, the anti-obesogenic effect of MACK (25, 50, and 100 μM) was compared to orlistat (ORST, 12 μM) as a reference drug. Additionally, the hybrid combination between the ORST (12 μM) and MACK (100 μM) was assessed for suspected synergistic interaction. Mechanistically, the observed anti-obesogenic effect of MACK was mediated through the upregulation of the key metabolic regulators, namely, the nuclear hormone receptor 49 (nhr-49) that is a functional homologue of the mammalian PPARs and the AMP-activated protein kinase (aak-2/AMPK) in C. elegans. Collectively, our investigation indicates that MACK has the potential to limit lipid accumulation and control obesity that deserves future developments.
Collapse
Affiliation(s)
| | - Monika N. Todorova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (M.I.G.)
| | - Martina S. Savova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (M.I.G.)
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Milen I. Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (M.I.G.)
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Liliya V. Mihaylova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (M.I.G.)
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
14
|
Zhao Z, Li Z, Du F, Wang Y, Wu Y, Lim KL, Li L, Yang N, Yu C, Zhang C. Linking Heat Shock Protein 70 and Parkin in Parkinson's Disease. Mol Neurobiol 2023; 60:7044-7059. [PMID: 37526897 DOI: 10.1007/s12035-023-03481-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that affects millions of elderly people worldwide and is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The precise mechanisms underlying the pathogenesis of PD are still not fully understood, but it is well accepted that the misfolding, aggregation, and abnormal degradation of proteins are the key causative factors of PD. Heat shock protein 70 (Hsp70) is a molecular chaperone that participates in the degradation of misfolded and aggregated proteins in living cells and organisms. Parkin, an E3 ubiquitin ligase, participates in the degradation of proteins via the proteasome pathway. Recent studies have indicated that both Hsp70 and Parkin play pivotal roles in PD pathogenesis. In this review, we focus on discussing how dysregulation of Hsp70 and Parkin leads to PD pathogenesis, the interaction between Hsp70 and Parkin in the context of PD and their therapeutic applications in PD.
Collapse
Affiliation(s)
- Zhongting Zhao
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Zheng Li
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117054, Singapore
| | - Fangning Du
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Yixin Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Yue Wu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Lin Li
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, People's Republic of China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| |
Collapse
|
15
|
van Beuningen N, Alkema S, Hijlkema N, Ulfhake B, Frias R, Ritskes-Hoitinga M, Alkema W. The 3Ranker: An AI-based Algorithm for Finding Non-animal Alternative Methods. Altern Lab Anim 2023; 51:376-386. [PMID: 37864460 DOI: 10.1177/02611929231210777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
The search for existing non-animal alternative methods for use in experiments is currently challenging because of the lack of both comprehensive structured databases and balanced keyword-based search strategies to mine unstructured textual databases. In this paper we describe 3Ranker, which is a fast, keyword-independent algorithm for finding non-animal alternative methods for use in biomedical research. The 3Ranker algorithm was created by using a machine learning approach, consisting of a Random Forest model built on a dataset of 35 million abstracts and constructed with weak supervision, followed by iterative model improvement with expert curated data. We found a satisfactory trade-off between sensitivity and specificity, with Area Under the Curve (AUC) values ranging from 0.85-0.95. Trials showed that the AI-based classifier was able to identify articles that describe potential alternatives to animal use, among the thousands of articles returned by generic PubMed queries on dermatitis and Parkinson's disease. Application of the classification models on time series data showed the earlier implementation and acceptance of Three Rs principles in the area of cosmetics and skin research, as compared to the area of neurodegenerative disease research. The 3Ranker algorithm is freely available at www.open3r.org; the future goal is to expand this framework to cover multiple research domains and to enable its broad use by researchers, policymakers, funders and ethical review boards, in order to promote the replacement of animal use in research wherever possible.
Collapse
Affiliation(s)
| | | | | | - Brun Ulfhake
- Department of Laboratory Medicine, Karolinska Institute, Solna, Sweden
| | - Rafael Frias
- Department of Comparative Medicine, Karolinska Institute, Solna, Sweden
| | - Merel Ritskes-Hoitinga
- Department Population Health Sciences - IRAS Toxicology, Utrecht University, Utrecht, The Netherlands
- Department Clinical Medicine, Aarhus University, Denmark
| | - Wynand Alkema
- TenWise BV, Leiden, The Netherlands
- Institute for Life Science and Technology, Centre for Biobased Economy, Hanze University of Applied Sciences, Groningen, The Netherlands
| |
Collapse
|
16
|
Perez Rojo F, Pillow JJ, Kaur P. Bioprospecting microbes and enzymes for the production of pterocarpans and coumestans. Front Bioeng Biotechnol 2023; 11:1154779. [PMID: 37187887 PMCID: PMC10175578 DOI: 10.3389/fbioe.2023.1154779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The isoflavonoid derivatives, pterocarpans and coumestans, are explored for multiple clinical applications as osteo-regenerative, neuroprotective and anti-cancer agents. The use of plant-based systems to produce isoflavonoid derivatives is limited due to cost, scalability, and sustainability constraints. Microbial cell factories overcome these limitations in which model organisms such as Saccharomyces cerevisiae offer an efficient platform to produce isoflavonoids. Bioprospecting microbes and enzymes can provide an array of tools to enhance the production of these molecules. Other microbes that naturally produce isoflavonoids present a novel alternative as production chassis and as a source of novel enzymes. Enzyme bioprospecting allows the complete identification of the pterocarpans and coumestans biosynthetic pathway, and the selection of the best enzymes based on activity and docking parameters. These enzymes consolidate an improved biosynthetic pathway for microbial-based production systems. In this review, we report the state-of-the-art for the production of key pterocarpans and coumestans, describing the enzymes already identified and the current gaps. We report available databases and tools for microbial bioprospecting to select the best production chassis. We propose the use of a holistic and multidisciplinary bioprospecting approach as the first step to identify the biosynthetic gaps, select the best microbial chassis, and increase productivity. We propose the use of microalgal species as microbial cell factories to produce pterocarpans and coumestans. The application of bioprospecting tools provides an exciting field to produce plant compounds such as isoflavonoid derivatives, efficiently and sustainably.
Collapse
Affiliation(s)
- Fernando Perez Rojo
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - J. Jane Pillow
- UWA School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
17
|
Muhammad F, Liu Y, Wang N, Zhao L, Zhou Y, Yang H, Li H. Rose essential oil diminishes dopaminergic neuron degenerations and reduces α-synuclein aggregation in Caenorhabditis elegans models of Parkinson's disease. Phytother Res 2023. [PMID: 36920348 DOI: 10.1002/ptr.7783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/10/2022] [Accepted: 01/29/2023] [Indexed: 03/16/2023]
Abstract
Parkinson's disease (P.D.) is the second most progressive neurodegenerative disorder in the elderly. Degeneration of dopaminergic (DA) neurons and α-synuclein (α-Syn) accumulated toxicity is the major contributor to this disease. At present, the disease has no effective treatment. Many recent studies focus on identifying novel therapeutics that provide benefits to stop the disease progression in P.D. patients. Screening novel and effective drugs in P.D. animal models is time- and cost-consuming. Rose Essential Oil (REO) extracted from Rosa Rugosa species (R. Setate × R. Rugosa). REO contains Citronellol, Geraniol, and Octadiene that possess anti-Aβ, anti-oxidative, and anti-depression-like properties, but no reports have defined the REO effect on P.D. yet. The present study examines the REO neuroprotective potential in transgenic Caenorhabditis elegans P.D. models. We observed that REO reduced α-Syn aggregations and diminished DA neuron degenerations induced by 6-OHDA, reduced food-sensing behavioural disabilities, and prolonged the lifespan of the nematode. Moreover, REO augmented the chymotrypsin-like proteasome and SOD-3 activities. Further, we observed the anti-oxidative role of REO by reducing internal cells ROS. Together, these findings supported REO as an anti-PD drug and may exert its effects by lowering oxidative stress via the anti-oxidative pathway.
Collapse
Affiliation(s)
- Fahim Muhammad
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yan Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ningbo Wang
- College of Life Sciences, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Longhe Zhao
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yangtao Zhou
- Department of Neurology, Clinical Center for Parkinson's Disease, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Hui Yang
- Institute of Biology Gansu Academy of Sciences, Lanzhou, China
| | - Hongyu Li
- College of Life Sciences, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
18
|
Neuroprotective and Antiherpetic Properties of Polyphenolic Compounds from Maackia amurensis Heartwood. Molecules 2023; 28:molecules28062593. [PMID: 36985562 PMCID: PMC10056899 DOI: 10.3390/molecules28062593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
In this study, we isolated a new isoflavanostilbene maackiapicevestitol (1) as a mixture of two stable conformers 1a and 1b as well as five previously known dimeric and monomeric stilbens: piceatannol (2), maackin (3), scirpusin A (4), maackiasine (5), and maackolin (6) from M. amurensis heartwood, using column chromatography on polyamide, silicagel, and C-18. The structures of these compounds were elucidated by NMR, HR-MS, and CD techniques. Maksar® obtained from M. amurensis heartwood and polyphenolics 1–6 possessed moderate anti-HSV-1 activity in cytopathic effect (CPE) inhibition and RT-PCR assays. A model of PQ-induced neurotoxicity was used to study the neuroprotective potential of polyphenolic compounds from M. amurensis. Maksar® showed the highest neuroprotective activity and increased cell viability by 18% at a concentration of 10 μg/mL. Maackolin (6) also effectively increased the viability of PQ-treated Neuro-2a cells and the value of mitochondrial membrane potential at concentrations up to 10 μΜ. Maksar® and compounds 1–6 possessed higher FRAP and DPPH-scavenging effects than quercetin. However, only compounds 1 and 4 at concentrations of 10 μM as well as Maksar® (10 μg/mL) statistically significantly reduced the level of intracellular ROS in PQ-treated Neuro-2a cells.
Collapse
|
19
|
Induction of Oxidative Stress in SH-SY5Y Cells by Overexpression of hTau40 and Its Mitigation by Redox-Active Nanoparticles. Int J Mol Sci 2022; 24:ijms24010359. [PMID: 36613801 PMCID: PMC9820486 DOI: 10.3390/ijms24010359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Abnormally phosphorylated tau protein is the principal component of neurofibrillary tangles, accumulating in the brain in many neurodegenerative diseases, including Alzheimer's disease. The aim of this study was to examine whether overexpression of tau protein leads to changes in the redox status of human neuroblastoma SH-SY5Y cells. The level of reactive oxygen species (ROS) was elevated in tau-overexpressing cells (TAU cells) as compared with cells transfected with the empty vector (EP cells). The level of glutathione was increased in TAU cells, apparently due to overproduction as an adaptation to oxidative stress. The TAU cells had elevated mitochondrial mass. They were more sensitive to 6-hydroxydopamine, delphinidin, 4-amino-TEMPO, and nitroxide-containing nanoparticles (NPs) compared to EP controls. These results indicate that overexpression of the tau protein imposes oxidative stress on the cells. The nitroxide 4-amino-TEMPO and nitroxide-containing nanoparticles (NPs) mitigated oxidative stress in TAU cells, decreasing the level of ROS. Nitroxide-containing nanoparticles lowered the level of lipid peroxidation in both TAU and EP cells, suggesting that nitroxides and NPs may mitigate tau-protein-induced oxidative stress.
Collapse
|
20
|
Chauhan P, Wadhwa K, Singh G. Caenorhabditis elegans as a model system to evaluate neuroprotective potential of nano formulations. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1018754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The impact of neurodegenerative illnesses on society is significant, but the mechanisms leading to neuronal malfunction and death in these conditions remain largely unknown despite identifying essential disease genes. To pinpoint the mechanisms behind the pathophysiology of neurodegenerative diseases, several researchers have turned to nematode C. elegans instead of using mammals. Since C. elegans is transparent, free-living, and amenable to culture, it has several benefits. As a result, all the neurons in C. elegans can be easily identified, and their connections are understood. Human proteins linked to Neurodegeneration can be made to express in them. It is also possible to analyze how C. elegans orthologs of the genes responsible for human neurodegenerative diseases function. In this article, we focused at some of the most important C. elegans neurodegeneration models that accurately represent many elements of human neurodegenerative illness. It has been observed that studies using the adaptable C. elegans have helped us in better understanding of human diseases. These studies have used it to replicate several aspects of human neurodegeneration. A nanotech approach involves engineering materials or equipments interacting with biological systems at the molecular level to trigger physiological responses by increasing stimulation, responding, and interacting with target sites while minimizing side effects, thus revolutionizing the treatment and diagnosis of neurodegenerative diseases. Nanotechnologies are being used to treat neurological disorders and deliver nanoscale drugs. This review explores the current and future uses of these nanotechnologies as innovative therapeutic modalities in treatment of neurodegenerative diseases using C elegans as an experimental model.
Collapse
|
21
|
Muhammad F, Liu Y, Wang N, Zhao L, Zhou Y, Yang H, Li H. Neuroprotective effects of cannabidiol on dopaminergic neurodegeneration and α-synuclein accumulation in C. elegans models of Parkinson's disease. Neurotoxicology 2022; 93:128-139. [PMID: 36108815 DOI: 10.1016/j.neuro.2022.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 08/23/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
Parkinson disease (PD) is the second most progressive neurodegenerative disorder of the central nervous system (CNS) in the elderly, causing motor impediments and cognitive dysfunctions. Dopaminergic (DA) neuron degeneration and α-synuclein (α-Syn) accumulation in substantia nigra pars compacta (SNPc) are the major contributor to this disease. At present, the disease has no effective treatment. Many recent studies focus on identifying novel therapeutics that provide benefits to stop disease advancement in PD patients. Cannabidiol (CBD) is a cannabinoid derived from the Cannabis sativa plant and possesses anti-depressive, anti-inflammatory, and antioxidative effects. The present study aims to evaluate the neuroprotective effect of CBD in transgenic C. elegans PD models. We observed that CBD at 0.025 mM (24.66 %), 0.05 mM (52.41 %) and 0.1 mM (71.36 %) diminished DA neuron degenerations induced by 6-hydroxydopamine (6-OHDA), reduced (0.025, 27.1 %), (0.05, 38.9 %), (0.1, 51.3 %) food-sensing behavioural disabilities in BZ555, reduced 40.6 %, 56.3 %, 70.2 % the aggregative toxicity of α-Syn and expanded the nematodes' lifespan up to 11.5 %, 23.1 %, 28.8 %, dose-dependently. Moreover, CBD augmented the ubiquitin-like proteasomes 28.11 %, 43.27, 61.33 % and SOD-3 expressions by about 16.4 %, 21.2 %, 44.8 % in transgenic models. Further, we observed the antioxidative role of CBD by reducing 33.2 %, 41.4 %, 56.7 % reactive oxygen species in 6-OHDA intoxicated worms. Together, these findings supported CBD as an anti-parkinsonian drug and may exert its effects by raising lipid depositions to enhance proteasome activity and reduce oxidative stress via the antioxidative pathway.
Collapse
Affiliation(s)
- Fahim Muhammad
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, China; Clinical Center for Parkinson's Disease, Capital Medical University, Beijing 100053, China.
| | - Yan Liu
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, China.
| | - Ningbo Wang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Longhe Zhao
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, China.
| | - Yangtao Zhou
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Clinical Center for Parkinson's Disease, Capital Medical University, Beijing 100053, China.
| | - Hui Yang
- Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, Gansu, China.
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, China.
| |
Collapse
|
22
|
Kuo YH, Hung HS, Tsai CW, Chiu SC, Liu SP, Chiang YT, Shyu WC, Lin SZ, Fu RH. A Novel Splice Variant of BCAS1 Inhibits β-Arrestin 2 to Promote the Proliferation and Migration of Glioblastoma Cells, and This Effect Was Blocked by Maackiain. Cancers (Basel) 2022; 14:cancers14163890. [PMID: 36010884 PMCID: PMC9405932 DOI: 10.3390/cancers14163890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Brain-enriched myelin-associated protein 1 (BCAS1) is frequently highly expressed in human cancer, but its detailed function is unclear. Here, we identified a novel splice variant of the BCAS1 gene in glioblastoma multiforme (GBM) named BCAS1-SV1. The expression of BCAS1-SV1 was weak in heathy brain cells but high in GBM cell lines. The overexpression of BCAS1-SV1 significantly increased the proliferation and migration of GBM cells, whereas the RNA-interference-mediated knockdown of BCAS1-SV1 reduced proliferation and migration. Moreover, using a yeast-two hybrid assay, immunoprecipitation, and immunofluorescence staining, we confirmed that β-arrestin 2 is an interaction partner of BCAS1-SV1 but not BCAS1. The downregulation of β-arrestin 2 directly enhanced the malignancy of GBM and abrogated the effects of BCAS1-SV1 on GBM cells. Finally, we used a yeast two-hybrid-based growth assay to identify that maackiain (MK) is a potential inhibitor of the interaction between BCAS1-SV1 and β-arrestin 2. MK treatment lessened the proliferation and migration of GBM cells and prolonged the lifespan of tumor-bearing mice in subcutaneous xenograft and intracranial U87-luc xenograft models. This study provides the first evidence that the gain-of-function BCAS1-SV1 splice variant promotes the development of GBM by suppressing the β-arrestin 2 pathway and opens up a new therapeutic perspective in GBM.
Collapse
Affiliation(s)
- Yun-Hua Kuo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| | - Shao-Chih Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Shih-Ping Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yu-Ting Chiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Woei-Cherng Shyu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shinn-Zong Lin
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Correspondence: ; Tel.: +886-422052121-7826
| |
Collapse
|
23
|
Bai X, Zhu Y, Jie J, Li D, Song L, Luo J. Maackiain protects against sepsis via activating AMPK/Nrf2/HO-1 pathway. Int Immunopharmacol 2022; 108:108710. [PMID: 35405595 DOI: 10.1016/j.intimp.2022.108710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 12/29/2022]
Abstract
Sepsis is a life-threatening medical condition caused by infection-triggered aberrant immune responses, leading to host tissue and organ injury. Despite advances in medical interventions, the mortality rate for septic shock remains high. Recent studies highlight the role of oxidative stress in the occurrence and development of sepsis, providing a potential therapeutic target for preventing sepsis-associated organ injury. In this study, we showed that Maackiain, a natural compound isolated from Sophora flavescens, exerted a protective role in a cecal ligation and puncture (CLP)-induced murine model of sepsis. Maackiain treatment reduced organ injury, and mitigated systematic inflammation and oxidative stress in septic mice. Maackiain also reduced the levels of inflammatory cytokines and reactive oxygen species (ROS) in RAW264.7 macrophage cells stimulated with lipopolysaccharide (LPS). We further demonstrated that Maackiain initiated activation of nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway in RAW264.7 cells in an AMP-activated protein kinase (AMPK)-dependent way. Moreover, inhibition of AMPK/Nrf2 axis abrogated the anti-inflammatory and anti-oxidant effects of Maackiain both in vitro and in vivo. Collectively, our study indicates that Maackiain treatment inhibits inflammatory response and oxidative stress via activation of AMPK/Nrf2/HO-1 pathway, thus exerting a protective effect against sepsis, providing an alternative option for sepsis prevention.
Collapse
Affiliation(s)
- Xiaoxue Bai
- Department of General Practice, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Yingjie Zhu
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Jing Jie
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Dan Li
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China.
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China.
| | - Jingjing Luo
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
24
|
Maackiain Prevents Amyloid-Beta–Induced Cellular Injury via Priming PKC-Nrf2 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4243210. [PMID: 35782063 PMCID: PMC9242816 DOI: 10.1155/2022/4243210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/22/2022] [Indexed: 11/17/2022]
Abstract
Amyloid-beta (Aβ) peptide induces neurotoxicity through oxidative stress and inflammatory response. Brain deposition of a large amount of amyloid-beta (Aβ), in particular Aβ42, promotes the development of Alzheimer’s disease (AD). Maackiain is extracted from traditional Chinese medicine peony root and possesses antioxidative, antiosteoporosis, antitumor, and immunoregulatory effects. Whether Maackiain can reduce neurotoxicity caused by Aβ accumulation remains elusive. Herein, we found that Maackiain downregulated Aβ42-induced cell injury and apoptosis in PC12 cells. Moreover, Maackiain prevented Aβ42 stimulation-induced generation of oxidative stress and reduced Aβ42-caused impairment of mitochondrial membrane potential in PC12 cells. Maackiain increased the superoxide dismutase activity and decreased malondialdehyde content that was induced by Aβ42. Mechanistic studies showed that Maackiain increased intranuclear Nrf2 expression. Consistently, Nrf2 silencing by RNA interference weakened the protective role of Maackiain against Aβ exposure. In addition, calphostin C, a specific antagonist of protein kinase C, attenuated the promoting effects of Maackiain on Nrf2 nuclear translocation. Moreover, calphostin C attenuated the antioxidant and anti-inflammatory capabilities of Maackiain in PC12 cells. Collectively, Maackiain promoted Nrf2 activation through the PKC signaling pathway, thus preventing PC12 cells from Aβ-induced oxidative stress and cell injury, suggesting that Maackiain is a potential drug for AD treatment.
Collapse
|
25
|
Andersen N, Veuthey T, Blanco MG, Silbestri GF, Rayes D, De Rosa MJ. 1-Mesityl-3-(3-Sulfonatopropyl) Imidazolium Protects Against Oxidative Stress and Delays Proteotoxicity in C. elegans. Front Pharmacol 2022; 13:908696. [PMID: 35685626 PMCID: PMC9171001 DOI: 10.3389/fphar.2022.908696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022] Open
Abstract
Due to the increase in life expectancy worldwide, age-related disorders such as neurodegenerative diseases (NDs) have become more prevalent. Conventional treatments comprise drugs that only attenuate some of the symptoms, but fail to arrest or delay neuronal proteotoxicity that characterizes these diseases. Due to their diverse biological activities, imidazole rings are intensively explored as powerful scaffolds for the development of new bioactive molecules. By using C. elegans, our work aims to explore novel biological roles for these compounds. To this end, we have tested the in vivo anti-proteotoxic effects of imidazolium salts. Since NDs have been largely linked to impaired antioxidant defense mechanisms, we focused on 1-Mesityl-3-(3-sulfonatopropyl) imidazolium (MSI), one of the imidazolium salts that we identified as capable of improving iron-induced oxidative stress resistance in wild-type animals. By combining mutant and gene expression analysis we have determined that this protective effect depends on the activation of the Heat Shock Transcription Factor (HSF-1), whereas it is independent of other canonical cytoprotective molecules such as abnormal Dauer Formation-16 (DAF-16/FOXO) and Skinhead-1 (SKN-1/Nrf2). To delve deeper into the biological roles of MSI, we analyzed the impact of this compound on previously established C. elegans models of protein aggregation. We found that MSI ameliorates β-amyloid-induced paralysis in worms expressing the pathological protein involved in Alzheimer’s Disease. Moreover, this compound also delays age-related locomotion decline in other proteotoxic C. elegans models, suggesting a broad protective effect. Taken together, our results point to MSI as a promising anti-proteotoxic compound and provide proof of concept of the potential of imidazole derivatives in the development of novel therapies to retard age-related proteotoxic diseases.
Collapse
Affiliation(s)
- Natalia Andersen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Tania Veuthey
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - María Gabriela Blanco
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Gustavo Fabian Silbestri
- Departamento de Química, INQUISUR, Universidad Nacional Del Sur, UNS-CONICET, Bahía Blanca, Argentina
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
- *Correspondence: Diego Rayes, ; María José De Rosa,
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
- *Correspondence: Diego Rayes, ; María José De Rosa,
| |
Collapse
|
26
|
Mladenova SG, Savova MS, Marchev AS, Ferrante C, Orlando G, Wabitsch M, Georgiev MI. Anti-adipogenic activity of maackiain and ononin is mediated via inhibition of PPARγ in human adipocytes. Biomed Pharmacother 2022; 149:112908. [PMID: 35367764 DOI: 10.1016/j.biopha.2022.112908] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022] Open
Abstract
Obesity is a global health burden for which we do not yet have effective treatments for prevention or therapy. Plants are an invaluable source of bioactive leads possessing anti-adipogenic potential. Ethnopharmacological use of Ononis spinosa L. roots (OSR) for treatment of obesity and metabolic disorders requires а scientific rationale. The current study examined the anti-adipogenic capacity of OSR and its secondary metabolites ononin (ONON) and maackiain (MACK) in human adipocytes as an in vitro model of obesity. Both ONON and MACK diminished lipid accumulation during adipocyte differentiation. Molecular docking analysis exposed the potential interactions between MACK or ONON and target regulatory adipogenic proteins. Furthermore, results from an RT-qPCR analysis disclosed significant upregulation of AMPK by MACK and ONON treatment. In addition, ONON increased SIRT1, PI3K and ACC mRNA expression, while MACK notably downregulated CEBPA, AKT, SREBP1, ACC and ADIPOQ. The protein level of PI3K, C/EBPα, PPARγ and adiponectin was reduced upon MACK treatment in a concentration-dependent manner. Similarly, ONON suppressed PI3K, PPARγ and adiponectin protein abundance. Finally, our study provides evidence that ONON exerts anti-adipogenic effect by upregulation of SIRT1 and inhibition of PI3K, PPARγ and adiponectin, while MACK induced strong inhibitory effect on adipogenesis via hampering PI3K, PPARγ/C/EBPα signaling and anti-lipogenic effect through downregulation of SREBP1 and ACC. Even though OSR does not hamper adipogenic differentiation, it could be exploited as a source of natural leads with anti-adipogenic potential. The multidirectional mechanism of action of MACK warrant further validation in the context of in vivo obesity models.
Collapse
Affiliation(s)
- Saveta G Mladenova
- BB-NCIPD Ltd., BB-National Centre of Infectious and Parasitic Diseases, Ministry of Health, 1000 Sofia, Bulgaria
| | - Martina S Savova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Andrey S Marchev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Claudio Ferrante
- Department of Pharmacy, G. d'Annunzio University, 66100 Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, G. d'Annunzio University, 66100 Chieti, Italy
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89073 Ulm, Germany
| | - Milen I Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
27
|
Polyphenolic Compounds from Lespedeza bicolor Protect Neuronal Cells from Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11040709. [PMID: 35453394 PMCID: PMC9025851 DOI: 10.3390/antiox11040709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/10/2022] Open
Abstract
Pterocarpans and related polyphenolics are known as promising neuroprotective agents. We used models of rotenone-, paraquat-, and 6-hydroxydopamine-induced neurotoxicity to study the neuroprotective activity of polyphenolic compounds from Lespedeza bicolor and their effects on mitochondrial membrane potential. We isolated 11 polyphenolic compounds: a novel coumestan lespebicoumestan A (10) and a novel stilbenoid 5’-isoprenylbicoloketon (11) as well as three previously known pterocarpans, two pterocarpens, one coumestan, one stilbenoid, and a dimeric flavonoid. Pterocarpans 3 and 6, stilbenoid 5, and dimeric flavonoid 8 significantly increased the percentage of living cells after treatment with paraquat (PQ), but only pterocarpan 6 slightly decreased the ROS level in PQ-treated cells. Pterocarpan 3 and stilbenoid 5 were shown to effectively increase mitochondrial membrane potential in PQ-treated cells. We showed that pterocarpans 2 and 3, containing a 3’-methyl-3’-isohexenylpyran ring; pterocarpens 4 and 9, with a double bond between C-6a and C-11a; and coumestan 10 significantly increased the percentage of living cells by decreasing ROS levels in 6-OHDA-treated cells, which is in accordance with their rather high activity in DPPH• and FRAP tests. Compounds 9 and 10 effectively increased the percentage of living cells after treatment with rotenone but did not significantly decrease ROS levels.
Collapse
|
28
|
Peng F, Wang L, Xiong L, Tang H, Du J, Peng C. Maackiain Modulates miR-374a/GADD45A Axis to Inhibit Triple-Negative Breast Cancer Initiation and Progression. Front Pharmacol 2022; 13:806869. [PMID: 35308218 PMCID: PMC8930825 DOI: 10.3389/fphar.2022.806869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Breast cancer ranks as the leading cause of death in lethal malignancies among women worldwide, with a sharp increase of incidence since 2008. Triple negative breast cancer (TNBC) gives rise to the largest proportion in breast cancer-related deaths because of its aggressive growth and rapid metastasis. Hence, searching for promising targets and innovative approaches is indispensable for the TNBC treatment. Maackiain (MA), a natural compound with multiple biological activities, could be isolated from different Chinese herbs, such as Spatholobus suberectus and Sophora flavescens. It was the first time to report the anti-cancer effect of MA in TNBC. MA could suppress TNBC cell proliferation, foci formation, migration, and invasion. MA also exerted a significant inhibitory effect on tumor growth of TNBC. Furthermore, MA could induce apoptosis with an increase of GADD45α and a decrease of miR-374a. In contrast, overexpressing miR-374a would result in at least partly affecting the proapoptotic effect of MA and suppressing GADD45α stimulated by MA. These results reveal the anti-TNBC effect of MA in vitro and in vivo, providing evidence for its potential as a drug candidate utilized in TNBC therapy.
Collapse
Affiliation(s)
- Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junrong Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Cheng Peng, ; Junrong Du,
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Junrong Du,
| |
Collapse
|
29
|
Muhammad F, Liu Y, Wang N, Zhao L, Zhou Y, Yang H, Li H. Anti-α-synuclein Toxicity and Anti-neurodegenerative Role of Chrysin in Transgenic Caenorhabditis elegans Models of Parkinson's Disease. ACS Chem Neurosci 2022; 13:442-453. [PMID: 35118868 DOI: 10.1021/acschemneuro.1c00548] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Parkinson's disease (PD) is the second most progressive neurodegenerative disorder of the central nervous system in the elderly, causing motor impediments and cognitive dysfunctions. Dopaminergic (DA) neuron degeneration and α-synuclein (α-Syn) accumulation in substantia nigra pars compacta are the major contributors to this disease. At present, PD remains untreatable with a huge burden on the quality of life. Therefore, we attempt to explore novel treatment strategies by detecting effective drugs that stop or arrest PD's progression via modifying disease-specific pathways. Chrysin is a flavonoid derived from passion flowers and possesses anti-cancer, anti-inflammatory, anti-oxidant, and anti-depression properties. In the present study, we assessed the neuroprotective potential of chrysin in transgenic Caenorhabditis elegans models of PD. We observed that chrysin reduced the aggregative toxicity of α-Syn and diminished DA neuron degeneration induced by 6-hydroxydopamine (6-OHDA), reduced food-sensing behavioral disabilities, and expanded the nematodes' lifespan. Moreover, chrysin augmented the ubiquitin-like proteasome and superoxide dismutase activities in transgenic C. elegans models. Further, we observed the anti-oxidative role of chrysin by reducing the internal cellular reactive oxygen species levels in 6-OHDA-intoxicated C. elegans. Together, these findings supported chrysin as a possible treatment for PD and encouraged further investigation of chrysin's mechanism of action as a neuroprotective medicine in the future.
Collapse
Affiliation(s)
- Fahim Muhammad
- College of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yan Liu
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, P. R. China
| | - Ningbo Wang
- College of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Longhe Zhao
- College of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongtao Zhou
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
- Clinical Center for Parkinson’s Disease, Capital Medical University, Beijing 100053, China
| | - Hui Yang
- Instiute of Biology Gansu Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Hongyu Li
- College of Life Sciences, Lanzhou University, Lanzhou 730000, China
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, P. R. China
| |
Collapse
|
30
|
Thirugnanam T, Santhakumar K. Chemically induced models of Parkinson's disease. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109213. [PMID: 34673252 DOI: 10.1016/j.cbpc.2021.109213] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Environmental toxins are harmful substances detrimental to humans. Constant exposure to these fatal neurotoxins can cause various neurodegenerative disorders. Although poisonous, specific neurotoxins at optimal concentrations mimic the clinical features of neurodegenerative diseases in several animal models. Such chemically-induced model systems are beneficial in deciphering the molecular mechanisms of neurodegeneration and drug screening for these disorders. One such neurotoxin is 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a widely used chemical that recapitulates Parkinsonian features in various animal models. Apart from MPTP, other neurotoxins like 6-hydroxydopamine (6-OHDA), paraquat, rotenone also induce specific clinical features of Parkinson's disease in animal models. These chemically-induced Parkinson's disease models are playing a crucial role in understanding Parkinson's disease onset, pathology, and novel therapeutics. In this review, we provide a concise overview of various neurotoxins that can recapitulate Parkinsonian features in different in vivo and in vitro model systems specifically focusing on the different treatment methodologies of neurotoxins.
Collapse
Affiliation(s)
- Thilaga Thirugnanam
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kirankumar Santhakumar
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
31
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
32
|
Abd-Alla HI, Souguir D, Radwan MO. Genus Sophora: a comprehensive review on secondary chemical metabolites and their biological aspects from past achievements to future perspectives. Arch Pharm Res 2021; 44:903-986. [PMID: 34907492 PMCID: PMC8671057 DOI: 10.1007/s12272-021-01354-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
Sophora is deemed as one of the most remarkable genera of Fabaceae, and the third largest family of flowering plants. The genus Sophora comprises approximately 52 species, 19 varieties, and 7 forms that are widely distributed in Asia and mildly in Africa. Sophora species are recognized to be substantial sources of broad spectrum biopertinent secondary metabolites namely flavonoids, isoflavonoids, chalcones, chromones, pterocarpans, coumarins, benzofuran derivatives, sterols, saponins (mainly triterpene glycosides), oligostilbenes, and mainly alkaloids. Meanwhile, extracts and isolated compounds from Sophora have been identified to possess several health-promising effects including anti-inflammatory, anti-arthritic, antiplatelets, antipyretic, anticancer, antiviral, antimicrobial, antioxidant, anti-osteoporosis, anti-ulcerative colitis, antidiabetic, anti-obesity, antidiarrheal, and insecticidal activities. Herein, the present review aims to provide comprehensive details about the phytochemicals and biological effects of Sophora species. The review spotlighted on the promising phytonutrients extracted from Sophora and their plethora of bioactivities. The review also clarifies the remaining gaps and thus qualifies and supplies a platform for further investigations of these compounds.
Collapse
Affiliation(s)
- Howaida I Abd-Alla
- Chemistry of Natural Compounds Department, National Research Centre, El-Bohouth Street, Giza-Dokki, 12622, Egypt.
| | - Dalila Souguir
- Institut National de Recherches en Génie Rural, Eaux et Forêts (INRGREF), Université de Carthage, 10 Rue Hédi Karray, Manzeh IV, 2080, Ariana, Tunisia
| | - Mohamed O Radwan
- Chemistry of Natural Compounds Department, National Research Centre, El-Bohouth Street, Giza-Dokki, 12622, Egypt.
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
33
|
Guo J, Li J, Wei H, Liang Z. Maackiain Protects the Kidneys of Type 2 Diabetic Rats via Modulating the Nrf2/HO-1 and TLR4/NF-κB/Caspase-3 Pathways. Drug Des Devel Ther 2021; 15:4339-4358. [PMID: 34703210 PMCID: PMC8525417 DOI: 10.2147/dddt.s326975] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is aglobal health burden that accounts for about 90% of all cases of diabetes. Injury to the kidneys is aserious complication of type 2 diabetes. Maackiain, apterocarpan extracted from roots of Sophora flavescens, has been traditionally used for various disease conditions. However, nothing is known about its possible potential effect on HFD/STZ-T2D-induced nephrotoxicity. METHODS In this study, T2D rat model is created by high-fat diet (HFD) for 2 weeks with injection of asingle dose of streptozotocin (35mg/kg body weight). T2D rats were orally administered with maackiain (10 and 20mg/kg body weight) for 7 weeks. RESULTS Maackiain suppressed T2D-induced alterations in metabolic parameters, lipid profile and kidney functionality markers. By administering 10 and 20mg/kg maackiain to T2D rats, it was able to reduce lipid peroxidation while improving antioxidant levels (SOD, CAT, and GSH). Furthermore, the present study demonstrated the molecular mechanisms through which maackiain attenuated T2D-induced oxidative stress (mRNA: Nrf2, Nqo-1, Ho-1, Gclc and Gpx-1; protein: NRF2, NQO-1, HO-1 and NOX-4), inflammation (mRNA: Tlr, Myd88, IκBα, Mcp-1, Tgf-β, col4, Icam1, Vcam1 and E-selectin; Protein: TLR4, MYD88, NF-κB, IκBα, MCP-1; levels: TNF-α and MCP-1) and apoptosis (mRNA: Bcl-2, Bax, Bad, Apaf-1, Caspase-9 and Caspase-3; protein: Bcl-2, Bax, Caspase-3 and Caspase-9) mediated renal injury. Additionally, significant improvement in kidney architecture was observed after treatment of diabetic rats with 10 or 20mg/kg maackiain. CONCLUSION Maackiain protects the kidney by decreasing oxidative stress, inflammation, and apoptosis to preserve normal renal function in type 2 diabetes.
Collapse
Affiliation(s)
- Jiahong Guo
- Department of Nephrology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, 453000, People’s Republic of China
| | - Junying Li
- Department of Nephrology, The Affiliated Hospital of Qingdao University Pingdu district, Pingdu City, Qingdao, Shandong, 266000, People’s Republic of China
| | - Hua Wei
- Department of Nephrology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, 453000, People’s Republic of China
| | - Zhaozhi Liang
- Department of Nephrology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, 453000, People’s Republic of China
| |
Collapse
|
34
|
Hsu YL, Hung HS, Tsai CW, Liu SP, Chiang YT, Kuo YH, Shyu WC, Lin SZ, Fu RH. Peiminine Reduces ARTS-Mediated Degradation of XIAP by Modulating the PINK1/Parkin Pathway to Ameliorate 6-Hydroxydopamine Toxicity and α-Synuclein Accumulation in Parkinson's Disease Models In Vivo and In Vitro. Int J Mol Sci 2021; 22:ijms221910240. [PMID: 34638579 PMCID: PMC8549710 DOI: 10.3390/ijms221910240] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is a degenerative disease that can cause motor, cognitive, and behavioral disorders. The treatment strategies being developed are based on the typical pathologic features of PD, including the death of dopaminergic (DA) neurons in the substantia nigra of the midbrain and the accumulation of α-synuclein in neurons. Peiminine (PMN) is an extract of Fritillaria thunbergii Miq that has antioxidant and anti-neuroinflammatory effects. We used Caenorhabditis elegans and SH-SY5Y cell models of PD to evaluate the neuroprotective potential of PMN and address its corresponding mechanism of action. We found that pretreatment with PMN reduced reactive oxygen species production and DA neuron degeneration caused by exposure to 6-hydroxydopamine (6-OHDA), and therefore significantly improved the DA-mediated food-sensing behavior of 6-OHDA-exposed worms and prolonged their lifespan. PMN also diminished the accumulation of α-synuclein in transgenic worms and transfected cells. In our study of the mechanism of action, we found that PMN lessened ARTS-mediated degradation of X-linked inhibitor of apoptosis (XIAP) by enhancing the expression of PINK1/parkin. This led to reduced 6-OHDA-induced apoptosis, enhanced activity of the ubiquitin–proteasome system, and increased autophagy, which diminished the accumulation of α-synuclein. The use of small interfering RNA to down-regulate parkin reversed the benefits of PMN in the PD models. Our findings suggest PMN as a candidate compound worthy of further evaluation for the treatment of PD.
Collapse
Affiliation(s)
- Yu-Ling Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-S.H.); (S.-P.L.); (Y.-T.C.); (W.-C.S.)
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-S.H.); (S.-P.L.); (Y.-T.C.); (W.-C.S.)
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan;
| | - Shih-Ping Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-S.H.); (S.-P.L.); (Y.-T.C.); (W.-C.S.)
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yu-Ting Chiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-S.H.); (S.-P.L.); (Y.-T.C.); (W.-C.S.)
| | - Yun-Hua Kuo
- Department of Nursing, Taipei Veterans General Hospital, Taipei 12217, Taiwan;
| | - Woei-Cherng Shyu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-S.H.); (S.-P.L.); (Y.-T.C.); (W.-C.S.)
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Tzu Chi Foundation, Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien 970, Taiwan;
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-S.H.); (S.-P.L.); (Y.-T.C.); (W.-C.S.)
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Psychology, Asia University, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-422052121-7826
| |
Collapse
|
35
|
Neurorescue Effects of Frondoside A and Ginsenoside Rg3 in C. elegans Model of Parkinson's Disease. Molecules 2021; 26:molecules26164843. [PMID: 34443430 PMCID: PMC8402114 DOI: 10.3390/molecules26164843] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/24/2021] [Accepted: 08/08/2021] [Indexed: 11/21/2022] Open
Abstract
Parkinson’s disease (PD) is a currently incurable neurodegenerative disorder characterized by the loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta and α-synuclein aggregation. Accumulated evidence indicates that the saponins, especially from ginseng, have neuroprotective effects against neurodegenerative disorders. Interestingly, saponin can also be found in marine organisms such as the sea cucumber, but little is known about its effect in neurodegenerative disease, including PD. In this study, we investigated the anti-Parkinson effects of frondoside A (FA) from Cucumaria frondosa and ginsenoside Rg3 (Rg3) from Panax notoginseng in C. elegans PD model. Both saponins were tested for toxicity and optimal concentration by food clearance assay and used to treat 6-OHDA-induced BZ555 and transgenic α-synuclein NL5901 strains in C. elegans. Treatment with FA and Rg3 significantly attenuated DAergic neurodegeneration induced by 6-OHDA in BZ555 strain, improved basal slowing rate, and prolonged lifespan in the 6-OHDA-induced wild-type strain with downregulation of the apoptosis mediators, egl-1 and ced-3, and upregulation of sod-3 and cat-2. Interestingly, only FA reduced α-synuclein aggregation, rescued lifespan in NL5901, and upregulated the protein degradation regulators, including ubh-4, hsf-1, hsp-16.1 and hsp-16.2. This study indicates that both FA and Rg3 possess beneficial effects in rescuing DAergic neurodegeneration in the 6-OHDA-induced C. elegans model through suppressing apoptosis mediators and stimulating antioxidant enzymes. In addition, FA could attenuate α-synuclein aggregation through the protein degradation process.
Collapse
|
36
|
A Flavonoid-Rich Extract of Mandarin Juice Counteracts 6-OHDA-Induced Oxidative Stress in SH-SY5Y Cells and Modulates Parkinson-Related Genes. Antioxidants (Basel) 2021; 10:antiox10040539. [PMID: 33808343 PMCID: PMC8066648 DOI: 10.3390/antiox10040539] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
Parkinson’s disease (PD) is a degenerative disorder of the nervous system due to unceasing impairment of dopaminergic neurons situated in the substantia nigra. At present, anti-PD drugs acting on dopamine receptors are mainly symptomatic and have only very limited neuroprotective effects, whereas drugs slowing down neurodegeneration of dopaminergic neurons and deterioration of clinical symptoms are not yet available. Given that, the development of more valuable pharmacological strategies is highly demanded. Comprehensive research on innovative neuroprotective drugs has proven that anti-inflammatory and antioxidant molecules from food sources may prevent and/or counteract neurodegenerative diseases, such as PD. The present study was aimed at the evaluation the protective effect of mandarin juice extract (MJe) against 6-hydroxydopamine (6-OHDA)-induced SH-SY5Y human neuroblastoma cell death. Treatment of differentiated SH-SY5Y cells with 6-OHDA brought cell death, and specifically, apoptosis, which was significantly inhibited by the preincubation with MJe through caspase 3 blockage and the modulation of p53, Bax, and Bcl-2 genes. In addition, it showed antioxidant properties in abiotic models as well as in vitro, where it reduced both reactive oxygen and nitrogen species induced by 6-OHDA, along with restored mitochondrial membrane potential, and prevented the oxidative DNA damage evoked by 6-OHDA. Furthermore, MJe restored the impaired balance of SNCA, LRRK2, PINK1, parkin, and DJ-1 gene levels, PD-related factors, caused by 6-OHDA oxidative stress. Overall, these results indicate that MJe exerts neuroprotective effects against 6-OHDA-induced cell death in SH-SY5Y cells by mechanisms involving both the specific interaction with intracellular pathways and its antioxidant capability. Our study suggests a novel possible strategy to prevent and/or ameliorate neurodegenerative diseases, such as PD.
Collapse
|