1
|
Orhan B, Nazlıoğlu HÖ, Özkocaman V, Ersal T, Pinar İE, Yalçin C, Çubukçu S, Koca TG, Hunutlu FÇ, Yavuz Ş, Ali R, Özkalemkaş F. WITHDRAWN: Is TGF-β1 And SMAD-7 Expression At Diagnosis Predictive Of Treatment Response In Patients With Low-Risk Myelodysplastic Syndrome? Pathol Res Pract 2025:155839. [PMID: 40011161 DOI: 10.1016/j.prp.2025.155839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/31/2023] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Bedrettin Orhan
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| | | | - Vildan Özkocaman
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Tuba Ersal
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - İbrahim Ethem Pinar
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Cumali Yalçin
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Sinem Çubukçu
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Tuba Güllü Koca
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Fazıl Çağrı Hunutlu
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Şeyma Yavuz
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Rıdvan Ali
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Fahir Özkalemkaş
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
2
|
McGraw KL, Larson DR. Implications for metabolic disturbances in myelodysplastic syndromes. Semin Hematol 2024; 61:470-478. [PMID: 39603905 PMCID: PMC11646176 DOI: 10.1053/j.seminhematol.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The Myelodysplastic Syndromes (MDS) are heterogeneous stem cell malignancies clinically characterized by bone marrow dysplasia, peripheral blood cytopenias, and a high risk for transformation to acute myeloid leukemia. In early stages of disease, differentiation defects and maturation blocks result in deficient hematopoiesis. In higher risk disease, unrestricted proliferation of immature blast cells leads to leukemogenesis. Disease pathogenesis can be attributed to many factors including chronic inflammation that is driven in part by commonly found somatic gene mutations (SGM) fostering expansion of malignant clones while suppressing normal hematopoiesis. Cellular metabolism that both directly and indirectly regulates hematopoietic stem cell (HSC) fate, is intimately connected to the immune system, is altered by MDS somatic gene mutations and is likely is a major contributor to disease pathophysiology. Despite this likely role in pathobiology, there is an underwhelming depth of literature on the subject and the precise metabolic dysregulations in these myeloid malignancies have yet to be fully delineated. In this review, we will provide a general overview of several major metabolic processes and how each directs HSC fate, provide a summary of metabolic studies in MDS, discuss how common SGM and inflammation influence metabolic pathways to drive bone marrow failure, and end with a discussion of standards of care and how these should be carefully considered in the context of metabolic dysregulation.
Collapse
Affiliation(s)
- Kathy L McGraw
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Immune Deficiencies-Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, 20872.
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Immune Deficiencies-Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, 20872
| |
Collapse
|
3
|
Gangat N, Tefferi A. Targeting anemia in myeloid neoplasms. Am J Hematol 2024; 99:1663-1666. [PMID: 38837732 DOI: 10.1002/ajh.27408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/07/2024]
Abstract
Anemia-directed therapeutic approaches targeting the TGF-β-SMAD and HIF-PH pathways.
Collapse
Affiliation(s)
- Naseema Gangat
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ayalew Tefferi
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Ghosh S, Nguyen MT, Choi HE, Stahl M, Kühn AL, Van der Auwera S, Grabe HJ, Völzke H, Homuth G, Myers SA, Hogaboam CM, Noth I, Martinez FJ, Petsko GA, Glimcher LH. RIOK2 transcriptionally regulates TRiC and dyskerin complexes to prevent telomere shortening. Nat Commun 2024; 15:7138. [PMID: 39164231 PMCID: PMC11335878 DOI: 10.1038/s41467-024-51336-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
Telomere shortening is a prominent hallmark of aging and is emerging as a characteristic feature of Myelodysplastic Syndromes (MDS) and Idiopathic Pulmonary Fibrosis (IPF). Optimal telomerase activity prevents progressive shortening of telomeres that triggers DNA damage responses. However, the upstream regulation of telomerase holoenzyme components remains poorly defined. Here, we identify RIOK2, a master regulator of human blood cell development, as a critical transcription factor for telomere maintenance. Mechanistically, loss of RIOK2 or its DNA-binding/transactivation properties downregulates mRNA expression of both TRiC and dyskerin complex subunits that impairs telomerase activity, thereby causing telomere shortening. We further show that RIOK2 expression is diminished in aged individuals and IPF patients, and it strongly correlates with shortened telomeres in MDS patient-derived bone marrow cells. Importantly, ectopic expression of RIOK2 alleviates telomere shortening in IPF patient-derived primary lung fibroblasts. Hence, increasing RIOK2 levels prevents telomere shortening, thus offering therapeutic strategies for telomere biology disorders.
Collapse
Affiliation(s)
- Shrestha Ghosh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| | - Mileena T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Yale University, New Haven, CT, USA
| | - Ha Eun Choi
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Annemarie Luise Kühn
- Department for Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Van der Auwera
- Department for Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department for Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Cory M Hogaboam
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, USA
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Gregory A Petsko
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurie H Glimcher
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Zhaxi Q, Gesang L, Huang J, Suona Y, Ci B, Danzeng Z, Zhang R, Liu B. Hypermethylation of BMPR2 and TGF-β Promoter Regions in Tibetan Patients with High-Altitude Polycythemia at Extreme Altitude. Biochem Genet 2024:10.1007/s10528-024-10798-2. [PMID: 38787494 DOI: 10.1007/s10528-024-10798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/01/2024] [Indexed: 05/25/2024]
Abstract
Although the expression of many genes is associated with adaptation to high-altitude hypoxic environments, the role of epigenetics in the response to this harsh environmental stress is currently unclear. We explored whether abnormal DNA promoter methylation levels of six genes, namely, ABCA1, SOD2, AKT1, VEGFR2, TGF-β, and BMPR2, affect the occurrence and development of high-altitude polycythemia (HAPC) in Tibetans. The methylation levels of HAPC and the control group of 130 Tibetans from very high altitudes (> 4500 m) were examined using quantitative methylation-specific real-time PCR (QMSP). Depending on the type of data, the Pearson chi-square test, Wilcoxon rank-sum test, and Fisher exact test were used to assess the differences between the two groups. The correlation between the methylation levels of each gene and the hemoglobin content was explored using a linear mixed model. Our experiment revealed that the methylation levels of the TGF-β and BMPR2 genes differed significantly in the two groups (p < 0.05) and linear mixed model analysis showed that the correlation between the hemoglobin and methylation of ABCA1, TGF-β, and BMPR2 was statistically significant (p < 0.05). Our study suggests that levels of TGF-β and BMPR2 methylation are associated with the occurrence of HAPC in extreme-altitude Tibetan populations among 6 selected genes. Epigenetics may be involved in the pathogenesis of HAPC, and future experiments could combine gene and protein levels to verify the diagnostic value of TGF-β and BMPR2 methylation levels in HAPC.
Collapse
Affiliation(s)
- Quzong Zhaxi
- Institute of High Altitude Medicine, Tibet Autonomous Region People's Hospital, 18 Linkuo North Road, Chengguan District, Lhasa, Tibet Autonomous Region, People's Republic of China
| | - Luobu Gesang
- Institute of High Altitude Medicine, Tibet Autonomous Region People's Hospital, 18 Linkuo North Road, Chengguan District, Lhasa, Tibet Autonomous Region, People's Republic of China.
| | - Ju Huang
- Institute of High Altitude Medicine, Tibet Autonomous Region People's Hospital, 18 Linkuo North Road, Chengguan District, Lhasa, Tibet Autonomous Region, People's Republic of China
| | - Yangzong Suona
- Institute of High Altitude Medicine, Tibet Autonomous Region People's Hospital, 18 Linkuo North Road, Chengguan District, Lhasa, Tibet Autonomous Region, People's Republic of China
| | - Bai Ci
- Institute of High Altitude Medicine, Tibet Autonomous Region People's Hospital, 18 Linkuo North Road, Chengguan District, Lhasa, Tibet Autonomous Region, People's Republic of China
| | - Zhuoga Danzeng
- Institute of High Altitude Medicine, Tibet Autonomous Region People's Hospital, 18 Linkuo North Road, Chengguan District, Lhasa, Tibet Autonomous Region, People's Republic of China
| | - Rui Zhang
- Institute of High Altitude Medicine, Tibet Autonomous Region People's Hospital, 18 Linkuo North Road, Chengguan District, Lhasa, Tibet Autonomous Region, People's Republic of China
| | - Binyun Liu
- Institute of High Altitude Medicine, Tibet Autonomous Region People's Hospital, 18 Linkuo North Road, Chengguan District, Lhasa, Tibet Autonomous Region, People's Republic of China
| |
Collapse
|
6
|
Hu J, Zhong Y, Xu P, Xin L, Zhu X, Jiang X, Gao W, Yang B, Chen Y. β-Thalassemia gene editing therapy: Advancements and difficulties. Medicine (Baltimore) 2024; 103:e38036. [PMID: 38701251 PMCID: PMC11062644 DOI: 10.1097/md.0000000000038036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
β-Thalassemia is the world's number 1 single-gene genetic disorder and is characterized by suppressed or impaired production of β-pearl protein chains. This results in intramedullary destruction and premature lysis of red blood cells in peripheral blood. Among them, patients with transfusion-dependent β-thalassemia face the problem of long-term transfusion and iron chelation therapy, which leads to clinical complications and great economic stress. As gene editing technology improves, we are seeing the dawn of a cure for the disease, with its reduction of ineffective erythropoiesis and effective prolongation of survival in critically ill patients. Here, we provide an overview of β-thalassemia distribution and pathophysiology. In addition, we focus on gene therapy and gene editing advances. Nucleic acid endonuclease tools currently available for gene editing fall into 3 categories: zinc finger nucleases, transcription activator-like effector nucleases, and regularly interspaced short palindromic repeats (CRISPR-Cas9) nucleases. This paper reviews the exploratory applications and exploration of emerging therapeutic tools based on 3 classes of nucleic acid endonucleases in the treatment of β-thalassemia diseases.
Collapse
Affiliation(s)
- Jing Hu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yebing Zhong
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Pengxiang Xu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Liuyan Xin
- Hematology Department, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaodan Zhu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinghui Jiang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Weifang Gao
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bin Yang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yijian Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
7
|
Tang P, Wang H. Regulation of erythropoiesis: emerging concepts and therapeutic implications. Hematology 2023; 28:2250645. [PMID: 37639548 DOI: 10.1080/16078454.2023.2250645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
The process of erythropoiesis is complex and involves the transfer of cells from the yolk sac to the fetal hepar and, ultimately, to the bone marrow during embryonic development. Within the bone marrow, erythroid progenitor cells undergo several stages to generate reticulocytes that enter the bloodstream. Erythropoiesis is regulated by various factors, with erythropoietin (EPO) synthesized by the kidney being the promoting factor and hepcidin synthesized by the hepar inhibiting iron mobilization. Transcription factors, such as GATA and KLF, also play a crucial role in erythropoiesis. Disruption of any of these factors can lead to abnormal erythropoiesis, resulting in red cell excess, red cell deficiency, or abnormal morphological function. This review provides a general description of erythropoiesis, as well as its regulation, highlighting the significance of understanding the process for the diagnosis and treatment of various hematological disorders.
Collapse
Affiliation(s)
- Pu Tang
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Huaquan Wang
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
8
|
Lan Z, Lv Z, Zuo W, Xiao Y. From bench to bedside: The promise of sotatercept in hematologic disorders. Biomed Pharmacother 2023; 165:115239. [PMID: 37516019 DOI: 10.1016/j.biopha.2023.115239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
Sotatercept (ACE-011) is an activin receptor IIA-Fc (ActRIIA-Fc) fusion protein currently under investigation for its potential in the treatment of hematologic diseases. By impeding the activities of the overexpressed growth and differentiation factor 11 (GDF11), activin A, and other members of the transforming growth factor-β (TGF-β) superfamily, commonly found in hematologic disorders, sotatercept aims to restore the normal functioning of red blood cell maturation and osteoblast differentiation. This action is anticipated to enhance anemia management and hinder the progression of myeloma. Simultaneously, comprehensive research is ongoing to investigate sotatercept's pharmacokinetics and potential adverse reactions, thus laying a robust foundation for its prospective clinical use. In this review, we provide a detailed overview of TGF-β pathways in physiological and hematologic disorder contexts, outline the potential mechanism of sotatercept, and delve into its pharmacokinetics and clinical research advancements in various hematologic diseases. A particular emphasis is given to the relationship between sotatercept dosage and its efficacy or associated adverse reactions.
Collapse
Affiliation(s)
- Zehao Lan
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha 410011, China; Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Zhaohua Lv
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha 410011, China; Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Wanyun Zuo
- Department of Hematology, Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha 410011, China.
| |
Collapse
|
9
|
Shaikh A. Computational modeling and in vitro evaluation identified natural product-Z218 as a novel Janus kinase 2 (JAK2) inhibitor to combat β-thalassemia. Biotechnol Appl Biochem 2023; 70:1450-1459. [PMID: 36999639 DOI: 10.1002/bab.2459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/09/2023] [Indexed: 04/01/2023]
Abstract
Aberrant activity of Janus kinase 2 (JAK2) is a known driver of several myeloproliferative disorders, including polycythemia vera, and thalassemia. Several inhibitors have been proposed to inhibit JAK2 activity in order to control the disease progression. Ruxolitinib and fedratinib that targets JAK2 kinase have been approved for use in myeloproliferative neoplasms patients. Experimental structures of JAK2 complexed with ruxolitinib provide insights into critical interactions of ruxolitinib. In this work, using a high-throughput virtual screening followed by experimental validations, we have identified a novel natural product from ZINC database that interacts with JAK2 in a manner similar to ruxolitinib and inhibits the activity of JAK2 kinase. Molecular dynamics simulations and MMPBSA method show binding dynamics and stability of our identified lead compound. Kinase inhibition assays show that our identified lead molecule inhibits JAK2 kinase at a nanomolar range, indicating a plausibility that the identified lead molecule can be further studied as natural product inhibitor of JAK2 kinase.
Collapse
Affiliation(s)
- Ahmad Shaikh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
10
|
Bou-Fakhredin R, Rivella S, Cappellini MD, Taher AT. Pathogenic Mechanisms in Thalassemia I: Ineffective Erythropoiesis and Hypercoagulability. Hematol Oncol Clin North Am 2023; 37:341-351. [PMID: 36907607 DOI: 10.1016/j.hoc.2022.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Erythropoiesis is the physiological process that results in the production of red blood cells (RBCs). In conditions of pathologically altered erythropoiesis or ineffective erythropoiesis, as in the case of β-thalassemia, the reduced ability of erythrocytes to differentiate, survive and deliver oxygen stimulates a state of stress that leads to the ineffective production of RBCs. We herein describe the main features of erythropoiesis and its regulation in addition to the mechanisms behind ineffective erythropoiesis development in β-thalassemia. Finally, we review the pathophysiology of hypercoagulability and vascular disease development in β-thalassemia and the currently available prevention and treatment modalities.
Collapse
Affiliation(s)
- Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Stefano Rivella
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; UOC General Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ali T Taher
- Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
11
|
Cappellini MD, Taher AT, Verma A, Shah F, Hermine O. Erythropoiesis in lower-risk myelodysplastic syndromes and beta-thalassemia. Blood Rev 2022; 59:101039. [PMID: 36577601 DOI: 10.1016/j.blre.2022.101039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The hematologic disorders myelodysplastic syndromes and beta-thalassemia are characterized by ineffective erythropoiesis and anemia, often managed with regular blood transfusions. Erythropoiesis, the process by which sufficient numbers of functional erythrocytes are produced from hematopoietic stem cells, is highly regulated, and defects can negatively affect the proliferation, differentiation, and survival of erythroid precursors. Treatments that directly target the underlying mechanisms of ineffective erythropoiesis are limited, and management of anemia with regular blood transfusions imposes a significant burden on patients, caregivers, and health care systems. There is therefore a strong unmet need for treatments that can restore effective erythropoiesis. Novel therapies are beginning to address this need by targeting a variety of mechanisms underlying erythropoiesis. Herein, we provide an overview of the role of ineffective erythropoiesis in myelodysplastic syndromes and beta-thalassemia, discuss unmet needs in targeting ineffective erythropoiesis, and describe current management strategies and emerging treatments for these disorders.
Collapse
Affiliation(s)
| | - Ali T Taher
- Department of Internal Medicine, American University of Beirut Medical Center, Halim and Aida Daniel Academic and Clinical Center, Beirut, Lebanon.
| | - Amit Verma
- Albert Einstein College of Medicine, New York, NY, USA.
| | - Farrukh Shah
- Department of Haematology, Whittington Health NHS Trust, London, UK.
| | - Olivier Hermine
- Department of Hematology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, University Paris Cité, Paris, France; INSERM U1163 and CNRS 8254, Imagine Institute, Université Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
12
|
Tie Y, Tang F, Peng D, Zhang Y, Shi H. TGF-beta signal transduction: biology, function and therapy for diseases. MOLECULAR BIOMEDICINE 2022; 3:45. [PMID: 36534225 PMCID: PMC9761655 DOI: 10.1186/s43556-022-00109-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The transforming growth factor beta (TGF-β) is a crucial cytokine that get increasing concern in recent years to treat human diseases. This signal controls multiple cellular responses during embryonic development and tissue homeostasis through canonical and/or noncanonical signaling pathways. Dysregulated TGF-β signal plays an essential role in contributing to fibrosis via promoting the extracellular matrix deposition, and tumor progression via inducing the epithelial-to-mesenchymal transition, immunosuppression, and neovascularization at the advanced stage of cancer. Besides, the dysregulation of TGF-beta signal also involves in other human diseases including anemia, inflammatory disease, wound healing and cardiovascular disease et al. Therefore, this signal is proposed to be a promising therapeutic target in these diseases. Recently, multiple strategies targeting TGF-β signals including neutralizing antibodies, ligand traps, small-molecule receptor kinase inhibitors targeting ligand-receptor signaling pathways, antisense oligonucleotides to disrupt the production of TGF-β at the transcriptional level, and vaccine are under evaluation of safety and efficacy for the forementioned diseases in clinical trials. Here, in this review, we firstly summarized the biology and function of TGF-β in physiological and pathological conditions, elaborated TGF-β associated signal transduction. And then, we analyzed the current advances in preclinical studies and clinical strategies targeting TGF-β signal transduction to treat diseases.
Collapse
Affiliation(s)
- Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Fan Tang
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China ,grid.13291.380000 0001 0807 1581Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Dandan Peng
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Ye Zhang
- grid.506261.60000 0001 0706 7839Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Huashan Shi
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| |
Collapse
|
13
|
Zhu X, Jiang L, Wei X, Long M, Du Y. Roxadustat: Not just for anemia. Front Pharmacol 2022; 13:971795. [PMID: 36105189 PMCID: PMC9465375 DOI: 10.3389/fphar.2022.971795] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Roxadustat is a recently approved hypoxia-inducible factor prolyl hydroxylase inhibitor that has demonstrated favorable safety and efficacy in the treatment of renal anemia. Recent studies found it also has potential for the treatment of other hypoxia-related diseases. Although clinical studies have not yet found significant adverse or off-target effects of roxadustat, clinicians must be vigilant about these possible effects. Hypoxia-inducible factor regulates the expression of many genes and physiological processes in response to a decreased level of oxygen, but its role in the pathogenesis of different diseases is complex and controversial. In addition to increasing the expression of hypoxia-inducible factor, roxadustat also has some effects that may be HIF-independent, indicating some potential off-target effects. This article reviews the pharmacological characteristics of roxadustat, its current status in the treatment of renal anemia, and its possible effects on other pathological mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lili Jiang
- Physical Examination Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Yujun Du,
| |
Collapse
|
14
|
Wang H, Chen M, Xu S, Pan Y, Zhang Y, Huang H, Xu L. Abnormal regulation of microRNAs and related genes in pediatric β-thalassemia. J Clin Lab Anal 2021; 35:e23945. [PMID: 34398996 PMCID: PMC8418487 DOI: 10.1002/jcla.23945] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 01/19/2023] Open
Abstract
Background MicroRNAs (miRNAs) participate in the reactivation of γ‐globin expression in β‐thalassemia. However, the miRNA transcriptional profiles of pediatric β‐thalassemia remain unclear. Accordingly, in this study, we assessed miRNA expression in pediatric patients with β‐thalassemia. Methods Differentially expressed miRNAs in pediatric patients with β‐thalassemia were determined using microRNA sequencing. Results Hsa‐miR‐483‐3p, hsa‐let‐7f‐1‐3p, hsa‐let‐7a‐3p, hsa‐miR‐543, hsa‐miR‐433‐3p, hsa‐miR‐4435, hsa‐miR‐329‐3p, hsa‐miR‐92b‐5p, hsa‐miR‐6747‐3p and hsa‐miR‐495‐3p were significantly upregulated, whereas hsa‐miR‐4508, hsa‐miR‐20a‐5p, hsa‐let‐7b‐5p, hsa‐miR‐93‐5p, hsa‐let‐7i‐5p, hsa‐miR‐6501‐5p, hsa‐miR‐221‐3p, hsa‐let‐7g‐5p, hsa‐miR‐106a‐5p, and hsa‐miR‐17‐5p were significantly downregulated in pediatric patients with β‐thalassemia. After integrating our data with a previously published dataset, we found that hsa‐let‐7b‐5p and hsa‐let‐7i‐5p expression levels were also lower in adolescent or adult patients with β‐thalassemia. The predicted target genes of hsa‐let‐7b‐5p and hsa‐let‐7i‐5p were associated with the transforming growth factor β receptor, phosphatidylinositol 3‐kinase/AKT, FoxO, Hippo, and mitogen‐activated protein kinase signaling pathways. We also identified 12 target genes of hsa‐let‐7a‐3p and hsa‐let‐7f‐1‐3p and 21 target genes of hsa‐let‐7a‐3p and hsa‐let‐7f‐1‐3p, which were differentially expressed in patients with β‐thalassemia. Finally, we found that hsa‐miR‐190‐5p and hsa‐miR‐1278‐5p may regulate hemoglobin switching by modulation of the B‐cell lymphoma/leukemia 11A gene. Conclusion The results of the study show that several microRNAs are dysregulated in pediatric β‐thalassemia. Further, the results also indicate toward a critical role of let7 miRNAs in the pathogenesis of pediatric β‐thalassemia, which needs to be investigated further.
Collapse
Affiliation(s)
- Haiwei Wang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Meihuan Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shiyi Xu
- Guangxi Medical University, Nanning, China
| | - Yali Pan
- Medical Technology and Engineering College of Fujian Medical University, Fuzhou, China
| | - Yanhong Zhang
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
15
|
Tomc J, Debeljak N. Molecular Pathways Involved in the Development of Congenital Erythrocytosis. Genes (Basel) 2021; 12:1150. [PMID: 34440324 PMCID: PMC8391844 DOI: 10.3390/genes12081150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023] Open
Abstract
Patients with idiopathic erythrocytosis are directed to targeted genetic testing including nine genes involved in oxygen sensing pathway in kidneys, erythropoietin signal transduction in pre-erythrocytes and hemoglobin-oxygen affinity regulation in mature erythrocytes. However, in more than 60% of cases the genetic cause remains undiagnosed, suggesting that other genes and mechanisms must be involved in the disease development. This review aims to explore additional molecular mechanisms in recognized erythrocytosis pathways and propose new pathways associated with this rare hematological disorder. For this purpose, a comprehensive review of the literature was performed and different in silico tools were used. We identified genes involved in several mechanisms and molecular pathways, including mRNA transcriptional regulation, post-translational modifications, membrane transport, regulation of signal transduction, glucose metabolism and iron homeostasis, which have the potential to influence the main erythrocytosis-associated pathways. We provide valuable theoretical information for deeper insight into possible mechanisms of disease development. This information can be also helpful to improve the current diagnostic solutions for patients with idiopathic erythrocytosis.
Collapse
Affiliation(s)
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
16
|
Ineffective Erythropoiesis in β-Thalassaemia: Key Steps and Therapeutic Options by Drugs. Int J Mol Sci 2021; 22:ijms22137229. [PMID: 34281283 PMCID: PMC8268821 DOI: 10.3390/ijms22137229] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/19/2023] Open
Abstract
β-thalassaemia is a rare genetic condition caused by mutations in the β-globin gene that result in severe iron-loading anaemia, maintained by a detrimental state of ineffective erythropoiesis (IE). The role of multiple mechanisms involved in the pathophysiology of the disease has been recently unravelled. The unbalanced production of α-globin is a major source of oxidative stress and membrane damage in red blood cells (RBC). In addition, IE is tightly linked to iron metabolism dysregulation, and the relevance of new players of this pathway, i.e., hepcidin, erythroferrone, matriptase-2, among others, has emerged. Advances have been made in understanding the balance between proliferation and maturation of erythroid precursors and the role of specific factors in this process, such as members of the TGF-β superfamily, and their downstream effectors, or the transcription factor GATA1. The increasing understanding of IE allowed for the development of a broad set of potential therapeutic options beyond the current standard of care. Many candidates of disease-modifying drugs are currently under clinical investigation, targeting the regulation of iron metabolism, the production of foetal haemoglobin, the maturation process, or the energetic balance and membrane stability of RBC. Overall, they provide tools and evidence for multiple and synergistic approaches that are effectively moving clinical research in β-thalassaemia from bench to bedside.
Collapse
|