1
|
Ma D, Liu S, Liu K, He Q, Hu L, Shi W, Cao Y, Zhang G, Xin Q, Wang Z, Wu J, Jiang C. CuET overcomes regorafenib resistance by inhibiting epithelial-mesenchymal transition through suppression of the ERK pathway in hepatocellular carcinoma. Transl Oncol 2024; 47:102040. [PMID: 38954975 PMCID: PMC11267041 DOI: 10.1016/j.tranon.2024.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/11/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Regorafenib was approved by the US Food and Drug Administration (FDA) for hepatocellular carcinoma (HCC) patients showing progress on sorafenib treatment. However, there is an inevitably high rate of drug resistance associated with regorafenib, which reduces its effectiveness in clinical treatment. Thus, there is an urgent need to find a potential way to solve the problem of regorafenib resistance. The metabolite of disulfiram complexed with copper, the Diethyldithiocarbamate-copper complex (CuET), has been found to be an effective anticancer drug candidate. In the present study, we aimed to evaluate the effect of CuET on regorafenib resistance in HCC and uncover the associated mechanism. EXPERIMENTAL APPROACH Regorafenib-resistant HCC strains were constructed by applying an increasing concentration gradient. This study employed a comprehensive range of methodologies, including the cell counting kit-8 (CCK-8) assay, colony formation assay, cell cycle analysis, wound healing assay, Transwell assay, tumor xenograft model, and immunohistochemical analysis. These methods were utilized to investigate the antitumor activity of CuET, assess the combined effect of regorafenib and CuET, and elucidate the molecular mechanism underlying CuET-mediated regorafenib resistance. KEY RESULTS The inhibitory effect of regorafenib on cell survival, proliferation and migration was decreased in regorafenib-resistant MHCC-97H (MHCC-97H/REGO) cells compared with parental cells. CuET demonstrated significant inhibitory effects on cell survival, proliferation, and migration of various HCC cell lines. CuET restored the sensitivity of MHCC-97H/REGO HCC cells to regorafenib in vitro and in vivo. Mechanistically, CuET reverses regorafenib resistance in HCC by suppressing epithelial-mesenchymal transition (EMT) through inhibition of the ERK signaling pathway. CONCLUSION AND IMPLICATIONS Taken together, the results of this study demonstrated that CuET inhibited the activation of the ERK signaling pathway, leading to the suppression of the epithelial-mesenchymal transition (EMT) and subsequently reversing regorafenib resistance in HCC both in vivo and in vitro. This study provides a new idea and potential strategy to improve the treatment of regorafenib-resistant HCC.
Collapse
Affiliation(s)
- Ding Ma
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuwen Liu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Kua Liu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qinyu He
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Lili Hu
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Weiwei Shi
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yin Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Guang Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China
| | - Zhongxia Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Junhua Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China.
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.
| |
Collapse
|
2
|
Quinn CH, Beierle AM, Williams AP, Marayati R, Bownes LV, Market HR, Erwin ME, Aye JM, Stewart JE, Mroczek-Musulman E, Yoon KJ, Beierle EA. Preclinical evidence for employing MEK inhibition in NRAS mutated pediatric gastroenteropancreatic neuroendocrine-like tumors. Transl Oncol 2024; 47:102045. [PMID: 38959709 PMCID: PMC11269785 DOI: 10.1016/j.tranon.2024.102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 01/22/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Pediatric gastroenteropancreatic neuroendocrine tumors are exceedingly rare, resulting in most pediatric treatment recommendations being based on data derived from adults. Trametinib is a kinase inhibitor that targets MEK1/2 and has been employed in the treatment of cancers harboring mutations in the Ras pathway. METHODS We utilized an established human pediatric gastroenteropancreatic neuroendocrine-like tumor patient-derived xenograft (PDX) with a known NRAS mutation to study the effects of MEK inhibition. We evaluated the effects of trametinib on proliferation, motility, and tumor growth in vivo. We created an intraperitoneal metastatic model of this PDX, characterized both the phenotype and the genotype of the metastatic PDX and again, investigated the effects of MEK inhibition. RESULTS We found target engagement with decreased ERK1/2 phosphorylation with trametinib treatment. Trametinib led to decreased in vitro cell growth and motility, and decreased tumor growth and increased animal survival in a murine flank tumor model. Finally, we demonstrated that trametinib was able to significantly decrease gastroenteropancreatic neuroendocrine intraperitoneal tumor metastasis. CONCLUSIONS The results of these studies support the further investigation of MEK inhibition in pediatric NRAS mutated solid tumors.
Collapse
Affiliation(s)
- Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL 35205, USA
| | - Andee M Beierle
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35222, USA
| | - Adele P Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL 35205, USA
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL 35205, USA
| | - Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL 35205, USA
| | - Hooper R Market
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL 35205, USA
| | - Michael E Erwin
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL 35205, USA
| | - Jamie M Aye
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, Birmingham, AL 35233, USA
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL 35205, USA
| | | | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama, Birmingham, Birmingham, AL 35233, USA
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL 35205, USA.
| |
Collapse
|
3
|
Du J, Yi X, Guo S, Wang H, Shi Q, Zhang J, Tian Y, Wang H, Zhang H, Zhang B, Gao T, Li C, Guo W, Yang Y. SIRT7 promotes mitochondrial biogenesis to render the adaptive resistance to MAPK inhibition in melanoma. Biochem Biophys Res Commun 2024; 722:150161. [PMID: 38797153 DOI: 10.1016/j.bbrc.2024.150161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Melanoma, arising from the malignant transformation of melanocytes, stands as the most lethal type of skin cancer. While significant strides have been made in targeted therapy and immunotherapy, substantially enhancing therapeutic efficacy, the prognosis for melanoma patients remains unoptimistic. SIRT7, a nuclear-localized deacetylase, plays a pivotal role in maintaining cellular homeostasis and adapting to external stressors in melanoma, with its activity closely tied to intracellular nicotinamide adenine dinucleotide (NAD+). However, its involvement in adaptive resistance to targeted therapy remains unclear. Herein, we unveil that up-regulated SIRT7 promotes mitochondrial biogenesis to render the adaptive resistance to MAPK inhibition in melanoma. Initially, we observed a significant increase of SIRT7 expression in publicly available datasets following targeted therapy within a short duration. In consistent, we found elevated SIRT7 expression in melanoma cells subjected to BRAF or MEK inhibitors in vitro. The up-regulation of SIRT7 expression was also confirmed in xenograft tumors in mice after targeted therapy in vivo. Furthermore, we proved that SIRT7 deficiency led to decreased cell viability upon prolonged exposure to BRAF or MEK inhibitors, accompanied by an increase in cell apoptosis. Mechanistically, SIRT7 deficiency restrained the upregulation of genes associated with mitochondrial biogenesis and intracellular ATP levels in response to targeted therapy treatment in melanoma cells. Ultimately, we proved that SIRT7 deficieny could sensitize BRAF-mutant melanoma cells to MAPK inhibition targeted therapy in vivo. In conclusion, our findings underscore the role of SIRT7 in fostering adaptive resistance to targeted therapy through the facilitation of mitochondrial biogenesis. Targeting SIRT7 emerges as a promising strategy to overcome MAPK inhibitor adaptive resistance in melanoma.
Collapse
Affiliation(s)
- Juan Du
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China; Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, Guangdong, China
| | - Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hao Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hengxiang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Baolu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Wang L, Zeng Y, Zhang Y, Zhu Y, Xu S, Liang Z. Acetylcytidine modification of DDX41 and ZNF746 by N-acetyltransferase 10 contributes to chemoresistance of melanoma. Front Oncol 2024; 14:1448890. [PMID: 39246323 PMCID: PMC11377236 DOI: 10.3389/fonc.2024.1448890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Background Rapidly developed chemoresistance to dacarbazine (DTIC) is a major obstacle in the clinical management of melanoma; however, the roles and mechanisms of epi-transcriptomic RNA modification in this process have not been investigated. Method DTIC-resistant (DR) melanoma cells were established for bulk RNA sequencing. The expressions of mRNAs were detected using qRT-PCR, and protein levels were determined using Western blotting and immunohistochemistry. Acetylated RNAs were detected by dot blotting and immunoprecipitation sequencing (acRIP-seq). A lung metastasis mouse model of melanoma was established to evaluate the anti-melanoma effects in vivo. Results We identified that the expression of N-acetyltransferase 10 (NAT10), a catalytic enzyme for the N 4-acetylcytidine (ac4C) modification of RNA, was significantly upregulated in the DR cells. Clinically, NAT10 expression was elevated in disease progression samples and predicted a poor outcome. Using ac4C RNA immunoprecipitation (ac4C-RIP), we found that the mRNAs of two C2H2 zinc finger transcriptional factors, DDX41 and ZNF746, were targets of NAT10-mediated ac4C modification. Gain- and loss-of-function experiments in NAT10, or in DDX41 and ZNF746, altered the chemosensitivity of melanoma accordingly, and the two target genes also negatively correlated with clinical outcomes. Finally, pharmacological inhibition of NAT10 with Remodelin sensitized melanoma cells to DTIC treatment in vitro and in a mouse xenograft model. Conclusion Our study elucidates the previously unrecognized role of NAT10-mediated ac4C modification in the chemoresistance of melanoma and provides a rationale for developing new strategies to overcome chemoresistance in melanoma patients.
Collapse
Affiliation(s)
- Li Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yuefen Zeng
- Department of Dermatology, The People's Hospital of Yuxi City, Kunming Medical University, Yuxi, Yunan, China
| | - Ying Zhang
- Department of Acupuncture and Tuina, The People's Hospital of Yuxi City, Kunming Medical University, Yuxi, Yunan, China
| | - Yun Zhu
- Department of Dermatology, The People's Hospital of Yuxi City, Kunming Medical University, Yuxi, Yunan, China
| | - Shuangyan Xu
- Department of Dermatology, The People's Hospital of Yuxi City, Kunming Medical University, Yuxi, Yunan, China
| | - Zuohui Liang
- Department of Dermatology, The People's Hospital of Yuxi City, Kunming Medical University, Yuxi, Yunan, China
| |
Collapse
|
5
|
Kolathur KK, Nag R, Shenoy PV, Malik Y, Varanasi SM, Angom RS, Mukhopadhyay D. Molecular Susceptibility and Treatment Challenges in Melanoma. Cells 2024; 13:1383. [PMID: 39195270 DOI: 10.3390/cells13161383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Melanoma is the most aggressive subtype of cancer, with a higher propensity to spread compared to most solid tumors. The application of OMICS approaches has revolutionized the field of melanoma research by providing comprehensive insights into the molecular alterations and biological processes underlying melanoma development and progression. This review aims to offer an overview of melanoma biology, covering its transition from primary to malignant melanoma, as well as the key genes and pathways involved in the initiation and progression of this disease. Utilizing online databases, we extensively explored the general expression profile of genes, identified the most frequently altered genes and gene mutations, and examined genetic alterations responsible for drug resistance. Additionally, we studied the mechanisms responsible for immune checkpoint inhibitor resistance in melanoma.
Collapse
Affiliation(s)
- Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Radhakanta Nag
- Department of Microbiology, College of Basic Science & Humanities, Odisha University of Agriculture & Technology (OUAT), Bhubaneswar 751003, Odisha, India
| | - Prathvi V Shenoy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Yagya Malik
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
6
|
Limonta P, Chiaramonte R, Casati L. Unveiling the Dynamic Interplay between Cancer Stem Cells and the Tumor Microenvironment in Melanoma: Implications for Novel Therapeutic Strategies. Cancers (Basel) 2024; 16:2861. [PMID: 39199632 PMCID: PMC11352669 DOI: 10.3390/cancers16162861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Cutaneous melanoma still represents a significant health burden worldwide, being responsible for the majority of skin cancer deaths. Key advances in therapeutic strategies have significantly improved patient outcomes; however, most patients experience drug resistance and tumor relapse. Cancer stem cells (CSCs) are a small subpopulation of cells in different tumors, including melanoma, endowed with distinctive capacities of self-renewal and differentiation into bulk tumor cells. Melanoma CSCs are characterized by the expression of specific biomarkers and intracellular pathways; moreover, they play a pivotal role in tumor onset, progression and drug resistance. In recent years, great efforts have been made to dissect the molecular mechanisms underlying the protumor activities of melanoma CSCs to provide the basis for novel CSC-targeted therapies. Herein, we highlight the intricate crosstalk between melanoma CSCs and bystander cells in the tumor microenvironment (TME), including immune cells, endothelial cells and cancer-associated fibroblasts (CAFs), and its role in melanoma progression. Specifically, we discuss the peculiar capacities of melanoma CSCs to escape the host immune surveillance, to recruit immunosuppressive cells and to educate immune cells toward an immunosuppressive and protumor phenotype. We also address currently investigated CSC-targeted strategies that could pave the way for new promising therapeutic approaches for melanoma care.
Collapse
Affiliation(s)
- Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “R. Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
| | - Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
| |
Collapse
|
7
|
Zhang W, Wang M, Ji C, Liu X, Gu B, Dong T. Macrophage polarization in the tumor microenvironment: Emerging roles and therapeutic potentials. Biomed Pharmacother 2024; 177:116930. [PMID: 38878638 DOI: 10.1016/j.biopha.2024.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) is a combination of tumor cells and indigenous host stroma, which consists of tumor-infiltrating immune cells, endothelial cells, fibroblasts, pericytes, and non-cellular elements. Tumor-associated macrophages (TAMs) represent the major tumor-infiltrating immune cell type and are generally polarized into two functionally contradictory subtypes, namely classical activated M1 macrophages and alternatively activated M2 macrophages. Macrophage polarization refers to how macrophages are activated at a given time and space. The interplay between the TME and macrophage polarization can influence tumor initiation and progression, making TAM a potential target for cancer therapy. Here, we review the latest investigations on factors orchestrating macrophage polarization in the TME, how macrophage polarization affects tumor progression, and the perspectives in modulating macrophage polarization for cancer immunotherapy.
Collapse
Affiliation(s)
- Wenru Zhang
- Department of Natural Products Chemistry, Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Mengmeng Wang
- Department of Natural Products Chemistry, Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Chonghao Ji
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaohui Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, China
| | - Bowen Gu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, United States.
| | - Ting Dong
- Department of Natural Products Chemistry, Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
8
|
Khan I, Kashani-Sabet M. Bromodomain inhibition targeting BPTF in the treatment of melanoma and other solid tumors. Clin Exp Metastasis 2024; 41:509-515. [PMID: 38683257 DOI: 10.1007/s10585-024-10265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/06/2024] [Indexed: 05/01/2024]
Abstract
Epigenetic mechanisms have been shown to play an important role in the development of cancer. These include the activation of chromatin remodeling factors in various malignancies, including bromodomain plant homeodomain (PHD) finger transcription factor (BPTF), the largest component of the human nucleosome remodeling factor (NURF). In the last few years, BPTF has been identified as a pro-tumorigenic factor in melanoma, stimulated by research into the molecular mechanisms underlying BPTF function. Developing therapy targeting the BPTF bromodomain would represent a significant advance. Melanoma therapy has been revolutionized by the efficacy of immunotherapeutic and targeted strategies, but the development of drug resistance calls for alternative therapeutic approaches. Recent work has shown both a biomarker as well as functional role for BPTF in melanoma progression and as a possible target for its therapy. BPTF was shown to stimulate the mitogen-activated protein kinase pathway, which is targeted by selective BRAF inhibitors. The advent of small molecule inhibitors that target bromodomain motifs has shown that bromodomains are druggable. By combining the bromodomain inhibitor bromosporine with existing treatments that target mutant BRAF, BPTF targeting has emerged as a novel and promising therapeutic approach for metastatic melanoma. This article summarizes the functional role of BPTF in tumor progression, reviews the clinical experience to date with bromodomain inhibitors, and discusses the promise of BPTF targeting in melanoma and other solid tumors.
Collapse
Affiliation(s)
- Imran Khan
- California Pacific Medical Center Research Institute, 475 Brannan St, Suite 130, San Francisco, CA, 94107, USA
| | - Mohammed Kashani-Sabet
- California Pacific Medical Center Research Institute, 475 Brannan St, Suite 130, San Francisco, CA, 94107, USA.
| |
Collapse
|
9
|
Fröhlich LM, Villar-Miyar A, Heintze T, Sauer B, Schittek B. PARP1 expression predicts PARP inhibitor sensitivity and correlates with metastatic potential and overall survival in melanoma. Int J Cancer 2024; 155:203-210. [PMID: 38619111 DOI: 10.1002/ijc.34947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Metastatic melanoma is still a difficult-to-treat cancer type owing to its frequent resistance mechanisms to targeted and immunotherapy. Therefore, we aimed to unravel novel therapeutic strategies for melanoma patients. Preclinical and clinical studies show that melanoma patients may benefit from a treatment with poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi). In this study, we focus on PARP1 as a potential biomarker to predict the response of melanoma cells to PARPi therapy. We found that melanoma cells with high basal PARP1 expression exhibit significantly increased cell death after PARPi treatment owing to higher PARP1 trapping compared with melanoma cells with low PARP1 expression. In addition, we could demonstrate that PARP1 expression levels are low in nonmalignant skin cells, and metastatic melanomas show considerably higher PARP1 levels compared with primary melanomas. Most strikingly, we found that high PARP1 levels correlate with worse overall survival of late stage metastasized melanoma patients. In conclusion, we show that PARP1 might act as a biomarker to predict the response to PARPi therapy, and that in particular the late stage metastasized melanoma patients are especially sensitive to PARPi therapy owing to elevated PARP1 expression. Our data suggest that the PARPi cytotoxicity primarily will affect the high PARP1 expressing melanoma cells, rather than the low PARP1 expressing nonmalignant skin cells resulting in only low side effects.
Collapse
Affiliation(s)
- Lisa Marie Fröhlich
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Ana Villar-Miyar
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Tamara Heintze
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Birgit Sauer
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Birgit Schittek
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Garg P, Malhotra J, Kulkarni P, Horne D, Salgia R, Singhal SS. Emerging Therapeutic Strategies to Overcome Drug Resistance in Cancer Cells. Cancers (Basel) 2024; 16:2478. [PMID: 39001539 PMCID: PMC11240358 DOI: 10.3390/cancers16132478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The rise of drug resistance in cancer cells presents a formidable challenge in modern oncology, necessitating the exploration of innovative therapeutic strategies. This review investigates the latest advancements in overcoming drug resistance mechanisms employed by cancer cells, focusing on emerging therapeutic modalities. The intricate molecular insights into drug resistance, including genetic mutations, efflux pumps, altered signaling pathways, and microenvironmental influences, are discussed. Furthermore, the promising avenues offered by targeted therapies, combination treatments, immunotherapies, and precision medicine approaches are highlighted. Specifically, the synergistic effects of combining traditional cytotoxic agents with molecularly targeted inhibitors to circumvent resistance pathways are examined. Additionally, the evolving landscape of immunotherapeutic interventions, including immune checkpoint inhibitors and adoptive cell therapies, is explored in terms of bolstering anti-tumor immune responses and overcoming immune evasion mechanisms. Moreover, the significance of biomarker-driven strategies for predicting and monitoring treatment responses is underscored, thereby optimizing therapeutic outcomes. For insights into the future direction of cancer treatment paradigms, the current review focused on prevailing drug resistance challenges and improving patient outcomes, through an integrative analysis of these emerging therapeutic strategies.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, India
| | - Jyoti Malhotra
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - Sharad S. Singhal
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
11
|
Schröder V, Gherghel D, Apetroaei MR, Gîjiu CL, Isopescu R, Dinculescu D, Apetroaei MM, Enache LE, Mihai CT, Rău I, Vochița G. α-Chitosan and β-Oligochitosan Mixtures-Based Formula for In Vitro Assessment of Melanocyte Cells Response. Int J Mol Sci 2024; 25:6768. [PMID: 38928474 PMCID: PMC11204147 DOI: 10.3390/ijms25126768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Chitosan is a natural polymer with numerous biomedical applications. The cellular activity of chitosan has been studied in various types of cancer, including melanoma, and indicates that these molecules can open new perspectives on antiproliferative action and anticancer therapy. This study analyzes how different chitosan conformations, such as α-chitosan (CH) or β-oligochitosan (CO), with various degrees of deacetylation (DDA) and molar mass (MM), both in different concentrations and in CH-CO mixtures, influence the cellular processes of SK-MEL-28 melanocytes, to estimate the reactivity of these cells to the applied treatments. The in vitro evaluation was carried out, aiming at the cellular metabolism (MTT assay), cellular morphology, and chitinase-like glycoprotein YKL-40 expression. The in vitro effect of the CH-CO mixture application on melanocytes is obvious at low concentrations of α-chitosan/β-oligochitosan (1:2 ratio), with the cell's response supporting the hypothesis that β-oligo-chitosan amplifies the effect. This oligochitosan mixture, favored by the β conformation and its small size, penetrates faster into the cells, being more reactive when interacting with some cellular components. Morphological effects expressed by the loss of cell adhesion and the depletion of YKL-40 synthesis are significant responses of melanocytes. β-oligochitosan (1.5 kDa) induces an extension of cytophysiological effects and limits the cell viability compared to α-chitosan (400-900 kDa). Statistical analysis using multivariate techniques showed differences between the CH samples and CH-CO mixtures.
Collapse
Affiliation(s)
- Verginica Schröder
- Departament of Cellular and Molecular Biology, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capt. Aviator Al. Șerbănescu Street, Campus C, 900470 Constanta, Romania;
| | - Daniela Gherghel
- Institute of Biological Research Iasi, Branch of NIRDBS—National Institute of Research and Development of Biological Sciences Bucharest, 47 Lascar Catargi, 700107 Iasi, Romania;
| | - Manuela Rossemary Apetroaei
- Department of Marine Electric and Electronic Engineering, Faculty of Marine Engineering, Mircea cel Batran Naval Academy, 1 Fulgerului Street, 900218 Constanta, Romania;
| | - Cristiana Luminița Gîjiu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (C.L.G.); (R.I.); (L.E.E.); (I.R.)
| | - Raluca Isopescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (C.L.G.); (R.I.); (L.E.E.); (I.R.)
| | - Daniel Dinculescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (C.L.G.); (R.I.); (L.E.E.); (I.R.)
| | - Miruna-Maria Apetroaei
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Laura Elena Enache
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (C.L.G.); (R.I.); (L.E.E.); (I.R.)
| | | | - Ileana Rău
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (C.L.G.); (R.I.); (L.E.E.); (I.R.)
| | - Gabriela Vochița
- Institute of Biological Research Iasi, Branch of NIRDBS—National Institute of Research and Development of Biological Sciences Bucharest, 47 Lascar Catargi, 700107 Iasi, Romania;
| |
Collapse
|
12
|
Lin Q, Jing Y, Yan C, Chen X, Zhang Q, Lin X, Xu Y, Chen B. Design and Application of pH-Responsive Liposomes for Site-Specific Delivery of Cytotoxin from Cobra Venom. Int J Nanomedicine 2024; 19:5381-5395. [PMID: 38859950 PMCID: PMC11164093 DOI: 10.2147/ijn.s461728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024] Open
Abstract
Background Current immunotherapies with unexpected severe side effects and treatment resistance have not resulted in the desired outcomes for patients with melanoma, and there is a need to discover more effective medications. Cytotoxin (CTX) from Cobra Venom has been established to have favorable cytolytic activity and antitumor efficacy and is regarded as a promising novel anticancer agent. However, amphiphilic CTX with excellent anionic phosphatidylserine lipid-binding ability may also damage normal cells. Methods We developed pH-responsive liposomes with a high CTX load (CTX@PSL) for targeted acidic-stimuli release of drugs in the tumor microenvironment. The morphology, size, zeta potential, drug-release kinetics, and preservation stability were characterized. Cell uptake, apoptosis-promoting effects, and cytotoxicity were assessed using MTT assay and flow cytometry. Finally, the tissue distribution and antitumor effects of CTX@PSL were systematically assessed using an in vivo imaging system. Results CTX@PSL exhibited high drug entrapment efficiency, drug loading, stability, and a rapid release profile under acidic conditions. These nanoparticles, irregularly spherical in shape and small in size, can effectively accumulate at tumor sites (six times higher than free CTX) and are rapidly internalized into cancer cells (2.5-fold higher cell uptake efficiency). CTX@PSL displayed significantly stronger cytotoxicity (IC50 0.25 μg/mL) and increased apoptosis in than the other formulations (apoptosis rate 71.78±1.70%). CTX@PSL showed considerably better tumor inhibition efficacy than free CTX or conventional liposomes (tumor inhibition rate 79.78±5.93%). Conclusion Our results suggest that CTX@PSL improves tumor-site accumulation and intracellular uptake for sustained and targeted CTX release. By combining the advantages of CTX and stimuli-responsive nanotechnology, the novel CTX@PSL nanoformulation is a promising therapeutic candidate for cancer treatment.
Collapse
Affiliation(s)
- Qing Lin
- Department of Pharmacy, Affiliated Fuzhou First Hospital of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
| | - Yafei Jing
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Cailing Yan
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
| | - Xinyi Chen
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
| | - Qiong Zhang
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
| | - Xinhua Lin
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Yunlu Xu
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
- Center of Translational Hematology, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Bing Chen
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
13
|
Chan PY, Corrie PG. Curing Stage IV Melanoma: Where Have We Been and Where Are We? Am Soc Clin Oncol Educ Book 2024; 44:e438654. [PMID: 38669609 DOI: 10.1200/edbk_438654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Little more than 10 years ago, metastatic melanoma was considered to have one of the poorest cancer outcomes, associated with a median overall survival of 6-8 months. Cytotoxic chemotherapy offered modest response rates of 20%-30%, but no clear survival benefit. Patients were routinely enrolled in clinical trials as their first-line therapy in the search for effective novel therapeutics. Remarkable developments in molecular biology, cancer genomics, immunology, and drug discovery have dominated the early part of the 21st century, and nowhere have the benefits been better realized than in the transformation of outcomes for patients with metastatic melanoma: since 2011, 14 new agents have been approved that significantly increase survival, with long-term remissions and, possibly now, potential for cure. Even so, there is still much work to be done, given that most treated patients still die of their disease. Although most survival gains have so far been realized for cutaneous melanoma, improving treatment options for those 10% of patients with rarer, noncutaneous melanomas is a high priority. Key novel therapeutic approaches aimed at improving outcomes with potential for curing patients with melanoma are considered.
Collapse
Affiliation(s)
- Pui Ying Chan
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Pippa G Corrie
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
14
|
Tufail M, Wan WD, Jiang C, Li N. Targeting PI3K/AKT/mTOR signaling to overcome drug resistance in cancer. Chem Biol Interact 2024; 396:111055. [PMID: 38763348 DOI: 10.1016/j.cbi.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
This review comprehensively explores the challenge of drug resistance in cancer by focusing on the pivotal PI3K/AKT/mTOR pathway, elucidating its role in oncogenesis and resistance mechanisms across various cancer types. It meticulously examines the diverse mechanisms underlying resistance, including genetic mutations, feedback loops, and microenvironmental factors, while also discussing the associated resistance patterns. Evaluating current therapeutic strategies targeting this pathway, the article highlights the hurdles encountered in drug development and clinical trials. Innovative approaches to overcome resistance, such as combination therapies and precision medicine, are critically analyzed, alongside discussions on emerging therapies like immunotherapy and molecularly targeted agents. Overall, this comprehensive review not only sheds light on the complexities of resistance in cancer but also provides a roadmap for advancing cancer treatment.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
15
|
Jostes S, Vardabasso C, Dong J, Carcamo S, Singh R, Phelps R, Meadows A, Grossi E, Hasson D, Bernstein E. H2A.Z chaperones converge on E2F target genes for melanoma cell proliferation. Genes Dev 2024; 38:336-353. [PMID: 38744503 PMCID: PMC11146596 DOI: 10.1101/gad.351318.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
High levels of H2A.Z promote melanoma cell proliferation and correlate with poor prognosis. However, the role of the two distinct H2A.Z histone chaperone complexes SRCAP and P400-TIP60 in melanoma remains unclear. Here, we show that individual subunit depletion of SRCAP, P400, and VPS72 (YL1) results in not only the loss of H2A.Z deposition into chromatin but also a reduction of H4 acetylation in melanoma cells. This loss of H4 acetylation is particularly found at the promoters of cell cycle genes directly bound by H2A.Z and its chaperones, suggesting a coordinated regulation between H2A.Z deposition and H4 acetylation to promote their expression. Knockdown of each of the three subunits downregulates E2F1 and its targets, resulting in a cell cycle arrest akin to H2A.Z depletion. However, unlike H2A.Z deficiency, loss of the shared H2A.Z chaperone subunit YL1 induces apoptosis. Furthermore, YL1 is overexpressed in melanoma tissues, and its upregulation is associated with poor patient outcome. Together, these findings provide a rationale for future targeting of H2A.Z chaperones as an epigenetic strategy for melanoma treatment.
Collapse
Affiliation(s)
- Sina Jostes
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Chiara Vardabasso
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Joanna Dong
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Saul Carcamo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Bioinformatics for Next-Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Rajendra Singh
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Robert Phelps
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Austin Meadows
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Elena Grossi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Bioinformatics for Next-Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA;
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
16
|
Isaak AJ, Clements GR, Buenaventura RGM, Merlino G, Yu Y. Development of Personalized Strategies for Precisely Battling Malignant Melanoma. Int J Mol Sci 2024; 25:5023. [PMID: 38732242 PMCID: PMC11084485 DOI: 10.3390/ijms25095023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Melanoma is the most severe and fatal form of skin cancer, resulting from multiple gene mutations with high intra-tumor and inter-tumor molecular heterogeneity. Treatment options for patients whose disease has progressed beyond the ability for surgical resection rely on currently accepted standard therapies, notably immune checkpoint inhibitors and targeted therapies. Acquired resistance to these therapies and treatment-associated toxicity necessitate exploring novel strategies, especially those that can be personalized for specific patients and/or populations. Here, we review the current landscape and progress of standard therapies and explore what personalized oncology techniques may entail in the scope of melanoma. Our purpose is to provide an up-to-date summary of the tools at our disposal that work to circumvent the common barriers faced when battling melanoma.
Collapse
Affiliation(s)
| | | | | | | | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Wang L, He S, Liu R, Xue Y, Quan Y, Shi R, Yang X, Lin Q, Sun X, Zhang Z, Zhang L. A pH/ROS dual-responsive system for effective chemoimmunotherapy against melanoma via remodeling tumor immune microenvironment. Acta Pharm Sin B 2024; 14:2263-2280. [PMID: 38799639 PMCID: PMC11119573 DOI: 10.1016/j.apsb.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 05/29/2024] Open
Abstract
Chemotherapeutics can induce immunogenic cell death (ICD) in tumor cells, offering new possibilities for cancer therapy. However, the efficiency of the immune response generated is insufficient due to the inhibitory nature of the tumor microenvironment (TME). Here, we developed a pH/reactive oxygen species (ROS) dual-response system to enhance chemoimmunotherapy for melanoma. The system productively accumulated in tumors by specific binding of phenylboronic acid (PBA) to sialic acids (SA). The nanoparticles (NPs) rapidly swelled and released quercetin (QUE) and doxorubicin (DOX) upon the stimulation of tumor microenvironment (TME). The in vitro and in vivo results consistently demonstrated that the NPs improved anti-tumor efficacy and prolonged survival of mice, significantly enhancing the effects of the combination. Our study revealed DOX was an ICD inducer, stimulating immune responses and promoting maturation of dendritic cells (DCs). Additionally, QUE served as a TME regulator by inhibiting the cyclooxygenase-2 (COX2)-prostaglandin E2 (PGE2) axis, which influenced various immune cells, including increasing cytotoxic T cells (CLTs) infiltration, promoting M1 macrophage polarization, and reducing regulatory T cells (Tregs) infiltration. The combination synergistically facilitated chemoimmunotherapy efficacy by remodeling the immunosuppressive microenvironment. This work presents a promising strategy to increase anti-tumor efficiency of chemotherapeutic agents.
Collapse
Affiliation(s)
- Leilei Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shanshan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Xue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Quan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rongying Shi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xueying Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qing Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- Med-X Center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
18
|
Schaff DL, Fasse AJ, White PE, Vander Velde RJ, Shaffer SM. Clonal differences underlie variable responses to sequential and prolonged treatment. Cell Syst 2024; 15:213-226.e9. [PMID: 38401539 PMCID: PMC11003565 DOI: 10.1016/j.cels.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024]
Abstract
Cancer cells exhibit dramatic differences in gene expression at the single-cell level, which can predict whether they become resistant to treatment. Treatment perpetuates this heterogeneity, resulting in a diversity of cell states among resistant clones. However, it remains unclear whether these differences lead to distinct responses when another treatment is applied or the same treatment is continued. In this study, we combined single-cell RNA sequencing with barcoding to track resistant clones through prolonged and sequential treatments. We found that cells within the same clone have similar gene expression states after multiple rounds of treatment. Moreover, we demonstrated that individual clones have distinct and differing fates, including growth, survival, or death, when subjected to a second treatment or when the first treatment is continued. By identifying gene expression states that predict clone survival, this work provides a foundation for selecting optimal therapies that target the most aggressive resistant clones within a tumor. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Dylan L Schaff
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Aria J Fasse
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19146, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Phoebe E White
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Robert J Vander Velde
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19146, USA; Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Sydney M Shaffer
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19146, USA; Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA.
| |
Collapse
|
19
|
Muraro E, Montico B, Lum B, Colizzi F, Giurato G, Salvati A, Guerrieri R, Rizzo A, Comaro E, Canzonieri V, Anichini A, Del Vecchio M, Mortarini R, Milione M, Weisz A, Pizzichetta MA, Simpson F, Dolcetti R, Fratta E, Sigalotti L. Antibody dependent cellular cytotoxicity-inducing anti-EGFR antibodies as effective therapeutic option for cutaneous melanoma resistant to BRAF inhibitors. Front Immunol 2024; 15:1336566. [PMID: 38510242 PMCID: PMC10950948 DOI: 10.3389/fimmu.2024.1336566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction About 50% of cutaneous melanoma (CM) patients present activating BRAF mutations that can be effectively targeted by BRAF inhibitors (BRAFi). However, 20% of CM patients exhibit intrinsic drug resistance to BRAFi, while most of the others develop adaptive resistance over time. The mechanisms involved in BRAFi resistance are disparate and globally seem to rewire the cellular signaling profile by up-regulating different receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR). RTKs inhibitors have not clearly demonstrated anti-tumor activity in BRAFi resistant models. To overcome this issue, we wondered whether the shared up-regulated RTK phenotype associated with BRAFi resistance could be exploited by using immune weapons as the antibody-dependent cell cytotoxicity (ADCC)-mediated effect of anti-RTKs antibodies, and kill tumor cells independently from the mechanistic roots. Methods and results By using an in vitro model of BRAFi resistance, we detected increased membrane expression of EGFR, both at mRNA and protein level in 4 out of 9 BRAFi-resistant (VR) CM cultures as compared to their parental sensitive cells. Increased EGFR phosphorylation and AKT activation were observed in the VR CM cultures. EGFR signaling appeared dispensable for maintaining resistance, since small molecule-, antibody- and CRISPR-targeting of EGFR did not restore sensitivity of VR cells to BRAFi. Importantly, immune-targeting of EGFR by the anti-EGFR antibody cetuximab efficiently and specifically killed EGFR-expressing VR CM cells, both in vitro and in humanized mouse models in vivo, triggering ADCC by healthy donors' and patients' peripheral blood cells. Conclusion Our data demonstrate the efficacy of immune targeting of RTKs expressed by CM relapsing on BRAFi, providing the proof-of-concept supporting the assessment of anti-RTK antibodies in combination therapies in this setting. This strategy might be expected to concomitantly trigger the crosstalk of adaptive immune response leading to a complementing T cell immune rejection of tumors.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Barbara Montico
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Benedict Lum
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Francesca Colizzi
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, Baronissi, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, Baronissi, Italy
- Molecular Pathology and Medical Genomics Program, AOU 'S. Giovanni di Dio e Ruggi d'Aragona' University of Salerno and Rete Oncologica Campana, Salerno, Italy
| | - Roberto Guerrieri
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Aurora Rizzo
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Elisa Comaro
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Vincenzo Canzonieri
- Division of Pathology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Andrea Anichini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Del Vecchio
- Melanoma Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Roberta Mortarini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Milione
- Pathology Unit 1, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, Baronissi, Italy
- Molecular Pathology and Medical Genomics Program, AOU 'S. Giovanni di Dio e Ruggi d'Aragona' University of Salerno and Rete Oncologica Campana, Salerno, Italy
| | - Maria Antonietta Pizzichetta
- Division of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
- Department of Dermatology, University of Trieste, Trieste, Italy
| | - Fiona Simpson
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Riccardo Dolcetti
- Translational and Clinical Immunotherapy, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Elisabetta Fratta
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Luca Sigalotti
- Oncogenetics and Functional Oncogenomics Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
20
|
Garrison Z, Clister T, Bleem E, Berry EG, Kulkarni RP. Comparison of Immunotherapy versus Targeted Therapy Effectiveness in BRAF-Mutant Melanoma Patients and Use of cGAS Expression and Aneuploidy as Potential Prognostic Biomarkers. Cancers (Basel) 2024; 16:1027. [PMID: 38473384 DOI: 10.3390/cancers16051027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
BRAF-mutant melanoma patients can be treated with targeted therapy or immunotherapies, and it is not clear which should be provided first. Targeted treatments do not work in up to one-third of cases, while immunotherapies may only be effective in up to 60% and come with a high risk of immune-related side effects. Determining which treatment to provide first is thus of critical importance. Recent studies suggest that chromosomal instability and aneuploidy and cyclic GMP-AMP synthase (cGAS) can act as biomarkers for cancer severity and patient outcome. Neither potential biomarker has been extensively studied in melanoma. We examined 20 BRAF-mutant melanomas treated with immunotherapy or targeted therapy and measured chromosomal aneuploidy and cGAS expression levels. Treatment type, aneuploidy, and cGAS expression were correlated with progression-free survival (PFS) in these patients. Those treated with immunotherapy first had significantly better outcomes than those treated with targeted therapy, suggesting immunotherapy should be strongly considered as the first-line therapy for patients bearing BRAF-mutant melanoma. We found that there was no correlation of aneuploidy with outcome while there was some positive correlation of cGAS levels with PFS. Further studies are needed to confirm these findings and to test other potential biomarkers.
Collapse
Affiliation(s)
- Zachary Garrison
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Terri Clister
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Eric Bleem
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elizabeth G Berry
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Operative Care Division, U.S. Department of Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| | - Rajan P Kulkarni
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Operative Care Division, U.S. Department of Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Portland, OR 97239, USA
| |
Collapse
|
21
|
Los C, Klobuch S, Haanen JBAG. Tumor-Infiltrating Lymphocyte and Other Cell Therapies for Metastatic Melanoma. Cancer J 2024; 30:113-119. [PMID: 38527265 DOI: 10.1097/ppo.0000000000000705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
ABSTRACT Major progress in prolonging survival of patients with advanced melanoma has been made in the past decade because of the development and approval of immune checkpoint inhibitor and targeted therapies. However, for nonresponding or relapsing patients, their prognosis is still dismal. Based on clinical trial data, treatment with adoptive cell therapies holds great promise. In patients with metastatic melanoma progressing on or nonresponsive to single-agent anti-programmed cell death 1, infusion of tumor-infiltrating lymphocytes can produce responses in up to half of patients, with durable complete responses in up to 20%. Genetic modification of peripheral blood T cells with T-cell receptors derived from tumor-specific T cells, or with chimeric antigen receptors, has the potential to further improve treatment outcomes in this refractory population. In this review, we will discuss the historical development, current status, and future perspectives of adoptive T-cell therapies in melanoma.
Collapse
Affiliation(s)
- Christy Los
- From the Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute
| | - Sebastian Klobuch
- Department of Medical Oncology, Antoni van Leeuwenhoek/Netherlands Cancer Institute, Amsterdam
| | | |
Collapse
|
22
|
Yan C, Zhao L, Zhang X, Chu Z, Zhou T, Zhang Y, Geng S, Guo K. Cold atmospheric plasma sensitizes melanoma cells to targeted therapy agents in vitro. JOURNAL OF BIOPHOTONICS 2024; 17:e202300356. [PMID: 38041219 DOI: 10.1002/jbio.202300356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Cold atmospheric plasma (CAP) has been reported to kill melanoma cells in vitro and in vivo. BRAF and MEK inhibitors are targeted therapy agents for advanced melanoma patients with BRAF mutations. However, low overall survival and relapse-free survival are still tough challenges due to drug resistance. In this study, we confirmed that CAP alleviated innate drug resistance and promoted the anti-tumor effect of targeted therapy in A875 and WM115 melanoma cells in vitro. Further, we revealed that CAP altered the expression of various molecules concerning MAPK and PI3K-AKT pathways in A875 cells. This study demonstrates that CAP promises to work as adjuvant treatment with targeted therapy to overcome drug resistance for malignant tumors in future.
Collapse
Affiliation(s)
- Cong Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lihong Zhao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinyue Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhaowei Chu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tong Zhou
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Kun Guo
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| |
Collapse
|
23
|
Wu M, Li K, Liao Y, Li L, Xiao X, Chen Y, Guo J, Hu F, Qu J, Wang Z, Feng H. Multi -omics analysis for ferroptosis -related genes as prognostic factors in cutaneous melanoma. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:159-174. [PMID: 38755712 PMCID: PMC11103070 DOI: 10.11817/j.issn.1672-7347.2024.230401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 05/18/2024]
Abstract
OBJECTIVES Melanoma is highly malignant and heterogeneous. It is essential to develop a specific prognostic model for improving the patients' survival and treatment strategies. Recent studies have shown that ferroptosis results from the overproduction of lipid peroxidation and is an iron-dependent form of programmed cell death. Despite this, ferroptosis-related genes (FRGs) and their clinical significances remain unknown in malignant melanoma. This study aims to assess the role of FRGs in melanoma, with the goal of developing a novel prognostic model that provides new insights into personalized treatment and improvement of therapeutic outcomes for melanoma. METHODS We systematically characterized the genetic alterations and mRNA expression of 73 FRGs in The Cancer Genome Atlas (TCGA)-skin cutaneous melanoma (SKCM) dataset in this study. The results were validated with real-time RT-PCR and Western blotting. Subsequently, a multi-gene feature model was constructed using the TCGA-SKCM cohort. Melanoma patients were classified into a high-risk group and a low-risk group based on the feature model. As a final step, correlations between ferroptosis-related signatures and immune features, immunotherapy efficacy, or drug response were analyzed. RESULTS By analyzing melanoma samples from TCGA-SKCM dataset, FRGs exhibited a high frequency of genetic mutations and copy number variations (CNVs), significantly impacting gene expression. Additionally, compared with normal skin tissue, 30 genes with significantly differential expression were identified in melanoma tissues. A prognostic model related to FRGs, constructed using the LASSO Cox regression method, identified 13 FRGs associated with overall survival prognosis in patients and was validated with external datasets. Finally, functional enrichment and immune response analysis further indicated significant differences in immune cell infiltration, mutation burden, and hypoxia status between the high-risk group and the low-risk group, and the model was effective in predicting responses to immunotherapy and drug sensitivity. CONCLUSIONS This study develops a strong ferroptosis-related prognostic signature model which could put forward new insights into target therapy and immunotherapy for patients with melanoma.
Collapse
Affiliation(s)
- Meng Wu
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha 410002.
| | - Ke Li
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha 410002
| | - Yangying Liao
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha 410002
| | - Lan Li
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha 410002
| | - Xiao Xiao
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha 410002
| | - Yongjian Chen
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha 410002
| | - Junweichen Guo
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha 410002
| | - Feng Hu
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha 410002
| | - Jing Qu
- Department of Dermatology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine (Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine), Changsha 410006
| | - Zheng Wang
- School of Computer Science, Hunan First Normal University, Changsha 410205, China.
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha 410002.
| |
Collapse
|
24
|
Kharouf N, Flanagan TW, Alamodi AA, Al Hmada Y, Hassan SY, Shalaby H, Santourlidis S, Hassan SL, Haikel Y, Megahed M, Brodell RT, Hassan M. CD133-Dependent Activation of Phosphoinositide 3-Kinase /AKT/Mammalian Target of Rapamycin Signaling in Melanoma Progression and Drug Resistance. Cells 2024; 13:240. [PMID: 38334632 PMCID: PMC10854812 DOI: 10.3390/cells13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.
Collapse
Affiliation(s)
- Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | | | - Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
25
|
Al Hmada Y, Brodell RT, Kharouf N, Flanagan TW, Alamodi AA, Hassan SY, Shalaby H, Hassan SL, Haikel Y, Megahed M, Santourlidis S, Hassan M. Mechanisms of Melanoma Progression and Treatment Resistance: Role of Cancer Stem-like Cells. Cancers (Basel) 2024; 16:470. [PMID: 38275910 PMCID: PMC10814963 DOI: 10.3390/cancers16020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Melanoma is the third most common type of skin cancer, characterized by its heterogeneity and propensity to metastasize to distant organs. Melanoma is a heterogeneous tumor, composed of genetically divergent subpopulations, including a small fraction of melanoma-initiating cancer stem-like cells (CSCs) and many non-cancer stem cells (non-CSCs). CSCs are characterized by their unique surface proteins associated with aberrant signaling pathways with a causal or consequential relationship with tumor progression, drug resistance, and recurrence. Melanomas also harbor significant alterations in functional genes (BRAF, CDKN2A, NRAS, TP53, and NF1). Of these, the most common are the BRAF and NRAS oncogenes, with 50% of melanomas demonstrating the BRAF mutation (BRAFV600E). While the successful targeting of BRAFV600E does improve overall survival, the long-term efficacy of available therapeutic options is limited due to adverse side effects and reduced clinical efficacy. Additionally, drug resistance develops rapidly via mechanisms involving fast feedback re-activation of MAPK signaling pathways. This article updates information relevant to the mechanisms of melanoma progression and resistance and particularly the mechanistic role of CSCs in melanoma progression, drug resistance, and recurrence.
Collapse
Affiliation(s)
- Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulhadi A. Alamodi
- College of Health Sciences, Jackson State University, 310 W Woodrow Wilson Ave Ste 300, Jackson, MS 39213, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
26
|
Murali VS, Rajendran D, Isogai T, DeBerardinis RJ, Danuser G. RhoA activation promotes glucose uptake to elevate proliferation in MAPK inhibitor resistant melanoma cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574940. [PMID: 38260449 PMCID: PMC10802590 DOI: 10.1101/2024.01.09.574940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cutaneous melanomas harboring a B-RafV600E mutation are treated with immune check point inhibitors or kinase inhibitor combination therapies relying on MAPK inhibitors (MAPKi) Dabrafenib and Trametinib (Curti and Faries, 2021). However, cells become resistant to treatments over the timespan of a few months. Resistance to MAPKi has been associated with adoption of an aggressive amoeboid phenotype characterized by elevated RhoA signaling, enhanced contractility and thick cortical filamentous actin (F-actin) structures (Kim et al., 2016; Misek et al., 2020). Targeting active RhoA through Rho-kinase (ROCK) inhibitors, either alone or in combination with immunotherapies, reverts MAPKi-resistance (Misek et al., 2020; Orgaz et al., 2020). Yet, the mechanisms for this behavior remain largely unknown. Given our recent findings of cytoskeleton's role in cancer cell proliferation (Mohan et al., 2019), survival (Weems et al., 2023), and metabolism (Park et al., 2020), we explored possibilities by which RhoA-driven changes in cytoskeleton structure may confer resistance. We confirmed elevated activation of RhoA in a panel of MAPKi-resistant melanoma cell lines, leading to a marked increase in the presence of contractile F-actin bundles. Moreover, these cells had increased glucose uptake and glycolysis, a phenotype disrupted by pharmacological perturbation of ROCK. However, glycolysis was unaffected by disruption of F-actin bundles, indicating that glycolytic stimulation in MAPKi-resistant melanoma is independent of F-actin organization. Instead, our findings highlight a mechanism in which elevated RhoA signaling activates ROCK, leading to the activation of insulin receptor substrate 1 (IRS1) and P85 of the PI3K pathway, which promotes cell surface expression of GLUT1 and elevated glucose uptake. Application of ROCK inhibitor GSK269962A results in reduced glucose uptake and glycolysis, thus impeding cell proliferation. Our study adds a mechanism to the proposed use of ROCK inhibitors for long-term treatments on MAPKi-resistant melanomas.
Collapse
Affiliation(s)
- Vasanth Siruvallur Murali
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Divya Rajendran
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J. DeBerardinis
- Children’s Research Institute and Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
27
|
Vieira GDS, Kimura TDC, Scarini JF, de Lima-Souza RA, Lavareze L, Emerick C, Gonçalves MT, Damas II, Figueiredo-Maciel T, Sales de Sá R, Aquino IG, Gonçalves de Paiva JP, Fernandes PM, Gonçalves MWA, Kowalski LP, Altemani A, Fillmore GC, Mariano FV, Egal ESA. Hematopoietic colony-stimulating factors in head and neck cancers: Recent advances and therapeutic challenges. Cytokine 2024; 173:156417. [PMID: 37944421 DOI: 10.1016/j.cyto.2023.156417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Colony-stimulating factors (CSFs) are key cytokines responsible for the production, maturation, and mobilization of the granulocytic and macrophage lineages from the bone marrow, which have been gaining attention for playing pro- and/or anti-tumorigenic roles in cancer. Head and neck cancers (HNCs) represent a group of heterogeneous neoplasms with high morbidity and mortality worldwide. Treatment for HNCs is still limited even with the advancements in cancer immunotherapy. Novel treatments for patients with recurrent and metastatic HNCs are urgently needed. This article provides an in-depth review of the role of hematopoietic cytokines such as granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), and interleukin-3 (IL-3; also known as multi-CSF) in the HNCs tumor microenvironment. We have reviewed current results from clinical trials using CSFs as adjuvant therapy to treat HNCs patients, and also clinical findings reported to date on the therapeutic application of CSFs toxicities arising from chemoradiotherapy.
Collapse
Affiliation(s)
- Gustavo de Souza Vieira
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Talita de Carvalho Kimura
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Figueira Scarini
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Reydson Alcides de Lima-Souza
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luccas Lavareze
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carolina Emerick
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mayara Trevizol Gonçalves
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ingrid Iara Damas
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Tayná Figueiredo-Maciel
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Raisa Sales de Sá
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Iara Gonçalves Aquino
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - João Paulo Gonçalves de Paiva
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Patrícia Maria Fernandes
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Moisés Willian Aparecido Gonçalves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery, School of Medicine, University of São Paulo (USP), São Paulo, Brazil; Department of Head and Neck Surgery and Otolaryngology, AC Camargo Cancer Center, São Paulo, Brazil
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gary Chris Fillmore
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Fernanda Viviane Mariano
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Erika Said Abu Egal
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States.
| |
Collapse
|
28
|
Lasolle H, Schiavo A, Tourneur A, Gillotay P, de Faria da Fonseca B, Ceolin L, Monestier O, Aganahi B, Chomette L, Kizys MML, Haenebalcke L, Pieters T, Goossens S, Haigh J, Detours V, Maia ALS, Costagliola S, Romitti M. Dual targeting of MAPK and PI3K pathways unlocks redifferentiation of Braf-mutated thyroid cancer organoids. Oncogene 2024; 43:155-170. [PMID: 37985676 PMCID: PMC10786723 DOI: 10.1038/s41388-023-02889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy and several genetic events have been described to promote the development of thyroid carcinogenesis. Besides the effects of specific mutations on thyroid cancer development, the molecular mechanisms controlling tumorigenesis, tumor behavior, and drug resistance are still largely unknown. Cancer organoids have been proposed as a powerful tool to study aspects related to tumor development and progression and appear promising to test individual responses to therapies. Here, using mESC-derived thyroid organoids, we developed a BrafV637E-inducible model able to recapitulate the features of papillary thyroid cancer in vitro. Overexpression of the murine BrafV637E mutation, equivalent to BrafV600E in humans, rapidly triggers to MAPK activation, cell dedifferentiation, and disruption of follicular organization. BrafV637E-expressing organoids show a transcriptomic signature for p53, focal adhesion, ECM-receptor interactions, EMT, and inflammatory signaling pathways. Finally, PTC-like thyroid organoids were used for drug screening assays. The combination of MAPK and PI3K inhibitors reversed BrafV637E oncogene-promoted cell dedifferentiation while restoring thyroid follicle organization and function in vitro. Our results demonstrate that pluripotent stem cells-derived thyroid cancer organoids can mimic tumor development and features while providing an efficient tool for testing novel targeted therapies.
Collapse
Affiliation(s)
- Hélène Lasolle
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Andrea Schiavo
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Adrien Tourneur
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pierre Gillotay
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Bárbara de Faria da Fonseca
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Lucieli Ceolin
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Olivier Monestier
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Benilda Aganahi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laura Chomette
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marina Malta Letro Kizys
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Lieven Haenebalcke
- VIB, Flanders Institute for Biotechnology, Ghent University, Ghent, Belgium
| | - Tim Pieters
- VIB, Flanders Institute for Biotechnology, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Steven Goossens
- VIB, Flanders Institute for Biotechnology, Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jody Haigh
- CancerCare Manitoba Research Institute, Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Vincent Detours
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ana Luiza Silva Maia
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Sabine Costagliola
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mírian Romitti
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
29
|
Zeng Z, Ngo HL, Proctor M, Rizos H, Dolcetti R, Cruz JG, Wells JW, Gabrielli B. Checkpoint kinase 1 inhibitor + low-dose hydroxyurea efficiently kills BRAF inhibitor- and immune checkpoint inhibitor-resistant melanomas. Pigment Cell Melanoma Res 2024; 37:45-50. [PMID: 37614154 DOI: 10.1111/pcmr.13120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/10/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Treatment of melanomas with targeted and immunotherapies has proven effective, but resistance to both treatments is a common outcome leaving a high proportion of patients without effective alternative treatment options. Replication stress is a common feature of melanomas, and this is effectively targeted using a combination of checkpoint kinase 1 (CHK1) inhibitor and low-dose hydroxyurea (LDHU). This combination also promotes inflammatory and anti-tumour immune responses in vivo. Melanoma cell lines resistant to BRAF inhibitor (BRAFi) or immune checkpoint inhibitors (ICI) retain their sensitivity to CHK1i + LDHU, with sensitivity similar to that of parental tumours. In vivo, BRAFi-resistant and BRAFi-sensitive parental tumours produce an identical immune response with treatment.
Collapse
Affiliation(s)
- Zhen Zeng
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Hung Long Ngo
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Martina Proctor
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Helen Rizos
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Riccardo Dolcetti
- Sir Peter MacCallum Department of Oncology and Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jazmina Gonzalez Cruz
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - James W Wells
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Brian Gabrielli
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
30
|
PARK MINJI, BANG CHULHWAN, YUN WONSOO, JEONG YUNMI. Low-molecular-weight fucoidan inhibits the proliferation of melanoma via Bcl-2 phosphorylation and PTEN/AKT pathway. Oncol Res 2023; 32:273-282. [PMID: 38186578 PMCID: PMC10765131 DOI: 10.32604/or.2023.044362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
Fucoidan, a sulfate polysaccharide obtained from brown seaweed, has various bioactive properties, including anti-inflammatory, anti-cancer, anti-viral, anti-oxidant, anti-coagulant, anti-thrombotic, anti-angiogenic, and anti-Helicobacter pylori properties. However, the effects of low-molecular-weight fucoidan (LMW-F) on melanoma cell lines and three dimensional (3D) cell culture models are not well understood. This study aimed to investigate the effects of LMW-F on A375 human melanoma cells and cryopreserved biospecimens derived from patients with advanced melanoma. Ultrasonic wave was used to fragment fucoidan derived from Fucus vesiculosus into smaller LMW-F. MTT and live/dead assays showed that LMW-F inhibited cell proliferation in both A375 cells and patient-derived melanoma explants in a 3D-printed collagen scaffold. The PTEN/AKT pathway was found to be involved in the anti-melanoma effects of fucoidan. Western blot analysis revealed that LMW-F reduced the phosphorylation of Bcl-2 at Thr 56, which was associated with the prevention of anti-apoptotic activity of cancer cells. Our findings suggested that LMW-F could enhance anti-melanoma chemotherapy and improve the outcomes of patients with melanoma resistance.
Collapse
Affiliation(s)
- MINJI PARK
- T&R Biofab Co., Ltd., Seongnam-si, 13487, Korea
| | - CHULHWAN BANG
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, 02706, Korea
| | - WON-SOO YUN
- Department of Mechanical Engineering, Tech University of Korea, Si-heung City, 15073, Korea
| | - YUN-MI JEONG
- Department of Mechanical Engineering, Tech University of Korea, Si-heung City, 15073, Korea
| |
Collapse
|
31
|
Miley DR, Andrews-Pfannkoch CM, Pulido JS, Erickson SA, Vile RG, Fautsch MP, Marmorstein AD, Dalvin LA. Direct early growth response-1 knockdown decreases melanoma viability independent of mitogen-activated extracellular signal-related kinase inhibition. Melanoma Res 2023; 33:482-491. [PMID: 37650708 PMCID: PMC10615778 DOI: 10.1097/cmr.0000000000000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
To investigate downstream molecular changes caused by mitogen-activated protein kinase (MEK) inhibitor treatment and further explore the impact of direct knockdown of early growth response-1 ( EGR1 ) in melanoma cell culture. RNA-sequencing (RNA-Seq) was performed to determine gene expression changes with MEK inhibitor treatment. Treatment with MEK inhibitor (trametinib) was then assessed in two cutaneous (MEL888, MEL624) and one conjunctival (YUARGE 13-3064) melanoma cell line. Direct knockdown of EGR1 was accomplished using lentiviral vectors containing shRNA. Cell viability was measured using PrestoBlueHS Cell Viability Reagent. Total RNA and protein were assessed by qPCR and SimpleWestern. RNA-Seq demonstrated a profound reduction in EGR1 with MEK inhibitor treatment, prompting further study of melanoma cell lines. Following trametinib treatment of melanoma cells, viability was reduced in both cutaneous (MEL888 26%, P < 0.01; MEL624 27%, P < 0.001) and conjunctival (YUARGE 13-3064 33%, P < 0.01) melanoma compared with DMSO control, with confirmed EGR1 knockdown to 0.04-, 0.01-, and 0.16-fold DMSO-treated levels (all P < 0.05) in MEL888, MEL624, and YUARGE 13-3064, respectively. Targeted EGR1 knockdown using shRNA reduced viability in both cutaneous (MEL624 78%, P = 0.05) and conjunctival melanoma (YUARGE-13-3064 67%, P = 0.02). RNA-Sequencing in MEK inhibitor-treated cells identified EGR1 as a candidate effector molecule of interest. In a malignant melanoma cell population, MEK inhibition reduced viability in both cutaneous and conjunctival melanoma with a profound downstream reduction in EGR1 expression. Targeted knockdown of EGR1 reduced both cutaneous and conjunctival melanoma cell viability independent of MEK inhibition, suggesting a key role for EGR1 in melanoma pathobiology.
Collapse
Affiliation(s)
- David R Miley
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota
| | | | - Jose S Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota
- Wills Eye Hospital, Philadelphia, Pennsylvania
| | | | - Richard G Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Lauren A Dalvin
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
32
|
Jostes S, Vardabasso C, Dong J, Carcamo S, Singh R, Phelps R, Meadows A, Hasson D, Bernstein E. H2A.Z chaperones converge on histone H4 acetylation for melanoma cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.26.568747. [PMID: 38076914 PMCID: PMC10705243 DOI: 10.1101/2023.11.26.568747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
High levels of H2A.Z promote melanoma cell proliferation and correlate with poor prognosis. However, the role of the two distinct H2A.Z histone chaperone complexes, SRCAP and P400-TIP60, in melanoma remains unclear. Here, we show that individual depletion of SRCAP, P400, and VPS72 (YL1) not only results in loss of H2A.Z deposition into chromatin, but also a striking reduction of H4 acetylation in melanoma cells. This loss of H4 acetylation is found at the promoters of cell cycle genes directly bound by H2A.Z and its chaperones, suggesting a highly coordinated regulation between H2A.Z deposition and H4 acetylation to promote their expression. Knockdown of each of the three subunits downregulates E2F1 and its targets, resulting in a cell cycle arrest akin to H2A.Z depletion. However, unlike H2A.Z deficiency, loss of the shared H2A.Z chaperone subunit YL1 induces apoptosis. Furthermore, YL1 is overexpressed in melanoma tissues, and its upregulation is associated with poor patient outcome. Together, these findings provide a rationale for future targeting of H2A.Z chaperones as an epigenetic strategy for melanoma treatment.
Collapse
Affiliation(s)
- Sina Jostes
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chiara Vardabasso
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joanna Dong
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saul Carcamo
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajendra Singh
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Phelps
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Austin Meadows
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
33
|
Gambichler T, Harnischfeger F, Skrygan M, Majchrzak-Stiller B, Buchholz M, Müller T, Braumann C. In Vitro Experiments on the Effects of GP-2250 on BRAF-Mutated Melanoma Cell Lines and Benign Melanocytes. Int J Mol Sci 2023; 24:15336. [PMID: 37895015 PMCID: PMC10607550 DOI: 10.3390/ijms242015336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Enhanced glycolysis (Warburg effect) driven by the BRAF oncogene, dysregulated GAPDH expression, and activation of the PI3K/AKT/mTOR signaling pathway may significantly contribute to the resistance-targeted therapy of BRAF-mutated melanomas. Therefore, we aimed to study for the first time the anti-tumor activity of the GAPDH inhibitor GP-2250 in BRAF-mutated melanoma cell lines and benign melanocytes. We employed three melanoma cell lines and one primary melanocyte cell line (Ma-Mel-61a, Ma-Mel-86a, SH-4 and ATCC-PCS-200-013, respectively), which were exposed to different GP-2250 doses. GP-2250's effects on cell proliferation and viability were evaluated by means of the BrdU and MTT assays, respectively. The RealTime-Glo Annexin V Apoptosis and Necrosis Assay was performed for the evaluation of apoptosis and necrosis induction. RT-PCR and western blotting were implemented for the determination of AKT and STAT3 gene and protein expression analyses, respectively. The melanoma cell lines showed a dose-dependent response to GP-2250 during BrDU and MTT testing. The RealTime-Glo Annexin V assay revealed the heterogenous impact of GP-2250 on apoptosis as well as necrosis. With respect to the melanoma cell lines Ma-Mel-86a and SH-4, the responses and dosages were comparable to those used for the MTT viability assay. Using the same dose range of GP-2250 administered to melanoma cells, however, we observed neither the noteworthy apoptosis nor necrosis of GP-2250-treated benign melanocytes. The gene expression profiles in the melanoma cell lines for AKT and STAT3 were heterogenous, whereby AKT as well as STAT3 gene expression were most effectively downregulated using the highest GP-2250 doses. Immunoblotting revealed that there was a time-dependent decrease in protein expression at the highest GP-2250 dose used, whereas a time- as well as dose-dependent AKT decrease was predominantly observed in Ma-Mel-61a. The STAT3 protein expression of Ma-Mel-86a and SH-4 was reduced in a time-dependent pattern at lower and moderate doses. STAT3 expression in Ma-Me-61a was barely altered by GP-2250. In conclusion, GP-2250 has anti-neoplastic effects in BRAF-mutated melanoma cell lines regarding tumor cell viability, proliferation, and apoptosis/necrosis. GP-2250 is able to downregulate the gene and protein expression of aberrant tumorigenic pathways in melanoma cell lines. Since GP-2250 is a GAPDH inhibitor, the substance may be a promising combination therapy for tumors presenting the Warburg effect, such as melanoma.
Collapse
Affiliation(s)
- Thilo Gambichler
- Skin Cancer Center Ruhr-University, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany; (F.H.); (M.S.)
| | - Friederike Harnischfeger
- Skin Cancer Center Ruhr-University, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany; (F.H.); (M.S.)
| | - Marina Skrygan
- Skin Cancer Center Ruhr-University, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany; (F.H.); (M.S.)
| | - Britta Majchrzak-Stiller
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (B.M.-S.); (M.B.)
| | - Marie Buchholz
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (B.M.-S.); (M.B.)
| | | | - Chris Braumann
- Department of General, Visceral and Vascular Surgery, Evangelisches Klinikum Gelsenkirchen, Akademisches Lehrkrankenhaus der Universität Duisburg-Essen, 45878 Gelsenkirchen, Germany;
- Department of General, Visceral and Tumor Surgery, Evangelisches Klinikum Herne, Akademisches Lehrkrankenhaus der Ruhr-Universität Bochum, 44623 Herne, Germany
| |
Collapse
|
34
|
Peisen F, Gerken A, Hering A, Dahm I, Nikolaou K, Gatidis S, Eigentler TK, Amaral T, Moltz JH, Othman AE. Can Whole-Body Baseline CT Radiomics Add Information to the Prediction of Best Response, Progression-Free Survival, and Overall Survival of Stage IV Melanoma Patients Receiving First-Line Targeted Therapy: A Retrospective Register Study. Diagnostics (Basel) 2023; 13:3210. [PMID: 37892030 PMCID: PMC10605712 DOI: 10.3390/diagnostics13203210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate whether the combination of radiomics and clinical parameters in a machine-learning model offers additive information compared with the use of only clinical parameters in predicting the best response, progression-free survival after six months, as well as overall survival after six and twelve months in patients with stage IV malignant melanoma undergoing first-line targeted therapy. METHODS A baseline machine-learning model using clinical variables (demographic parameters and tumor markers) was compared with an extended model using clinical variables and radiomic features of the whole tumor burden, utilizing repeated five-fold cross-validation. Baseline CTs of 91 stage IV malignant melanoma patients, all treated in the same university hospital, were identified in the Central Malignant Melanoma Registry and all metastases were volumetrically segmented (n = 4727). RESULTS Compared with the baseline model, the extended radiomics model did not add significantly more information to the best-response prediction (AUC [95% CI] 0.548 (0.188, 0.808) vs. 0.487 (0.139, 0.743)), the prediction of PFS after six months (AUC [95% CI] 0.699 (0.436, 0.958) vs. 0.604 (0.373, 0.867)), or the overall survival prediction after six and twelve months (AUC [95% CI] 0.685 (0.188, 0.967) vs. 0.766 (0.433, 1.000) and AUC [95% CI] 0.554 (0.163, 0.781) vs. 0.616 (0.271, 1.000), respectively). CONCLUSIONS The results showed no additional value of baseline whole-body CT radiomics for best-response prediction, progression-free survival prediction for six months, or six-month and twelve-month overall survival prediction for stage IV melanoma patients receiving first-line targeted therapy. These results need to be validated in a larger cohort.
Collapse
Affiliation(s)
- Felix Peisen
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany; (I.D.); (K.N.); (S.G.); (A.E.O.)
| | - Annika Gerken
- Fraunhofer MEVIS, Max-von-Laue-Straße 2, 28359 Bremen, Germany; (A.G.); (A.H.); (J.H.M.)
| | - Alessa Hering
- Fraunhofer MEVIS, Max-von-Laue-Straße 2, 28359 Bremen, Germany; (A.G.); (A.H.); (J.H.M.)
- Diagnostic Image Analysis Group, Radboud University Medical Center (Radboudumc), Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Isabel Dahm
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany; (I.D.); (K.N.); (S.G.); (A.E.O.)
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany; (I.D.); (K.N.); (S.G.); (A.E.O.)
- Image-Guided and Functionally Instructed Tumor Therapies (iFIT), The Cluster of Excellence (EXC 2180), 72076 Tuebingen, Germany
| | - Sergios Gatidis
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany; (I.D.); (K.N.); (S.G.); (A.E.O.)
- Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4, 72076 Tuebingen, Germany
| | - Thomas K. Eigentler
- Center of Dermato-Oncology, Department of Dermatology, Tuebingen University Hospital, Eberhard Karls University, Liebermeisterstraße 25, 72076 Tuebingen, Germany; (T.K.E.); (T.A.)
- Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humbolt-Universität zu Berlin, Luisenstraße 2, 10117 Berlin, Germany
| | - Teresa Amaral
- Center of Dermato-Oncology, Department of Dermatology, Tuebingen University Hospital, Eberhard Karls University, Liebermeisterstraße 25, 72076 Tuebingen, Germany; (T.K.E.); (T.A.)
| | - Jan H. Moltz
- Fraunhofer MEVIS, Max-von-Laue-Straße 2, 28359 Bremen, Germany; (A.G.); (A.H.); (J.H.M.)
| | - Ahmed E. Othman
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany; (I.D.); (K.N.); (S.G.); (A.E.O.)
- Institute of Neuroradiology, Johannes Gutenberg University Hospital Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
35
|
Jia P, Tian T, Li Z, Wang Y, Lin Y, Zeng W, Ye Y, He M, Ni X, Pan J, Dong X, Huang J, Li C, Guo D, Hou P. CCDC50 promotes tumor growth through regulation of lysosome homeostasis. EMBO Rep 2023; 24:e56948. [PMID: 37672005 PMCID: PMC10561174 DOI: 10.15252/embr.202356948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/26/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023] Open
Abstract
The maintenance of lysosome homeostasis is crucial for cell growth. Lysosome-dependent degradation and metabolism sustain tumor cell survival. Here, we demonstrate that CCDC50 serves as a lysophagy receptor, promoting tumor progression and invasion by controlling lysosomal integrity and renewal. CCDC50 monitors lysosomal damage, recognizes galectin-3 and K63-linked polyubiquitination on damaged lysosomes, and specifically targets them for autophagy-dependent degradation. CCDC50 deficiency causes the accumulation of ruptured lysosomes, impaired autophagic flux, and superfluous reactive oxygen species, consequently leading to cell death and tumor suppression. CCDC50 expression is associated with malignancy, progression to metastasis, and poor overall survival in human melanoma. Targeting CCDC50 suppresses tumor growth and lung metastasis, and enhances the effect of BRAFV600E inhibition. Thus, we demonstrate critical roles of CCDC50-mediated clearance of damaged lysosomes in supporting tumor growth, hereby identifying a potential therapeutic target of melanoma.
Collapse
Affiliation(s)
- Penghui Jia
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Tian Tian
- The Center for Applied Genomics, Abramson Research CenterThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Zibo Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Yicheng Wang
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Yuxin Lin
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Weijie Zeng
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Yu Ye
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Miao He
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Xiangrong Ni
- Department of Neurosurgery/Neuro‐oncology, Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaGuangzhouChina
| | - Ji'an Pan
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Xiaonan Dong
- Guangzhou LaboratoryGuangzhou International Bio‐IslandGuangzhouChina
| | - Jian Huang
- Coriell Institute for Medical ResearchCamdenNJUSA
| | - Chun‐mei Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Deyin Guo
- Guangzhou LaboratoryGuangzhou International Bio‐IslandGuangzhouChina
| | - Panpan Hou
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
36
|
Abdellateif MS, Bayoumi AK, Mohammed MA. c-Kit Receptors as a Therapeutic Target in Cancer: Current Insights. Onco Targets Ther 2023; 16:785-799. [PMID: 37790582 PMCID: PMC10544070 DOI: 10.2147/ott.s404648] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
c-Kit is a type III receptor tyrosine kinase (RTK) that has an essential role in various biological functions including gametogenesis, melanogenesis, hematopoiesis, cell survival, and apoptosis. c-KIT aberrations, either overexpression or loss-of-function mutations, have been implicated in the pathogenesis and development of many cancers, including gastrointestinal stromal tumors, mastocytosis, acute myeloid leukemia, breast, thyroid, and colorectal cancer, making c-KIT an attractive molecular target for the treatment of cancers. Therefore, a lot of effort has been put into investigating the utility of tyrosine kinase inhibitors for the management of c-KIT mutated tumors. This review of the literature illustrates the role of c-KIT mutations in many cancers, aiming to provide insights into the role of TKIs as a therapeutic option for cancer patients with c-KIT aberrations. In conclusion, c-KIT is implicated in different types of cancer, and it could be a successful molecular target; however, proper detection of the underlying mutation type is required before starting the appropriate personalized therapy.
Collapse
Affiliation(s)
- Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Ahmed K Bayoumi
- Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
- Children’s Cancer Hospital 57357, Cairo, 11617, Egypt
| | - Mohammed Aly Mohammed
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| |
Collapse
|
37
|
Tao L, Cui Y, Sun J, Cao Y, Dai Z, Ge X, Zhang L, Ma R, Liu Y. Bioinformatics-based analysis reveals elevated CYTL1 as a potential therapeutic target for BRAF-mutated melanoma. Front Cell Dev Biol 2023; 11:1171047. [PMID: 37745303 PMCID: PMC10516578 DOI: 10.3389/fcell.2023.1171047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction: Despite many recent emerging therapeutic modalities that have prolonged the survival of melanoma patients, the prognosis of melanoma remains discouraging, and further understanding of the mechanisms underlying melanoma progression is needed. Melanoma patients often have multiple genetic mutations, with BRAF mutations being the most common. In this study, public databases were exploited to explore a potential therapeutic target for BRAF-mutated melanoma. Methods: In this study, we analyzed differentially expressed genes (DEGs) in normal tissues and melanomas, Braf wild-type and Braf mutant melanomas using information from TCGA databases and the GEO database. Subsequently, we analyzed the differential expression of CYTL1 in various tumor tissues and its effect on melanoma prognosis, and resolved the mutation status of CYTL1 and its related signalling pathways. By knocking down CYTL1 in melanoma cells, the effects of CYTL1 on melanoma cell proliferation, migration and invasion were further examined by CCK8 assay, Transwell assay and cell migration assay. Results: 24 overlapping genes were identified by analyzing DEGs common to melanoma and normal tissue, BRAF-mutated and BRAF wild-type melanoma. Among them, CYTL1 was highly expressed in melanoma, especially in BRAF-mutated melanoma, and the high expression of CYTL1 was associated with epithelial-mesenchymal transition (EMT), cell cycle, and cellular response to UV. In melanoma patients, especially BRAF-mutated melanoma patients, clinical studies showed a positive correlation between increased CYTL1 expression and shorter overall survival (OS) and disease-free survival (DFS). In vitro experiments further confirmed that the knockdown of CYTL1 significantly inhibited the migration and invasive ability of melanoma cells. Conclusion: CYTL1 is a valuable prognostic biomarker and a potentially effective therapeutic target in melanoma, especially BRAF-mutated melanoma.
Collapse
Affiliation(s)
- Lei Tao
- Nanjing Institute for Food and Drug Control, Nanjing, China
| | - Yingyue Cui
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiarui Sun
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu Cao
- Nanjing Institute for Food and Drug Control, Nanjing, China
| | - Zhen Dai
- Nanjing Institute for Food and Drug Control, Nanjing, China
| | - Xiaoming Ge
- Nanjing Institute for Food and Drug Control, Nanjing, China
| | - Ling Zhang
- Nanjing Institute for Food and Drug Control, Nanjing, China
| | - Run Ma
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunyao Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
38
|
Viana AR, Bottari NB, Oviedo VR, Santos D, Londero JEL, Schetinger MRC, Flores EMM, Pigatto A, Schuch AP, Krause A, Krause LMF. Phytochemical and biological characterization of aqueous extract of Vassobia breviflora on proliferation and viability of melanoma cells: involvement of purinergic pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:632-652. [PMID: 37434435 DOI: 10.1080/15287394.2023.2233989] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Vassobia breviflora belongs to the Solanaceae family, possessing biological activity against tumor cells and is a promising alternative for therapy. The aim of this investigation was to determine the phytochemical properties V. breviflora using ESI-ToF-MS. The cytotoxic effects of this extract were examined in B16-F10 melanoma cells and the relationship if any to purinergic signaling was involved. The antioxidant activity of total phenols, (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) was analyzed, as well as production of reactive oxygen species (ROS) and nitric oxide (NO) was determined. Genotoxicity was assessed by DNA damage assay. Subsequently, the structural bioactive compounds were docked against purinoceptors P2X7 and P2Y1 receptors. The bioactive compounds found in V. breviflora were N-methyl-(2S,4 R)-trans-4-hydroxy-L-proline, calystegine B, 12-O-benzoyl- tenacigenin A and bungoside B. In vitro cytotoxicity was demonstrated at concentration ranges of 0.1-10 mg/ml, and plasmid DNA breaks only at the concentration of 10 mg/ml. V. breviflora extracts affected hydrolysis by ectoenzymes, such as ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) and ectoadenosine deaminase (E-ADA) which control levels of degradation and formation of nucleosides and nucleotides. In the presence of substrates ATP, ADP, AMP and adenosine, the activities of E-NTPDase, 5´-NT or E-ADA were significantly modulated by V. breviflora. N-methyl-(2S,4 R)-trans-4-hydroxy-L-proline presented higher binding affinity (according to receptor-ligand complex estimated binding affinity as evidenced by ∆G values) to bind to both P2X7 and P2Y1purinergic receptors.Our results suggest a putative interaction of V. breviflora bioactive compounds with growth inhibitory potential in B16-F10 melanoma and suggest that may be considered as promising compounds in melanoma and cancer treatment.
Collapse
Affiliation(s)
- Altevir Rossato Viana
- Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | - Daniel Santos
- Chemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | | | - Aline Pigatto
- Postgraduate Program in Teaching Science and Mathematics, Franciscan University, Santa Maria, Brazil
| | - André Passaglia Schuch
- Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Alexandre Krause
- Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | | |
Collapse
|
39
|
Fröhlich LM, Niessner H, Sauer B, Kämereit S, Chatziioannou E, Riel S, Sinnberg T, Schittek B. PARP Inhibitors Effectively Reduce MAPK Inhibitor Resistant Melanoma Cell Growth and Synergize with MAPK Inhibitors through a Synthetic Lethal Interaction In Vitro and In Vivo. CANCER RESEARCH COMMUNICATIONS 2023; 3:1743-1755. [PMID: 37674529 PMCID: PMC10478790 DOI: 10.1158/2767-9764.crc-23-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 07/27/2023] [Indexed: 09/08/2023]
Abstract
The efficacy of targeting the MAPK signaling pathway in patients with melanoma is limited by the rapid development of resistance mechanisms that result in disease relapse. In this article, we focus on targeting the DNA repair pathway as an antimelanoma therapy, especially in MAPK inhibitor resistant melanoma cells using PARP inhibitors. We found that MAPK inhibitor resistant melanoma cells are particularly sensitive to PARP inhibitor treatment due to a lower basal expression of the DNA damage sensor ataxia-telangiectasia mutated (ATM). As a consequence, MAPK inhibitor resistant melanoma cells have decreased homologous recombination repair activity leading to a reduced repair of double-strand breaks caused by the PARP inhibitors. We validated the clinical relevance of our findings by ATM expression analysis in biopsies from patients with melanoma before and after development of resistance to MAPK inhibitors. Furthermore, we show that inhibition of the MAPK pathway induces a homologous recombination repair deficient phenotype in melanoma cells irrespective of their MAPK inhibitor sensitivity status. MAPK inhibition results in a synthetic lethal interaction of a combinatorial treatment with PARP inhibitors, which significantly reduces melanoma cell growth in vitro and in vivo. In conclusion, this study shows that PARP inhibitor treatment is a valuable therapy option for patients with melanoma, either as a single treatment or as a combination with MAPK inhibitors depending on ATM expression. Significance We show that MAPK inhibitor resistant melanoma cells exhibit low ATM expression increasing their sensitivity toward PARP inhibitors and that a combination of MAPK/PARP inhibitors act synthetically lethal in melanoma cells. Our study shows that PARP inhibitor treatment is a valuable therapy option for patients with melanoma, either as a single treatment or as a combination with MAPK inhibitors depending on ATM expression, which could serve as a novel biomarker for treatment response.
Collapse
Affiliation(s)
- Lisa Marie Fröhlich
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Heike Niessner
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Birgit Sauer
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Sofie Kämereit
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Eftychia Chatziioannou
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Simon Riel
- Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
- Department of Dermatology, Venereology and Allergology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies,” University of Tübingen, Tübingen, Germany
| |
Collapse
|
40
|
Giraulo C, Turiello R, Orlando L, Leonardelli S, Landsberg J, Belvedere R, Rolshoven G, Müller CE, Hölzel M, Morello S. The CD73 is induced by TGF-β1 triggered by nutrient deprivation and highly expressed in dedifferentiated human melanoma. Biomed Pharmacother 2023; 165:115225. [PMID: 37517292 DOI: 10.1016/j.biopha.2023.115225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Abstract
CD73 is the key enzyme in the generation of extracellular adenosine, a mediator involved in tumor progression, tumor immune escape and resistance to anti-cancer therapeutics. Microenvironmental conditions influence the expression of CD73 in tumor cells. However how CD73 expression and activity is regulated in a stress condition of lower nutrient availability are largely unknown. Our results indicate that serum starvation leads to a marked up-regulation of CD73 expression on A375 melanoma cells in a time-dependent manner. The cell-surface expression of CD73 is associated with an increased release of TGF-β1 by starved cells. Blockade of TGF-β1 receptors or TGFβ/SMAD3 signaling pathway significantly reduce the expression of CD73 induced by starvation. Treatment of cells with rTGF-β1 up-regulates the expression of CD73 in a concentration-dependent manner, confirming the role of this pathway in regulating CD73 in melanoma A375 cells. The increased expression of CD73 is associated with enhanced AMPase activity, which is selectively reduced by inhibitors of CD73 activity, APCP and PSB-12489. Pharmacological blockade of CD73 significantly inhibits invasion of melanoma cells in a transwell system. Furthermore, using multiplex immunofluorescence imaging we found that, within human melanoma metastases, tumor cells at the dedifferentiated stage show the highest CD73 protein expression. In summary, our data provide new insights into the mechanism regulating the expression/activity of CD73 in melanoma cells in a condition of lower availability of nutrients, which is a common feature of the tumor microenvironment. Within human metastatic melanoma tissues elevated protein expression of CD73 is associated with an invasive-like phenotype.
Collapse
Affiliation(s)
- Caterina Giraulo
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Roberta Turiello
- Institute of Experimental Oncology, University Hospital Bonn (UKB), University of Bonn, Bonn, Germany
| | - Lavinia Orlando
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, Italy
| | - Sonia Leonardelli
- Institute of Experimental Oncology, University Hospital Bonn (UKB), University of Bonn, Bonn, Germany
| | - Jennifer Landsberg
- Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | | | - Georg Rolshoven
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn (UKB), University of Bonn, Bonn, Germany
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy.
| |
Collapse
|
41
|
Castellani G, Buccarelli M, Arasi MB, Rossi S, Pisanu ME, Bellenghi M, Lintas C, Tabolacci C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers (Basel) 2023; 15:4026. [PMID: 37627054 PMCID: PMC10452867 DOI: 10.3390/cancers15164026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is an aggressive form of skin cancer resulting from the malignant transformation of melanocytes. Recent therapeutic approaches, including targeted therapy and immunotherapy, have improved the prognosis and outcome of melanoma patients. BRAF is one of the most frequently mutated oncogenes recognised in melanoma. The most frequent oncogenic BRAF mutations consist of a single point mutation at codon 600 (mostly V600E) that leads to constitutive activation of the BRAF/MEK/ERK (MAPK) signalling pathway. Therefore, mutated BRAF has become a useful target for molecular therapy and the use of BRAF kinase inhibitors has shown promising results. However, several resistance mechanisms invariably develop leading to therapeutic failure. The aim of this manuscript is to review the role of BRAF mutational status in the pathogenesis of melanoma and its impact on differentiation and inflammation. Moreover, this review focuses on the mechanisms responsible for resistance to targeted therapies in BRAF-mutated melanoma and provides an overview of circulating biomarkers including circulating tumour cells, circulating tumour DNA, and non-coding RNAs.
Collapse
Affiliation(s)
- Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Bellenghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| |
Collapse
|
42
|
Mohamed Abdoul-Latif F, Ainane A, Houmed Aboubaker I, Mohamed J, Ainane T. Exploring the Potent Anticancer Activity of Essential Oils and Their Bioactive Compounds: Mechanisms and Prospects for Future Cancer Therapy. Pharmaceuticals (Basel) 2023; 16:1086. [PMID: 37631000 PMCID: PMC10458506 DOI: 10.3390/ph16081086] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, affecting millions of people each year. Fortunately, the last decades have been marked by considerable advances in the field of cancer therapy. Researchers have discovered many natural substances, some of which are isolated from plants that have promising anti-tumor activity. Among these, essential oils (EOs) and their constituents have been widely studied and shown potent anticancer activities, both in vitro and in vivo. However, despite the promising results, the precise mechanisms of action of EOs and their bioactive compounds are still poorly understood. Further research is needed to better understand these mechanisms, as well as their effectiveness and safety in use. Furthermore, the use of EOs as anticancer drugs is complex, as it requires absolute pharmacodynamic specificity and selectivity, as well as an appropriate formulation for effective administration. In this study, we present a synthesis of recent work on the mechanisms of anticancer action of EOs and their bioactive compounds, examining the results of various in vitro and in vivo studies. We also review future research prospects in this exciting field, as well as potential implications for the development of new cancer drugs.
Collapse
Affiliation(s)
- Fatouma Mohamed Abdoul-Latif
- Medicinal Research Institute, Center for Studies and Research of Djibouti, IRM-CERD, Route de l’Aéroport, Haramous, Djibouti City P.O. Box 486, Djibouti;
| | - Ayoub Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco; (A.A.); (T.A.)
| | | | - Jalludin Mohamed
- Medicinal Research Institute, Center for Studies and Research of Djibouti, IRM-CERD, Route de l’Aéroport, Haramous, Djibouti City P.O. Box 486, Djibouti;
| | - Tarik Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco; (A.A.); (T.A.)
| |
Collapse
|
43
|
Li L, Liu Y, Gao F, Fan P, Zhan W, Zhang S. Induced PSIG expression by Herbacetin contributes to suppressing the proliferation, migration, and invasion of melanoma cells. Arch Biochem Biophys 2023:109697. [PMID: 37481197 DOI: 10.1016/j.abb.2023.109697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
Melanoma is a very common malignant tumor with poor prognosis. Herbacetin is a flavonol compound with outstanding anti-tumor effects. Our work investigated the biological effects and mechanism of Herbacetin in melanoma. In our study, the mRNA and protein expressions were assessed using qRT-PCR, Western blot and IHC. MSP was performed to evaluated PGIS promoter methylation level. Cell viability, migration and invasion were examined by MTT assay, transwell migration and invasion assay, respectively. Our results revealed that DNMT3B was markedly upregulated in melanoma, while PGIS was lowly expressed. Herbacetin treatment could not only inhibit the proliferation, migration, invasion of melanoma cells and inhibit the growth of melanoma in vivo. Herbacetin could also restore the abnormal expressions of DNMT3B and PGIS in melanoma cells and tumor tissues. PGIS silencing neutralized the inhibitory effects of Herbacetin on the malignant behaviors of melanoma cells. Besides, DNMT3B knockdown promoted PGIS expression via reducing PGIS promoter methylation level in melanoma cells, thereby inhibiting malignant behaviors of melanoma cells. And as expected, the inhibitory effects of Herbacetin on malignant behaviors of melanoma cells were all abolished by DNMT3B overexpression. Collectively, Herbacetin reduced DNMT3B expression to upregulate PGIS in melanoma cells and participated in suppressing the proliferation, migration, and invasion of melanoma cells.
Collapse
Affiliation(s)
- Lei Li
- Department of Plastic abd Cosmetic Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Yun Liu
- Department of Plastic abd Cosmetic Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Fei Gao
- Department of Plastic abd Cosmetic Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Pengfei Fan
- Department of Plastic abd Cosmetic Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Wang Zhan
- Department of Plastic abd Cosmetic Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Shuai Zhang
- Nursing Department, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China.
| |
Collapse
|
44
|
Peng J, Lin Z, Chen W, Ruan J, Deng F, Yao L, Rao M, Xiong X, Xu S, Zhang X, Liu X, Sun X. Vemurafenib induces a noncanonical senescence-associated secretory phenotype in melanoma cells which promotes vemurafenib resistance. Heliyon 2023; 9:e17714. [PMID: 37456058 PMCID: PMC10345356 DOI: 10.1016/j.heliyon.2023.e17714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
More than one half melanoma patients have BRAF gene mutation. BRAF inhibitor vemurafenib is an effective medication for these patients. However, acquired resistance is generally inevitable, the mechanisms of which are not fully understood. Cell senescence and senescence-associated secretory phenotype (SASP) are involved in extensive biological functions. This study was designed to explore the possible role of senescent cells in vemurafenib resistance. The results showed that vemurafenib treatment induced BRAF-mutant but not wild-type melanoma cells into senescence, as manifested by positive β-galactosidase staining, cell cycle arrest, enlarged cellular morphology, and cyclin D1/p-Rb pathway inhibition. However, the senescent cells induced by vemurafenib (SenV) did not display DNA damage response, p53/p21 pathway activation, reactive oxygen species accumulation, decline of mitochondrial membrane potential, or secretion of canonical SASP cytokines. Instead, SenV released other cytokines, including CCL2, TIMP2, and NGFR, to protect normal melanoma cells from growth inhibition upon vemurafenib treatment. Xenograft experiments further confirmed that vemurafenib induced melanoma cells into senescence in vivo. The results suggest that vemurafenib can induce robust senescence in BRAFV600E melanoma cells, leading to the release of resistance-conferring cytokines. Both the senescent cells and the resistant cytokines could be potential targets for tackling vemurafenib resistance.
Collapse
Affiliation(s)
- Jianyu Peng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
- Department of Laboratory Medicine, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, China
| | - Zijun Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Weichun Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Jie Ruan
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lin Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Minla Rao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Xingdong Xiong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Shun Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Xiangning Zhang
- Department of Pathophysiology, Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Xuerong Sun
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| |
Collapse
|
45
|
Romano B, Maresca DC, Somma F, Ahmadi P, Putra MY, Rahmawati SI, Chianese G, Formisano C, Ianaro A, Ercolano G. Ircinia ramosa Sponge Extract (iSP) Induces Apoptosis in Human Melanoma Cells and Inhibits Melanoma Cell Migration and Invasiveness. Mar Drugs 2023; 21:371. [PMID: 37504902 PMCID: PMC10381260 DOI: 10.3390/md21070371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Marine compounds represent a varied source of new drugs with potential anticancer effects. Among these, sponges, including those belonging to the Irciniidae family, have been demonstrated to exert cytotoxic effects on different human cancer cells. Here, we investigated, for the first time, the therapeutic effect of an extract (referred as iSP) from the sponge, Ircinia ramosa (Porifera, Dictyoceratida, and Irciniidae), on A375 human melanoma cells. We found that iSP impaired A375 melanoma cells proliferation, induced cell death through caspase-dependent apoptosis and arrested cells in the G1 phase of the cell cycle, as demonstrated via both flow cytometry and qPCR analysis. The proapoptotic effect of iSP is associated with increased ROS production and mitochondrial modulation, as observed by using DCF-DHA and mitochondrial probes. In addition, we performed wound healing, invasion and clonogenic assays and found that iSP was able to restrain A375 migration, invasion and clonogenicity. Importantly, we observed that an iSP treatment modulated the expression of the EMT-associated epithelial markers, E-CAD and N-CAD, unveiling the mechanism underlying the effect of iSP in modulating A375 migration and invasion. Collectively, this study provides the first evidence to support the role of Ircinia ramosa sponge extracts as a potential therapeutic resource for the treatment of human melanoma.
Collapse
Affiliation(s)
- Benedetta Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Daniela Claudia Maresca
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Fabio Somma
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Peni Ahmadi
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), JI. Raya Bogor Km. 46, Cibinong 16911, Indonesia
| | - Masteria Yunovilsa Putra
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), JI. Raya Bogor Km. 46, Cibinong 16911, Indonesia
| | - Siti Irma Rahmawati
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), JI. Raya Bogor Km. 46, Cibinong 16911, Indonesia
| | - Giuseppina Chianese
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Carmen Formisano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
46
|
Kharouf N, Flanagan TW, Hassan SY, Shalaby H, Khabaz M, Hassan SL, Megahed M, Haikel Y, Santourlidis S, Hassan M. Tumor Microenvironment as a Therapeutic Target in Melanoma Treatment. Cancers (Basel) 2023; 15:3147. [PMID: 37370757 DOI: 10.3390/cancers15123147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The role of the tumor microenvironment in tumor growth and therapy has recently attracted more attention in research and drug development. The ability of the microenvironment to trigger tumor maintenance, progression, and resistance is the main cause for treatment failure and tumor relapse. Accumulated evidence indicates that the maintenance and progression of tumor cells is determined by components of the microenvironment, which include stromal cells (endothelial cells, fibroblasts, mesenchymal stem cells, and immune cells), extracellular matrix (ECM), and soluble molecules (chemokines, cytokines, growth factors, and extracellular vesicles). As a solid tumor, melanoma is not only a tumor mass of monolithic tumor cells, but it also contains supporting stroma, ECM, and soluble molecules. Melanoma cells are continuously in interaction with the components of the microenvironment. In the present review, we focus on the role of the tumor microenvironment components in the modulation of tumor progression and treatment resistance as well as the impact of the tumor microenvironment as a therapeutic target in melanoma.
Collapse
Affiliation(s)
- Naji Kharouf
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Sofie-Yasmin Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Marla Khabaz
- Department of Production, Beta Factory for Veterinary Pharmaceutical Industries, Damascus 0100, Syria
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany
| | - Youssef Haikel
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Mohamed Hassan
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
47
|
Fleischmann J, Schwaighofer S, De Falco L, Enzler F, Feichtner A, Kugler V, Tschaikner P, Huber RG, Stefan E. Tracking and blocking interdependencies of cellular BRAF-MEK oncokinase activities. PNAS NEXUS 2023; 2:pgad185. [PMID: 37325027 PMCID: PMC10267685 DOI: 10.1093/pnasnexus/pgad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
The selective targeting of mutated kinases in cancer therapies has the potential to improve therapeutic success and thereby the survival of patients. In the case of melanoma, the constitutively active MAPK pathway is targeted by a combinatorial inhibition of BRAF and MEK activities. These MAPK pathway players may display patient-specific differences in the onco-kinase mutation spectrum, which needs to be considered for the design of more efficient personalized therapies. Here, we extend a bioluminescence-based kinase conformation biosensor (KinCon) to allow for live-cell tracking of interconnected kinase activity states. First, we show that common MEK1 patient mutations promote a structural rearrangement of the kinase to an opened and active conformation. This effect was reversible by the binding of MEK inhibitors to mutated MEK1, as shown in biosensor assays and molecular dynamics simulations. Second, we implement a novel application of the KinCon technology for tracking the simultaneous, vertical targeting of the two functionally linked kinases BRAF and MEK1. Thus, we demonstrate that, in the presence of constitutively active BRAF-V600E, specific inhibitors of both kinases are efficient in driving MEK1 into a closed, inactive conformation state. We compare current melanoma treatments and show that combinations of BRAFi and MEKi display a more pronounced structural change of the drug sensor than the respective single agents, thereby identifying synergistic effects among these drug combinations. In summary, we depict the extension of the KinCon biosensor technology to systematically validate, anticipate, and personalize tailored drug arrangements using a multiplexed setup.
Collapse
Affiliation(s)
- Jakob Fleischmann
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Selina Schwaighofer
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, Innsbruck 6020, Austria
| | - Louis De Falco
- Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore
| | - Florian Enzler
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Andreas Feichtner
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Valentina Kugler
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Philipp Tschaikner
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, Innsbruck 6020, Austria
- Institute of Molecular Biology, University of Innsbruck, Technikerstrasse 25, Innsbruck 6020, Austria
| | - Roland G Huber
- Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, Innsbruck 6020, Austria
- Institute of Molecular Biology, University of Innsbruck, Technikerstrasse 25, Innsbruck 6020, Austria
| |
Collapse
|
48
|
Kobeissi I, Eljilany I, Achkar T, LaFramboise WA, Santana-Santos L, Tarhini AA. A Tumor and Immune-Related Micro-RNA Signature Predicts Relapse-Free Survival of Melanoma Patients Treated with Ipilimumab. Int J Mol Sci 2023; 24:ijms24098167. [PMID: 37175874 PMCID: PMC10179521 DOI: 10.3390/ijms24098167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the unprecedented advances in the treatment of melanoma with immunotherapy, there continues to be a major need for biomarkers of clinical benefits and immune resistance associated with immune checkpoint inhibitors; microRNA could play a vital role in these efforts. This study planned to identify differentially expressed miRNA molecules that may have prognostic value for clinical benefits. Patients with surgically operable regionally advanced melanoma were treated with neoadjuvant ipilimumab (10 mg/kg intravenously every 3 weeks × two doses) bracketing surgery. Tumor biospecimens were obtained at baseline and surgery, and microRNA (miRNA) expression profiling was performed on the tumor biopsies. We found that an expression profile consisting of a 4-miRNA signature was significantly associated with improved relapse-free survival (RFS). The signature consisted of biologically relevant molecules previously reported to have prognostic value in melanoma and other malignancies, including miR-34c, miR-711, miR-641, and miR-22. Functional annotation analysis of target genes for the 4-miRNA signature was significantly enriched for various cancer-related pathways, including cell proliferation regulation, apoptosis, the MAPK signaling pathway, and the positive regulation of T cell activation. Our results presented miRNAs as potential biomarkers that can guide the treatment of melanoma with immune checkpoint inhibitors. These findings warrant further investigation in relation to CTLA4 blockade and other immune checkpoint inhibitors. ClinicalTrials.gov NCT00972933.
Collapse
Affiliation(s)
- Iyad Kobeissi
- Cutaneous Oncology and Immunology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Islam Eljilany
- Cutaneous Oncology and Immunology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Tala Achkar
- Hematology Department, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - William A LaFramboise
- Pathology and Laboratory Medicine Department, Allegheny Cancer Institute, Allegheny Health Network, Pittsburgh, PA 15524, USA
| | - Lucas Santana-Santos
- Pathology Department, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ahmad A Tarhini
- Cutaneous Oncology and Immunology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Oncologic Sciences Department, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| |
Collapse
|
49
|
Azimi A, Patrick E, Teh R, Kim J, Fernandez-Penas P. Proteomic profiling of cutaneous melanoma explains the aggressiveness of distant organ metastasis. Exp Dermatol 2023. [PMID: 37082900 DOI: 10.1111/exd.14814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/22/2023]
Abstract
Despite recent developments in managing metastatic melanomas, patients' overall survival remains low. Therefore, the current study aims to understand better the proteome-wide changes associated with melanoma metastasis that will assist with identifying targeted therapies. The latest development in mass spectrometry-based proteomics, together with extensive bioinformatics analysis, was used to investigate the molecular changes in 60 formalin-fixed and paraffin-embedded samples of primary and lymph nodes (LN) and distant organ metastatic melanomas. A total of 4631 proteins were identified, of which 72 and 453 were significantly changed between the LN and distant organ metastatic melanomas compared to the primary lesions (adj. p-value <0.05). An increase in proteins such as SLC9A3R1, CD20 and GRB2 and a decrease in CST6, SERPINB5 and ARG1 were associated with regional LN metastasis. By contrast, increased metastatic activities in distant organ metastatic melanomas were related to higher levels of CEACAM1, MC1R, AKT1 and MMP3-9 and decreased levels of CDKN2A, SDC1 and SDC4 proteins. Furthermore, machine learning analysis classified the lesions with up to 92% accuracy based on their metastatic status. The findings from this study provide up to date proteome-level information about the progression of melanomas to regional LN and distant organs, leading to the identification of protein signatures with potential for clinical translation.
Collapse
Affiliation(s)
- Ali Azimi
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Ellis Patrick
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Rachel Teh
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Jennifer Kim
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - Pablo Fernandez-Penas
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
50
|
Patel RP, Somasundram PM, Smith LK, Sheppard KE, McArthur GA. The therapeutic potential of targeting minimal residual disease in melanoma. Clin Transl Med 2023; 13:e1197. [PMID: 36967556 PMCID: PMC10040726 DOI: 10.1002/ctm2.1197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 03/28/2023] Open
Abstract
Background Cutaneous melanoma is a lethal form of skin cancer with morbidity and mortality rates highest amongst European, North American and Australasian populations. The developments of targeted therapies (TTs) directed at the oncogene BRAF and its downstream mediator MEK, and immune checkpoint inhibitors (ICI), have revolutionized the treatment of metastatic melanoma, improving patient outcomes. However, both TT and ICI have their limitations. Although TTs are associated with high initial response rates, these are typically short‐lived due to resistance. Conversely, although ICIs provide more durable responses, they have lower initial response rates. Due to these distinct yet complementary response profiles, it has been proposed that sequencing ICI with TT could lead to a high frequency of durable responses whilst circumventing the toxicity associated with combined ICI + TT treatment. However, several questions remain unanswered, including the mechanisms underpinning this synergy and the optimal sequencing strategy. The key to determining this is to uncover the biology of each phase of the therapeutic response. Aims and methods In this review, we show that melanoma responds to TT and ICI in three phases: early response, minimal residual disease (MRD) and disease progression. We explore the effects of ICI and TT on melanoma cells and the tumour immune microenvironment, with a particular focus on MRD which is predicted to underpin the development of acquired resistance in the third phase of response. Conclusion In doing so, we provide a new framework which may inform novel therapeutic approaches for melanoma, including optimal sequencing strategies and agents that target MRD, thereby ultimately improving clinical outcomes for patients.
Collapse
Affiliation(s)
- Riyaben P Patel
- Cancer Research DivisionPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Pretashini M Somasundram
- Faculty of MedicineDentistry and Health Sciences, University of MelbourneParkvilleVictoriaAustralia
| | - Lorey K. Smith
- Cancer Research DivisionPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Karen E. Sheppard
- Cancer Research DivisionPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Grant A. McArthur
- Cancer Research DivisionPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
- Department of Medical OncologyPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| |
Collapse
|