1
|
Du SL, Zhou YT, Hu HJ, Lin L, Zhang ZQ. Silica-induced ROS in alveolar macrophages and its role on the formation of pulmonary fibrosis via polarizing macrophages into M2 phenotype: a review. Toxicol Mech Methods 2025; 35:89-100. [PMID: 39223849 DOI: 10.1080/15376516.2024.2400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Alveolar macrophages (AMs), the first line against the invasion of foreign invaders, play a predominant role in the pathogenesis of silicosis. Studies have shown that inhaled silica dust is recognized and engulfed by AMs, resulting in the production of large amounts of silica-induced reactive oxygen species (ROS), including particle-derived ROS and macrophage-derived ROS. These ROS change the microenvironment of the AMs where the macrophage phenotype is stimulated to swift from M0 to M1 and/or M2, and ultimately emerge as the M2 phenotype to trigger silicosis. This is a complex process accompanied by various molecular biological events. Unfortunately, the detailed processes and mechanisms have not been systematically described. In this review, we first systematically introduce the process of ROS induced by silica in AMs. Then, describe the role and molecular mechanism of M2-type macrophage polarization caused by silica-induced ROS. Finally, we review the mechanism of pulmonary fibrosis induced by M2 polarized AMs. We conclude that silica-induced ROS initiate the fibrotic process of silicosis by inducing macrophage into M2 phenotype, and that targeted intervention of silica-induced ROS in AMs can reprogram the macrophage polarization and ameliorate the pathogenesis of silicosis.
Collapse
Affiliation(s)
- Shu-Ling Du
- School of Public Health, Shandong Second Medical University, Weifang, China
- School of Public Health, Jining Medical University, Jining, China
| | - Yu-Ting Zhou
- School of Public Health, Jining Medical University, Jining, China
| | - Hui-Jie Hu
- School of Public Health, Shandong Second Medical University, Weifang, China
- School of Public Health, Jining Medical University, Jining, China
| | - Li Lin
- School of Public Health, Jining Medical University, Jining, China
| | - Zhao-Qiang Zhang
- School of Public Health, Jining Medical University, Jining, China
| |
Collapse
|
2
|
Hou X, Wei Z, Jiang X, Wei C, Dong L, Li Y, Liang R, Nie J, Shi Y, Qin X. A comprehensive retrospect on the current perspectives and future prospects of pneumoconiosis. Front Public Health 2025; 12:1435840. [PMID: 39866352 PMCID: PMC11757636 DOI: 10.3389/fpubh.2024.1435840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/24/2024] [Indexed: 01/28/2025] Open
Abstract
Pneumoconiosis is a widespread occupational pulmonary disease caused by inhalation and retention of dust particles in the lungs, is characterized by chronic pulmonary inflammation and progressive fibrosis, potentially leading to respiratory and/or heart failure. Workers exposed to dust, such as coal miners, foundry workers, and construction workers, are at risk of pneumoconiosis. This review synthesizes the international and national classifications, epidemiological characteristics, strategies for prevention, clinical manifestations, diagnosis, pathogenesis, and treatment of pneumoconiosis. Current research on the pathogenesis of pneumoconiosis focuses on the influence of autophagy, apoptosis, and pyroptosis on the progression of the disease. In addition, factors such as lipopolysaccharide and nicotine have been found to play crucial roles in the development of pneumoconiosis. This review provides a comprehensive summary of the most fundamental achievements in the treatment of pneumoconiosis with the purpose of indicating the future direction of its treatment and control. New technologies of integrative omics, artificial intelligence, systemic administration of mesenchymal stromal cells have proved useful in solving the conundrum of pneumoconiosis. These directional studies will provide novel therapeutic targets for the treatment of pneumoconiosis.
Collapse
Affiliation(s)
- Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
- Environmental Exposures Vascular Disease Institute, Shanxi Medical University, Taiyuan, Shanxi, China
- China Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhengqian Wei
- Department of General Medicine, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuelu Jiang
- Environmental Exposures Vascular Disease Institute, Shanxi Medical University, Taiyuan, Shanxi, China
- Academy of Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chengjie Wei
- Environmental Exposures Vascular Disease Institute, Shanxi Medical University, Taiyuan, Shanxi, China
- Academy of Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lin Dong
- Environmental Exposures Vascular Disease Institute, Shanxi Medical University, Taiyuan, Shanxi, China
- Academy of Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhua Li
- Department of Foreign Languages, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruifeng Liang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jisheng Nie
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Taiyuan, Shanxi, China
| | - Yiwei Shi
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Taiyuan, Shanxi, China
- Department of Pulmonary and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- NHC Key Laboratory of Pneumoconiosis, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaojiang Qin
- Environmental Exposures Vascular Disease Institute, Shanxi Medical University, Taiyuan, Shanxi, China
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Taiyuan, Shanxi, China
- NHC Key Laboratory of Pneumoconiosis, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Wang Y, Li N, Hu J, Zhao Y, Zhou W, Li S, Yi G, Bian H, Cao F, Yao S. A network pharmacology approach-based decoding of Resveratrol's anti-fibrotic mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156092. [PMID: 39368340 DOI: 10.1016/j.phymed.2024.156092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Inhalation of crystalline silica (CS) frequently leads to chronic lung inflammation and pulmonary fibrosis (PF), a condition with limited effective treatments. Resveratrol (Res) has demonstrated potential in PF treatment; however, its underlying mechanisms remain incompletely elucidated. PURPOSE This study represents the first comprehensive attempt to uncover the novel mechanisms underlying Res's anti-fibrotic effects against PF through an innovative, integrated approach combining network pharmacology and experimental validation. METHODS We employed network pharmacology to investigate the holistic pharmacological mechanism of Res, then validated the predicted pharmacological effects using in vivo and in vitro studies. RESULTS In total, 216 genes were identified to be simultaneously associated with PF and Res. An integrated bioinformatics analysis implicated a crucial role of the autophagy signaling pathway in dominating PF, with AMPK and mTOR showing high docking scores. Animal studies revealed that Res significantly alleviated silica-induced lung damage in silicotic mice, with decreased collagen I (Col-I) levels and reduced expression of vimentin and α-SMA. In-depth investigation demonstrated that Res modulated CS-dysregulated autophagy by targeting the AMPK/mTOR pathway. in vitro, Res treatment significantly reduced lactate dehydrogenase (LDH), TNF-α, and TGF-β levels and improved cell viability of Raw264.7 cells post-CS exposure. Notably, Res was demonstrated to suppress fibroblast-to-myofibroblast transition via mediating macrophage autophagy through the AMPK/mTOR pathway. CONCLUSION Res can alleviate CS-induced PF by targeting AMPK in the autophagy signaling pathway, which sheds light on Res' therapeutic potential in treating PF.
Collapse
Affiliation(s)
- Yongheng Wang
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Ning Li
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Jinan (Preparatory) Key Laboratory of Women' s Diseases and Fertility Preservation, Jinan 250001, China
| | - Jiahao Hu
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Yuhan Zhao
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Wenxin Zhou
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Shuang Li
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Guan Yi
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Hongying Bian
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Fuyuan Cao
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Sanqiao Yao
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China; Xinxiang Medical University, Xinxiang 453000, China.
| |
Collapse
|
4
|
Ye Z, Niu Z, Li J, Li Z, Hu Y. Cardamonin inhibits silicosis development through the PI3K-AKT signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117067. [PMID: 39306926 DOI: 10.1016/j.ecoenv.2024.117067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/27/2024] [Accepted: 09/14/2024] [Indexed: 10/17/2024]
Abstract
Silicosis is one of the most severe occupational diseases characterized by inflammatory cell infiltration, fibroblasts activation, and fibrosis in the lung. However, specific drug treatments are lacking. Cardamonin (CDM) has been reported to possess antitumor, anti-inflammatory/fibrotic effects. While, the effect of CDM on the progression of silicosis remains unknown. In this study, we established a SiO2-M stimulated fibroblast cell model, and explored the antifibrotic effect of CDM and the related molecular mechanism using WB, RT-qPCR, and immunofluorescence. The results indicate that CDM inhibits SiO2-M-induced fibroblast activation, proliferation, and migration. Furthermore, a silicosis mouse model was established through injecting silica suspension intratracheally. The results revealed that CDM retards the progression of pulmonary fibrosis. The RNA sequencing results suggest that the antifibrotic effect of CDM may be mediated by the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway. In conclusion, the results of this study demonstrate that CDM inhibits the development of silicosis via the PI3K-AKT signaling pathway, which could provide guidance for the development of drugs for silicosis treatment.
Collapse
Affiliation(s)
- Zhimin Ye
- Department of pathology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China; Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan 410013, China; Department of pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhiyuan Niu
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan 410013, China; Department of pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Juan Li
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan 410013, China; Department of pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zisheng Li
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan 410013, China; Department of pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yongbin Hu
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan 410013, China; Department of pathology, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
5
|
Su X, Sun Y, Shi Y, Kong X, Liu T, Dong H, Yu X, Xue T, Zhang C, Zhang X. Arginine-Proline Metabolism as a Mediator in the Association Between Coal Dust Exposure and Lung Function: A Retrospective Analysis. J Occup Environ Med 2024; 66:826-833. [PMID: 38935365 DOI: 10.1097/jom.0000000000003171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
OBJECTIVES To investigate the mediating role of the activation degree of arginine-proline metabolism in the association of coal dust and decreased lung function. METHODS Cumulative dust exposure (CDE) represented coal dust exposure, whereas the hydroxyproline-to-arginine concentration ratio (Hyp/Arg) in bronchoalveolar lavage fluid gauged arginine-proline metabolism activation. Pulmonary function indicators, including predicted value of forced vital capacity (FVC%pred), forced expiratory volume in 1 second/forced vital capacity (FEV1/FVC%), and the ratio of actual to predicted value of FEV1 (FEV1%pred), diffusing capacity of the lungs for carbon monoxide (DLCO%pred), difference value between alveolar air and arterial partial oxygen pressure (P (A-a) O 2 ), and 6-minute walking distance test (6MWT), were assessed. RESULTS Findings revealed a significant association between elevated CDE and increased Hyp/Arg, increased P (A-a) O 2 , decreased 6MWT, DLCO%pred, and decreased FVC%pred. However, no statistically significant association was found between CDE and FEV1%pred or FEV1/FVC%. The mediating effect of Hyp/Arg was significant for CDE's impact on P (A-a) O 2 and DLCO%pred but not on 6MWT and FVC%pred. CONCLUSIONS These results highlight the role of Hyp/Arg in mediating the association between CDE and lung function parameters, shedding light on potential therapeutic avenues for mitigating coal dust-induced lung function impairment.
Collapse
Affiliation(s)
- Xuesen Su
- From The First College of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China (X.S., T.L., H.D., C.Z.), Academy of Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China (Y. Sun); Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China (Y. Shi., X.K., X.Y., T.X., X.Z.); The National Health Commission Key Laboratory of Pneumoconiosis (Shanxi, China) Project, Taiyuan, Shanxi, People's Republic of China (X.S., Y. Sun, Y. Shi, X.K., T.L., H.D., X.Y., T.X., C.Z., X.Z.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kumari S, Singh P, Singh R. Repeated Silica exposures lead to Silicosis severity via PINK1/PARKIN mediated mitochondrial dysfunction in mice model. Cell Signal 2024; 121:111272. [PMID: 38944258 DOI: 10.1016/j.cellsig.2024.111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND AND OBJECTIVES Silicosis, one of the occupational health illnesses is caused by inhalation of crystalline silica. Deposition of extracellular matrix and fibroblast proliferation in lungs are linked to silicosis development. Mitochondrial dysfunction plays critical role in some diseases, but how these processes progress and regulated in silicosis, remains limited. Detailed study of silica induced pulmonary fibrosis in mouse model, its progression and severity may be helpful in designing future therapeutic strategies. METHODS In present study, mice model of silicosis has been developed after repeated silica exposures which may closely resemble clinical symptoms of silicosis in human. In addition to efficiently mimicking the acute/chronic transformation processes of silicosis, this is practical and efficient in terms of time and output, which avoids mechanical injury to the upper respiratory tract due to surgical interventions. Sonicated sterile silica suspension (120 mg/kg) was administered through intranasal route thrice a week at regular intervals (21, 28 and 35 days). RESULTS Presence of minute to larger silicotic nodules in H&E-stained lung sections were observed in all silica induced model groups. Enhanced ECM deposition was noted in MT stained lung sections of silica exposure groups as compared to control which were confirmed by significantly higher MMP9 expression levels and hydroxyproline content in silica 35 days group. Increase in Reactive oxygen species (ROS), inflammatory cell recruitment mainly, neutrophils and macrophage were observed in all three silica exposure groups. Transmission electron microscopic analysis has confirmed presence of many aberrant shaped mitochondria (swollen, round shape) in 35 days model where autophagosomes were minimum. Western blot analysis of mitophagy and autophagy markers such as Pink1, Parkin, Cytochrome c, SQSTM1/p62, the ratio of light chain LC3B II/LC3B I was found higher in 21 and 28 days which were significantly reduced in 35 days silica model. CONCLUSIONS Higher MMP9 activity and MMP9 /TIMP1 ratio demonstrate excessive extracellular matrix damage and deposition in 35 days model. Significantly reduced expressions of autophagy and mitophagy markers have also confirmed progression in fibrosis severity and its association with repeated silica exposures in 35 days model group.
Collapse
Affiliation(s)
- Sneha Kumari
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Payal Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Rashmi Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
7
|
Li H, Wang P, Hu M, Xu S, Li X, Xu D, Feng K, Zhou Q, Chang M, Yao S. Echistatin/BYL-719 impedes epithelial-mesenchymal transition in pulmonary fibrosis induced by silica through modulation of the Integrin β1/ILK/PI3K signaling pathway. Int Immunopharmacol 2024; 136:112368. [PMID: 38823175 DOI: 10.1016/j.intimp.2024.112368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Silicosis is a chronic fibroproliferative lung disease caused by long-term inhalation of crystalline silica dust, characterized by the proliferation of fibroblasts and pulmonary interstitial fibrosis. Currently, there are no effective treatments available. Recent research suggests that the Integrin β1/ILK/PI3K signaling pathway may be associated with the pathogenesis of silicosis fibrosis. In this study, we investigated the effects of Echistatin (Integrin β1 inhibitor) and BYL-719 (PI3K inhibitor) on silicosis rats at 28 and 56 days after silica exposure. Histopathological analysis of rat lung tissue was performed using H&E staining and Masson staining. Immunohistochemistry, Western blotting, and qRT-PCR were employed to assess the expression of markers associated with epithelial-mesenchymal transition (EMT), fibrosis, and the Integrin β1/ILK/PI3K pathway in lung tissue. The results showed that Echistatin, BYL 719 or their combination up-regulated the expression of E-cadherin and down-regulated the expression of Vimentin and extracellular matrix (ECM) components, including type I and type III collagen. The increase of Snail, AKT and β-catenin in the downstream Integrin β1/ILK/PI3K pathway was inhibited. These results indicate that Echistatin and BYL 719 can inhibit EMT and pulmonary fibrosis by blocking different stages of Integrinβ1 /ILK/PI3K signaling pathway. This indicates that the Integrin β1/ILK/PI3K signaling pathway is associated with silica-induced EMT and may serve as a potential therapeutic target for silicosis.
Collapse
Affiliation(s)
- Haibin Li
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China; School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Penghao Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Meng Hu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Shushuo Xu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Xinxiao Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Deliang Xu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Kaihao Feng
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Qiang Zhou
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Meiyu Chang
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Sanqiao Yao
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China; School of Public Health, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
8
|
Liu TT, Sun HF, Tang MZ, Shen HR, Shen Z, Han YX, Zhan Y, Jiang JD. Bicyclol attenuates pulmonary fibrosis with silicosis via both canonical and non-canonical TGF-β1 signaling pathways. J Transl Med 2024; 22:682. [PMID: 39060930 PMCID: PMC11282674 DOI: 10.1186/s12967-024-05399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Silicosis is an irreversible fibrotic disease of the lung caused by chronic exposure to silica dust, which manifests as infiltration of inflammatory cells, excessive secretion of pro-inflammatory cytokines, and pulmonary diffuse fibrosis. As the disease progresses, lung function further deteriorates, leading to poorer quality of life of patients. Currently, few effective drugs are available for the treatment of silicosis. Bicyclol (BIC) is a compound widely employed to treat chronic viral hepatitis and drug-induced liver injury. While recent studies have demonstrated anti-fibrosis effects of BIC on multiple organs, including liver, lung, and kidney, its therapeutic benefit against silicosis remains unclear. In this study, we established a rat model of silicosis, with the aim of evaluating the potential therapeutic effects of BIC. METHODS We constructed a silicotic rat model and administered BIC after injury. The FlexiVent instrument with a forced oscillation system was used to detect the pulmonary function of rats. HE and Masson staining were used to assess the effect of BIC on silica-induced rats. Macrophages-inflammatory model of RAW264.7 cells, fibroblast-myofibroblast transition (FMT) model of NIH-3T3 cells, and epithelial-mesenchymal transition (EMT) model of TC-1 cells were established in vitro. And the levels of inflammatory mediators and fibrosis-related proteins were evaluated in vivo and in vitro after BIC treatment by Western Blot analysis, RT-PCR, ELISA, and flow cytometry experiments. RESULTS BIC significantly improved static compliance of lung and expiratory and inspiratory capacity of silica-induced rats. Moreover, BIC reduced number of inflammatory cells and cytokines as well as collagen deposition in lungs, leading to delayed fibrosis progression in the silicosis rat model. Further exploration of the underlying molecular mechanisms revealed that BIC suppressed the activation, polarization, and apoptosis of RAW264.7 macrophages induced by SiO2. Additionally, BIC inhibited SiO2-mediated secretion of the inflammatory cytokines IL-1β, IL-6, TNF-α, and TGF-β1 in macrophages. BIC inhibited FMT of NIH-3T3 as well as EMT of TC-1 in the in vitro silicosis model, resulting in reduced proliferation and migration capability of NIH-3T3 cells. Further investigation of the cytokines secreted by macrophages revealed suppression of both FMT and EMT by BIC through targeting of TGF-β1. Notably, BIC blocked the activation of JAK2/STAT3 in NIH-3T3 cells required for FMT while preventing both phosphorylation and nuclear translocation of SMAD2/3 in TC-1 cells necessary for the EMT process. CONCLUSION The collective data suggest that BIC prevents both FMT and EMT processes, in turn, reducing aberrant collagen deposition. Our findings demonstrate for the first time that BIC ameliorates inflammatory cytokine secretion, in particular, TGF-β1, and consequently inhibits FMT and EMT via TGF-β1 canonical and non-canonical pathways, ultimately resulting in reduction of aberrant collagen deposition and slower progression of silicosis, supporting its potential as a novel therapeutic agent.
Collapse
Affiliation(s)
- Tong-Tong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Hai-Fei Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Ming-Ze Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Hao-Ran Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Zhen Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Yan-Xing Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Yun Zhan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| |
Collapse
|
9
|
Hu A, Li R, Chen G, Chen S. Impact of Respiratory Dust on Health: A Comparison Based on the Toxicity of PM2.5, Silica, and Nanosilica. Int J Mol Sci 2024; 25:7654. [PMID: 39062897 PMCID: PMC11277548 DOI: 10.3390/ijms25147654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Respiratory dust of different particle sizes in the environment causes diverse health effects when entering the human body and makes acute or chronic damage through multiple systems and organs. However, the precise toxic effects and potential mechanisms induced by dust of different particle sizes have not been systematically summarized. In this study, we described the sources and characteristics of three different particle sizes of dust: PM2.5 (<2.5 μm), silica (<5 μm), and nanosilica (<100 nm). Based on their respective characteristics, we further explored the main toxicity induced by silica, PM2.5, and nanosilica in vivo and in vitro. Furthermore, we evaluated the health implications of respiratory dust on the human body, and especially proposed potential synergistic effects, considering current studies. In summary, this review summarized the health hazards and toxic mechanisms associated with respiratory dust of different particle sizes. It could provide new insights for investigating the synergistic effects of co-exposure to respiratory dust of different particle sizes in mixed environments.
Collapse
Affiliation(s)
| | | | | | - Shi Chen
- Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, Changsha 410013, China; (A.H.); (R.L.); (G.C.)
| |
Collapse
|
10
|
Gao Y, Yang C, Tong J, Gong Q, Li Z. Erasmus syndrome: case description of a rare entity. Quant Imaging Med Surg 2024; 14:5234-5240. [PMID: 39022231 PMCID: PMC11250328 DOI: 10.21037/qims-23-1841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/24/2024] [Indexed: 07/20/2024]
Affiliation(s)
- Yating Gao
- Department of Respiratory, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine of Respiratory Disease Prevention, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Anhui University of Chinese Medicine, Hefei, China
| | - Cheng Yang
- Department of Respiratory, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine of Respiratory Disease Prevention, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Anhui University of Chinese Medicine, Hefei, China
| | - Jiabing Tong
- Department of Respiratory, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine of Respiratory Disease Prevention, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Anhui University of Chinese Medicine, Hefei, China
| | - Qiangjin Gong
- Department of Respiratory, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zegeng Li
- Department of Respiratory, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine of Respiratory Disease Prevention, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
11
|
Ribeiro PC, Ferreira TPT, Martins MA, Martins PMRES, de Castro HA. Inflammatory biomarkers in workers exposed to silica dust: integrative review. Rev Bras Med Trab 2024; 22:e20231224. [PMID: 39606764 PMCID: PMC11595387 DOI: 10.47626/1679-4435-2023-1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/10/2023] [Indexed: 11/29/2024] Open
Abstract
Introduction Silicosis is a severe, progressive, fibrosing lung disease caused by the inhalation of free crystalline silica dust; it is the most prevalent pneumoconiosis worldwide. It is associated with a chronic inflammatory process triggered by silica particles in the pulmonary alveoli. Alveolar macrophages play a key role in the pathogenesis of silicosis, with additional contributions from polymorphonuclear cells, epithelial cells, and the release of inflammatory mediators. Objectives To compile updated information on key inflammatory biomarkers in workers exposed to silica. Methods Integrative review to discuss the state of the art regarding major biomarkers used in the early diagnosis and search for treatments for workers exposed to silica. The SciELO and PubMed databases were searched for articles published from 2012 to 2022. Results The search strategy retrieved 111 articles, of which 29 were duplicates across the two databases. Of the 82 remaining articles, 67 were excluded after screening of abstracts (review articles, articles on polymorphisms/genetics, and animal studies). Fifteen articles were read in full; of these, two were eliminated as they did not meet the inclusion criteria. Of the 13 articles retained for analysis, 12 were cross-sectional and only 1 was a prospective observational study. Conclusions This integrative review identified the importance of cytokines in silica-related illness. This can help encourage future research and guide the development of new therapies and interventions for silicosis.
Collapse
Affiliation(s)
- Patricia Canto Ribeiro
- Escola Nacional de Saúde Pública Sérgio
Arouca, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | - Marco Aurélio Martins
- Laboratório de Inflamação do Instituto Oswaldo
Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
12
|
Liu TT, Sun HF, Han YX, Zhan Y, Jiang JD. The role of inflammation in silicosis. Front Pharmacol 2024; 15:1362509. [PMID: 38515835 PMCID: PMC10955140 DOI: 10.3389/fphar.2024.1362509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Silicosis is a chronic illness marked by diffuse fibrosis in lung tissue resulting from continuous exposure to SiO2-rich dust in the workplace. The onset and progression of silicosis is a complicated and poorly understood pathological process involving numerous cells and molecules. However, silicosis poses a severe threat to public health in developing countries, where it is the most prevalent occupational disease. There is convincing evidence supporting that innate and adaptive immune cells, as well as their cytokines, play a significant role in the development of silicosis. In this review, we describe the roles of immune cells and cytokines in silicosis, and summarize current knowledge on several important inflammatory signaling pathways associated with the disease, aiming to provide novel targets and strategies for the treatment of silicosis-related inflammation.
Collapse
Affiliation(s)
| | | | | | - Yun Zhan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW There has been a rapid increase in silicosis cases, particularly related to artificial stone. The key to management is avoidance of silica exposure. Despite this, many develop progressive disease and there are no routinely recommended treatments. This review provides a summary of the literature pertaining to pharmacological therapies for silicosis and examines the plausibility of success of such treatments given the disease pathogenesis. RECENT FINDINGS In-vitro and in-vivo models demonstrate potential efficacy for drugs, which target inflammasomes, cytokines, effector cells, fibrosis, autophagy, and oxidation. SUMMARY There is some evidence for potential therapeutic targets in silicosis but limited translation into human studies. Treatment of silicosis likely requires a multimodal approach, and there is considerable cross-talk between pathways; agents that modulate both inflammation, fibrosis, autophagy, and ROS production are likely to be most efficacious.
Collapse
Affiliation(s)
- Hayley Barnes
- Monash Centre for Occupational and Environmental Health, Monash University
- Department of Respiratory Medicine, Alfred Health
- Central Clinical School, Monash University, Melbourne
| | - Maggie Lam
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Ryan Hoy
- Monash Centre for Occupational and Environmental Health, Monash University
- Department of Respiratory Medicine, Alfred Health
| |
Collapse
|
14
|
Ban J, Chang S, Ma P, Wang X, Liu F. lncRNA Profiling of Exosomes and Its Communication Role in Regulating Silica-Stimulated Macrophage Apoptosis and Fibroblast Activation. Biomolecules 2024; 14:146. [PMID: 38397383 PMCID: PMC10886698 DOI: 10.3390/biom14020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Long-term silica particle exposure leads to interstitial pulmonary inflammation and fibrosis, called silicosis. Silica-activated macrophages secrete a wide range of cytokines resulting in persistent inflammation. In addition, silica-stimulated activation of fibroblast is another checkpoint in the progression of silicosis. The pathogenesis after silica exposure is complex, involving intercellular communication and intracellular signaling pathway transduction, which was ignored previously. Exosomes are noteworthy because of their crucial role in intercellular communication by delivering bioactive substances, such as lncRNA. However, the expression profile of exosomal lncRNA in silicosis has not been reported yet. In this study, exosomes were isolated from the peripheral serum of silicosis patients or healthy donors. The exosomal lncRNAs were profiled using high-throughput sequencing technology. Target genes were predicted, and functional annotation was performed using differentially expressed lncRNAs. Eight aberrant expressed exosomal lncRNAs were considered to play a key role in the process of silicosis according to the OPLS-DA. Furthermore, the increased expression of lncRNA MSTRG.43085.16 was testified in vitro. Its target gene PARP1 was critical in regulating apoptosis based on bioinformatics analysis. In addition, the effects of exosomes on macrophage apoptosis and fibroblast activation were checked based on a co-cultured system. Our findings suggested that upregulation of lncRNA MSTRG.43085.16 could regulate silica-induced macrophage apoptosis through elevating PARP1 expression, and promote fibroblast activation, implying that the exosomal lncRNA MSTRG.43085.16 might have potential as a biomarker for the early diagnosis of silicosis.
Collapse
Affiliation(s)
- Jiaqi Ban
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, China; (J.B.); (S.C.); (P.M.)
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Shuai Chang
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, China; (J.B.); (S.C.); (P.M.)
| | - Pengwei Ma
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, China; (J.B.); (S.C.); (P.M.)
| | - Xin Wang
- Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China;
| | - Fangwei Liu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, China; (J.B.); (S.C.); (P.M.)
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, China
| |
Collapse
|
15
|
Bai Y, Liang C, Gao L, Han T, Wang F, Liu Y, Zhou J, Guo J, Wu J, Hu D. Celastrol Pyrazine Derivative Alleviates Silicosis Progression via Inducing ROS-Mediated Apoptosis in Activated Fibroblasts. Molecules 2024; 29:538. [PMID: 38276616 PMCID: PMC10820882 DOI: 10.3390/molecules29020538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/27/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Silicosis is a complex occupational disease without recognized effective treatment. Celastrol, a natural product, has shown antioxidant, anti-inflammatory, and anti-fibrotic activities, but the narrow therapeutic window and high toxicity severely limit its clinical application. Through structural optimization, we have identified a highly efficient and low-toxicity celastrol derivative, CEL-07. In this study, we systematically investigated the therapeutic potential and underlying mechanisms of CEL-07 in silicosis fibrosis. By constructing a silicosis mouse model and analyzing with HE, Masson, Sirius Red, and immunohistochemical staining, CEL-07 significantly prevented the progress of inflammation and fibrosis, and it effectively improved the lung respiratory function of silicosis mice. Additionally, CEL-07 markedly suppressed the expression of inflammatory factors (IL-6, IL-1α, TNF-α, and TNF-β) and fibrotic factors (α-SMA, collagen I, and collagen III), and promoted apoptosis of fibroblasts by increasing ROS accumulation. Moreover, bioinformatics analysis combined with experimental validation revealed that CEL-07 inhibited the pathways associated with inflammation (PI3K-AKT and JAK2-STAT3) and the expression of apoptosis-related proteins. Overall, these results suggest that CEL-07 may serve as a potential candidate for the treatment of silicosis.
Collapse
Affiliation(s)
- Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Y.B.); (C.L.); (L.G.); (T.H.); (F.W.); (Y.L.); (J.Z.); (J.G.)
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan 232001, China
| | - Chao Liang
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Y.B.); (C.L.); (L.G.); (T.H.); (F.W.); (Y.L.); (J.Z.); (J.G.)
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan 232001, China
| | - Lu Gao
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Y.B.); (C.L.); (L.G.); (T.H.); (F.W.); (Y.L.); (J.Z.); (J.G.)
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan 232001, China
| | - Tao Han
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Y.B.); (C.L.); (L.G.); (T.H.); (F.W.); (Y.L.); (J.Z.); (J.G.)
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan 232001, China
| | - Fengxuan Wang
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Y.B.); (C.L.); (L.G.); (T.H.); (F.W.); (Y.L.); (J.Z.); (J.G.)
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan 232001, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Y.B.); (C.L.); (L.G.); (T.H.); (F.W.); (Y.L.); (J.Z.); (J.G.)
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan 232001, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Y.B.); (C.L.); (L.G.); (T.H.); (F.W.); (Y.L.); (J.Z.); (J.G.)
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan 232001, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Y.B.); (C.L.); (L.G.); (T.H.); (F.W.); (Y.L.); (J.Z.); (J.G.)
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan 232001, China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Y.B.); (C.L.); (L.G.); (T.H.); (F.W.); (Y.L.); (J.Z.); (J.G.)
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan 232001, China
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan 232001, China
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Safety and Health Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Y.B.); (C.L.); (L.G.); (T.H.); (F.W.); (Y.L.); (J.Z.); (J.G.)
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan 232001, China
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan 232001, China
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Safety and Health Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
| |
Collapse
|
16
|
Li J, Deng B, Zhang J, Zhang X, Cheng L, Li G, Su P, Miao X, Yang W, Xie J, Wang R. The Peptide DH α-(4-pentenyl)-ANPQIR-NH 2 Exhibits Antifibrotic Activity in Multiple Pulmonary Fibrosis Models Induced by Particulate and Soluble Chemical Fibrogenic Agents. J Pharmacol Exp Ther 2024; 388:701-714. [PMID: 38129127 DOI: 10.1124/jpet.123.001849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023] Open
Abstract
Interstitial lung diseases (ILDs) are a group of restrictive lung diseases characterized by interstitial inflammation and pulmonary fibrosis. The incidence of ILDs associated with exposure to multiple hazards such as inhaled particles, fibers, and ingested soluble chemicals is increasing yearly, and there are no ideal drugs currently available. Our previous research showed that the novel and low-toxicity peptide DHα-(4-pentenyl)-ANPQIR-NH2 (DR3penA) had a strong antifibrotic effect on a bleomycin-induced murine model. Based on the druggability of DR3penA, we sought to investigate its effects on respirable particulate silicon dioxide (SiO2)- and soluble chemical paraquat (PQ)-induced pulmonary fibrosis in this study by using western blot, quantitative reverse-transcription polymerase chain reaction (RT-qPCR), immunofluorescence, H&E and Masson staining, immunohistochemistry, and serum biochemical assays. The results showed that DR3penA alleviated the extent of fibrosis by inhibiting the expression of fibronectin and collagen I and suppressed oxidative stress and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Further study revealed that DR3penA may mitigate pulmonary fibrosis by negatively regulating the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway and mitogen-activated protein kinase (MAPK) pathway. Unexpectedly, through the conversion of drug bioavailability under different routes of administration, DR3penA exerted antifibrotic effects equivalent to those of the positive control drug pirfenidone (PFD) at lower doses. In summary, DR3penA may be a promising lead compound for various fibrotic ILDs. SIGNIFICANCE STATEMENT: Our study verified that DHα-(4-pentenyl)-ANPQIR-NH2 (DR3penA) exhibited positive antifibrotic activity in pulmonary fibrosis induced by silicon dioxide (SiO2) particles and soluble chemical paraquat (PQ) and demonstrated a low-dose advantage compared to the small-molecule drug pirfenidone (PFD). The peptide DR3penA can be further developed for the treatment of multiple fibrotic lung diseases.
Collapse
Affiliation(s)
- Jieru Li
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Bochuan Deng
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Jiao Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Xiang Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Lu Cheng
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Guofeng Li
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Ping Su
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Xiaokang Miao
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Wenle Yang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Junqiu Xie
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Rui Wang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| |
Collapse
|
17
|
Zhao JH, Li S, Du SL, Zhang ZQ. The role of mitochondrial dysfunction in macrophages on SiO 2 -induced pulmonary fibrosis: A review. J Appl Toxicol 2024; 44:86-95. [PMID: 37468209 DOI: 10.1002/jat.4517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023]
Abstract
Several epidemiologic and toxicological studies have widely regarded that mitochondrial dysfunction is a popular molecular event in the process of silicosis from different perspectives, but the details have not been systematically summarized yet. Thus, it is necessary to investigate how silica dust leads to pulmonary fibrosis by damaging the mitochondria of macrophages. In this review, we first introduce the molecular mechanisms that silica dust induce mitochondrial morphological and functional abnormalities and then introduce the main molecular mechanisms that silica-damaged mitochondria induce pulmonary fibrosis. Finally, we conclude that the mitochondrial abnormalities of alveolar macrophages caused by silica dust are involved deeply in the pathogenesis of silicosis through these two sequential mechanisms. Therefore, reducing the silica-damaged mitochondria will prevent the potential occurrence and fatality of the disease in the future.
Collapse
Affiliation(s)
- Jia-Hui Zhao
- Weifang Medical University, Weifang, Shandong, China
- Department of Public Health, Jining Medical University, Jining, Shandong, China
| | - Shuang Li
- Department of Public Health, Jining Medical University, Jining, Shandong, China
- Binzhou Medical University, Yantai, Shandong, China
| | - Shu-Ling Du
- Weifang Medical University, Weifang, Shandong, China
- Department of Public Health, Jining Medical University, Jining, Shandong, China
| | - Zhao-Qiang Zhang
- Department of Public Health, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
18
|
Li S, Zhao J, Han G, Zhang X, Li N, Zhang Z. Silicon dioxide-induced endoplasmic reticulum stress of alveolar macrophages and its role on the formation of silicosis fibrosis: a review article. Toxicol Res (Camb) 2023; 12:1024-1033. [PMID: 38145097 PMCID: PMC10734631 DOI: 10.1093/toxres/tfad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/01/2023] [Accepted: 10/07/2023] [Indexed: 12/26/2023] Open
Abstract
Silicosis is a chronic lung inflammatory disease induced by long-term inhalation of high concentrations of silicon dioxide (SiO2), characterized by pulmonary fibrosis. Inhalation of silica invades alveolar macrophages (AMs) and changes the micro-environment of the cell, resulting in abnormal morphology and dysfunction of the endoplasmic reticulum (ER). Once beyond the range of cell regulation, the endoplasmic reticulum stress (ERS) will occur, which will lead to cell damage, necrosis, and apoptosis, eventually causing silicosis fibrosis through various mechanisms. This is a complex and delicate process accompanied by various macrophage-derived cytokines. Unfortunately, the details have not been systematically summarized yet. In this review, we systematically introduce the basic two processes: the process of inducing ERS by inhaling SiO2 and the process of inducing pulmonary fibrosis by ERS. Moreover, the underlying mechanism of the above two sequential events is also be discussed. We conclude that the ERS of alveolar macrophages caused by silica dust are involved deeply in the pathogenesis of silicosis. Therefore, changing the states of SiO2-induced ERS of macrophage may be an attractive therapeutic target for silicosis fibrosis.
Collapse
Affiliation(s)
- Shuang Li
- Department of Public Health and Management, Binzhou Medical University, Guanhai Road 346, Yantai 264003, Shandong Province, China
- Department of Public Health, Jining Medical University, Jianshe South Road 45, Jining 272067, Shandong Province, China
| | - Jiahui Zhao
- Department of Public Health, Jining Medical University, Jianshe South Road 45, Jining 272067, Shandong Province, China
- Department of Public Health, Weifang Medical University, Baotong west Street 7166, Weifang 261053, Shandong Province, China
| | - Guizhi Han
- Department of Public Health, Jining Medical University, Jianshe South Road 45, Jining 272067, Shandong Province, China
| | - Xin Zhang
- Department of Public Health and Management, Binzhou Medical University, Guanhai Road 346, Yantai 264003, Shandong Province, China
| | - Ning Li
- Department of Public Health and Management, Binzhou Medical University, Guanhai Road 346, Yantai 264003, Shandong Province, China
| | - Zhaoqiang Zhang
- Department of Public Health and Management, Binzhou Medical University, Guanhai Road 346, Yantai 264003, Shandong Province, China
- Department of Public Health, Jining Medical University, Jianshe South Road 45, Jining 272067, Shandong Province, China
| |
Collapse
|
19
|
Ding M, Zhang C, Wang W, Wang P, Pei Y, Wang N, Huang S, Hao C, Yao W. Silica-exposed macrophages-secreted exosomal miR125a-5p induces Th1/Th2 and Treg/Th17 cell imbalance and promotes fibroblast transdifferentiation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115647. [PMID: 37918332 DOI: 10.1016/j.ecoenv.2023.115647] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Until now, the specific pathogenesis of silicosis is not clear. Exosomal miRNAs, as a newly discovered intercellular communication medium, play an important role in many diseases. Our previous research found that serum exosomal miR125a-5p was increased in silicosis patients by miRNAs high-throughput sequencing. TRAF6, is a target gene of miR125a-5p, which is involved in T-cell differentiation. Furthermore, results from animal study indicate that knockdown of miR-125a-5p can regulate T lymphocyte subsets and significantly reduce pulmonary fibrosis by targeting TRAF6. However, the level of serum exosomal miR125a-5p in silicosis patients has not been reported, the role of macrophages-secreted exosomal miR-125a-5p in regulating T cell differentiation to promote fibroblast transdifferentiation (FMT) remains unknown. In this study, the levels of serum exosomal miR125a-5p and serum TGF-β1, IL-17A, IL-4 cytokines in silicosis patients were elevated, with the progression of silicosis, the level of serum exosomal miR125a-5p and serum IL-4 were increased; thus, the serum level of IFN-γ was negatively correlated with the progression of silicosis. In vitro, the levels of miR125a-5p in macrophages, exosomes, and T cells stimulated by silica were significantly increased. When the mimic was transfected into T cells, which directly suppressed TRAF6 and caused the imbalance of T cells differentiation, induced FMT. To sum up, these results indicate that exosomal miR-125a-5p may by targeting TRAF6 of T cells, induces the activation and apoptosis of T cells and the remodeling of Th1/Th2 and Th17/Tregs distribution, ultimately promotes FMT. Suggesting that exosomal miR-125a-5p may be a potential therapeutic target for silicosis.
Collapse
Affiliation(s)
- Mingcui Ding
- Department of Nosocomial Infection Control, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Chengpeng Zhang
- Department of Occupational Health and Occupational Disease, School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wei Wang
- Department of Occupational Health and Occupational Disease, School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Pengpeng Wang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yangqing Pei
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Na Wang
- Department of Occupational Health and Occupational Disease, School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shan Huang
- Henan Institute of Food and Salt Industry Inspection Technology, Zhengzhou 450001, Henan, China
| | - Changfu Hao
- Department of child and Adolecence health, School of public health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Wu Yao
- Department of Occupational Health and Occupational Disease, School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
20
|
Lombardi EMS, Mizutani RF, Terra-Filho M, Ubiratan de Paula S. Biomarkers related to silicosis and pulmonary function in individuals exposed to silica. Am J Ind Med 2023; 66:984-995. [PMID: 37615855 DOI: 10.1002/ajim.23528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/21/2023] [Accepted: 08/06/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND The identification of markers that can facilitate the early diagnosis of silicosis has remained challenging. We evaluated the association of inflammatory markers with the presence of silicosis and lung function impairment in individuals exposed to silica. METHODS Individuals exposed and not exposed to silica were assessed by occupational history, clinical findings, lung function, chest imaging findings, and inflammatory markers. RESULTS Among 297 men evaluated, 51 were unexposed controls (G1), 149 were exposed to silica without silicosis (G2), and 97 were exposed to silica with silicosis (G3). Inflammatory marker levels were higher in G3 than in G2 and G1. Platelet/lymphocyte ratio (PLR), lactate dehydrogenase (LDH), soluble tumor necrosis factor II (sTNFRII), and macrophage inflammatory protein-4 (MIP-4) were associated with silicosis, and LDH, neutrophil/lymphocyte ratio (NLR), sTNFRII, monocyte chemoattractant protein-1 (MCP-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), and fibrinogen were negatively associated with lung function. CONCLUSION Blood inflammatory markers are associated with silicosis and impaired lung function.
Collapse
Affiliation(s)
- Elisa M S Lombardi
- Divisao de Pneumologia, Instituto do Coraçao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | - Rafael F Mizutani
- Divisao de Pneumologia, Instituto do Coraçao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | | | - Santos Ubiratan de Paula
- Divisao de Pneumologia, Instituto do Coraçao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
21
|
TIAN X, HOU R, LIU X, ZHAO P, TIAN Y, LI J. Yangqing Chenfei formula alleviates crystalline silica induced pulmonary inflammation and fibrosis by suppressing macrophage polarization. J TRADIT CHIN MED 2023; 43:1126-1139. [PMID: 37946475 PMCID: PMC10623247 DOI: 10.19852/j.cnki.jtcm.20230517.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/23/2022] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To explore the underlying mechanisms of the effects of Yangqing Chenfei formula (, YCF) on inflammation and fibrosis in silicosis via inhibition of macrophage polarization. METHODS A silicotic rat model was established via a single intratracheal instillation of silica particles on the first day of week 0. Subsequently, YCF was administered intragastrically to silicotic rats during weeks 0-2 and 5-8 twice daily. The mouse-derived alveolar macrophage cell line was used to investigate the mechanisms of YCF in M1/M2 polarization. RESULTS YCF treatment effectively inhibited lung pathological changes, including inflammatory cell infiltration and tissue damage, and increased the forced expiratory volume in the first 0.3 s, functional residual capacity, and maximal mid-expiratory flow in weeks 2 and 8. Furthermore, the treatment improved lung functions by upregulating tidal volume, pause increase, and expiratory flow at 50% tidal volume from weeks 5 to 8. Moreover, YCF could significantly suppressed the progression of inflammation and fibrosis, by reducing the levels of inflammatory cytokines, as well as collagen- I and III. YCF treatment also decreased the numbers of macrophages and M1/M2 macrophages and the level of transforming growth factor-β (TGF-β). Additionally, YCF5, the effective substance in YCF, decreased lipopolysaccharide and interferon-γ-induced M1 macrophage polarization in a concentration-dependent manner. The mechanism of anti-M1 polarization might be related to a decrease in extracellular signal-regulated kinase, c-JUN N-terminal kinase, P38, and P65 phosphorylation. Furthermore, YCF5 inhibited interleukin-4-induced M2 macrophages by decreasing the protein and mRNA expressions of arginase-1 and CD206 as well as the levels of profibrotic factors, such as TGF-β and connective tissue growth factor. The mechanisms underlying the anti-M2 polarization of YCF5 were primarily associated with the inhibition of the nuclear translocation of phosphorylated signal transducer and activator of transcription 6 (p-STAT6). CONCLUSION YCF significantly inhibits inflammation and fibrosis in silicotic rats probably via the suppression of M1/M2 macrophage polarization mediated by the inhibition of mitogen-activated protein kinase and nuclear factor kappa B signaling pathways and Janus kinase/STAT6 pathways.
Collapse
Affiliation(s)
- Xinrong TIAN
- 1 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 3 Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Runsu HOU
- 1 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 3 Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xinguang LIU
- 1 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 3 Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Peng ZHAO
- 1 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 3 Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yange TIAN
- 1 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 3 Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiansheng LI
- 4 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 5 Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co constructed by Henan province and Education Ministry of P.R. China, Zhengzhou 450046, China
- 6 Department of Respiratory Diseases, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| |
Collapse
|
22
|
Wang Y, Cheng B, Lin YJ, Wang R, Xuan J, Xu HM. Preliminary Study on the Effect and Molecular Mechanism of Tetrandrine in Alleviating Pulmonary Inflammation and Fibrosis Induced by Silicon Dioxide. TOXICS 2023; 11:765. [PMID: 37755775 PMCID: PMC10536946 DOI: 10.3390/toxics11090765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
This study aims to explore the molecular mechanism of tetrandrine (Tet) in alleviating pulmonary inflammation and fibrosis induced by silica (SiO2) from the perspective of autophagy. C57BL/6J mice were selected as experimental animals, and SiO2 was exposed by intranasal instillation. Tet was intervened by oral gavage. The mice were euthanized on the 7th and 42nd day of SiO2 exposure, and lung tissues were collected for histopathological, molecular biological, immunological, and transmission electron microscopy analysis. The results showed that SiO2 exposure could lead to significant lung inflammation and fibrosis, while Tet could significantly reduce SiO2 exposure-induced lung inflammation and fibrosis. Molecular mechanism research indicated that, compared with SiO2 expose group, Tet intervention could significantly reduce the expression levels of inflammatory cytokines and fibrosis markers (TNF-α, IL-1β, MCP-1, TGF-β1, HYP, Col-I, and Fn), and regulate the expression of key molecules ATG7, microtubule-associated protein 1 light chain 3B (LC3B), and P62 in the autophagy pathway to improve the blocking of autophagic flux, promote the recovery of autophagic lysosomal system function, and inhibit apoptosis. In summary, Tet can alleviate silica-induced lung inflammation and fibrosis, which may be achieved by regulating the expression of key molecules in the autophagy process and associated apoptotic pathway.
Collapse
Affiliation(s)
- Yi Wang
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Yinchuan 750004, China
| | - Bin Cheng
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Yinchuan 750004, China
| | - Yu-Jia Lin
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Yinchuan 750004, China
| | - Rui Wang
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Yinchuan 750004, China
| | - Jie Xuan
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China
- The Fifth People’s Hospital of the Ningxia Hui Autonomous Region, Shizuishan 753000, China
| | - Hai-Ming Xu
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Yinchuan 750004, China
| |
Collapse
|
23
|
Chen M, Wang J, Yuan M, Long M, Sun Y, Wang S, Luo W, Zhou Y, Zhang W, Jiang W, Chao J. AT2 cell-derived IgA trapped by the extracellular matrix in silica-induced pulmonary fibrosis. Int Immunopharmacol 2023; 122:110545. [PMID: 37390644 DOI: 10.1016/j.intimp.2023.110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 07/02/2023]
Abstract
Pulmonary fibrosis is an interstitial lung disease caused by various factors such as exposure to workplace environmental contaminants, drugs, or X-rays. Epithelial cells are among the driving factors of pulmonary fibrosis. Immunoglobulin A (IgA), traditionally thought to be secreted by B cells, is an important immune factor involved in respiratory mucosal immunity. In the current study, we found that lung epithelial cells are involved in IgA secretion, which, in turn, promotes pulmonary fibrosis. Spatial transcriptomics and single-cell sequencing suggest that Igha transcripts were highly expressed in the fibrotic lesion areas of lungs from silica-treated mice. Reconstruction of B-cell receptor (BCR) sequences revealed a new cluster of AT2-like epithelial cells with a shared BCR and high expression of genes related to IgA production. Furthermore, the secretion of IgA by AT2-like cells was trapped by the extracellular matrix and aggravated pulmonary fibrosis by activating fibroblasts. Targeted blockade of IgA secretion by pulmonary epithelial cells may be a potential strategy for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Mengling Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jing Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Mengqin Yuan
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Min Long
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Yuheng Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Sha Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wei Luo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yun Zhou
- Department of Health Management, School of Health Science, West Yunnan University of Applied Sciences, Dali, Yunnan, China
| | - Wei Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wei Jiang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China.
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China; School of Medicine, Xizang Minzu University, Xianyang, Shanxi, China.
| |
Collapse
|
24
|
DU Y, Huang F, Guan L, Zeng M. Role of PI3K/Akt/mTOR pathway-mediated macrophage autophagy in affecting the phenotype transformation of lung fibroblasts induced by silica dust exposure. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1152-1162. [PMID: 37875355 PMCID: PMC10930851 DOI: 10.11817/j.issn.1672-7347.2023.220581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 10/26/2023]
Abstract
OBJECTIVES The phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway is one of the main signaling pathways related to autophagy. Autophagy plays a key role in the formation of silicosis fibrosis. The phenotypic transformation of lung fibroblasts into myofibroblasts is a hallmark of the transition from the inflammatory phase to the fibrotic phase in silicosis. This study aims to investigate whether the PI3K/Akt/mTOR pathway affects the phenotypic transformation of silicosis-induced lung fibroblasts into myofibroblasts via mediating macrophage autophagy. METHODS The human monocytic leukemia cell line THP-1 cells were differentiated into macrophages by treating with 100 ng/mL of phorbol ester for 24 h. Macrophages were exposed to different concentrations (0, 25, 50, 100, 200, 400 μg/mL) and different times (0, 6, 12, 24, 48 h) of SiO2 dust suspension. The survival rate of macrophages was measured by cell counting kit-8 (CCK-8) method. Enzyme linked immunosorbent assay (ELISA) was used to measure the contents of transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α) in the cell supernatant. The co-culture system of macrophages and HFL-1 cells was established by transwell. A blank control group, a SiO2 group, a LY294002 group, a SC79 group, a LY294002+SiO2 group, and a SC79+SiO2 group were set up in this experiment. Macrophages in the LY294002+SiO2 group were pretreated with LY294002 (PI3K inhibitor) for 18 hours, and macrophages in the SC79+SiO2 group were pretreated with SC79 (Akt activator) for 24 hours, and then exposed to SiO2 (100 μg/mL) dust suspension for 12 hours. The expression of microtubule-associated protein 1 light chain 3 (LC3) protein in macrophages was detected by the immunofluorescence method. The protein expressions of PI3K, Akt, mTOR, Beclin-1, LC3 in macrophages, and collagen III (Col III), α-smooth muscle actin (α-SMA), fibronectin (FN), matrix metalloproteinase-1 (MMP-1), tissue metalloproteinase inhibitor-1 (TIMP-1) in HFL-1 cells were measured by Western blotting. RESULTS After the macrophages were exposed to SiO2 dust suspension of different concentrations for 12 h, the survival rates of macrophages were gradually decreased with the increase of SiO2 concentration. Compared with the 0 μg/mL group, the survival rates of macrophages in the 100, 200, and 400 μg/mL groups were significantly decreased, and the concentrations of TGF-β1 and TNF-α in the cell supernatant were obviously increased (all P<0.05). When 100 μg/mL SiO2 dust suspension was applied to macrophages, the survival rates of macrophages were decreased with the prolonged exposure time. Compared with the 0 h group, the survival rates of macrophages were significantly decreased (all P<0.05), the concentrations of TGF-β1 and TNF-α in the cell supernatant were significantly increased, and the protein expression levels of Beclin-1 and LC3II were increased markedly in the 6, 12, 24, and 48 h groups (all P<0.05). Immunofluorescence results demonstrated that after exposure to SiO2 (100 μg/mL) dust for 12 h, LC3 exhibited punctate aggregation and significantly higher fluorescence intensity compared to the blank control group (P<0.05). Compared with the blank control group, the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were up-regulated in the SiO2 group (all P<0.05). Compared with the SiO2 group, the protein expressions of PI3K, Akt, and mTOR were down-regulated and the protein expressions of LC3II and Beclin-1 were up-regulated in macrophages (all P<0.05), the contents of TNF-α and TGF-β1 in the cell supernatant were decreased (both P<0.01), and the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were down-regulated (all P<0.05) in the LY294002+SiO2 group. Compared with the SiO2 group, the protein expressions of PI3K, Akt, and mTOR were up-regulated and the protein expressions of LC3II and Beclin-1 were down-regulated in macrophages (all P<0.05), the contents of TNF-α and TGF-β1 in the cell supernatant were increased (both P<0.01), and the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were up-regulated (all P<0.05) in the SC79+SiO2 group. CONCLUSIONS Silica dust exposure inhibits the PI3K/Akt/mTOR pathway, increases autophagy and concentration of inflammatory factors in macrophages, and promotes the phenotype transformation of HFL-1 cells into myofibroblasts. The regulation of the PI3K/Akt/mTOR pathway can affect the autophagy induction and the concentration of inflammatory factors of macrophages by silica dust exposure, and then affect the phenotype transformation of HFL-1 cells into myofibroblasts induced by silica dust exposure.
Collapse
Affiliation(s)
- Yue DU
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410006, China.
| | - Fangcai Huang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410006, China.
| | - Lan Guan
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410006, China
| | - Ming Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410006, China.
| |
Collapse
|
25
|
Tian Y, Yu B, Zhang Y, Zhang S, Lv B, Gong S, Li J. Exploration of the potential common pathogenic mechanisms in COVID-19 and silicosis by using bioinformatics and system biology. Funct Integr Genomics 2023; 23:199. [PMID: 37278873 PMCID: PMC10241611 DOI: 10.1007/s10142-023-01092-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Silicosis is an occupational lung disease that is common worldwide. In recent years, coronavirus disease 2019 (COVID-19) has provided daunting challenges to public healthcare systems globally. Although multiple studies have shown a close link between COVID-19 and other respiratory diseases, the inter-relational mechanisms between COVID-19 and silicosis remain unclear. This study aimed to explore the shared molecular mechanisms and drug targets of COVID-19 and silicosis. Gene expression profiling identified four modules that were most closely associated with both diseases. Furthermore, we performed functional analysis and constructed a protein-protein interaction network. Seven hub genes (budding uninhibited by benzimidazoles 1 [BUB1], protein regulator of cytokinesis 1 [PRC1], kinesin family member C1 [KIFC1], ribonucleotide reductase regulatory subunit M2 [RRM2], cyclin-dependent kinase inhibitor 3 [CDKN3], Cyclin B2 [CCNB2], and minichromosome maintenance complex component 6 [MCM6]) were involved in the interaction between COVID-19 and silicosis. We investigated how diverse microRNAs and transcription factors regulate these seven genes. Subsequently, the correlation between the hub genes and infiltrating immune cells was explored. Further in-depth analyses were performed based on single-cell transcriptomic data from COVID-19, and the expression of hub-shared genes was characterized and located in multiple cell clusters. Finally, molecular docking results reveal small molecular compounds that may improve COVID-19 and silicosis. The current study reveals the common pathogenesis of COVID-19 and silicosis, which may provide a novel reference for further research.
Collapse
Affiliation(s)
- Yunze Tian
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, Xi'an, 710004, China
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, Xi'an, 710004, China
| | - Beibei Yu
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, Xi'an, 710004, China
| | - Yongfeng Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, Xi'an, 710004, China
| | - Sanpeng Zhang
- Operating room, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, 710004, Xi'an, China
| | - Boqiang Lv
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, Xi'an, 710004, China
| | - Shouping Gong
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, Xi'an, 710004, China.
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, Xi'an, 710004, China.
| |
Collapse
|
26
|
Chai R, Li Y, Shui L, Ni L, Zhang A. The role of pyroptosis in inflammatory diseases. Front Cell Dev Biol 2023; 11:1173235. [PMID: 37250902 PMCID: PMC10213465 DOI: 10.3389/fcell.2023.1173235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Programmed cell death has crucial roles in the physiological maturation of an organism, the maintenance of metabolism, and disease progression. Pyroptosis, a form of programmed cell death which has recently received much attention, is closely related to inflammation and occurs via canonical, non-canonical, caspase-3-dependent, and unclassified pathways. The pore-forming gasdermin proteins mediate pyroptosis by promoting cell lysis, contributing to the outflow of large amounts of inflammatory cytokines and cellular contents. Although the inflammatory response is critical for the body's defense against pathogens, uncontrolled inflammation can cause tissue damage and is a vital factor in the occurrence and progression of various diseases. In this review, we briefly summarize the major signaling pathways of pyroptosis and discuss current research on the pathological function of pyroptosis in autoinflammatory diseases and sterile inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | - Longxing Ni
- *Correspondence: Longxing Ni, ; Ansheng Zhang,
| | | |
Collapse
|
27
|
Li R, Kang H, Chen S. From Basic Research to Clinical Practice: Considerations for Treatment Drugs for Silicosis. Int J Mol Sci 2023; 24:ijms24098333. [PMID: 37176040 PMCID: PMC10179659 DOI: 10.3390/ijms24098333] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Silicosis, characterized by irreversible pulmonary fibrosis, remains a major global public health problem. Nowadays, cumulative studies are focusing on elucidating the pathogenesis of silicosis in order to identify preventive or therapeutic antifibrotic agents. However, the existing research on the mechanism of silica-dust-induced pulmonary fibrosis is only the tip of the iceberg and lags far behind clinical needs. Idiopathic pulmonary fibrosis (IPF), as a pulmonary fibrosis disease, also has the same problem. In this study, we examined the relationship between silicosis and IPF from the perspective of their pathogenesis and fibrotic characteristics, further discussing current drug research and limitations of clinical application in silicosis. Overall, this review provided novel insights for clinical treatment of silicosis with the hope of bridging the gap between research and practice in silicosis.
Collapse
Affiliation(s)
- Rou Li
- Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Huimin Kang
- Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Shi Chen
- Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, Changsha 410013, China
| |
Collapse
|
28
|
Su X, Kong X, Yu X, Zhang X. Incidence and influencing factors of occupational pneumoconiosis: a systematic review and meta-analysis. BMJ Open 2023; 13:e065114. [PMID: 36858466 PMCID: PMC9980323 DOI: 10.1136/bmjopen-2022-065114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVES To determine the incidence of pneumoconiosis worldwide and its influencing factors. DESIGN Systematic review and meta-analysis. SETTING Cohort studies on occupational pneumoconiosis. PARTICIPANTS PubMed, Embase, the Cochrane Library and Web of Science were searched until November 2021. Studies were selected for meta-analysis if they involved at least one variable investigated as an influencing factor for the incidence of pneumoconiosis and reported either the parameters and 95% CIs of the risk fit to the data, or sufficient information to allow for the calculation of those values. PRIMARY OUTCOME MEASURES The pooled incidence of pneumoconiosis and risk ratio (RR) and 95% CIs of influencing factors. RESULTS Our meta-analysis included 19 studies with a total of 335 424 participants, of whom 29 972 developed pneumoconiosis. The pooled incidence of pneumoconiosis was 0.093 (95% CI 0.085 to 0.135). We identified the following influencing factors: (1) male (RR 3.74; 95% CI 1.31 to 10.64; p=0.01), (2) smoking (RR 1.80; 95% CI 1.34 to 2.43; p=0.0001), (3) tunnelling category (RR 4.75; 95% CI 1.96 to 11.53; p<0.0001), (4) helping category (RR 0.07; 95% CI 0.13 to 0.16; p<0.0001), (5) age (the highest incidence occurs between the ages of 50 and 60), (6) duration of dust exposure (RR 4.59, 95% CI 2.41 to 8.74, p<0.01) and (7) cumulative total dust exposure (CTD) (RR 34.14, 95% CI 17.50 to 66.63, p<0.01). A dose-response analysis revealed a significant positive linear dose-response association between the risk of pneumoconiosis and duration of exposure and CTD (P-non-linearity=0.10, P-non-linearity=0.16; respectively). The Pearson correlation analysis revealed that silicosis incidence was highly correlated with cumulative silica exposure (r=0.794, p<0.001). CONCLUSION The incidence of pneumoconiosis in occupational workers was 0.093 and seven factors were found to be associated with the incidence, providing some insight into the prevention of pneumoconiosis. PROSPERO REGISTRATION NUMBER CRD42022323233.
Collapse
Affiliation(s)
- Xuesen Su
- The First College for Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
- The National Health Commission Key Laboratory of Pneumoconiosis (Shanxi, China) Project, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaomei Kong
- The National Health Commission Key Laboratory of Pneumoconiosis (Shanxi, China) Project, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pulmonary and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiao Yu
- The National Health Commission Key Laboratory of Pneumoconiosis (Shanxi, China) Project, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pulmonary and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinri Zhang
- The National Health Commission Key Laboratory of Pneumoconiosis (Shanxi, China) Project, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pulmonary and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
29
|
Remcho TP, Kolls JK. Gene Therapy for Occupational Lung Disease: Steering Macrophages in the Right Direction? Am J Respir Cell Mol Biol 2023; 68:129-130. [PMID: 36315436 PMCID: PMC9986556 DOI: 10.1165/rcmb.2022-0408ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- T Parks Remcho
- Center for Translational Research in Infection and Inflammation Tulane University School of Medicine New Orleans, Louisiana
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation Tulane University School of Medicine New Orleans, Louisiana
| |
Collapse
|
30
|
Zhang Q, Ban J, Chang S, Qu H, Chen J, Liu F. The aggravate role of exosomal circRNA11:120406118|12040782 on macrophage pyroptosis through miR-30b-5p/NLRP3 axis in silica-induced lung fibrosis. Int Immunopharmacol 2023; 114:109476. [PMID: 36450208 DOI: 10.1016/j.intimp.2022.109476] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Silica dust inhalation could lead to silicosis, and there is no specific biomarker for its early diagnosis and no effective treatment due to the lack of research on its pathogenesis. The homeostasis of macrophages was considered to be crucial during the development of silicosis from persistent chronic inflammation to irreversible fibrosis. However, its regulatory mechanism and the communication between macrophages and others are still not clear. Exosomal circRNAs emerge as favorable candidates for cellular communication. Therefore, our study aimed to illustrate the regulatory mechanism of silicosis from the view of exosomal circRNAs. Our study identified a novel exosomal circRNA, circRNA11:120406118|12040782, in the peripheral serum of silicosis patients. Furthermore, the detailed role of circRNA11:120406118|12040782 was investigated both in silicosis mouse model and in silica-stimulated macrophages and fibroblasts. On the one hand, circRNA11:120406118|12040782 was shown to regulate silica-stimulated macrophage pyroptosis through circRNA11:120406118|12040782/miR-30b-5p/NLRP3 network. And this macrophage-derived cirRNA could promote the activation of fibroblasts. On the other hand, overexpressing miR-30b-5p, the crucial component of circRNA11:120406118|12040782/miR-30b-5p/NLRP3 regulatory network, could inhibit pyroptosis and attenuate silica-induced lung inflammation and fibrosis in mice. Our findings suggested that exosomal circRNA11:120406118|12040782 could aggravate NLRP3-mediated macrophages pyroptosis through sponging miR-30b-5p in silicosis development, which provide an experimental basis and shed light on the early diagnosis and treatment of silicosis.
Collapse
Affiliation(s)
- Qi Zhang
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China
| | - Jiaqi Ban
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China
| | - Shuai Chang
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China
| | - Huiyan Qu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China
| | - Jie Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China.
| | - Fangwei Liu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China.
| |
Collapse
|
31
|
Qiu M, Qin L, Dong Y, Ma J, Yang Z, Gao Z. The study of metabolism and metabolomics in a mouse model of silica pulmonary fibrosis based on UHPLC-QE-MS. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:322-330. [DOI: 10.1080/21691401.2022.2124517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Min Qiu
- Baotou Medical College, Baotou, China
| | - Ling Qin
- Baotou Medical College, Baotou, China
| | | | - Junbing Ma
- Department of Cardiovascular Diseases, First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Zheng Yang
- Department of Cardiovascular Diseases, First Affiliated Hospital of Baotou Medical College, Baotou, China
| | | |
Collapse
|
32
|
Therapeutic Effects of Green Tea Polyphenol (‒)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. Int J Mol Sci 2022; 24:ijms24010340. [PMID: 36613784 PMCID: PMC9820274 DOI: 10.3390/ijms24010340] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
(‒)-Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea. Thanks to multiple interactions with cell surface receptors, intracellular signaling pathways, and nuclear transcription factors, EGCG possesses a wide variety of anti-inflammatory, antioxidant, antifibrotic, anti-remodelation, and tissue-protective properties which may be useful in the treatment of various diseases, particularly in cancer, and neurological, cardiovascular, respiratory, and metabolic disorders. This article reviews current information on the biological effects of EGCG in the above-mentioned disorders in relation to molecular pathways controlling inflammation, oxidative stress, and cell apoptosis.
Collapse
|
33
|
Marrocco A, Ortiz LA. Role of metabolic reprogramming in pro-inflammatory cytokine secretion from LPS or silica-activated macrophages. Front Immunol 2022; 13:936167. [PMID: 36341426 PMCID: PMC9633986 DOI: 10.3389/fimmu.2022.936167] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
In the lungs, macrophages constitute the first line of defense against pathogens and foreign bodies and play a fundamental role in maintaining tissue homeostasis. Activated macrophages show altered immunometabolism and metabolic changes governing immune effector mechanisms, such as cytokine secretion characterizing their classic (M1) or alternative (M2) activation. Lipopolysaccharide (LPS)-stimulated macrophages demonstrate enhanced glycolysis, blocked succinate dehydrogenase (SDH), and increased secretion of interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). Glycolysis suppression using 2 deoxyglucose in LPS-stimulated macrophages inhibits IL-1β secretion, but not TNF-α, indicating metabolic pathway specificity that determines cytokine production. In contrast to LPS, the nature of the immunometabolic responses induced by non-organic particles, such as silica, in macrophages, its contribution to cytokine specification, and disease pathogenesis are not well understood. Silica-stimulated macrophages activate pattern recognition receptors (PRRs) and NLRP3 inflammasome and release IL-1β, TNF-α, and interferons, which are the key mediators of silicosis pathogenesis. In contrast to bacteria, silica particles cannot be degraded, and the persistent macrophage activation results in an increased NADPH oxidase (Phox) activation and mitochondrial reactive oxygen species (ROS) production, ultimately leading to macrophage death and release of silica particles that perpetuate inflammation. In this manuscript, we reviewed the effects of silica on macrophage mitochondrial respiration and central carbon metabolism determining cytokine specification responsible for the sustained inflammatory responses in the lungs.
Collapse
Affiliation(s)
- Antonella Marrocco
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Luis A. Ortiz
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
34
|
Wen JH, Li DY, Liang S, Yang C, Tang JX, Liu HF. Macrophage autophagy in macrophage polarization, chronic inflammation and organ fibrosis. Front Immunol 2022; 13:946832. [PMID: 36275654 PMCID: PMC9583253 DOI: 10.3389/fimmu.2022.946832] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
As the essential regulators of organ fibrosis, macrophages undergo marked phenotypic and functional changes after organ injury. These changes in macrophage phenotype and function can result in maladaptive repair, causing chronic inflammation and the development of pathological fibrosis. Autophagy, a highly conserved lysosomal degradation pathway, is one of the major players to maintain the homeostasis of macrophages through clearing protein aggregates, damaged organelles, and invading pathogens. Emerging evidence has shown that macrophage autophagy plays an essential role in macrophage polarization, chronic inflammation, and organ fibrosis. Because of the high heterogeneity of macrophages in different organs, different macrophage types may play different roles in organ fibrosis. Here, we review the current understanding of the function of macrophage autophagy in macrophage polarization, chronic inflammation, and organ fibrosis in different organs, highlight the potential role of macrophage autophagy in the treatment of fibrosis. Finally, the important unresolved issues in this field are briefly discussed. A better understanding of the mechanisms that macrophage autophagy in macrophage polarization, chronic inflammation, and organ fibrosis may contribute to developing novel therapies for chronic inflammatory diseases and organ fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Ji-Xin Tang
- *Correspondence: Ji-Xin Tang, ; Hua-Feng Liu,
| | | |
Collapse
|
35
|
Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG): A Time for a New Player in the Treatment of Respiratory Diseases? Antioxidants (Basel) 2022; 11:antiox11081566. [PMID: 36009285 PMCID: PMC9405266 DOI: 10.3390/antiox11081566] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a major polyphenol of green tea that possesses a wide variety of actions. EGCG acts as a strong antioxidant which effectively scavenges reactive oxygen species (ROS), inhibits pro-oxidant enzymes including NADPH oxidase, activates antioxidant systems including superoxide dismutase, catalase, or glutathione, and reduces abundant production of nitric oxide metabolites by inducible nitric oxide synthase. ECGC also exerts potent anti-inflammatory, anti-fibrotic, pro-apoptotic, anti-tumorous, and metabolic effects via modulation of a variety of intracellular signaling cascades. Based on this knowledge, the use of EGCG could be of benefit in respiratory diseases with acute or chronic inflammatory, oxidative, and fibrotizing processes in their pathogenesis. This article reviews current information on the biological effects of EGCG in those respiratory diseases or animal models in which EGCG has been administered, i.e., acute respiratory distress syndrome, respiratory infections, COVID-19, bronchial asthma, chronic obstructive pulmonary disease, lung fibrosis, silicosis, lung cancer, pulmonary hypertension, and lung embolism, and critically discusses effectiveness of EGCG administration in these respiratory disorders. For this review, articles in English language from the PubMed database were used.
Collapse
|
36
|
Xie Y, Ma J, Xie L, Li W, Yang M, Gu P, Zhang Y, Fan L, Wang D, Chen W. Inhibition of Gas6 promotes crystalline silica-induced inflammatory response of macrophages via blocking autophagy flux. ENVIRONMENTAL TOXICOLOGY 2022; 37:1925-1933. [PMID: 35438832 DOI: 10.1002/tox.23539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/29/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Inhalation of crystalline silica (CS) can cause silicosis, which is one of the most serious interstitial lung diseases worldwide. Autophagy dysfunction is an essential step in silicosis progression. In this study, we aim to identify the effect of growth arrest-specific protein 6 (Gas6) during autophagy induction and macrophage inflammatory response caused by CS. After RAW 264.7 macrophages exposed to CS, the levels of Gas6 and autophagy markers (p62, Beclin1, and LC3-II/LC3-I) were increased, accompanied with enhanced inflammatory cytokines secretion. Using autophagy activator (rapamycin) repressed, whereas autophagy inhibitor (3-methyladenine) promoted inflammatory cytokines release. Besides, inhibition of Gas6 aggravated CS-induced inflammatory response, and autophagy inhibition facilitated the promoted effect of Gas6 silencing, resulting in elevated expression of inflammatory cytokines. These findings reveal the protective effects of Gas6 and autophagy in macrophages in response to CS exposure, and highlight the autophagy regulated by Gas6 may be a potential prevention target for CS-induced lung inflammatory response.
Collapse
Affiliation(s)
- Yujia Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Li
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pei Gu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yingdie Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lieyang Fan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
37
|
Fan M, Xiao H, Song D, Zhu L, Zhang J, Zhang X, Wang J, Dai H, Wang C. A Novel N-Arylpyridone Compound Alleviates the Inflammatory and Fibrotic Reaction of Silicosis by Inhibiting the ASK1-p38 Pathway and Regulating Macrophage Polarization. Front Pharmacol 2022; 13:848435. [PMID: 35401236 PMCID: PMC8983992 DOI: 10.3389/fphar.2022.848435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
Silicosis is one of the potentially fatal occupational diseases characterized by respiratory dysfunction, chronic interstitial inflammation, and fibrosis, for which treatment options are limited. Previous studies showed that a novel N-arylpyridone compound named AKEX0011 exhibited anti-inflammatory and anti-fibrotic effects in bleomycin-induced pulmonary fibrosis; however, it is unknown whether it could also be effective against silicosis. Therefore, we sought to investigate the preventive and therapeutic roles of AKEX0011 in a silicosis rodent model and in a silica-stimulated macrophage cell line. In vivo, our results showed that AKEX0011 ameliorated silica-induced imaging lung damages, respiratory dysfunction, reduced the secretion of inflammatory and fibrotic factors (TNF-α, IL-1β, IL-6, TGF-β, IL-4, and IL-10), and the deposition of fibrosis-related proteins (collagen I, fibronectin, and α-SMA), regardless of early or advanced therapy. Specifically, we found that AKEX0011 attenuated silicosis by inhibiting apoptosis, blocking the ASK1-p38 MAPK signaling pathway, and regulating polarization of macrophages. In vitro, AKEX0011 inhibited macrophages from secreting inflammatory cytokines and inhibited apoptosis of macrophages in pre-treated and post-treated models, concurrent with blocking the ASK1-p38 pathway and inhibiting M1 polarization. Collectively, AKEX0011, as a novel N-arylpyridone compound, exerted protective effects for silica-induced pulmonary inflammation and fibrosis both in vivo and in vitro, and hence, it could be a strong drug candidate for the treatment of silicosis.
Collapse
Affiliation(s)
- Mingming Fan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Jilin, China,Department of Pulmonary and Critical Care Medicine Center of Respiratory Medicine, China-Japan Friendship Hospital, Capital Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Huijuan Xiao
- Department of Pulmonary and Critical Care Medicine Center of Respiratory Medicine, China-Japan Friendship Hospital, Capital Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship School of Clinical Medicine, Peking University, Beijing, China
| | - Dingyun Song
- Department of Pulmonary and Critical Care Medicine Center of Respiratory Medicine, China-Japan Friendship Hospital, Capital Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lili Zhu
- Department of Pulmonary and Critical Care Medicine Center of Respiratory Medicine, China-Japan Friendship Hospital, Capital Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jie Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Jilin, China
| | - Xinran Zhang
- Department of Pulmonary and Critical Care Medicine Center of Respiratory Medicine, China-Japan Friendship Hospital, Capital Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,*Correspondence: Huaping Dai, ; Jing Wang, ; Chen Wang,
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine Center of Respiratory Medicine, China-Japan Friendship Hospital, Capital Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,*Correspondence: Huaping Dai, ; Jing Wang, ; Chen Wang,
| | - Chen Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Jilin, China,Department of Pulmonary and Critical Care Medicine Center of Respiratory Medicine, China-Japan Friendship Hospital, Capital Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,*Correspondence: Huaping Dai, ; Jing Wang, ; Chen Wang,
| |
Collapse
|
38
|
Lam M, Mansell A, Tate MD. Another One Fights the Dust - Targeting the NLRP3 Inflammasome for the Treatment of Silicosis. Am J Respir Cell Mol Biol 2022; 66:601-611. [PMID: 35290170 DOI: 10.1165/rcmb.2021-0545tr] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Silicosis is a multifaceted lung disease, characterised by persistent inflammation and structural remodelling. Despite its poor prognosis, there are no treatments currently available for patients with silicosis. Recent pre-clinical findings in models of lung fibrosis have suggested a major role for the nucleotide binding domain and leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome in silica-driven inflammation and fibrosis. This review outlines the beneficial effects of targeting the NLRP3 inflammasome in in vitro cell experiments and in in vivo animal models, whereby inflammation and fibrosis are abrogated following NLRP3 inflammasome inhibition. While preclinical evidence is promising, studies which explore NLRP3 inflammasomes in the clinical setting are warranted. In particular, there is still a need to identify biomarkers which may be helpful for the early detection of silicosis and to fully elucidate mechanisms underlying these beneficial effects to further develop or repurpose existing anti-NLRP3 drugs as novel treatments that limit disease progression.
Collapse
Affiliation(s)
- Maggie Lam
- Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases, 366840, Clayton, Victoria, Australia.,Monash University , Department of Molecular and Translational Sciences, Clayton, Victoria, Australia
| | - Ashley Mansell
- Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases, 366840, Clayton, Victoria, Australia.,Monash Univerisity, Department of Molecular and Translational Sciences, Clayton, Victoria, Australia.,Adiso Therapeutics Inc, Concord, Massachusetts, United States
| | - Michelle D Tate
- Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases, 366840, Clayton, Victoria, Australia.,Monash University, Department of Molecular and Translational Sciences, Clayton, Victoria, Australia;
| |
Collapse
|
39
|
Xing Y, Sun X, Dou Y, Wang M, Zhao Y, Yang Q, Zhao Y. The Immuno-Modulation Effect of Macrophage-Derived Extracellular Vesicles in Chronic Inflammatory Diseases. Front Immunol 2022; 12:785728. [PMID: 34975877 PMCID: PMC8716390 DOI: 10.3389/fimmu.2021.785728] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
As natural nanocarriers and intercellular messengers, extracellular vesicles (EVs) control communication among cells. Under physiological and pathological conditions, EVs deliver generic information including proteins and nucleic acids to recipient cells and exert regulatory effects. Macrophages help mediate immune responses, and macrophage-derived EVs may play immunomodulatory roles in the progression of chronic inflammatory diseases. Furthermore, EVs derived from various macrophage phenotypes have different biological functions. In this review, we describe the pathophysiological significance of macrophage-derived extracellular vesicles in the development of chronic inflammatory diseases, including diabetes, cancer, cardiovascular disease, pulmonary disease, and gastrointestinal disease, and the potential applications of these EVs.
Collapse
Affiliation(s)
- Yi Xing
- Department of Orthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Min Wang
- Department of Orthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yanhong Zhao
- Department of Orthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
40
|
Abstract
Herbal compounds including those already well-established in traditional Chinese medicine have been increasingly tested in the treatment of various diseases. Recent studies have shown that herbal compounds can be of benefit also for pulmonary silicosis as they can diminish changes associated with silica-induced inflammation, fibrosis, and oxidative stress. Due to a lack of effective therapeutic strategies, development of novel approaches which may be introduced particularly in the early stage of the disease, is urgently needed. This review summarizes positive effects of several alternative plant-based drugs in the models of experimental silicosis with a potential for subsequent clinical investigation and use in future.
Collapse
Affiliation(s)
- J Adamcakova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | |
Collapse
|
41
|
Abstract
Herbal compounds including those already well-established in traditional Chinese medicine have been increasingly tested in the treatment of various diseases. Recent studies have shown that herbal compounds can be of benefit also for pulmonary silicosis as they can diminish changes associated with silica-induced inflammation, fibrosis, and oxidative stress. Due to a lack of effective therapeutic strategies, development of novel approaches which may be introduced particularly in the early stage of the disease, is urgently needed. This review summarizes positive effects of several alternative plant-based drugs in the models of experimental silicosis with a potential for subsequent clinical investigation and use in future.
Collapse
Affiliation(s)
- J ADAMCAKOVA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - D MOKRA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| |
Collapse
|
42
|
Zheng Y, Yu Y, Chen XF, Yang SL, Tang XL, Xiang ZG. Intestinal Macrophage Autophagy and its Pharmacological Application in Inflammatory Bowel Disease. Front Pharmacol 2021; 12:803686. [PMID: 34899362 PMCID: PMC8652230 DOI: 10.3389/fphar.2021.803686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprised of Crohn’s disease (CD) and ulcerative colitis (UC), is a group of chronic inflammatory disorders. IBD is regarded as a severe healthcare problem worldwide, with high morbidity and lethality. So far, despite of numerous studies on this issue, the specific mechanisms of IBD still remain unclarified and ideal treatments are not available for IBD. The intestinal mucosal barrier is vital for maintaining the function of the intestinal self-defensive system. Among all of the components, macrophage is an important one in the intestinal self-defensive system, normally protecting the gut against exotic invasion. However, the over-activation of macrophages in pathological conditions leads to the overwhelming induction of intestinal inflammatory and immune reaction, thus damaging the intestinal functions. Autophagy is an important catabolic mechanism. It has been proven to participate the regulation of various kinds of inflammation- and immune-related disorders via the regulation of inflammation in related cells. Here in this paper, we will review the role and mechanism of intestinal macrophage autophagy in IBD. In addition, several well-studied kinds of agents taking advantage of intestinal macrophage autophagy for the treatment of IBD will also be discussed. We aim to bring novel insights in the development of therapeutic strategies against IBD.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Gastroenterology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, China
| | - Yang Yu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xu-Feng Chen
- Department of Gastroenterology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, China
| | - Sheng-Lan Yang
- Department of Gastroenterology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, China
| | - Xiao-Long Tang
- Department of Gastroenterology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, China
| | - Zheng-Guo Xiang
- Department of Gastroenterology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, China
| |
Collapse
|
43
|
Melo EM, Oliveira VLS, Boff D, Galvão I. Pulmonary macrophages and their different roles in health and disease. Int J Biochem Cell Biol 2021; 141:106095. [PMID: 34653619 DOI: 10.1016/j.biocel.2021.106095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 12/20/2022]
Abstract
Macrophages are a heterogeneous population of myeloid cells with phenotype and function modulated according to the microenvironment in which they are found. The lung resident macrophages known as Alveolar Macrophages (AM) and Interstitial Macrophages (IM) are localized in two different compartments. During lung homeostasis, macrophages can remove inhaled particulates, cellular debris and contribute to some metabolic processes. Macrophages may assume a pro-inflammatory phenotype after being classically activated (M1) or anti-inflammatory when being alternatively activated (M2). M1 and M2 have different transcription profiles and act by eliminating bacteria, viruses and fungi from the host or repairing the damage triggered by inflammation, respectively. Nevertheless, macrophages also may contribute to lung damage during persistent inflammation or continuous exposure to antigens. In this review, we discuss the origin and function of pulmonary macrophages in the context of homeostasis, infectious and non-infectious lung diseases.
Collapse
Affiliation(s)
- Eliza Mathias Melo
- Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vivian Louise Soares Oliveira
- Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Daiane Boff
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Izabela Galvão
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
44
|
Cai Q, Ma J, Wang J, Wang J, Cui J, Wu S, Wang Z, Wang N, Wang J, Yang D, Yang J, Xue J, Li F, Chen J, Liu X. Adenoviral Transduction of Dickkopf-1 Alleviates Silica-Induced Silicosis Development in Lungs of Mice. Hum Gene Ther 2021; 33:155-174. [PMID: 34405699 DOI: 10.1089/hum.2021.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Silicosis is an occupational disease caused by inhalation of silica dust, which is hallmarked by progressive pulmonary fibrosis associated with poor prognosis. Wnt/β-catenin signaling is implicated in the development of fibrosis and is a therapeutic target for fibrotic diseases. Previous clinical studies of patients with pneumoconiosis, including silicosis, revealed an increased concentration of circulating WNT3A and DKK1 proteins and inflammatory cells in bronchoalveolar lavage compared with healthy subjects. The present study evaluated the effects of adenovirus-mediated transduction of Dickkopf-1 (Dkk1), a Wnt/β-catenin signaling inhibitor, on the development of pulmonary silicosis in mice. Consistent with previous human clinical studies, our experimental studies in mice demonstrated an aberrant Wnt/β-catenin signaling activity coinciding with increased Wnt3a and Dkk1 proteins and inflammation in lungs of silica-induced silicosis mice compared with controls. Intratracheal delivery of adenovirus expressing murine Dkk1 (AdDkk1) inhibited Wnt/β-catenin activity in mouse lungs. The adenovirus-mediated Dkk1 gene transduction demonstrated the potential to prevent silicosis development and ameliorate silica-induced lung fibrogenesis in mice, accompanied by the reduced expression of epithelia--mesenchymal transition markers and deposition of extracellular matrix proteins compared with mice treated with "null" adenoviral vector. Mechanistically, AdDkk1 is able to attenuate the lung silicosis by inhibiting a silica-induced spike in TGF-β/Smad signaling. In addition, the forced expression of Dkk1 suppressed silica-induced epithelial cell proliferation in polarized human bronchial epithelial cells. This study provides insight into the underlying role of Wnt/β-catenin signaling in promoting the pathogenesis of silicosis and is proof-of-concept that targeting Wnt/β-catenin signaling by Dkk1 gene transduction may be an alternative approach in the prevention and treatment of silicosis lung disease.
Collapse
Affiliation(s)
- Qian Cai
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources of Western China, College of Life Science, Ningxia University, Yinchuan, China.,Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA.,Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Jia Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources of Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Jing Wang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Juying Wang
- Department of Occupational Disease, The Fifth People's Hospital of Ningxia, Shizuishan, China
| | - Jieda Cui
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shuang Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources of Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Zhaojun Wang
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Na Wang
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jiaqi Wang
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Dandan Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources of Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Jiali Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources of Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Jing Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources of Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Feng Li
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Juan Chen
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources of Western China, College of Life Science, Ningxia University, Yinchuan, China.,Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
45
|
The Mechanism and Effect of Autophagy, Apoptosis, and Pyroptosis on the Progression of Silicosis. Int J Mol Sci 2021; 22:ijms22158110. [PMID: 34360876 PMCID: PMC8348676 DOI: 10.3390/ijms22158110] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Silicosis remains one of the most severe pulmonary fibrotic diseases worldwide, caused by chronic exposure to silica dust. In this review, we have proposed that programmed cell death (PCD), including autophagy, apoptosis, and pyroptosis, is closely associated with silicosis progression. Furthermore, some autophagy, apoptosis, or pyroptosis-related signaling pathways or regulatory proteins have also been summarized to contribute greatly to the formation and development of silicosis. In addition, silicosis pathogenesis depends on the crosstalk among these three ways of PCD to a certain extent. In summary, more profound research on these mechanisms and effects may be expected to become promising targets for intervention or therapeutic methods of silicosis in the future.
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Previous studies mainly described a role for organic agents as possible triggers for sarcoidosis. In this review, we address recent studies suggesting a possible role for inorganic elements, such as metals or silica in sarcoidosis pathogenesis. RECENT FINDINGS Several epidemiological papers suggest that inorganic agents, either by environmental exposures or occupational activities, could trigger sarcoidosis. Association between inorganics and sarcoidosis is also described in several recently published case reports and studies demonstrating immunological sensitization to inorganic agents in sarcoidosis patients.Studies comparing chronic beryllium disease (CBD) and sarcoidosis suggest that although antigenic triggers may differ, underlying processes may be comparable.Besides the fact that a growing number of studies show a possible role for inorganic triggers, it is also suggested that inorganic triggered sarcoidosis may result in a more severe phenotype, including pulmonary fibrosis. SUMMARY We can use the knowledge already gained on CBD pathogenesis to conduct further research into role of inorganics, such as metals and silica as antigens in sarcoidosis. Given the importance of a lymphocyte proliferation test (LPT) in diagnosing CBD, it seems obvious to also implement this test in the diagnostic work-up of sarcoidosis to identify patients with an inorganic antigenic trigger of their disease.
Collapse
|
47
|
Adamcakova J, Mokra D. New Insights into Pathomechanisms and Treatment Possibilities for Lung Silicosis. Int J Mol Sci 2021; 22:ijms22084162. [PMID: 33920534 PMCID: PMC8072896 DOI: 10.3390/ijms22084162] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Inhalation of silica particles is an environmental and occupational cause of silicosis, a type of pneumoconiosis. Development of the lung silicosis is a unique process in which the vicious cycle of ingestion of inhaled silica particles by alveolar macrophages and their release triggers inflammation, generation of nodular lesions, and irreversible fibrosis. The pathophysiology of silicosis is complex, and interactions between the pathomechanisms have not been completely understood. However, elucidation of silica-induced inflammation cascades and inflammation-fibrosis relations has uncovered several novel possibilities of therapeutic targeting. This article reviews new information on the pathophysiology of silicosis and points out several promising treatment approaches targeting silicosis-related pathways.
Collapse
|
48
|
Serum Lowers Bioactivity and Uptake of Synthetic Amorphous Silica by Alveolar Macrophages in a Particle Specific Manner. NANOMATERIALS 2021; 11:nano11030628. [PMID: 33802450 PMCID: PMC7999370 DOI: 10.3390/nano11030628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/20/2021] [Accepted: 02/26/2021] [Indexed: 12/02/2022]
Abstract
Various cell types are compromised by synthetic amorphous silica (SAS) if they are exposed to SAS under protein-free conditions in vitro. Addition of serum protein can mitigate most SAS effects, but it is not clear whether this is solely caused by protein corona formation and/or altered particle uptake. Because sensitive and reliable mass spectrometric measurements of SiO2 NP are cumbersome, quantitative uptake studies of SAS at the cellular level are largely missing. In this study, we combined the comparison of SAS effects on alveolar macrophages in the presence and absence of foetal calf serum with mass spectrometric measurement of 28Si in alkaline cell lysates. Effects on the release of lactate dehydrogenase, glucuronidase, TNFα and H2O2 of precipitated (SIPERNAT® 50, SIPERNAT® 160) and fumed SAS (AEROSIL® OX50, AEROSIL® 380 F) were lowered close to control level by foetal calf serum (FCS) added to the medium. Using a quantitative high resolution ICP-MS measurement combined with electron microscopy, we found that FCS reduced the uptake of particle mass by 9.9% (SIPERNAT® 50) up to 83.8% (AEROSIL® OX50). Additionally, larger particle agglomerates were less frequent in cells in the presence of FCS. Plotting values for lactate dehydrogenase (LDH), glucuronidase (GLU) or tumour necrosis factor alpha (TNFα) against the mean cellular dose showed the reduction of bioactivity with a particle sedimentation bias. As a whole, the mitigating effects of FCS on precipitated and fumed SAS on alveolar macrophages are caused by a reduction of bioactivity and by a lowered internalization, and both effects occur in a particle specific manner. The method to quantify nanosized SiO2 in cells is a valuable tool for future in vitro studies.
Collapse
|