1
|
Sasse R, Carpenter N, Simpkins CO. Selective nitric oxide redistribution by phospholipid nanoparticles: A novel strategy to mitigate massive nitric oxide release and prevent reperfusion injury in septic shock. Free Radic Biol Med 2025; 227:276-281. [PMID: 39645204 DOI: 10.1016/j.freeradbiomed.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Nitric oxide plays a critical role in regulating vascular tone, but excessive nitric oxide release during septic shock results in hypotension due to excessive vasodilation and the formation of toxic free radicals. VBI-S is a phospholipid nanoparticle based fluid composed of lipid bilayers formed primarily by phosphatidylcholine and micelles of soybean oil encapsulated by a monolayer of phosphatidylcholine. These nanoparticles offer a novel solution by absorbing and redistributing nitric oxide and nitrite, potentially mitigating the harmful effects of excessive nitric oxide in sepsis. This paper proposes a mechanism in which VBI-S not only redistributes nitric oxide but also reduces ischemia-reperfusion injury by limiting the production and availability of reactive species. VBI-S captures nitric oxide and nitrite in areas of high concentration and redistributes them in low-nitric oxide environments, primarily within oxygen-deprived tissues. Nitrite then contributes to nitric oxide regeneration in hypoxic microvasculature via various reduction pathways, thereby improving tissue perfusion and minimizing oxidative stress. Preliminary studies suggest that nitrite may also decrease reactive species production, primarily superoxide, through the inhibition of mitochondrial complex I. Additionally, the lipid composition of VBI-S is rich in poly and monounsaturated fatty acids which allows VBI-S to act as a substrate for peroxidation via peroxynitrite. Therefore, VBI-S acts as a decoy target thereby protecting cellular membranes from oxidative damage caused by reactive species. These findings position VBI-S as a promising therapeutic agent, offering both nitric oxide regulation and protection against hypotension and toxic free radicals in septic shock patients. Further research is necessary to fully elucidate the molecular pathways and optimize its clinical application.
Collapse
Affiliation(s)
- Ryan Sasse
- University of Missouri Kansas City School of Medicine, Kansas City, MO, USA.
| | - Nathan Carpenter
- Department of Surgery, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Cuthbert O Simpkins
- Department of Surgery, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| |
Collapse
|
2
|
Austria E, Bilek M, Varamini P, Akhavan B. Breaking biological barriers: Engineering polymeric nanoparticles for cancer therapy. NANO TODAY 2025; 60:102552. [DOI: 10.1016/j.nantod.2024.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Rahmani D, Taheri RA, Moosazadeh Moghaddam M. Targeted delivery of curcumin and CM11 peptide against hepatocellular carcinoma cells based on binding affinity of PreS1-coated chitosan nanoparticles to SB3 protein. Amino Acids 2025; 57:12. [PMID: 39862295 PMCID: PMC11762422 DOI: 10.1007/s00726-024-03438-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025]
Abstract
In recent years, the use of cationic peptides as alternative drugs with anticancer activity has received attention. In this study, the targeted release of curcumin (Cur) and CM11 peptide alone and together against hepatocellular carcinoma (HCC) was evaluated using chitosan nanoparticles (CS NPs) coated with Pres1 that target the SB3 antigen of HCC cells (PreS1-Cur-CM11-CS NPs). SB3 protein is the specific antigen of HCC and the PreS1 peptide is a part of the hepatitis B antigen, which can specifically bind to the SB3 protein. Chitosan was used to prepare NPs. To Cur and CM11 loading, drugs were added to the CS solution in appropriate concentrations. Pres1 was coupled to the surface of the NPs using EDC catalyst to target NPs against HepG2 cells. SEM and DLS analysis confirmed that the PreS1-Cur-CM11-CS NPs had a size of about 132 nm, the ideal size for penetrating the cell membrane. The loading of Cur and CM11 was equal to 87% and 65%, respectively, which had a sustained and better release in the acidic environment than in the physiological environment. The MTT assay showed that PreS1-Cur-CM11-CS NPs act in a targeted and specific manner with the highest toxicity on the HepG2 cells compared to the control by a decrease in viability of about 26% after 48 h based on cell apoptosis. The results showed that PreS1-Cur-CM11-CS NPs are capable of targeted and specific drug release against HepG2 cancer cells and have significant potential to fight this cancer.
Collapse
Affiliation(s)
- Danial Rahmani
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Liu Y, Wang T, Chi X, Yu S, He W, He H, Wang G, Hao K, Zhang J. Modeling based dynamics mechanism and pathway of liposome penetration in multicellular tumor spheroid for liposome optimization. Int J Pharm 2025; 671:125237. [PMID: 39842737 DOI: 10.1016/j.ijpharm.2025.125237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/26/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Liposomes are widely recognized as effective drug delivery systems, characterized by biodegradability, biocompatibility, and ability to minimize toxicity. However, liposome-based nanotechnology has not demonstrated superior anti-tumor efficacy due to their limited intratumor penetration. Strategies to improve the tumor delivery efficiency of nanomedicine remain to be developed. Moreover, the specific steps involving inter-/intra-cellular pathways in delivery could not be fully revealed by real experiment. Mathematical modeling is a great choice. Hence, this study analyzed the roles of physicochemical properties of liposomes and tumorassociated environment in intratumoral penetration, using ten anti-tumor liposomes datasets to develop two kinetic models in tumor spheroid cells based on transcytosis and paracellular transport mechanisms. Modeling results reveal the dominated penetration pathway of liposomes studied through the paracellular pathway compared to transcytosis. Liposomes with positive surface charge and high membrane fluidity enhance the maximal binding capacity on the cell membrane. Smaller liposome sizes promote internalization on the cell membrane, leading to increased drug accumulation within the cell. The pattern of liposome penetration remained consistent across different tumor-associated environments. Our developed kinetic models accurately described the penetration process of liposomes in multicellular tumor spheroid, offering valuable insights for the development of new nano antitumor medications with similar characteristics from a pharmacokinetic perspective at the tissue level.
Collapse
Affiliation(s)
- Yinuo Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Tingting Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xingyu Chi
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Simiao Yu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Kun Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Jingwei Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
5
|
Akdaşçi E, Duman H, Eker F, Bechelany M, Karav S. Chitosan and Its Nanoparticles: A Multifaceted Approach to Antibacterial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:126. [PMID: 39852740 PMCID: PMC11768082 DOI: 10.3390/nano15020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Chitosan, a multifaceted amino polysaccharide biopolymer derived from chitin, has extensive antibacterial efficacy against diverse pathogenic microorganisms, including both Gram-negative and Gram-positive bacteria, in addition to fungi. Over the course of the last several decades, chitosan nanoparticles (NPs), which are polymeric and bio-based, have garnered a great deal of interest as efficient antibacterial agents. This is mostly due to the fact that they are used in a wide variety of applications, including medical treatments, food, chemicals, and agricultural products. Within the context of the antibacterial mechanism of chitosan and chitosan NPs, we present a review that provides an overview of the synthesis methods, including novel procedures, and compiles the applications that have been developed in the field of biomedicine. These applications include wound healing, drug delivery, dental treatment, water purification, agriculture, and food preservation. In addition to this, we focus on the mechanisms of action and the factors that determine the antibacterial activity of chitosan and its derivatives. In conjunction with this line of inquiry, researchers are strongly urged to concentrate their efforts on developing novel and ground-breaking applications of chitosan NPs.
Collapse
Affiliation(s)
- Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| | - Mikhael Bechelany
- European Institute for Membranes (IEM), UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CEDEX 5, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| |
Collapse
|
6
|
Munyayi TA, Crous A. Advancing Cancer Drug Delivery with Nanoparticles: Challenges and Prospects in Mathematical Modeling for In Vivo and In Vitro Systems. Cancers (Basel) 2025; 17:198. [PMID: 39857980 PMCID: PMC11763932 DOI: 10.3390/cancers17020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Mathematical models are crucial for predicting the behavior of drug conjugate nanoparticles and optimizing drug delivery systems in cancer therapy. These models simulate interactions among nanoparticle properties, tumor characteristics, and physiological conditions, including drug resistance and targeting specificity. However, they often rely on assumptions that may not accurately reflect in vivo conditions. In vitro studies, while useful, may not fully capture the complexities of the in vivo environment, leading to an overestimation of nanoparticle-based therapy effectiveness. Advancements in mathematical modeling, supported by preclinical data and artificial intelligence, are vital for refining nanoparticle-based therapies and improving their translation into effective clinical treatments.
Collapse
Affiliation(s)
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
7
|
Lopes J, Rodrigues CM, Godinho-Santos A, Coelho JMP, Cabaço LC, Barral DC, Faísca P, Catarino J, Nunes D, Fortunato E, Martins R, Rodrigues CMP, Gaspar MM, Reis CP. Combination of gold nanoparticles with near-infrared light as an alternative approach for melanoma management. Int J Pharm 2025; 668:124952. [PMID: 39547473 DOI: 10.1016/j.ijpharm.2024.124952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Melanoma is the most aggressive type of skin cancer and recently approved drugs are often associated with resistance and significant adverse effects. Therefore, the design of more effective and safe options remains imperative. Photothermal therapy (PTT) using gold nanoparticles (AuNPs) presents a promising and innovative approach. In this work, the efficacy of combining a previously optimized formulation of AuNPs coated with a mixture of hyaluronic and oleic acids (HAOA-AuNPs) with near-infrared (NIR) laser irradiation in melanoma cell lines was explored. Coated and uncoated AuNPs formulations were characterized in physicochemical, morphological and elemental terms. Next, the cellular uptake efficiency as well as antiproliferative activity of the combination of each formulation with laser irradiation was evaluated. Subsequently, HAOA-AuNPs were selected to assess the underlying mechanism of combined therapy by cell cycle and Annexin V/PI assays. An in vivo syngeneic murine melanoma model was also conducted. In vitro studies demonstrated that 24 h after incubation and in the absence of laser, HAOA-AuNPs did not exhibit cytotoxic effects on the melanoma cell lines tested, similar to the laser alone. On the contrary, the combination therapy resulted in a large reduction in cell viability. Furthermore, it has been shown to promote S-phase cell cycle arrest and increase in the percentage of late apoptotic cells. Finally, the in vivo proof-of-concept showed that the intratumoral administration of HAOA-AuNPs followed by three laser irradiations impaired tumor progression. Collectively, AuNP-based PTT holds significant potential to improve treatment efficacy and safety, offering a versatile and potent tool against cancer.
Collapse
Affiliation(s)
- Joana Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - Carla M Rodrigues
- REQUIMTE - LAQV, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Campus da Caparica Caparica 2829-516, Portugal
| | - Ana Godinho-Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - João M P Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal
| | - Luís C Cabaço
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal
| | - Duarte C Barral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal
| | - Pedro Faísca
- CECAV- Centro de Ciência Animal e Veterinária- Faculdade de Medicina, Veterinária de Lisboa- Universidade Lusófona-Centro Universitário de Lisboa, Portugal
| | - José Catarino
- Faculty of Veterinary Medicine, Universidade Lusófona-Centro Universitário de Lisboa, Portugal; School of Animal Health, Protection and Welfare, Lusophone Polytechnic Institute, Lisbon, Portugal
| | - Daniela Nunes
- Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, i3N/CENIMAT, Caparica 2829-516, Portugal
| | - Elvira Fortunato
- Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, i3N/CENIMAT, Caparica 2829-516, Portugal
| | - Rodrigo Martins
- Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, i3N/CENIMAT, Caparica 2829-516, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal; Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal.
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal; Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal.
| |
Collapse
|
8
|
Sierri G, Saenz-de-Santa-Maria I, Renda A, Koch M, Sommi P, Anselmi-Tamburini U, Mauri M, D'Aloia A, Ceriani M, Salerno D, Mantegazza F, Zurzolo C, Re F. Nanoparticle shape is the game-changer for blood-brain barrier crossing and delivery through tunneling nanotubes among glioblastoma cells. NANOSCALE 2025; 17:992-1006. [PMID: 39588728 DOI: 10.1039/d4nr03174a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Tunneling nanotubes (TNTs) are thin, dynamic, long membrane protrusions that allow intercellular exchanges of signaling clues, molecules and organelles. The presence of TNTs and their involvement as drug delivery channels have been observed in several types of cancer, including glioblastoma. Recently, increased attention has been directed toward nanoparticles (NPs) that can be transported in TNTs. However, few data are available on the role of physical parameters of nanoparticles, such as size, shape, charge and flexibility, in determining their transfer efficiency between cells by TNTs. Here, we focused our attention on NP shape, manufacturing spherical, discoidal and deformable negatively charged lipid-based NPs with sizes <120 nm and similar stiffness. The TNT-mediated transfer of NPs was investigated in 2D and 3D culture models of human glioblastoma cells. The permeability and biocompatibility of the blood-brain barrier (BBB) were also assessed. Results showed that discoidal NPs displayed the highest TNT-mediated transfer efficiency between cancer cells, with a maximum velocity of 69 nm s-1, and a higher endothelial permeability (1.29 × 10-5 cm min-1) across the BBB in an in vitro model. This depends on the NP shape because discoidal NPs have a larger surface area exposed to the flow along the TNT channel. Overall, the results suggest that the shape of NPs is the game-changer for more efficient TNT-mediated transfer between cancer cells, thus introducing a sustainable solution to improve the diffusion rate at which the NPs spread in the tumour microenvironment, opening the possibility of ameliorating drug distribution to difficult-to-reach cancer cell populations.
Collapse
Affiliation(s)
- Giulia Sierri
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Ines Saenz-de-Santa-Maria
- Unité de Trafic Membranaire et Pathogenèse, Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Paris, France
| | - Antonio Renda
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Marcus Koch
- INM-Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Patrizia Sommi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Mario Mauri
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Alessia D'Aloia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Michela Ceriani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Domenico Salerno
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | | | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogenèse, Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Paris, France
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
9
|
Ruseska I, Tucak-Smajić A, Zimmer A. Elucidating the uptake and trafficking of nanostructured lipid carriers as delivery systems for miRNA. Eur J Pharm Sci 2025; 204:106973. [PMID: 39603431 DOI: 10.1016/j.ejps.2024.106973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Cationic nanostructured lipid carriers (cNLCs) represent promising non-viral carriers for nucleic acids, such as miRNAs, forming stable self-assembled miRNA complexes due to electrostatic interactions. Prepared by high-pressure homogenization, cNLC formulations, both with and without Nile Red dye demonstrated stable particle sizes in the range of 100-120 nm and positive surface charges (>30 mV), which are necessary for effective cellular uptake. The miRNA complexes formed at mass ratios of 1:2.5 and 1:5 showed similar stability and size, with positive zeta potentials, as well as high cell viability (> 80 %) in 3T3-L1 and MCF-7 cell lines. The cellular uptake studies of miRNA:cNLC complexes in both cell lines revealed that uptake was time- and concentration-dependent, with rapid initial uptake in 30 min and a zig-zag pattern over 24 h. To elucidate the endocytosis mechanism of miRNA:cNLC complexes, 3T3-L1 and MCF-7 cells were incubated with different inhibitors (chlorpromazine, 5-[N-ethyl-N-isopropyl] amiloride, dynasore, nystatin, or sodium azide with 2-deoxy-d-glucose). Results showed significant inhibition of uptake at low temperatures and with ATP depletion, suggesting endocytosis, particularly macropinocytosis, as the main uptake mechanism in 3T3-L1 cells. In MCF-7 cells, the uptake was less inhibited by the substances, indicating the need for more specific methods to fully decipher the endocytic mechanisms involved. Confocal laser scanning microscopy images revealed that the complexes are internalized in vesicles, and are primarily localized in the juxtanuclear region, suggesting trafficking through the endolysosomal system. Colocalization study with LysoTracker™ Green DND-26 showed significant colocalization of miRNA:cNLC complexes with lysosomes in 3T3-L1 cells, indicating trafficking through the endolysosomal system. In MCF-7 cells, colocalization was lower, suggesting macropinocytosis as the primary uptake mechanism. Additional studies showed partial colocalization between labeled NLCs and miRNA, indicating that about 50 % of miRNA is released from NLCs within 30 min post-transfection.
Collapse
Affiliation(s)
- Ivana Ruseska
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010, Graz, Austria
| | - Amina Tucak-Smajić
- Department of Pharmaceutical Technology, University of Sarajevo - Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Andreas Zimmer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010, Graz, Austria.
| |
Collapse
|
10
|
Lei M, Zhu Z, Wei C, Xie H, Guo R, Zhao Y, Wang K, Wang M, Chen W, Xu X, Zeng X, Xu Y, Zhang W, Chu Y, Sun Y, Yang Q. Prenatal Silicon Dioxide Nanoparticles Exposure Reduces Female Offspring Fertility Without Affecting Males. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410353. [PMID: 39574356 PMCID: PMC11744561 DOI: 10.1002/advs.202410353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/07/2024] [Indexed: 01/21/2025]
Abstract
Silicon dioxide nanoparticles (SiO2 NPs) are widely utilized in biomedicine due to their controllable size and biocompatibility. While previous studies have demonstrated that prenatal exposure to SiO2 NPs can traverse the placental barrier and induce neurotoxicity in offspring. However, their reproductive toxicity remains unclear. Here, it is found that prenatal SiO2 NPs exposure led to subfertility in female offspring, evidenced by decreased ovulation potential, ovarian reserve, and litter size. In contrast, male offspring maintained normal sperm production and fertility. Mechanistic analyses revealed that prenatal SiO2 NPs exposure disrupted meiotic recombination and increased oocyte apoptosis, resulting in reduced postnatal primordial follicle formation in females. Conversely, meiotic recombination occurring postnatally in male offspring remained unaffected. Notably, treatment with carboxylate (COOH)-functionalized SiO2 nanoparticles (SiO2-COOH NPs) has a minimal impact on fertility in female offspring. Further research, including clinical studies, is needed to confirm these findings in humans. These findings demonstrated gender-specific reproductive toxicity induced by prenatal SiO2 NPs exposure and highlighted the importance of considering nanoparticle safety in prenatal contexts.
Collapse
|
11
|
Yue L, Ye P, Zhang Y, Guo R, Xu W, Huang S, Xiu Y, Huang Y, Wang B. An enhanced bioactive chitosan-modified microemulsion for mucosal healing of ulcerative colitis. Int J Biol Macromol 2025; 284:137847. [PMID: 39581424 DOI: 10.1016/j.ijbiomac.2024.137847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
The intestinal mucus layer plays a crucial role in the systemic absorption of drugs. While penetration through this layer traditionally constitutes a pivotal phase in drug absorption, the approach for treating ulcerative colitis (UC) shifts towards facilitating the direct delivery of drugs to the colon. In this study, we engineered a chitosan-modified microemulsion encapsulated nobiletin (NOB-CS-ME) characterized by small particle dimensions and positive charge specifically, designed to enable targeted delivery. In vitro experiments demonstrated that this NOB-CS-ME effectively became less into the intestinal mucus layer, thus achieving successful escape of the intestinal mucus barrier absorption. After circumventing this barrier, NOB-CS-ME exhibited heightened cellular uptake by colonic epithelial cells, displaying an approximately 1.3-fold increase compared to the unmodified microemulsion. Collectively, these observations imply enhanced drug bioavailability, potentially resulting in more efficacious mucosal healing, providing a promising avenue for natural small-molecule drug delivery in UC treatment.
Collapse
Affiliation(s)
- Lixia Yue
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ping Ye
- Shanghai Institute for Minimally Invasive Therapy, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yi Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ru Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weihua Xu
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Shaogang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 501405, China
| | - Yanfeng Xiu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China.
| |
Collapse
|
12
|
Ghareeb A, Fouda A, Kishk RM, El Kazzaz WM. Unlocking the potential of titanium dioxide nanoparticles: an insight into green synthesis, optimizations, characterizations, and multifunctional applications. Microb Cell Fact 2024; 23:341. [PMID: 39710687 DOI: 10.1186/s12934-024-02609-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
This comprehensive review explores the emergence of titanium dioxide nanoparticles (TiO2-NPs) as versatile nanomaterials, particularly exploring their biogenic synthesis methods through different biological entities such as plants, bacteria, fungi, viruses, and algae. These biological entities provide eco-friendly, cost-effective, biocompatible, and rapid methods for TiO2-NP synthesis to overcome the disadvantages of traditional approaches. TiO2-NPs have distinctive properties, including high surface area, stability, UV protection, and photocatalytic activity, which enable diverse applications. Through detailed analysis, this review demonstrates significant applications of green fabricated TiO2-NPs in biomedicine, explicitly highlighting their antimicrobial, anticancer, and antioxidant activities, along with applications in targeted drug delivery, photodynamic therapy, and theragnostic cancer treatment. Additionally, the review underscores their pivotal significance in biosensors, bioimaging, and agricultural applications such as nanopesticides and nanofertilizers. Also, this review proves valuable incorporation of TiO2-NPs in the treatment of contaminated soil and water with various environmental contaminants such as dyes, heavy metals, radionuclides, agricultural effluents, and pathogens. These comprehensive findings establish the foundation for future innovations in nanotechnology, underscoring the importance of further investigating bio-based synthetic approaches and bioactivity mechanisms to enhance their efficacy and safety across healthcare, agricultural, and environmental applications.
Collapse
Affiliation(s)
- Ahmed Ghareeb
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Rania M Kishk
- Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Waleed M El Kazzaz
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
13
|
Öztürk K, Kaplan M, Çalış S. Effects of nanoparticle size, shape, and zeta potential on drug delivery. Int J Pharm 2024; 666:124799. [PMID: 39369767 DOI: 10.1016/j.ijpharm.2024.124799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Nanotechnology has brought about a significant revolution in drug delivery, and research in this domain is increasingly focusing on understanding the role of nanoparticle (NP) characteristics in drug delivery efficiency. First and foremost, we center our attention on the size of nanoparticles. Studies have indicated that NP size significantly influences factors such as circulation time, targeting capabilities, and cellular uptake. Secondly, we examine the significance of nanoparticle shape. Various studies suggest that NPs of different shapes affect cellular uptake mechanisms and offer potential advantages in directing drug delivery. For instance, cylindrical or needle-like NPs may facilitate better cellular uptake compared to spherical NPs. Lastly, we address the importance of nanoparticle charge. Zeta potential can impact the targeting and cellular uptake of NPs. Positively charged NPs may be better absorbed by negatively charged cells, whereas negatively charged NPs might perform more effectively in positively charged cells. This review provides essential insights into understanding the role of nanoparticles in drug delivery. The properties of nanoparticles, including size, shape, and charge, should be taken into consideration in the rational design of drug delivery systems, as optimizing these characteristics can contribute to more efficient targeting of drugs to the desired tissues. Thus, research into nanoparticle properties will continue to play a crucial role in the future of drug delivery.
Collapse
Affiliation(s)
- Kıvılcım Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye
| | - Meryem Kaplan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye; Department of Pharmaceutical Technology, Faculty of Pharmacy, Süleyman Demirel University, 32260 Isparta, Türkiye
| | - Sema Çalış
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye.
| |
Collapse
|
14
|
Naskar A, Kilari S, Baranwal G, Kane J, Misra S. Nanoparticle-Based Drug Delivery for Vascular Applications. Bioengineering (Basel) 2024; 11:1222. [PMID: 39768040 PMCID: PMC11673055 DOI: 10.3390/bioengineering11121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 01/05/2025] Open
Abstract
Nanoparticle (NP)-based drug delivery systems have received widespread attention due to the excellent physicochemical properties of nanomaterials. Different types of NPs such as lipid NPs, poly(lactic-co-glycolic) acid (PLGA) NPs, inorganic NPs (e.g., iron oxide and Au), carbon NPs (graphene and carbon nanodots), 2D nanomaterials, and biomimetic NPs have found favor as drug delivery vehicles. In this review, we discuss the different types of customized NPs for intravascular drug delivery, nanoparticle behaviors (margination, adhesion, and endothelium uptake) in blood vessels, and nanomaterial compatibility for successful drug delivery. Additionally, cell surface protein targets play an important role in targeted drug delivery, and various vascular drug delivery studies using nanoparticles conjugated to these proteins are reviewed. Finally, limitations, challenges, and potential solutions for translational research regarding NP-based vascular drug delivery are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (A.N.); (S.K.); (G.B.); (J.K.)
| |
Collapse
|
15
|
Eker Fidan EB, Bal K, Şentürk S, Kaplan Ö, Demir K, Gök MK. Enhancing gene delivery efficiency with amphiphilic chitosan modified by myristic acid and tertiary amino groups. Int J Biol Macromol 2024; 282:136775. [PMID: 39442853 DOI: 10.1016/j.ijbiomac.2024.136775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/13/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
The aim of this study is to synthesize new amphiphilic chitosan containing myristic acid as the hydrophobic tail and tertiary amine groups as the hydrophilic head and to evaluate the gene delivery efficiency. In this context, the primary amine groups of chitosan were first modified with myristic acid (Chi-M), followed by the modification of the methylol groups with 3-dimethylamino-1-propyl chloride hydrochloride. The chemical characterization of this chitosan formulation (Chi-MA) was determined using nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FTIR) analysis and gel permeation chromatography-size exclusion chromatography. Chi-MA nanoparticles were prepared via ionic gelation, and particle size, polydispersity and zeta potential were determined. The nanoparticles were evaluated for their proton buffering capacity and gene complexing capacity. Additionally, the cytotoxicity of Chi-MA on HEK293T cells was determined via MTT assay, and the transfection efficiency of Chi-MA was analyzed by a flow cytometer. The results indicate a significant increase in gene complexing capacity (8-fold) and nanoparticle formation ability of Chi-MA compared to other chitosan formulations. Chi-MA nanoparticles showed no toxicity against HEK293T cells and exhibited the highest transfection efficiency with significantly lower nanoparticle: gene ratios compared to previous studies. These findings demonstrate the effective use of amphiphilic Chi-MA as a gene carrier.
Collapse
Affiliation(s)
- Emine Büşra Eker Fidan
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemical Engineering, Istanbul, Turkey
| | - Kevser Bal
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemical Engineering, Istanbul, Turkey
| | - Sema Şentürk
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemical Engineering, Istanbul, Turkey
| | - Özlem Kaplan
- Alanya Alaaddin Keykubat University, Rafet Kayış Faculty of Engineering, Department of Genetics and Bioengineering, Antalya, Turkey
| | - Kamber Demir
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mehmet Koray Gök
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemical Engineering, Istanbul, Turkey.
| |
Collapse
|
16
|
van Staden D, Gerber M, Lemmer HJR. The Application of Nano Drug Delivery Systems in Female Upper Genital Tract Disorders. Pharmaceutics 2024; 16:1475. [PMID: 39598598 PMCID: PMC11597179 DOI: 10.3390/pharmaceutics16111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The prevalence of female reproductive system disorders is increasing, especially among women of reproductive age, significantly impacting their quality of life and overall health. Managing these diseases effectively is challenging due to the complex nature of the female reproductive system, characterized by dynamic physiological environments and intricate anatomical structures. Innovative drug delivery approaches are necessary to facilitate the precise regulation and manipulation of biological tissues. Nanotechnology is increasingly considered to manage reproductive system disorders, for example, nanomaterial imaging allows for early detection and enhances diagnostic precision to determine disease severity and progression. Additionally, nano drug delivery systems are gaining attention for their ability to target the reproductive system successfully, thereby increasing therapeutic efficacy and decreasing side effects. This comprehensive review outlines the anatomy of the female upper genital tract by highlighting the complex mucosal barriers and their impact on systemic and local drug delivery. Advances in nano drug delivery are described for their sustainable therapeutic action and increased biocompatibility to highlight the potential of nano drug delivery strategies in managing female upper genital tract disorders.
Collapse
Affiliation(s)
| | | | - Hendrik J. R. Lemmer
- Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), North-West University, Potchefstroom 2531, South Africa; (D.v.S.); (M.G.)
| |
Collapse
|
17
|
Nanda SS, Yi DK. Exploring the Connection Between Nanomaterials and Neurodegenerative Disorders. MICROMACHINES 2024; 15:1382. [PMID: 39597194 PMCID: PMC11596582 DOI: 10.3390/mi15111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Drug delivery, tissue engineering, and cell promotion in biomedical fields heavily rely on the use of nanomaterials (NMs). When they penetrate cells, NPs undergo degradation and initiate the generation of reactive oxygen species (ROS) by causing changes in the structures of organelles linked to mitochondria. Inside the cell, the excess production of ROS can initiate a chain reaction, along with the autophagy process that helps maintain ROS balance by discarding unnecessary materials. At present, there is no effective treatment for Alzheimer's disease (AD), a progressive neurodegenerative disease. The use of NMs for siRNA delivery could become a promising treatment for AD and other CNS disorders. Recent research demonstrates that the use of combined NPs can induce autophagy in cells. This article emphasizes the importance of the shape of siRNA-encapsulated NMs in determining their efficiency in delivering and suppressing gene activity in the central nervous system. Because of its strict selectivity against foreign substances, the blood-brain barrier (BBB) significantly hinders the delivery of therapeutic agents to the brain. Conventional chemotherapeutic drugs are significantly less effective against brain cancers due to this limitation. As a result, NMs have become a promising approach for targeted drug delivery, as they can be modified to carry specific ligands that direct them to their intended targets. This review thoroughly examines the latest breakthroughs in using NMs to deliver bioactive compounds across the BBB, focusing on their use in cancer treatments. The review starts by examining the structure and functions of the BBB and BBTB, and then emphasizes the benefits that NMs offer.
Collapse
Affiliation(s)
| | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin 17058, Republic of Korea;
| |
Collapse
|
18
|
Haq IU, Cai X, Ali H, Akhtar MR, Ghafar MA, Hyder M, Hou Y. Interactions Between Nanoparticles and Tomato Plants: Influencing Host Physiology and the Tomato Leafminer's Molecular Response. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1788. [PMID: 39591030 PMCID: PMC11597545 DOI: 10.3390/nano14221788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Tomatoes are a crucial global crop, impacting economies and livelihoods worldwide. However, pests like the tomato leafminer (Tuta absoluta) significantly reduce their yield potential. Nanoparticles come as a solution to this context, promising innovative strategies for the protection of plants from pest infestation and management. Nanoparticles have shown great potential to improve tomato plant resistance against pests and diseases because of their unique properties. They enhance plant physiological processes like photosynthesis and nutrient uptake while activating defense-related molecular pathways. Nanoparticles also directly impact the life cycle and behavioral patterns of pests such as the tomato leafminer, reducing their destructive nature. The dual benefits of nanoparticles for enhancing plants' health and managing pests effectively provide a two-way innovative approach in agriculture. Gains made with such technology not only include increasing crop productivity and reducing crop losses but also reducing the heavy dependence on chemical pesticides, many of which have been attributed to environmental hazards. The current study illustrates the broader implications of nanoparticle use in agriculture, which is a sustainable pathway to increase crop resilience and productivity while reducing the impact of pests. Such novel approaches underline the need for continued interdisciplinary research to exploit the potential of nanotechnology in sustainable agricultural practices fully.
Collapse
Affiliation(s)
- Inzamam Ul Haq
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (I.U.H.); (X.C.); (M.R.A.)
| | - Xiangyun Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (I.U.H.); (X.C.); (M.R.A.)
| | - Habib Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan;
| | - Muhammad Rehan Akhtar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (I.U.H.); (X.C.); (M.R.A.)
| | - Muhammad Adeel Ghafar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (I.U.H.); (X.C.); (M.R.A.)
| | - Moazam Hyder
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (I.U.H.); (X.C.); (M.R.A.)
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (I.U.H.); (X.C.); (M.R.A.)
| |
Collapse
|
19
|
Vo Y, Raveendran R, Cao C, Lai RY, Lossa M, Foster H, Stenzel MH. Solvent Choice during Flow Assembly of Photocross-Linked Single-Chain Nanoparticles and Micelles Affects Cellular Uptake. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59833-59848. [PMID: 39450994 DOI: 10.1021/acsami.4c12186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Polymeric micelles have widely been used as drug delivery carriers, and recently, single-chain nanoparticles (SCNPs) emerged as potential, smaller-sized, alternatives. In this work, we are comparing both NPs side by side and evaluate their ability to be internalized by breast cancer cells (MCF-7) and macrophages (RAW 264.7). To be able to generate these NPs on demand, the polymers were assembled by flow, followed by the stabilization of the structures by photocross-linking using blue light. The central aim of this work is to evaluate how the type of solvent affects self-assembly and ultimately the structure of the final NP. Therefore, a library of copolymers with different sequences, including block copolymers (AB, ABA, BAB), and statistical copolymers (rAB and rAC) was synthesized using PET-RAFT with A denoting poly(ethylene glycol) methyl ether acrylate (PEGMEA), B as 2-hydroxyethyl acrylate (HEA), and C as 4-hydroxybutyl acrylate (HBA). The polymers were conjugated with a quinoline derivative to enable the formation of cross-linked structures by photocross-linking during flow assembly. Using water as the dispersant for photocross-linking led to the preassembly of these amphiphilic polymers into compact SCNPs and cross-linked micelles, resulting in a quick photoreaction. In contrast, acetonitrile led to fully dissolved polymers but a low rate of the photoreaction. These intramolecularly cross-linked polymers were then placed in water to result in more dynamic micelles and looser SCNPs. Small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and size exclusion chromatography (SEC) coupled with a viscosity detector show that cross-linking in acetonitrile results in better-defined NPs with a shell rich in PEGMEA. Cross-linking in acetonitrile led to NPs with significantly higher cellular uptake. Interestingly, passive transport was identified as the main pathway for the delivery of our NPs on MCF-7 cells, confirmed by the uptake of NPs on cells treated with inhibitors and by red blood cells. This work underscored the importance of the polymer precursor's structure and the choice of solvent during intramolecular cross-linking in determining the drug delivery efficiency and biological behavior of SCNPs.
Collapse
Affiliation(s)
- Yen Vo
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Radhika Raveendran
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Cheng Cao
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Rebecca Y Lai
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Miriam Lossa
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Henry Foster
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
20
|
Ye H, Franco C, Aboouf MA, Thiersch M, Sevim S, Llacer‐Wintle J, Veciana A, Llauradó‐Capdevila G, Wang K, Chen X, Tang Q, Matheu R, Wendel‐Garcia PD, Sánchez‐Murcia PA, Nelson BJ, Luo C, Puigmartí‐Luis J, Pané S. Insights into the Biological Activity and Bio-Interaction Properties of Nanoscale Imine-Based 2D and 3D Covalent Organic Frameworks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407391. [PMID: 39387248 PMCID: PMC11600295 DOI: 10.1002/advs.202407391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/16/2024] [Indexed: 10/15/2024]
Abstract
Covalent Organic Frameworks (COFs) emerged as versatile materials with promising potential in biomedicine. Their customizable functionalities and tunable pore structures make them valuable for various biomedical applications such as biosensing, bioimaging, antimicrobial activity, and targeted drug delivery. Despite efforts made to create nanoscale COFs (nCOFs) to enhance their interaction with biological systems, a comprehensive understanding of their inherent biological activities remains a significant challenge. In this study, a thorough investigation is conducted into the biocompatibility and anti-neoplastic properties of two distinct imine-based nCOFs. The approach involved an in-depth analysis of these nCOFs through in vitro experiments with various cell types and in vivo assessments using murine models. These findings revealed significant cytotoxic effects on tumor cells. Moreover, the activation of multiple cellular death pathways, including apoptosis, necroptosis, and ferroptosis is determined, supported by evidence at the molecular level. In vivo evaluations exhibited marked inhibition of tumor growth, associated with the elevated spontaneous accumulation of nCOFs in tumor tissues and the modulation of cell death-related protein expression. The research contributes to developing a roadmap for the characterization of the intricate interactions between nCOFs and biological systems and opens new avenues for exploiting their therapeutic potential in advanced biomedical applications.
Collapse
Affiliation(s)
- Hao Ye
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| | - Carlos Franco
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| | - Mostafa A. Aboouf
- Institute of Veterinary PhysiologyVetsuisse FacultyUniversity of ZurichWinterthurerstrasse 260Zurich8057Switzerland
- Department of BiochemistryFaculty of PharmacyAin Shams UniversityCairo11566Egypt
| | - Markus Thiersch
- Institute of Veterinary PhysiologyVetsuisse FacultyUniversity of ZurichWinterthurerstrasse 260Zurich8057Switzerland
| | - Semih Sevim
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| | - Joaquin Llacer‐Wintle
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| | - Andrea Veciana
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| | - Gemma Llauradó‐Capdevila
- Departament de Ciència dels Materials i Química Física Institut de Química Teòrica i ComputacionalUniversity of BarcelonaBarcelona08028Spain
| | - Kaiyuan Wang
- Department of PharmaceuticsWuya College of InnovationShenyang Pharmaceutical University103 Wenhua RoadShenyang Liaoning110016P. R. China
| | - Xiang‐Zhong Chen
- State Key Laboratory of Photovoltaic Science and TechnologyShanghai Frontiers Science Research Base of Intelligent Optoelectronics and PerceptionInstitute of OptoelectronicsInternational Institute of Intelligent Nanorobots and NanosystemsFudan UniversitySonghu Road 2005Shanghai200438China
- Yiwu Research Intitute of Fudan UniversityYiwu322000China
| | - Qiao Tang
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| | - Roc Matheu
- Departament de Química Inorgànica i OrgànicaInstitut de Química Teòrica i ComputacionalBarcelona08028Spain
| | - Pedro D. Wendel‐Garcia
- Institute of Intensive Care MedicineUniversity Hospital ZurichRämistrasse 100Zurich8091Switzerland
| | - Pedro A. Sánchez‐Murcia
- Laboratory of Computer‐Aided Molecular DesignDivision of Medicinal ChemistryOtto‐Loewi Research CenterMedical University of GrazNeue Stiftingstalstraße 6/IIIGrazA‐8010Austria
| | - Bradley J. Nelson
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| | - Cong Luo
- Department of PharmaceuticsWuya College of InnovationShenyang Pharmaceutical University103 Wenhua RoadShenyang Liaoning110016P. R. China
| | - Josep Puigmartí‐Luis
- Departament de Ciència dels Materials i Química Física Institut de Química Teòrica i ComputacionalUniversity of BarcelonaBarcelona08028Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Pg. Lluís Companys 23Barcelona08010Spain
| | - Salvador Pané
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| |
Collapse
|
21
|
Goshtasbi H, Awale S, Amini-Fazl MS, Fathi M, Movafeghi A, Barar J, Omidi Y. Chitosan-graft-poly(lactide) nanocarriers: An efficient antioxidant delivery system for combating oxidative stress. Int J Biol Macromol 2024; 279:135280. [PMID: 39349320 DOI: 10.1016/j.ijbiomac.2024.135280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 10/02/2024]
Abstract
Oxidative stress is a key factor in various diseases, and thus exogenous antioxidants offer effective therapeutic potential. While astaxanthin (ATX) is a potent natural antioxidant, its poor water solubility, bioavailability, and stability hinder its application. This study aimed to develop an amphiphilic chitosan-graft-poly(lactide) (CS-g-PLA) copolymer utilizing a new strategy by ring-opening polymerization of D, l-lactide via organosoluble CS/sodium dodecyl sulfate complex. Subsequently, CS-g-PLA micelles were prepared for efficient encapsulation and delivery of ATX. CS-g-PLA copolymers were characterized by FT-IR and 1H NMR. Transmission electron microscopy and dynamic light scattering revealed micellar morphology and size distribution. The antioxidant activity of CS-g-PLA/ATX was assessed using the DPPH assay, demonstrating significant improvement compared to free ATX. Furthermore, the cytotoxicity of micellar ATX was evaluated on H2O2-treated bone marrow mesenchymal stem cells (BMSCs) using MTT assay. Annexin V staining and mitochondrial membrane potential (∆Ψm) analysis revealed reduced apoptosis and enhanced protection by ATX-loaded micelles compared to free ATX. These findings suggest CS-g-PLA micelles as promising nanocarriers for ATX delivery, putatively enhancing its antioxidant potential and protecting stem cells in oxidative stress environments. This approach could hold significant implications for stem cell therapy in diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Hamieh Goshtasbi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Suresh Awale
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Mohammad Sadegh Amini-Fazl
- Research Laboratory of Advanced Polymer Material, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Movafeghi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
22
|
Mneimneh AT, Darwiche N, Mehanna MM. Investigating the therapeutic promise of drug-repurposed-loaded nanocarriers: A pioneering strategy in advancing colorectal cancer treatment. Int J Pharm 2024; 664:124473. [PMID: 39025341 DOI: 10.1016/j.ijpharm.2024.124473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Globally, colorectal cancer is a major health problem that ranks in third place in terms of occurrence and second in terms of mortality worldwide. New cases increase annually, with the absence of effective therapies, especially for metastatic colorectal cancer, emphasizing the need for novel therapeutic approaches. Although conventional treatments are commonly used in oncotherapy, their success rate is low, which leads to the exploration of novel technologies. Recent efforts have focused on developing safe and efficient cancer nanocarriers. With their nanoscale properties, nanocarriers have the potential to utilize internal metabolic modifications amid cancer and healthy cells. Drug repurposing is an emerging strategy in cancer management as it is a faster, cheaper, and safer method than conventional drug development. However, most repurposed drugs are characterized by low-key pharmacokinetic characteristics, such as poor aqueous solubility, permeability, retention, and bioavailability. Nanoparticles formulations and delivery have expanded over the past few decades, creating opportunities for drug repurposing and promises as an advanced cancer modality. This review provides a concise and updated overview of colorectal cancer treatment regimens and their therapeutic limitations. Furthermore, the chemotherapeutic effect of various FDA-approved medications, including statins, non-steroidal anti-inflammatory drugs, antidiabetic and anthelmintic agents, and their significance in colorectal cancer management. Along with the role of various nanocarrier systems in achieving the desired therapeutic outcomes of employing these redefined drugs.
Collapse
Affiliation(s)
- Amina T Mneimneh
- Pharmaceutical Nanotechnology Research lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon.
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
23
|
Carmona-Ribeiro AM, Pérez-Betancourt Y. Emerging Cationic Nanovaccines. Pharmaceutics 2024; 16:1362. [PMID: 39598488 PMCID: PMC11597065 DOI: 10.3390/pharmaceutics16111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Cationic vaccines of nanometric sizes can directly perform the delivery of antigen(s) and immunomodulator(s) to dendritic cells in the lymph nodes. The positively charged nanovaccines are taken up by antigen-presenting cells (APCs) of the lymphatic system often originating the cellular immunological defense required to fight intracellular microbial infections and the proliferation of cancers. Cationic molecules imparting the positive charges to nanovaccines exhibit a dose-dependent toxicity which needs to be systematically addressed. Against the coronavirus, mRNA cationic nanovaccines evolved rapidly. Nowadays cationic nanovaccines have been formulated against several infections with the advantage of cationic compounds granting protection of nucleic acids in vivo against biodegradation by nucleases. Up to the threshold concentration of cationic molecules for nanovaccine delivery, cationic nanovaccines perform well eliciting the desired Th 1 improved immune response in the absence of cytotoxicity. A second strategy in the literature involves dilution of cationic components in biocompatible polymeric matrixes. Polymeric nanoparticles incorporating cationic molecules at reduced concentrations for the cationic component often result in an absence of toxic effects. The progress in vaccinology against cancer involves in situ designs for cationic nanovaccines. The lysis of transformed cancer cells releases several tumoral antigens, which in the presence of cationic nanoadjuvants can be systemically presented for the prevention of metastatic cancer. In addition, these local cationic nanovaccines allow immunotherapeutic tumor treatment.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Yunys Pérez-Betancourt
- Department of Microbiology, University of Chicago, Cummings Life Science Center 920 E 58th St., Chicago, IL 60637, USA;
| |
Collapse
|
24
|
Havelikar U, Ghorpade KB, Kumar A, Patel A, Singh M, Banjare N, Gupta PN. Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. DISCOVER NANO 2024; 19:165. [PMID: 39365367 PMCID: PMC11452581 DOI: 10.1186/s11671-024-04118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Nanomedicine has the potential to transform healthcare by offering targeted therapies, precise diagnostics, and enhanced drug delivery systems. The National Institutes of Health has coined the term "nanomedicine" to describe the use of nanotechnology in biological system monitoring, control, diagnosis, and treatment. Nanomedicine continues to receive increasing interest for the rationalized delivery of therapeutics and pharmaceutical agents to achieve the required response while reducing its side effects. However, as nanotechnology continues to advance, concerns about its potential toxicological effects have also grown. This review explores the current state of nanomedicine, focusing on the types of nanoparticles used and their associated properties that contribute to nanotoxicity. It examines the mechanisms through which nanoparticles exert toxicity, encompassing various cellular and molecular interactions. Furthermore, it discusses the assessment methods employed to evaluate nanotoxicity, encompassing in-vitro and in-vivo models, as well as emerging techniques. The review also addresses the regulatory issues surrounding nanotoxicology, highlighting the challenges in developing standardized guidelines and ensuring the secure translation of nanomedicine into clinical settings. It also explores into the challenges and ethical issues associated with nanotoxicology, as understanding the safety profile of nanoparticles is essential for their effective translation into therapeutic applications.
Collapse
Affiliation(s)
- Ujwal Havelikar
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Kabirdas B Ghorpade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Amit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Akhilesh Patel
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Manisha Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Nagma Banjare
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Prem N Gupta
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| |
Collapse
|
25
|
Kamal R, Awasthi A, Paul P, Mir MS, Singh SK, Dua K. Novel drug delivery systems in colorectal cancer: Advances and future prospects. Pathol Res Pract 2024; 262:155546. [PMID: 39191194 DOI: 10.1016/j.prp.2024.155546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Colorectal cancer (CRC) is an abnormal proliferation of cells within the colon and rectum, leading to the formation of polyps and disruption of mucosal functions. The disease development is influenced by a combination of factors, including inflammation, exposure to environmental mutagens, genetic alterations, and impairment in signaling pathways. Traditional treatments such as surgery, radiation, and chemotherapy are often used but have limitations, including poor solubility and permeability, treatment resistance, side effects, and post-surgery issues. Novel Drug Delivery Systems (NDDS) have emerged as a superior alternative, offering enhanced drug solubility, precision in targeting cancer cells, and regulated drug release. Thereby addressing the shortcomings of conventional therapies and showing promise for more effective CRC management. The present review sheds light on the pathogenesis, signaling pathways, biomarkers, conventional treatments, need for NDDS, and application of NDDS against CRC. Additionally, clinical trials, ongoing clinical trials, marketed formulations, and patents on CRC are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab 142001, India; School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Priyanka Paul
- Department of Pharmaceutical Science, PCTE Group of Institute, Ludhiana, Punjab, India
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
26
|
Hlapisi N, Songca SP, Ajibade PA. Capped Plasmonic Gold and Silver Nanoparticles with Porphyrins for Potential Use as Anticancer Agents-A Review. Pharmaceutics 2024; 16:1268. [PMID: 39458600 PMCID: PMC11510308 DOI: 10.3390/pharmaceutics16101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) are potential cancer treatment methods that are minimally invasive with high specificity for malignant cells. Emerging research has concentrated on the application of metal nanoparticles encapsulated in porphyrin and their derivatives to improve the efficacy of these treatments. Gold and silver nanoparticles have distinct optical properties and biocompatibility, which makes them efficient materials for PDT and PTT. Conjugation of these nanoparticles with porphyrin derivatives increases their light absorption and singlet oxygen generation that create a synergistic effect that increases phototoxicity against cancer cells. Porphyrin encapsulation with gold or silver nanoparticles improves their solubility, stability, and targeted tumor delivery. This paper provides comprehensive review on the design, functionalization, and uses of plasmonic silver and gold nanoparticles in biomedicine and how they can be conjugated with porphyrins for synergistic therapeutic effects. Furthermore, it investigates this dual-modal therapy's potential advantages and disadvantages and offers perspectives for future prospects. The possibility of developing gold, silver, and porphyrin nanotechnology-enabled biomedicine for combination therapy is also examined.
Collapse
Affiliation(s)
| | | | - Peter A. Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (N.H.); (S.P.S.)
| |
Collapse
|
27
|
Zhang X, Xu B, Ni J, Xiang Y, He Z. Combined Chemo- and Photothermal Therapies of Non-Small Cell Lung Cancer Using Polydopamine/Au Hollow Nanospheres Loaded with Doxorubicin. Int J Nanomedicine 2024; 19:9597-9612. [PMID: 39296938 PMCID: PMC11409934 DOI: 10.2147/ijn.s473137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
Purpose The chemotherapeutic agent doxorubicin (DOX) is limited by its cardiotoxicity, posing challenges in its application for non-small cell lung cancer (NSCLC). This study aims to explore the efficacy of polydopamine/Au nanoparticles loaded with DOX for chemotherapy and photothermal therapy in NSCLC to achieve enhanced efficacy and reduced toxicity. Methods Hollow polydopamine (HPDA)/Au@DOX was synthesized via polydopamine chemical binding sacrificial template method. Morphology was characterized using transmission electron microscopy, particle size and potential were determined using dynamic light scattering, and photothermal conversion efficiency was assessed using near-infrared (NIR) thermal imaging. Drug loading rate and in vitro drug release were investigated. In vitro, anti-tumor experiments were conducted using CCK-8 assay, flow cytometry, and live/dead cell staining to evaluate the cytotoxicity of HPDA/Au@DOX on A549 cells. Uptake of HPDA/Au@DOX by A549 cells was detected using the intrinsic fluorescence of DOX. The in vivo anti-metastasis and anti-tumor effects of HPDA/Au@DOX were explored in mouse lung metastasis and subcutaneous tumor models, respectively. Results HPDA/Au@DOX with a particle size of (164.26±3.25) nm, a drug loading rate of 36.31%, and an encapsulation efficiency of 90.78% was successfully prepared. Under 808 nm laser irradiation, HPDA/Au@DOX accelerated DOX release and enhanced uptake by A549 cells. In vitro photothermal performance assessment showed excellent photothermal conversion capability and stability of HPDA/Au@DOX under NIR laser irradiation. Both in vitro and in vivo experiments demonstrated that the photothermal-chemotherapy combination group (HPDA/Au@DOX+NIR) exhibited stronger anti-metastatic and anti-tumor activities compared to the monotherapy group (DOX). Conclusion HPDA/Au@DOX nanosystem demonstrated excellent photothermal effect, inhibiting the growth and metastasis of A549 cells. This nanosystem achieves the combined effect of chemotherapy and photothermal, making it promising for NSCLC treatment.
Collapse
Affiliation(s)
- Xinbo Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Bin Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jiangwei Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yucheng Xiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Zhifeng He
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
28
|
Emzhik M, Haeri A, Javidi J, Abdollahizad E, Qaribnejad A, Rezaee E, Torshabi M, Dadashzadeh S. Bile salt integrated cerasomes: A potential nanocarrier for enhancement of the oral bioavailability of idarubicin hydrochloride. Int J Pharm 2024; 662:124518. [PMID: 39074645 DOI: 10.1016/j.ijpharm.2024.124518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Cerasomes are a modified form of liposomes containing both inorganic and organic parts and due to their strong polyorganosiloxane surface have remarkably high morphological stability and provide easier functionalization compared with conventional liposomes. To investigate the potential of these nanocarriers for oral delivery, bile salt integrated cerasomes (named bilocerasomes) encapsulating idarubicin hydrochloride (IDA) were prepared and characterized. The optimum formulation showed excellent stability in the simulated gastrointestinal fluids as well as under storage conditions. The oral pharmacokinetics of the IDA solution, empty nanocarrier + drug solution, and IDA-loaded bilocerasome were evaluated. The nanoformulation significantly increased the area under the drug concentration-time curve and the mean residence time (∼14.3- and 9-fold, respectively). The results obtained from cell uptake and chylomicron flow blocking approach revealed that bilocerasomes are absorbed into the intestinal cells via a clathrin/caveolin-independent endocytosis pathway and transported to the systemic circulation extensively via the intestinal lymphatic vessels. Considering the high stability of the prepared bilocerasome, noticeable participation of lymphatic transport in its systemic absorption and marked enhancement in the oral absorption of IDA, bilocerasomes can be introduced as a capable carrier for improving the oral bioavailability of drugs, particularly those that hepatic first-pass metabolism seriously limits their oral absorption.
Collapse
Affiliation(s)
- Marjan Emzhik
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jaber Javidi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Erfan Abdollahizad
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirsajad Qaribnejad
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Kolawole OM, Khutoryanskiy VV. Potential bladder cancer therapeutic delivery systems: a recent update. Expert Opin Drug Deliv 2024; 21:1311-1329. [PMID: 39178039 DOI: 10.1080/17425247.2024.2396958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 08/25/2024]
Abstract
INTRODUCTION Bladder Cancer is one of the most expensive cancers to treat due to its high cost of therapy as well as the surveillance expenses incurred to prevent disease recurrence and progression. Thus, there is a strong need to develop safe, efficacious drug formulations with controlled drug release profiles and tumor-targeting potential, for improved therapeutic outcomes of bladder cancer patients. AREAS COVERED This review aims to provide an overview of drug formulations that have been studied for potential bladder cancer treatment in the last decade; highlight recent trends in bladder cancer treatment; mention ongoing clinical trials on bladder cancer chemotherapy; detail recently FDA-approved drug products for bladder cancer treatment and identify constraints that have prevented the translation of promising drug formulations from the research laboratory to the clinics. EXPERT OPINION This work revealed that surface functionalization of particulate drug delivery systems and incorporating the nanoparticles into in situ gelling systems could facilitate controlled drug release for extended periods, and improve the prognosis of bladder cancer treatment. Future research directions could incorporate multiple drugs into the drug delivery systems to treat advanced stages of the disease. In addition, smart nanomaterials, including photothermal therapies, could be exploited to improve the therapeutic outcomes of bladder cancer patients.
Collapse
|
30
|
Zhang P, Cheng M, Levi-Kalisman Y, Raviv U, Xu Y, Han J, Dou H. Macromolecular Nano-Assemblies for Enhancing the Effect of Oxygen-Dependent Photodynamic Therapy Against Hypoxic Tumors. Chemistry 2024; 30:e202401700. [PMID: 38797874 DOI: 10.1002/chem.202401700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
In oxygen (O2)-dependent photodynamic therapy (PDT), photosensitizers absorb light energy, which is then transferred to ambient O2 and subsequently generates cytotoxic singlet oxygen (1O2). Therefore, the availability of O2 and the utilization efficiency of generated 1O2 are two significant factors that influence the effectiveness of PDT. However, tumor microenvironments (TMEs) characterized by hypoxia and limited utilization efficiency of 1O2 resulting from its short half-life and short diffusion distance significantly restrict the applicability of PDT for hypoxic tumors. To address these challenges, numerous macromolecular nano-assemblies (MNAs) have been designed to relieve hypoxia, utilize hypoxia or enhance the utilization efficiency of 1O2. Herein, we provide a comprehensive review on recent advancements achieved with MNAs in enhancing the effectiveness of O2-dependent PDT against hypoxic tumors.
Collapse
Affiliation(s)
- Peipei Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Meng Cheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Yael Levi-Kalisman
- Institute of Life Sciences and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond Safra Campus, 9190401, Givat Ram, Jerusalem, Israel
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond Safra Campus, 9190401, Givat Ram, Jerusalem, Israel
| | - Yichun Xu
- Shanghai Biochip Co. Ltd. and National Engineering Center for Biochip at Shanghai, 151 Libing Road, 201203, Shanghai, China
| | - Junsong Han
- Shanghai Biochip Co. Ltd. and National Engineering Center for Biochip at Shanghai, 151 Libing Road, 201203, Shanghai, China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| |
Collapse
|
31
|
Kampen L, Remmo A, Twamley SG, Weller A, Stach A, Turko P, Löwa N, Wiekhorst F, Ludwig A. Rapid cellular uptake of citrate-coated iron oxide nanoparticles unaffected by cell-surface glycosaminoglycans. NANOSCALE ADVANCES 2024; 6:3825-3837. [PMID: 39050941 PMCID: PMC11265597 DOI: 10.1039/d4na00277f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024]
Abstract
Citrate-coated iron oxide nanoparticles, specifically Synomag®-COOH (SynC), are promising tracers in magnetic particle imaging (MPI) due to their high magnetic moments and rapid cellular uptake. The mechanisms driving efficient SynC uptake remain unclear. Previous observations suggest a role of the extracellular glycocalyx during nanoparticle uptake. Here, we ascertain whether the cell-surface glycosaminoglycans (GAGs) regulate the uptake of SynC. Using transmission electron microscopy (TEM), we visualized SynC uptake by THP-1 cells, a human acute monocytic leukemia cell line. We investigated the interaction of SynC with GAGs in living cells using click-chemistry-based labeling. Upon treating THP-1 cells with chondroitinase or hyaluronidase and with a xylosyltransferase-deficient cell line, we quantified SynC uptake and measured interactions of SynC with cells in real time using magnetic particle spectroscopy (MPS). The THP-1 cell membrane engulfed or formed extensions around SynC, indicating uptake through pinocytosis and phagocytosis. We measured an increased MPS signal of SynC within seconds of cell contact, suggesting an interaction with extracellular components like the glycocalyx. Upon adding SynC to THP-1 cells, we could not observe disruption of fluorescently labeled GAGs or an enhanced intracellular fluorescence, implying that SynC does not accelerate the turnover of GAGs by binding. Lack of chondroitin sulfate, heparan sulfate, and hyaluronic acid did not affect the rapid magnetic behavior increase of SynC upon cell contact. Accordingly, we measured no significant differences in SynC uptake between wild type cells and our GAG-deficient models. These findings suggest that GAGs act as a permeable bandpass for SynC nanoparticles with a minor negative surface charge of -13.8 mV. This finding has significant implications for MPI-based cell tracking because it facilitates efficient tracking of cell types that lack a strong repulsion by cell-surface GAGs. It will be crucial to investigate whether the rapid uptake of SynC is cell-type specific and influenced by different extracellular matrix compositions.
Collapse
Affiliation(s)
- Lena Kampen
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine Charitéplatz 1 10117 Berlin Germany
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Cardiology, Angiology and Intensive Care Medicine Charitéplatz 1 10117 Berlin Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin Germany
| | - Amani Remmo
- Physikalisch-Technische Bundesanstalt, Working Group 8.23 Metrology for Magnetic Nanoparticles Abbestraße 2-12 10587 Berlin Germany
| | - Shailey Gale Twamley
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Functional Anatomy Charitéplatz 1 10117 Berlin Germany
| | - Andrea Weller
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine Charitéplatz 1 10117 Berlin Germany
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Cardiology, Angiology and Intensive Care Medicine Charitéplatz 1 10117 Berlin Germany
| | - Anke Stach
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine Charitéplatz 1 10117 Berlin Germany
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Cardiology, Angiology and Intensive Care Medicine Charitéplatz 1 10117 Berlin Germany
| | - Paul Turko
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Integrative Neuroanatomy Charitéplatz 1 10117 Berlin Germany
| | - Norbert Löwa
- Physikalisch-Technische Bundesanstalt, Working Group 8.23 Metrology for Magnetic Nanoparticles Abbestraße 2-12 10587 Berlin Germany
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, Working Group 8.23 Metrology for Magnetic Nanoparticles Abbestraße 2-12 10587 Berlin Germany
| | - Antje Ludwig
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine Charitéplatz 1 10117 Berlin Germany
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Cardiology, Angiology and Intensive Care Medicine Charitéplatz 1 10117 Berlin Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin Germany
| |
Collapse
|
32
|
Zhang H, Song M, Zhuang S, Wang Z, Shi H, Song Z, Song C, Cen L. Development of α-Tocopherol Loaded PLGA Nanoparticles and Its Evaluation as a Novel Immune Adjuvant. Macromol Rapid Commun 2024:e2400400. [PMID: 38981020 DOI: 10.1002/marc.202400400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Indexed: 07/11/2024]
Abstract
With the continuous development of preventive and therapeutic vaccines, traditional adjuvants cannot provide sufficient immune efficacy and it is of high necessity to develop safe and effective novel nanoparticle-based vaccine adjuvants. α-Tocopherol (TOC) is commonly used in oil-emulsion adjuvant systems as an immune enhancer, yet its bioavailability is limited by poor water solubility. This study aims to develop TOC-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TOC-PLGA NPs) to explore the potential of TOC-PLGA NPs as a novel nanoparticle-immune adjuvant. TOC-PLGA NPs are prepared by a nanoprecipitation method and their physicochemical properties are characterized. It is shown that TOC-PLGA NPs are 110.8 nm, polydispersity index value of 0.042, and Zeta potential of -13.26 mV. The encapsulation efficiency and drug loading of NPs are 82.57% and 11.80%, respectively, and the cumulative release after 35 days of in vitro testing reaches 47%. Furthermore, TOC-PLGA NPs demonstrate a superior promotion effect on RAW 264.7 cell proliferation compared to PLGA NPs, being well phagocytosed and also promoting antigen uptake by macrophages. TOC-PLGA NPs can strongly upregulate the expression of co-stimulatory surface molecules and the secretion of cytokines. In conclusion, TOC-PLGA NPs can be a novel vaccine adjuvant with excellent biocompatibility and significant immune-enhancing activity.
Collapse
Affiliation(s)
- Huan Zhang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai, 200237, China
| | - Meng Song
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai, 200237, China
| | - Shiya Zhuang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai, 200237, China
| | - Zining Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai, 200237, China
| | - Hui Shi
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai, 200237, China
| | - Zhuolang Song
- Shanghai Mingqi Energy Technology Co., Ltd, No. 29, Lane 155, Baocheng Road, Shanghai, 201199, China
| | - Chuanhe Song
- Shanghai Mingqi Energy Technology Co., Ltd, No. 29, Lane 155, Baocheng Road, Shanghai, 201199, China
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai, 200237, China
| |
Collapse
|
33
|
Jana D, Han Z, Huang X, Wadhwa A, Raveendran A, Ebeid K, Meher N, Flavell RR, Desai T. Enhanced Prostate-specific Membrane Antigen Targeting by Precision Control of DNA Scaffolded Nanoparticle Ligand Presentation. ACS NANO 2024; 18:16674-16683. [PMID: 38907991 PMCID: PMC11223598 DOI: 10.1021/acsnano.4c01640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Targeted nanoparticles have been extensively explored for their ability to deliver their payload to a selective cell population while reducing off-target side effects. The design of actively targeted nanoparticles requires the grafting of a ligand that specifically binds to a highly expressed receptor on the surface of the targeted cell population. Optimizing the interactions between the targeting ligand and the receptor can maximize the cellular uptake of the nanoparticles and subsequently improve their activity. Here, we evaluated how the density and presentation of the targeting ligands dictate the cellular uptake of nanoparticles. To do so, we used a DNA-scaffolded PLGA nanoparticle system to achieve efficient and tunable ligand conjugation. A prostate-specific membrane antigen (PSMA) expressing a prostate cancer cell line was used as a model. The density and presentation of PSMA targeting ligand ACUPA were precisely tuned on the DNA-scaffolded nanoparticle surface, and their impact on cellular uptake was evaluated. It was found that matching the ligand density with the cell receptor density achieved the maximum cellular uptake and specificity. Furthermore, DNA hybridization-mediated targeting chain rigidity of the DNA-scaffolded nanoparticle offered ∼3 times higher cellular uptake compared to the ACUPA-terminated PLGA nanoparticle. Our findings also indicated a ∼ 3.7-fold reduction in the cellular uptake for the DNA hybridization of the non-targeting chain. We showed that nanoparticle uptake is energy-dependent and follows a clathrin-mediated pathway. Finally, we validated the preferential tumor targeting of the nanoparticles in a bilateral tumor xenograft model. Our results provide a rational guideline for designing actively targeted nanoparticles and highlight the application of DNA-scaffolded nanoparticles as an efficient active targeting platform.
Collapse
Affiliation(s)
- Deblin Jana
- School
of Engineering, Institute for Biology, Engineering and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Zhiyuan Han
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, United States
| | - Xiao Huang
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, United States
- School
of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Anju Wadhwa
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | - Athira Raveendran
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | - Kareem Ebeid
- School
of Engineering, Institute for Biology, Engineering and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Niranjan Meher
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | - Robert R. Flavell
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | - Tejal Desai
- School
of Engineering, Institute for Biology, Engineering and Medicine, Brown University, Providence, Rhode Island 02912, United States
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, United States
| |
Collapse
|
34
|
Azizah RN, Verheyen GR, Shkedy Z, Van Miert S. Overview of in vitro-in vivo extrapolation approaches for the risk assessment of nanomaterial toxicity. NANOIMPACT 2024; 35:100524. [PMID: 39059748 DOI: 10.1016/j.impact.2024.100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/23/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Nanomaterials are increasingly used in many applications due to their enhanced properties. To ensure their safety for humans and the environment, nanomaterials need to be evaluated for their potential risk. The risk assessment analysis on the nanomaterials based on animal or in vivo studies is accompanied by several concerns, including animal welfare, time and cost needed for the studies. Therefore, incorporating in vitro studies in the risk assessment process is increasingly considered. To be able to analyze the potential risk of nanomaterial to human health, there are factors to take into account. Utilizing in vitro data in the risk assessment analysis requires methods that can be used to translate in vitro data to predict in vivo phenomena (in vitro-in vivo extrapolation (IVIVE) methods) to be incorporated, to obtain a more accurate result. Apart from the experiments and species conversion (for example, translation between the cell culture, animal and human), the challenge also includes the unique properties of nanomaterials that might cause them to behave differently compared to the same materials in a bulk form. This overview presents the IVIVE techniques that are developed to extrapolate pharmacokinetics data or doses. A brief example of the IVIVE methods for chemicals is provided, followed by a more detailed summary of available IVIVE methods applied to nanomaterials. The IVIVE techniques discussed include the comparison between in vitro and in vivo studies, methods to rene the dose metric or the in vitro models, allometric approach, mechanistic modeling, Multiple-Path Particle Dosimetry (MPPD), methods using organ burden data and also approaches that are currently being developed.
Collapse
Affiliation(s)
- Rahmasari Nur Azizah
- Thomas More University of Applied Sciences, Geel, Belgium; Data Science Institute, CenStat, I-BioStat, Hasselt University, Diepenbeek, Belgium.
| | | | - Ziv Shkedy
- Data Science Institute, CenStat, I-BioStat, Hasselt University, Diepenbeek, Belgium
| | | |
Collapse
|
35
|
Tunçel A, Maschauer S, Prante O, Yurt F. In Vitro Assessment of 177Lu-Labeled Trastuzumab-Targeted Mesoporous Carbon@Silica Nanostructure for the Treatment of HER2-Positive Breast Cancer. Pharmaceuticals (Basel) 2024; 17:732. [PMID: 38931400 PMCID: PMC11206869 DOI: 10.3390/ph17060732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
This study assessed the effectiveness of a trastuzumab-targeted 177Lu-labeled mesoporous Carbon@Silica nanostructure (DOTA@TRA/MC@Si) for HER2-positive breast cancer treatment, focusing on its uptake, internalization, and efflux in breast cancer cells. The synthesized PEI-MC@Si nanocomposite was reacted with DOTA-NHS-ester, confirmed by the Arsenazo(III) assay. Following this, TRA was conjugated to the DOTA@PEI-MC@Si for targeting. DOTA@PEI-MC@Si and DOTA@TRA/MC@Si nanocomposites were labeled with 177Lu, and their efficacy was evaluated through in vitro radiolabeling experiments. According to the results, the DOTA@TRA/MC@Si nanocomposite was successfully labeled with 177Lu, yielding a radiochemical yield of 93.0 ± 2.4%. In vitro studies revealed a higher uptake of the [177Lu]Lu-DOTA@TRA/MC@Si nanocomposite in HER2-positive SK-BR-3 cells (44.0 ± 4.6% after 24 h) compared to MDA-MB-231 cells (21.0 ± 2.3%). The IC50 values for TRA-dependent uptake in the SK-BR-3 and BT-474 cells were 0.9 µM and 1.3 µM, respectively, indicating affinity toward HER-2 receptor-expressing cells. The lipophilic distribution coefficients of the radiolabeled nanocomposites were determined to be 1.7 ± 0.3 for [177Lu]Lu-DOTA@TRA/MC@Si and 1.5 ± 0.2 for [177Lu]Lu-DOTA@PEI-MC@Si, suggesting sufficient passive transport through the cell membrane and increased accumulation in target tissues. The [177Lu]Lu-DOTA@TRA/MC@Si nanocomposite showed an uptake into HER2-positive cell lines, marking a valuable step toward the development of a nanoparticle-based therapeutic agent for an improved treatment strategy for HER2-positive breast cancer.
Collapse
Affiliation(s)
- Ayça Tunçel
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, Bornova 35100, Turkey;
| | - Simone Maschauer
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Ulmenweg 18, D-91054 Erlangen, Germany;
| | - Olaf Prante
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Ulmenweg 18, D-91054 Erlangen, Germany;
| | - Fatma Yurt
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, Bornova 35100, Turkey;
| |
Collapse
|
36
|
Vysochinskaya V, Zabrodskaya Y, Dovbysh O, Emelyanov A, Klimenko V, Knyazev N, Terterov I, Egorova M, Bogdanov A, Maslov M, Vasin A, Dubina M. Cell-penetrating peptide and cationic liposomes mediated siRNA delivery to arrest growth of chronic myeloid leukemia cells in vitro. Biochimie 2024; 221:1-12. [PMID: 38215931 DOI: 10.1016/j.biochi.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Gene silencing through RNA interference (RNAi) is a promising therapeutic approach for a wide range of disorders, including cancer. Non-viral gene therapy, using specific siRNAs against BCR-ABL1, can be a supportive or alternative measure to traditional chronic myeloid leukemia (CML) tyrosine kinase inhibitor (TKIs) therapies, given the prevalence of clinical TKI resistance. The main challenge for such approaches remains the development of the effective delivery system for siRNA tailored to the specific disease model. The purpose of this study was to examine and compare the efficiency of endosomolytic cell penetrating peptide (CPP) EB1 and PEG2000-decorated cationic liposomes composed of polycationic lipid 1,26-bis(cholest-5-en-3-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride (2Х3) and helper lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) for anti-bcr-abl siRNA delivery into the K562 human CML cell line. We show that both EB1 and 2Х3-DOPE-DSPE-PEG2000 (0.62 % mol.) liposomes effectively deliver siRNA into K562 cells by endocytic mechanisms, and the use of liposomes leads to more effective inhibition of expression of the targeted gene (BCR-ABL1) and cancer cell proliferation. Taken together, these findings suggest that PEG-decorated cationic liposomes mediated siRNA delivery allows an effective antisense suppression of certain oncogenes, and represents a promising new class of therapies for CML.
Collapse
MESH Headings
- Humans
- Liposomes/chemistry
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Cell-Penetrating Peptides/chemistry
- Cell-Penetrating Peptides/pharmacology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/administration & dosage
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Cell Proliferation/drug effects
- Polyethylene Glycols/chemistry
- K562 Cells
- Phosphatidylethanolamines/chemistry
- Cations/chemistry
Collapse
Affiliation(s)
- Vera Vysochinskaya
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg, 197376, Russian Federation; Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, St. Petersburg, 194064, Russian Federation.
| | - Yana Zabrodskaya
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg, 197376, Russian Federation; Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, St. Petersburg, 194064, Russian Federation
| | - Olesya Dovbysh
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, St. Petersburg, 194064, Russian Federation
| | - Anton Emelyanov
- First Pavlov State Medical University of St. Petersburg, L'va Tolstogo str. 6-8, St. Petersburg, 197022, Russian Federation
| | - Vladimir Klimenko
- Saint Petersburg Clinical Research and Practical Center of Specialized Types of Medical Care (Oncological) named after N.P., Napalkov, St. Petersburg, 197758, Russian Federation
| | - Nikolay Knyazev
- Saint Petersburg Clinical Research and Practical Center of Specialized Types of Medical Care (Oncological) named after N.P., Napalkov, St. Petersburg, 197758, Russian Federation
| | - Ivan Terterov
- ITMO University, School of Physics and Engineering, Kronverkskiy pr. 49, St. Petersburg, 197101, Russian Federation
| | - Marya Egorova
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg, 197376, Russian Federation
| | - Alexey Bogdanov
- Saint Petersburg Clinical Research and Practical Center of Specialized Types of Medical Care (Oncological) named after N.P., Napalkov, St. Petersburg, 197758, Russian Federation
| | - Michael Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Ave, Moscow, 119571, Russian Federation
| | - Andrey Vasin
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg, 197376, Russian Federation; Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, St. Petersburg, 194064, Russian Federation
| | - Michael Dubina
- Russian Academy of Sciences, 14 Leninskiy pr., Moscow, 119991, Russian Federation
| |
Collapse
|
37
|
Aye KTN, Ferreira JN, Chaweewannakorn C, Souza GR. Advances in the application of iron oxide nanoparticles (IONs and SPIONs) in three-dimensional cell culture systems. SLAS Technol 2024; 29:100132. [PMID: 38582355 DOI: 10.1016/j.slast.2024.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND The field of tissue engineering has remarkably progressed through the integration of nanotechnology and the widespread use of magnetic nanoparticles. These nanoparticles have resulted in innovative methods for three-dimensional (3D) cell culture platforms, including the generation of spheroids, organoids, and tissue-mimetic cultures, where they play a pivotal role. Notably, iron oxide nanoparticles and superparamagnetic iron oxide nanoparticles have emerged as indispensable tools for non-contact manipulation of cells within these 3D environments. The variety and modification of the physical and chemical properties of magnetic nanoparticles have profound impacts on cellular mechanisms, metabolic processes, and overall biological function. This review article focuses on the applications of magnetic nanoparticles, elucidating their advantages and potential pitfalls when integrated into 3D cell culture systems. This review aims to shed light on the transformative potential of magnetic nanoparticles in terms of tissue engineering and their capacity to improve the cultivation and manipulation of cells in 3D environments.
Collapse
Affiliation(s)
- Khin The Nu Aye
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chayanit Chaweewannakorn
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Occlusion, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Glauco R Souza
- Greiner Bio-One North America, Inc., 4238 Capital Drive, Monroe, NC 28110, USA
| |
Collapse
|
38
|
Nawaz T, Gu L, Fahad S, Saud S, Bleakley B, Zhou R. Exploring Sustainable Agriculture with Nitrogen-Fixing Cyanobacteria and Nanotechnology. Molecules 2024; 29:2534. [PMID: 38893411 PMCID: PMC11173783 DOI: 10.3390/molecules29112534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/21/2024] Open
Abstract
The symbiotic relationship between nitrogen-fixing cyanobacteria and plants offers a promising avenue for sustainable agricultural practices and environmental remediation. This review paper explores the molecular interactions between nitrogen-fixing cyanobacteria and nanoparticles, shedding light on their potential synergies in agricultural nanotechnology. Delving into the evolutionary history and specialized adaptations of cyanobacteria, this paper highlights their pivotal role in fixing atmospheric nitrogen, which is crucial for ecosystem productivity. The review discusses the unique characteristics of metal nanoparticles and their emerging applications in agriculture, including improved nutrient delivery, stress tolerance, and disease resistance. It delves into the complex mechanisms of nanoparticle entry into plant cells, intracellular transport, and localization, uncovering the impact on root-shoot translocation and systemic distribution. Furthermore, the paper elucidates cellular responses to nanoparticle exposure, emphasizing oxidative stress, signaling pathways, and enhanced nutrient uptake. The potential of metal nanoparticles as carriers of essential nutrients and their implications for nutrient-use efficiency and crop yield are also explored. Insights into the modulation of plant stress responses, disease resistance, and phytoremediation strategies demonstrate the multifaceted benefits of nanoparticles in agriculture. Current trends, prospects, and challenges in agricultural nanotechnology are discussed, underscoring the need for responsible and safe nanoparticle utilization. By harnessing the power of nitrogen-fixing cyanobacteria and leveraging the unique attributes of nanoparticles, this review paves the way for innovative, sustainable, and efficient agricultural practices.
Collapse
Affiliation(s)
- Taufiq Nawaz
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Liping Gu
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Shah Fahad
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Shah Saud
- College of Life Science, Linyi University, Linyi 276000, China
| | - Bruce Bleakley
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Ruanbao Zhou
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
39
|
Kong Y, Zhang R, Li B, Zhao W, Wang J, Sun XW, Lv H, Liu R, Tang J, Wu B. Applying a Tripodal Hexaurea Receptor for Binding to an Antitumor Drug, Combretastatin-A4 Phosphate. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2570. [PMID: 38893834 PMCID: PMC11173554 DOI: 10.3390/ma17112570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Phosphates play a crucial role in drug design, but their negative charge and high polarity make the transmembrane transport of phosphate species challenging. This leads to poor bioavailability of phosphate drugs. Combretastatin-A4 phosphate (CA4P) is such an anticancer monoester phosphate compound, but its absorption and clinical applicability are greatly limited. Therefore, developing carrier systems to effectively deliver phosphate drugs like CA4P is essential. Anion receptors have been found to facilitate the transmembrane transport of anions through hydrogen bonding. In this study, we developed a tripodal hexaurea anion receptor (L1) capable of binding anionic CA4P through hydrogen bonding, with a binding constant larger than 104 M-1 in a DMSO/water mixed solvent. L1 demonstrated superior binding ability compared to other common anions, and exhibited negligible cell cytotoxicity, making it a promising candidate for future use as a carrier for drug delivery.
Collapse
Affiliation(s)
- Yu Kong
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Rong Zhang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Boyang Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China;
| | - Wei Zhao
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Ji Wang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Xiao-Wen Sun
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Huihui Lv
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Rui Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Juan Tang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Biao Wu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| |
Collapse
|
40
|
Ortega Martínez E, Morales Hernández ME, Castillo-González J, González-Rey E, Ruiz Martínez MA. Dopamine-loaded chitosan-coated solid lipid nanoparticles as a promise nanocarriers to the CNS. Neuropharmacology 2024; 249:109871. [PMID: 38412889 DOI: 10.1016/j.neuropharm.2024.109871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/28/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Dopamine is unable to access the central nervous system through the bloodstream. Only its precursor can do so, and with an effectiveness below 100% of the dose administered, as it is metabolized before crossing the blood-brain barrier. In this study, we describe a new solid lipid nanocarrier system designed and developed for dopamine. The nanoparticles were prepared by the melt-emulsification method and then coated with chitosan. The nanocarriers developed had a droplet size of about 250 nm, a polydispersity index of 0.2, a positive surface charge (+30 mV), and a percentage encapsulation efficiency of 36.3 ± 5.4. Transmission and scanning electron microscopy verified uniformity of particle size with spherical morphology. Various types of tests were performed to confirm that the nanoparticles designed are suitable for carrying dopamine through the blood-brain barrier. In vitro tests demonstrated the ability of these nanocarriers to pass through endothelial cell monolayers without affecting their integrity. This study shows that the formulation of dopamine in chitosan-coated solid lipid nanoparticles is a potentially viable formulation strategy to achieve the bioavailability of the drug for the treatment of Parkinson's disease in the central nervous system.
Collapse
Affiliation(s)
- Elena Ortega Martínez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Ma Encarnación Morales Hernández
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain.
| | - Julia Castillo-González
- Institute of Parasitology and Biomedicine "Lopez-Neyra", CSIC, Avenida del Conocimiento s/n, 18016, Granada, Spain
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine "Lopez-Neyra", CSIC, Avenida del Conocimiento s/n, 18016, Granada, Spain
| | - Ma Adolfina Ruiz Martínez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| |
Collapse
|
41
|
Mazrad ZAI, Refaat A, Morrow JP, Voelcker NH, Nicolazzo JA, Leiske MN, Kempe K. Folic Acid-Conjugated Brush Polymers Show Enhanced Blood-Brain Barrier Crossing in Static and Dynamic In Vitro Models Toward Brain Cancer Targeting Therapy. ACS Biomater Sci Eng 2024; 10:2894-2910. [PMID: 38556768 DOI: 10.1021/acsbiomaterials.3c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Over the past decades, evidence has consistently shown that treatment of central nervous system (CNS)-related disorders, including Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis, and brain cancer, is limited due to the presence of the blood-brain barrier (BBB). To assist with the development of new therapeutics, it is crucial to engineer a drug delivery system that can cross the BBB efficiently and reach target cells within the brain. In this study, we present a potentially efficient strategy for targeted brain delivery through utilization of folic acid (FA)-conjugated brush polymers, that specifically target the reduced folate carrier (RFC, SLC19A1) expressed on brain endothelial cells. Here, azide (N3)-decorated brush polymers were prepared in a straightforward manner coupling a heterotelechelic α-NH2, ω-N3-poly(2-ethyl-2-oxazoline) (NH2-PEtOx-N3) to N-acylated poly(amino ester) (NPAE)-based brushes. Strain-promoted azide-alkyne cycloaddition (SPAAC) 'click chemistry' with DBCO-folic acid (FA) yielded FA-brush polymers. Interestingly, while azide functionalization of the brush polymers dramatically reduced their association to brain microvascular endothelial cells (hCMEC/D3), the introduction of FA to azide led to a substantial accumulation of the brush polymers in hCMEC/D3 cells. The ability of the polymeric brush polymers to traverse the BBB was quantitatively assessed using different in vitro BBB models including static Transwell and microfluidic platforms. FA-brush polymers showed efficient transport across hCMEC/D3 cells in a manner dependent on FA composition, whereas nonfunctionalized brush polymers exhibited limited trafficking under the same conditions. Further, cellular uptake inhibition studies suggested that the interaction and transport pathway of FA-brush polymers across BBB relies on the RFC-mediated pathways. The potential application of the developed FA-brush polymers in brain cancer delivery was also investigated in a microfluidic model of BBB-glioblastoma. Brush polymers with more FA units successfully presented an enhanced accumulation into U-87 MG glioma cells following its BBB crossing, compared to controls. These results demonstrate that FA-modified brush polymers hold a great potential for more efficient delivery of future brain therapeutics.
Collapse
Affiliation(s)
- Zihnil A I Mazrad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ahmed Refaat
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Faculty of Pharmacy, Alexandria University, Azarita 21521, Egypt
| | - Joshua P Morrow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Meike N Leiske
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Faculty of Biology, Chemistry & Earth Sciences, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bavarian Polymer Institute, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
42
|
Davodabadi F, Farasati Far B, Sargazi S, Fatemeh Sajjadi S, Fathi-Karkan S, Mirinejad S, Ghotekar S, Sargazi S, Rahman MM. Nanomaterials-Based Targeting of Long Non-Coding RNAs in Cancer: A Cutting-Edge Review of Current Trends. ChemMedChem 2024; 19:e202300528. [PMID: 38267373 DOI: 10.1002/cmdc.202300528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
This review article spotlights the burgeoning potential of using nanotherapeutic strategies to target long non-coding RNAs (lncRNAs) in cancer cells. This updated discourse underlines the prominent role of lncRNAs in instigating cancer, facilitating its progression, and metastasis, validating lncRNAs' potential for being effective diagnostic biomarkers and therapeutic targets. The manuscript offers an in-depth examination of different strategies presently employed to modulate lncRNA expression and function for therapeutic purposes. Among these strategies, Antisense Oligonucleotides (ASOs), RNA interference (RNAi) technologies, and the innovative clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing tools garner noteworthy mention. A significant section of the review is dedicated to nanocarriers and their crucial role in drug delivery. These nanocarriers' efficiency in targeting lncRNAs in varied types of cancers is elaborated upon, validating the importance of targeted therapy. The manuscript culminates by reaffirming the promising prospects of targeting lncRNAs to enhance the accuracy of cancer diagnosis and improve treatment efficacy. Consequently, new paths are opened to more research and innovation in employing nanotherapeutic approaches against lncRNAs in cancer cells. Thus, this comprehensive manuscript serves as a valuable resource that underscores the vital role of lncRNAs and the various nano-strategies for targeting them in cancer treatment. Future research should also focus on unraveling the complex regulatory networks involving lncRNAs and identifying fundamental functional interactions to refine therapeutic strategies targeting lncRNAs in cancer.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyedeh Fatemeh Sajjadi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 9453155166, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Suresh Ghotekar
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
43
|
Bodnár K, Fehér P, Ujhelyi Z, Bácskay I, Józsa L. Recent Approaches for the Topical Treatment of Psoriasis Using Nanoparticles. Pharmaceutics 2024; 16:449. [PMID: 38675110 PMCID: PMC11054466 DOI: 10.3390/pharmaceutics16040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Psoriasis (PSO) is a chronic autoimmune skin condition characterized by the rapid and excessive growth of skin cells, which leads to the formation of thick, red, and scaly patches on the surface of the skin. These patches can be itchy and painful, and they may cause discomfort for patients affected by this condition. Therapies for psoriasis aim to alleviate symptoms, reduce inflammation, and slow down the excessive skin cell growth. Conventional topical treatment options are non-specific, have low efficacy and are associated with adverse effects, which is why researchers are investigating different delivery mechanisms. A novel approach to drug delivery using nanoparticles (NPs) shows promise in reducing toxicity and improving therapeutic efficacy. The unique properties of NPs, such as their small size and large surface area, make them attractive for targeted drug delivery, enhanced drug stability, and controlled release. In the context of PSO, NPs can be designed to deliver active ingredients with anti-inflammatory effect, immunosuppressants, or other therapeutic compounds directly to affected skin areas. These novel formulations offer improved access to the epidermis and facilitate better absorption, thus enhancing the therapeutic efficacy of conventional anti-psoriatic drugs. NPs increase the surface-to-volume ratio, resulting in enhanced penetration through the skin, including intracellular, intercellular, and trans-appendage routes. The present review aims to discuss the latest approaches for the topical therapy of PSO using NPs. It is intended to summarize the results of the in vitro and in vivo examinations carried out in the last few years regarding the effectiveness and safety of nanoparticles.
Collapse
Affiliation(s)
- Krisztina Bodnár
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| |
Collapse
|
44
|
Wang W, Yong J, Marciano P, O’Hare Doig R, Mao G, Clark J. The Translation of Nanomedicines in the Contexts of Spinal Cord Injury and Repair. Cells 2024; 13:569. [PMID: 38607008 PMCID: PMC11011097 DOI: 10.3390/cells13070569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
PURPOSE OF THIS REVIEW Manipulating or re-engineering the damaged human spinal cord to achieve neuro-recovery is one of the foremost challenges of modern science. Addressing the restricted permission of neural cells and topographically organised neural tissue for self-renewal and spontaneous regeneration, respectively, is not straightforward, as exemplified by rare instances of translational success. This review assembles an understanding of advances in nanomedicine for spinal cord injury (SCI) and related clinical indications of relevance to attempts to design, engineer, and target nanotechnologies to multiple molecular networks. RECENT FINDINGS Recent research provides a new understanding of the health benefits and regulatory landscape of nanomedicines based on a background of advances in mRNA-based nanocarrier vaccines and quantum dot-based optical imaging. In relation to spinal cord pathology, the extant literature details promising advances in nanoneuropharmacology and regenerative medicine that inform the present understanding of the nanoparticle (NP) biocompatibility-neurotoxicity relationship. In this review, the conceptual bases of nanotechnology and nanomaterial chemistry covering organic and inorganic particles of sizes generally less than 100 nm in diameter will be addressed. Regarding the centrally active nanotechnologies selected for this review, attention is paid to NP physico-chemistry, functionalisation, delivery, biocompatibility, biodistribution, toxicology, and key molecular targets and biological effects intrinsic to and beyond the spinal cord parenchyma. SUMMARY The advance of nanotechnologies for the treatment of refractory spinal cord pathologies requires an in-depth understanding of neurobiological and topographical principles and a consideration of additional complexities involving the research's translational and regulatory landscapes.
Collapse
Affiliation(s)
- Wenqian Wang
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia; (W.W.); (J.Y.); (G.M.)
| | - Joel Yong
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia; (W.W.); (J.Y.); (G.M.)
| | - Paul Marciano
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (P.M.); (R.O.D.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Ryan O’Hare Doig
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (P.M.); (R.O.D.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia; (W.W.); (J.Y.); (G.M.)
| | - Jillian Clark
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (P.M.); (R.O.D.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
45
|
Dasanayake GS, Hamadani CM, Singh G, Kumar Misra S, Vashisth P, Sharp JS, Adhikari L, Baker GA, Tanner EEL. Imidazolium-based zwitterionic liquid-modified PEG-PLGA nanoparticles as a potential intravenous drug delivery carrier. NANOSCALE 2024; 16:5584-5600. [PMID: 38410026 PMCID: PMC11476077 DOI: 10.1039/d3nr06349f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Zwitterionic-based systems offer promise as next-generation drug delivery biomaterials capable of enhancing nanoparticle (NP) stimuli-responsiveness, biorecognition, and biocompatibility. Further, imidazole-functionalized amphiphilic zwitterions are able to readily bind to various biological macromolecules, enabling antifouling properties for enhanced drug delivery efficacy and bio-targeting. Herein, we describe structurally tuned zwitterionic imidazole-based ionic liquid (ZIL)-coated PEG-PLGA nanoparticles made with sonicated nanoprecipitation. Upon ZIL surface modification, the hydrodynamic radius increased by nearly 20 nm, and the surface charge significantly shifted closer to neutral. 1H NMR spectra suggests that the amount of ZIL on the nanoparticle surface is controlled by the structure of the ZIL and that the assembly occurs as a result of non-covalent interactions of ZIL-coated nanoparticle with the polymer surface. These nanoparticle-zwitterionic liquid (ZIL) constructs demonstrate selective affinity towards red blood cells in whole mouse blood and show relatively low human hemolysis at ∼5%. Additionally, we observe higher nanoparticle accumulation of ZIL-NPs compared with unmodified NP controls in human triple-negative breast cancer cells (MDA-MB-231). Furthermore, although the ZIL shows similar protein adsorption by SDS-PAGE, LC-MS/MS protein analysis data demonstrate a difference in the relative abundance and depletion of proteins in mouse and human serum. Hence, we show that ZIL-coated nanoparticles provide a new potential platform to enhance RBC-based drug delivery systems for cancer treatments.
Collapse
Affiliation(s)
- Gaya S Dasanayake
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA.
| | - Christine M Hamadani
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA.
| | - Gagandeep Singh
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA.
| | - Sandeep Kumar Misra
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, USA
| | - Priyavrat Vashisth
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA.
| | - Joshua S Sharp
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA.
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, USA
| | - Laxmi Adhikari
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Gary A Baker
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Eden E L Tanner
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
46
|
Qin Y, Wang G, Chen L, Sun Y, Yang J, Piao Y, Shen Y, Zhou Z. High-Throughput Screening of Surface Engineered Cyanine Nanodots for Active Transport of Therapeutic Antibodies into Solid Tumor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302292. [PMID: 37405862 DOI: 10.1002/adma.202302292] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
The successful delivery of therapeutic biomacromolecules into solid tumor holds great challenge due to their high resistance to penetrate through the complex tumor microenvironments. Here, active-transporting nanoparticles are harnessed to efficiently deliver biomacromolecular drugs into solid tumors through cell transcytosis. A series of molecularly precise cyanine 5-cored polylysine G5 dendrimers (Cy5 nanodots) with different peripheral amino acids (G5-AA) is prepared. The capability of these positively charged nanodots to induce cell endocytosis, exocytosis, and transcytosis is evaluated via fluorescence-based high-throughput screen. The optimized nanodots (G5-R) are conjugated with αPD-L1 (a therapeutic monoclonal antibody binding to programmed-death ligand 1) (αPD-L1-G5-R) to demonstrate the nanoparticle-mediated tumor active transport. The αPD-L1-G5-R can greatly enhance the tumor-penetration capability through adsorption-mediated transcytosis (AMT). The effectiveness of αPD-L1-G5-R is tested in treating mice bearing partially resected CT26 tumors, mimicking the local immunotherapy of residual tumors post-surgery in clinic. The αPD-L1-G5-R embedded in fibrin gel can efficiently mediate tumor cell transcytosis, and deliver αPD-L1 throughout the tumor, thereby enhancing immune checkpoint blockade, reducing tumor recurrence, and significantly prolonging the survival time. The active-transporting nanodots are promising platforms for efficient tumor delivery of therapeutic biomacromolecules.
Collapse
Affiliation(s)
- Yating Qin
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Guowei Wang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Linying Chen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuji Sun
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiajia Yang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
47
|
Ruzycka-Ayoush M, Sobczak K, Grudzinski IP. Comparative studies on the cytotoxic effects induced by iron oxide nanoparticles in cancerous and noncancerous human lung cells subjected to an alternating magnetic field. Toxicol In Vitro 2024; 95:105760. [PMID: 38070718 DOI: 10.1016/j.tiv.2023.105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
The cytotoxic effects of water-based ferrofluids composed of iron oxide nanoparticles, including magnetite (Fe3O4) and maghemite (γ-Fe2O3), ranging from 15 to 100 nm, were examined on various lung cancer cells including adenocarcinomic human alveolar basal epithelial cells (A549), nonsmall lung squamous cell carcinoma (H1703), small cell lung cancer cells (DMS 114), and normal bronchial epithelial cells (BEAS-2B). The cytotoxic effect was evaluated both with and without exposure to an alternating magnetic field (AMF). The studies revealed that neither AMF nor iron oxide nanoparticles when tested individually, produced cytotoxic effects on either cancerous or noncancerous cells. However, when applied together, they led to a significant decrease in cell viability and proliferative capacity due to the enhanced effects of magnetic fluid hyperthermia (MFH). The most pronounced effects were found for maghemite (<50 nm) when subjected to an AMF. Notably, A549 cells exhibited the highest resistance to the proposed hyperthermia treatment. BEAS-2B cells demonstrated susceptibility to magnetized iron oxide nanoparticles, similar to the response observed in lung cancer cells. The studies provide evidence that MFH is a promising strategy as a standalone treatment for different types of lung cancer cells. Nevertheless, to prevent any MFH-triggered adverse effects on normal lung cells, targeted magnetic ferrofluids should be designed.
Collapse
Affiliation(s)
- Monika Ruzycka-Ayoush
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, PL-02-097 Warsaw, Poland.
| | - Kamil Sobczak
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, PL-02-089 Warsaw, Poland
| | - Ireneusz P Grudzinski
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, PL-02-097 Warsaw, Poland
| |
Collapse
|
48
|
Shafiee S, Hong W, Lucas J, Khampang P, Runge CL, Wells C, Yan K, Kerschner JE, Joshi A. In vivo biodistribution and ototoxicity assessment of cationic liposomal-ceftriaxone via noninvasive trans-tympanic delivery in chinchilla models: Implications for otitis media therapy. Int J Pediatr Otorhinolaryngol 2024; 178:111894. [PMID: 38350381 PMCID: PMC10939715 DOI: 10.1016/j.ijporl.2024.111894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
OBJECTIVES We report the in vivo biodistribution and ototoxicity of cationic liposomal-ceftriaxone (CFX) delivered via ear drop formulation in adult chinchilla. METHODS CFX was encapsulated in liposomes with size of ∼100 nm and surface charge of +20 mV. 100 μl liposomes or free drug was applied twice daily in both external ear canals of adult chinchillas for either 3 or 10 days. Study groups included free ceftriaxone (CFX, Day 3: n = 4, Day 10: n = 8), liposomal ceftriaxone (CFX-Lipo, Day 3: n = 4, Day 10: n = 8), and a systemic control group (Day 3: n = 4, Day 10: n = 4). Ceftriaxone delivery to the middle ear and systemic circulation was quantified by HPLC assays. Liposome transport was visualized via confocal microscopy. Auditory brainstem response (ABR) tests and cochlear histology were used to assess ototoxicity. RESULTS Liposomal ceftriaxone (CFX-Lipo) displayed a ∼658-fold increase in drug delivery efficiency in the middle ear relative to the free CFX (8.548 ± 0.4638% vs. 0.013 ± 0.0009%, %Injected dose, Mean ± SEM). CFX measured in blood serum (48.2 ± 7.78 ng/ml) following CFX-Lipo treatment in ear was 41-fold lower compared to systemic free-CFX treatment (1990.7 ± 617.34 ng/ml). ABR tests and histological analysis indicated no ototoxicity due to the treatment. CONCLUSION Cationic liposomal encapsulation results in potent drug delivery across the tympanic membrane to the middle ear with minimal systemic exposure and no ototoxicity.
Collapse
Affiliation(s)
- Shayan Shafiee
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, USA
| | - Wenzhou Hong
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Pawjai Khampang
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christina L Runge
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Clive Wells
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ke Yan
- Department of Pediatrics Quantitative Health Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph E Kerschner
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amit Joshi
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, USA.
| |
Collapse
|
49
|
Chen S, Wang C, Meng Y, Li P, Pan Y, He M, Ni X. Nanofabrications of Erythrocyte Membrane-Coated Telmisartan Delivery System Effective for Radiosensitivity of Tumor Cells in Mice Model. Int J Nanomedicine 2024; 19:1487-1508. [PMID: 38380147 PMCID: PMC10878400 DOI: 10.2147/ijn.s441418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Background Radiation stimulates the secretion of tumor stroma and induces resistance, recurrence, and metastasis of stromal-vascular tumors during radiotherapy. The proliferation and activation of tumor-associated fibroblasts (TAFs) are important reasons for the production of tumor stroma. Telmisartan (Tel) can inhibit the proliferation and activation of TAFs (resting TAFs), which may promote radiosensitization. However, Tel has a poor water solubility. Methods In this study, self-assembled telmisartan nanoparticles (Tel NPs) were prepared by aqueous solvent diffusion method to solve the insoluble problem of Tel and achieve high drug loading of Tel. Then, erythrocyte membrane (ECM) obtained by hypotonic lysis was coated on the surface of Tel NPs (ECM/Tel) for the achievement of in vivo long circulation and tumor targeting. Immunofluorescence staining, western blot and other biological techniques were used to investigate the effect of ECM/Tel on TAFs activation inhibition (resting effect) and mechanisms involved. The multicellular spheroids (MCSs) model and mouse breast cancer cells (4T1) were constructed to investigate the effect of ECM/Tel on reducing stroma secretion, alleviating hypoxia, and the corresponding promoting radiosensitization effect in vitro. A mouse orthotopic 4T1 breast cancer model was constructed to investigate the radiosensitizing effect of ECM/Tel on inhibiting breast cancer growth and lung metastasis of breast cancer. Results ECM/Tel showed good physiological stability and tumor-targeting ability. ECM/Tel could rest TAFs and reduce stroma secretion, alleviate hypoxia, and enhance penetration in tumor microenvironment. In addition, ECM/Tel arrested the cell cycle of 4T1 cells to the radiosensitive G2/M phase. In mouse orthotopic 4T1 breast cancer model, ECM/Tel played a superior role in radiosensitization and significantly inhibited lung metastasis of breast cancer. Conclusion ECM/Tel showed synergistical radiosensitization effect on both the tumor microenvironment and tumor cells, which is a promising radiosensitizer in the radiotherapy of stroma-vascular tumors.
Collapse
Affiliation(s)
- Shaoqing Chen
- Department of Radiotherapy, the Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213003, People’s Republic of China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu, 213003, People’s Republic of China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, People’s Republic of China
| | - Yanyan Meng
- Department of Radiotherapy, the Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213003, People’s Republic of China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu, 213003, People’s Republic of China
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, People’s Republic of China
| | - Pengyin Li
- Department of Radiotherapy, the Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213003, People’s Republic of China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu, 213003, People’s Republic of China
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, People’s Republic of China
| | - Yiwen Pan
- Department of Radiotherapy, the Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213003, People’s Republic of China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu, 213003, People’s Republic of China
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, People’s Republic of China
| | - Mu He
- Department of Radiotherapy, the Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213003, People’s Republic of China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu, 213003, People’s Republic of China
| | - Xinye Ni
- Department of Radiotherapy, the Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213003, People’s Republic of China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu, 213003, People’s Republic of China
| |
Collapse
|
50
|
Zamora PF, Reidy TG, Armbruster CR, Sun M, Van Tyne D, Turner PE, Koff JL, Bomberger JM. Lytic bacteriophages interact with respiratory epithelial cells and induce the secretion of antiviral and proinflammatory cytokines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579115. [PMID: 38370761 PMCID: PMC10871231 DOI: 10.1101/2024.02.06.579115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Phage therapy is a therapeutic approach to treat multidrug resistant infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. We determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.
Collapse
Affiliation(s)
- Paula F. Zamora
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH
| | - Thomas G. Reidy
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Catherine R. Armbruster
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Ming Sun
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA
| | - Daria Van Tyne
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Paul E. Turner
- Center for Phage Biology and Therapy, Yale University, New Haven, CT
| | - Jonathan L. Koff
- Center for Phage Biology and Therapy, Yale University, New Haven, CT
| | - Jennifer M. Bomberger
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH
| |
Collapse
|