1
|
Schleifer MC, Ruedenauer FA, Ziegler J, Leonhardt SD, Spaethe J. Perception, regulation, and effects on longevity of pollen fatty acids in the honey bee, Apis mellifera. PLoS One 2024; 19:e0309789. [PMID: 39570936 PMCID: PMC11581215 DOI: 10.1371/journal.pone.0309789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/19/2024] [Indexed: 11/24/2024] Open
Abstract
For successful cross-pollination, most flowering plants rely on insects as pollinators and attract them by offering rewards, predominantly nectar and pollen. Bees-a highly important pollinator group-are especially dependent on pollen as their main source of essential nutrients, including proteins, lipids, and sterols. Fatty acids (FAs) in particular play a pivotal role as fundamental energy source, contributing to membrane structure integrity, cellular homeostasis, and cognitive processes. However, overconsumption of FAs can have detrimental effects on fitness and survival. Thus, bees need to precisely modulate FA intake. To better understand how Apis mellifera, the globally predominant managed pollinator, regulate FA intake, we conducted controlled feeding experiments with newly hatched honey bee workers by providing pollen with different FA concentrations. We additionally investigated the honey bee's capacity to perceive individual FAs by means of chemotactile proboscis extension response (PER) conditioning. We tested both natural concentrations and concentrations exceeding those typically found in pollen. Given the dose-dependent importance of FAs observed in other bee species, we hypothesized that (i) a high FA concentration in pollen would reduce honey bee longevity, and (ii) honey bees are able to perceive individual FAs and differentiate between different FA concentrations via antennal sensation prior to consumption. Our study revealed that elevated FA concentrations in pollen resulted in reduced consumption rates and increased mortality in Apis mellifera. Workers can detect and discriminate between saturated and unsaturated FAs utilizing their antennae. Moreover, they were able to distinguish between individual FAs and also between different concentrations of the same FAs. Our results suggest a high sensitivity of A. mellifera towards both the concentration and composition of individual FAs, which greatly impacts their foraging decisions and fitness. These insights contribute to the growing evidence highlighting the importance of balanced nutrient ratios, in particular of FAs, for bees and other organisms.
Collapse
Affiliation(s)
- Marielle C. Schleifer
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Würzburg, Germany
- Plant-Insect Interactions, Department of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Fabian A. Ruedenauer
- Plant-Insect Interactions, Department of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Johanna Ziegler
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Sara D. Leonhardt
- Plant-Insect Interactions, Department of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Zhong Z, Mu X, Lang H, Wang Y, Jiang Y, Liu Y, Zeng Q, Xia S, Zhang B, Wang Z, Wang X, Zheng H. Gut symbiont-derived anandamide promotes reward learning in honeybees by activating the endocannabinoid pathway. Cell Host Microbe 2024; 32:1944-1958.e7. [PMID: 39419026 DOI: 10.1016/j.chom.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/28/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Polyunsaturated fatty acids (PUFAs) are dietary components participating in neurotransmission and cell signaling. Pollen is a source of PUFAs for honeybees, and disruptions in dietary PUFAs reduce the cognitive performance of honeybees. We reveal that gut bacteria of honeybees contribute to fatty acid metabolism, impacting reward learning. Gut bacteria possess Δ-6 desaturases that mediate fatty acid elongation and compensate for the absence of honeybee factors required for fatty acid metabolism. Colonization with Gilliamella apicola, but not a mutant lacking the Δ-6 desaturase FADS2, increases the production of anandamide (AEA), a ligand of the endocannabinoid system, and alters learning and memory. AEA activates the Hymenoptera-specific transient receptor AmHsTRPA in astrocytes, which induces Ca2+ influx and regulates glutamate re-uptake of glial cells to enhance reward learning. These findings illuminate the roles of gut symbionts in host fatty acid metabolism and the impacts of endocannabinoid signaling on the reward system of social insects.
Collapse
Affiliation(s)
- Zhaopeng Zhong
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Xiaohuan Mu
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Yueyi Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Yanling Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Yuwen Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Qian Zeng
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Siyuan Xia
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Baotong Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zilong Wang
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaofei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China.
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China.
| |
Collapse
|
3
|
Fan G, Wang X, Gao C, Kang X, Xue H, Huang W, Zhan J, You Y. Effects of Active Ingredients in Alcoholic Beverages and Their De-Alcoholized Counterparts on High-Fat Diet Bees: A Comparative Study. Molecules 2024; 29:1693. [PMID: 38675513 PMCID: PMC11052269 DOI: 10.3390/molecules29081693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The mechanisms by which alcohol, alcoholic beverages, and their de-alcoholized derivatives affect animal physiology, metabolism, and gut microbiota have not yet been clarified. The polyphenol, monosaccharide, amino acid, and organic acid contents of four common alcoholic beverages (Chinese Baijiu, beer, Chinese Huangjiu, and wine) and their de-alcoholized counterparts were analyzed. The research further explored how these alcoholic beverages and their non-alcoholic versions affect obesity and gut microbiota, using a high-fat diet bee model created with 2% palm oil (PO). The results showed that wine, possessing the highest polyphenol content, and its de-alcoholized form, particularly when diluted five-fold (WDX5), markedly improved the health markers of PO-fed bees, including weight, triglycerides, and total cholesterol levels in blood lymphocytes. WDX5 treatment notably increased the presence of beneficial microbes such as Bartonella, Gilliamella, and Bifidobacterium, while decreasing Bombilactobacillus abundance. Moreover, WDX5 was found to closely resemble sucrose water (SUC) in terms of gut microbial function, significantly boosting short-chain fatty acids, lipopolysaccharide metabolism, and associated enzymatic pathways, thereby favorably affecting metabolic regulation and gut microbiota stability in bees.
Collapse
Affiliation(s)
- Guanghe Fan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China; (G.F.); (W.H.)
| | - Xiaofei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China;
| | - Cuicui Gao
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China; (G.F.); (W.H.)
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
| | - Xiping Kang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China; (G.F.); (W.H.)
| | - Huimin Xue
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China; (G.F.); (W.H.)
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China; (G.F.); (W.H.)
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China; (G.F.); (W.H.)
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China; (G.F.); (W.H.)
| |
Collapse
|
4
|
Motta EVS, Moran NA. The honeybee microbiota and its impact on health and disease. Nat Rev Microbiol 2024; 22:122-137. [PMID: 38049554 PMCID: PMC10998682 DOI: 10.1038/s41579-023-00990-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Honeybees (Apis mellifera) are key pollinators that support global agriculture and are long-established models for developmental and behavioural research. Recently, they have emerged as models for studying gut microbial communities. Earlier research established that hindguts of adult worker bees harbour a conserved set of host-restricted bacterial species, each showing extensive strain variation. These bacteria can be cultured axenically and introduced to gnotobiotic hosts, and some have basic genetic tools available. In this Review, we explore the most recent research showing how the microbiota establishes itself in the gut and impacts bee biology and health. Microbiota members occupy specific niches within the gut where they interact with each other and the host. They engage in cross-feeding and antagonistic interactions, which likely contribute to the stability of the community and prevent pathogen invasion. An intact gut microbiota provides protection against diverse pathogens and parasites and contributes to the processing of refractory components of the pollen coat and dietary toxins. Absence or disruption of the microbiota results in altered expression of genes that underlie immunity, metabolism, behaviour and development. In the field, such disruption by agrochemicals may negatively impact bees. These findings demonstrate a key developmental and protective role of the microbiota, with broad implications for bee health.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas, Austin, TX, USA.
| |
Collapse
|
5
|
Eakins J, Lynch M, Carolan JC, Rowan NJ. Studies on the novel effects of electron beam treated pollen on colony reproductive output in commercially-reared bumblebees (Bombus terrestris) for mass pollination applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165614. [PMID: 37478954 DOI: 10.1016/j.scitotenv.2023.165614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
Commercially-reared bumblebees provide an important pollinator service that helps support food production and security. The deployment of an appropriate non-thermal disinfection technology for the bulk treatment of pollen collected from honeybees for the feeding of commercial bumblebees is important in order to mitigate against complex diseases and unwanted pathogen spillover to native bees. High level disinfection of pollen was achieved using an electron (e)-beam dose of 100 kGy that corresponded to 78 % loss of cellular viability of bee pathogens before feeding to bumblebees as measured by the novel in vitro use of flow cytometry (FCM). Novel findings showed that e-beam treated-pollen that was fed to bumblebees produced fewer females, gynes and exhibited an absence of males when compared to control bumblebee colonies that were fed untreated commercial pollen. A similar trend emerged in bumblebee colony reproductive outputs when using membrane filtered washed pollen. Proteomic analysis of bumblebees from individual colonies fed with treated-pollen revealed a differential abundance of proteins associated with stress, immunity and metabolism when compared to the untreated pollen control group. Microbiome analysis of the bumblebee gut content revealed differences in microbiota between treated and untreated pollen in bumblebee colony studies. This novel study evaluated the impact of industrial e-beam treated-pollen on complex bee disease mitigation where physically treated-pollen fed to bumblebees was shown to substantially affect colony reproductive outputs.
Collapse
Affiliation(s)
- J Eakins
- Centre for Disinfection and Sterilization, Faculty of Science and Health, Technological Institute of the Shannon, Midlands Campus, Ireland; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - M Lynch
- Centre for Disinfection and Sterilization, Faculty of Science and Health, Technological Institute of the Shannon, Midlands Campus, Ireland
| | - J C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - N J Rowan
- Centre for Disinfection and Sterilization, Faculty of Science and Health, Technological Institute of the Shannon, Midlands Campus, Ireland.
| |
Collapse
|
6
|
Sagona S, Coppola F, Tafi E, Orlando C, D’Onofrio C, Boni CB, Casini L, Palego L, Betti L, Giannaccini G, Felicioli A. Effects of Virgin Coconut Oil-Enriched Diet on Immune and Antioxidant Enzymatic Activity, Fat and Vitellogenin Contents in Newly Emerged and Forager Bees ( Apis mellifera L.) Reared in Cages. INSECTS 2023; 14:856. [PMID: 37999055 PMCID: PMC10671777 DOI: 10.3390/insects14110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Searching for artificial diets positively affecting the survival, immune and antioxidant systems of honey bees is one of main challenges occurring in beekeeping. Among nutrients, lipids play a significant role in insect nutrition as structural components in cell membranes, energy sources and reserves, and are involved in many physiological processes. In this context, the aim of this work was to investigate the effect of 0.5% and 1% coconut oil-enriched diet administration on newly emerged and forager bees survival rate, feed intake, immune system, antioxidant system and both fat and vitellogenin content. In newly emerged bees, supplementation with 1% coconut oil determined a decrease in feed consumption, an increase in survival rate from the 3rd to 14th day of feeding, a short-term decrease in phenoloxidase activity, an increase in body fat and no differences in vitellogenin content. Conversely, supplementation with 0.5% coconut oil determined an increase in survival rate from the 3rd to 15th day of feeding and an increase in fat content in the long term (i.e., 20 days). Regarding the forager bee diet, enrichment with 0.5% and 1% coconut oil only determined an increase in fat content. Therefore, supplementation with coconut oil in honey bee diets at low percentages (0.5 and 1%) determines fat gain. Further investigations to evaluate the use of such supplement foods to prevent the fat loss of weak families during winter are desirable.
Collapse
Affiliation(s)
- Simona Sagona
- Department of Pharmacy, Pisa University, Via Bonanno 6, 56126 Pisa, Italy; (C.O.); (L.B.); (G.G.)
- Department of Veterinary Sciences, Pisa University, Viale delle Piagge 2, 56124 Pisa, Italy; (F.C.); (C.B.B.); (L.C.); (A.F.)
| | - Francesca Coppola
- Department of Veterinary Sciences, Pisa University, Viale delle Piagge 2, 56124 Pisa, Italy; (F.C.); (C.B.B.); (L.C.); (A.F.)
| | - Elena Tafi
- CREA Research Centre for Agriculture and Environment, Via di Corticella 133, 40128 Bologna, Italy;
| | - Caterina Orlando
- Department of Pharmacy, Pisa University, Via Bonanno 6, 56126 Pisa, Italy; (C.O.); (L.B.); (G.G.)
| | - Chiara D’Onofrio
- Biosensor Technologies, Austrian Institute of Technology GmbH, Konrad-Lorenz Straße, 24, 3430 Tulln, Austria;
| | - Chiara Benedetta Boni
- Department of Veterinary Sciences, Pisa University, Viale delle Piagge 2, 56124 Pisa, Italy; (F.C.); (C.B.B.); (L.C.); (A.F.)
| | - Lucia Casini
- Department of Veterinary Sciences, Pisa University, Viale delle Piagge 2, 56124 Pisa, Italy; (F.C.); (C.B.B.); (L.C.); (A.F.)
| | - Lionella Palego
- Department of Clinical and Experimental Medicine, Pisa University, Via Savi 10, 56126 Pisa, Italy;
| | - Laura Betti
- Department of Pharmacy, Pisa University, Via Bonanno 6, 56126 Pisa, Italy; (C.O.); (L.B.); (G.G.)
| | - Gino Giannaccini
- Department of Pharmacy, Pisa University, Via Bonanno 6, 56126 Pisa, Italy; (C.O.); (L.B.); (G.G.)
| | - Antonio Felicioli
- Department of Veterinary Sciences, Pisa University, Viale delle Piagge 2, 56124 Pisa, Italy; (F.C.); (C.B.B.); (L.C.); (A.F.)
| |
Collapse
|
7
|
Mee L, Barribeau SM. Influence of social lifestyles on host-microbe symbioses in the bees. Ecol Evol 2023; 13:e10679. [PMID: 37928198 PMCID: PMC10620586 DOI: 10.1002/ece3.10679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
Microbiomes are increasingly recognised as critical for the health of an organism. In eusocial insect societies, frequent social interactions allow for high-fidelity transmission of microbes across generations, leading to closer host-microbe coevolution. The microbial communities of bees with other social lifestyles are less studied, and few comparisons have been made between taxa that vary in social structure. To address this gap, we leveraged a cloud-computing resource and publicly available transcriptomic data to conduct a survey of microbial diversity in bee samples from a variety of social lifestyles and taxa. We consistently recover the core microbes of well-studied corbiculate bees, supporting this method's ability to accurately characterise microbial communities. We find that the bacterial communities of bees are influenced by host location, phylogeny and social lifestyle, although no clear effect was found for fungal or viral microbial communities. Bee genera with more complex societies tend to harbour more diverse microbes, with Wolbachia detected more commonly in solitary tribes. We present a description of the microbiota of Euglossine bees and find that they do not share the "corbiculate core" microbiome. Notably, we find that bacteria with known anti-pathogenic properties are present across social bee genera, suggesting that symbioses that enhance host immunity are important with higher sociality. Our approach provides an inexpensive means of exploring microbiomes of a given taxa and identifying avenues for further research. These findings contribute to our understanding of the relationships between bees and their associated microbial communities, highlighting the importance of considering microbiome dynamics in investigations of bee health.
Collapse
Affiliation(s)
- Lauren Mee
- Institute of Infection, Veterinary and Ecological Sciences, Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| | - Seth M. Barribeau
- Institute of Infection, Veterinary and Ecological Sciences, Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
8
|
Powell JE, Lau P, Rangel J, Arnott R, De Jong T, Moran NA. The microbiome and gene expression of honey bee workers are affected by a diet containing pollen substitutes. PLoS One 2023; 18:e0286070. [PMID: 37205696 PMCID: PMC10198554 DOI: 10.1371/journal.pone.0286070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
Pollen is the primary source of dietary protein for honey bees. It also includes complex polysaccharides in its outer coat, which are largely indigestible by bees but can be metabolized by bacterial species within the gut microbiota. During periods of reduced availability of floral pollen, supplemental protein sources are frequently provided to managed honey bee colonies. The crude proteins in these supplemental feeds are typically byproducts from food manufacturing processes and are rarely derived from pollen. Our experiments on the impact of different diets showed that a simplified pollen-free diet formulated to resemble the macronutrient profile of a monofloral pollen source resulted in larger microbial communities with reduced diversity, reduced evenness, and reduced levels of potentially beneficial hive-associated bacteria. Furthermore, the pollen-free diet sharply reduced the expression of genes central to honey bee development. In subsequent experiments, we showed that these shifts in gene expression may be linked to colonization by the gut microbiome. Lastly, we demonstrated that for bees inoculated with a defined gut microbiota, those raised on an artificial diet were less able to suppress infection from a bacterial pathogen than those that were fed natural pollen. Our findings demonstrate that a pollen-free diet significantly impacts the gut microbiota and gene expression of honey bees, indicating the importance of natural pollen as a primary protein source.
Collapse
Affiliation(s)
- J. Elijah Powell
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Pierre Lau
- Department of Entomology, Texas A&M University, College Station, TX, United States of America
- USDA-ARS, Pollinator Health in Southern Crop Ecosystem Research Unit, Stoneville, MS, United States of America
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, College Station, TX, United States of America
| | - Ryan Arnott
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Tyler De Jong
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
9
|
Moura-Silva J, Tavares MPS, Almeida-Oliveira F, Majerowicz D. Diet supplementation with egg yolk powder fattens the beetle Tribolium castaneum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e22000. [PMID: 36656770 DOI: 10.1002/arch.22000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/11/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Insects have become essential models in studying human metabolic diseases, mainly due to their low maintenance cost and available tools. Both mutations and modified diets induce metabolic states similar to human obesity and diabetes. Here, we explore the effect of a high-calorie, high-fat diet on the metabolism of the beetle Tribolium castaneum. Supplementation of the wheat flour diet with powdered egg yolk for 3 weeks increased the total triacylglycerol and accelerated larval development. In addition, this diet increased the triacylglycerol levels of adult beetles. However, this egg yolk supplementation did not alter the larvae's total glucose levels or lipogenic capacity and ATP citrate lyase activity. The diet also did not change the expression profile of several lipid and carbohydrate metabolism genes and insulin-like peptides. Thus, we conclude that the diet supplemented with egg yolk induces increased fat without causing diabetes phenotypes, as seen in other hypercaloric diets in insects.
Collapse
Affiliation(s)
- Julia Moura-Silva
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus P S Tavares
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Tonk-Rügen M, Vilcinskas A, Wagner AE. Insect Models in Nutrition Research. Biomolecules 2022; 12:1668. [PMID: 36421682 PMCID: PMC9687203 DOI: 10.3390/biom12111668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 09/08/2024] Open
Abstract
Insects are the most diverse organisms on earth, accounting for ~80% of all animals. They are valuable as model organisms, particularly in the context of genetics, development, behavior, neurobiology and evolutionary biology. Compared to other laboratory animals, insects are advantageous because they are inexpensive to house and breed in large numbers, making them suitable for high-throughput testing. They also have a short life cycle, facilitating the analysis of generational effects, and they fulfil the 3R principle (replacement, reduction and refinement). Many insect genomes have now been sequenced, highlighting their genetic and physiological similarities with humans. These factors also make insects favorable as whole-animal high-throughput models in nutritional research. In this review, we discuss the impact of insect models in nutritional science, focusing on studies investigating the role of nutrition in metabolic diseases and aging/longevity. We also consider food toxicology and the use of insects to study the gut microbiome. The benefits of insects as models to study the relationship between nutrition and biological markers of fitness and longevity can be exploited to improve human health.
Collapse
Affiliation(s)
- Miray Tonk-Rügen
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Anika E. Wagner
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
| |
Collapse
|
11
|
Leonhardt SD, Peters B, Keller A. Do amino and fatty acid profiles of pollen provisions correlate with bacterial microbiomes in the mason bee Osmia bicornis? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210171. [PMID: 35491605 DOI: 10.1098/rstb.2021.0171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bee performance and well-being strongly depend on access to sufficient and appropriate resources, in particular pollen and nectar of flowers, which constitute the major basis of bee nutrition. Pollen-derived microbes appear to play an important but still little explored role in the plant pollen-bee interaction dynamics, e.g. through affecting quantities and ratios of important nutrients. To better understand how microbes in pollen collected by bees may affect larval health through nutrition, we investigated correlations between the floral, bacterial and nutritional composition of larval provisions and the gut bacterial communities of the solitary megachilid bee Osmia bicornis. Our study reveals correlations between the nutritional quality of pollen provisions and the complete bacterial community as well as individual members of both pollen provisions and bee guts. In particular pollen fatty acid profiles appear to interact with specific members of the pollen bacterial community, indicating that pollen-derived bacteria may play an important role in fatty acid provisioning. As increasing evidence suggests a strong effect of dietary fatty acids on bee performance, future work should address how the observed interactions between specific fatty acids and the bacterial community in larval provisions relate to health in O. bicornis. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Sara Diana Leonhardt
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Birte Peters
- Department for Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.,Center for Computational and Theoretical Biology, University of Würzburg, Emil Fischer Strasse, 97074 Würzburg, Germany
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
12
|
Danilenko V, Devyatkin A, Marsova M, Shibilova M, Ilyasov R, Shmyrev V. Common Inflammatory Mechanisms in COVID-19 and Parkinson's Diseases: The Role of Microbiome, Pharmabiotics and Postbiotics in Their Prevention. J Inflamm Res 2021; 14:6349-6381. [PMID: 34876830 PMCID: PMC8643201 DOI: 10.2147/jir.s333887] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decade, metagenomic studies have shown the key role of the gut microbiome in maintaining immune and neuroendocrine systems. Malfunction of the gut microbiome can induce inflammatory processes, oxidative stress, and cytokine storm. Dysfunction of the gut microbiome can be caused by short-term (virus infection and other infectious diseases) or long-term (environment, nutrition, and stress) factors. Here, we reviewed the inflammation and oxidative stress in neurodegenerative diseases and coronavirus infection (COVID-19). Here, we reviewed the renin-angiotensin-aldosterone system (RAAS) involved in the processes of formation of oxidative stress and inflammation in viral and neurodegenerative diseases. Moreover, the coronavirus uses ACE2 receptors of the RAAS to penetrate human cells. The coronavirus infection can be the trigger for neurodegenerative diseases by dysfunction of the RAAS. Pharmabiotics, postbiotics, and next-generation probiotics, are considered as a means to prevent oxidative stress, inflammatory processes, neurodegenerative and viral diseases through gut microbiome regulation.
Collapse
Affiliation(s)
- Valery Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Devyatkin
- Central Clinical Hospital with a Polyclinic CMP RF, Moscow, Russia
| | - Mariya Marsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Rustem Ilyasov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
13
|
Nowak A, Szczuka D, Górczyńska A, Motyl I, Kręgiel D. Characterization of Apis mellifera Gastrointestinal Microbiota and Lactic Acid Bacteria for Honeybee Protection-A Review. Cells 2021; 10:cells10030701. [PMID: 33809924 PMCID: PMC8004194 DOI: 10.3390/cells10030701] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Numerous honeybee (Apis mellifera) products, such as honey, propolis, and bee venom, are used in traditional medicine to prevent illness and promote healing. Therefore, this insect has a huge impact on humans’ way of life and the environment. While the population of A. mellifera is large, there is concern that widespread commercialization of beekeeping, combined with environmental pollution and the action of bee pathogens, has caused significant problems for the health of honeybee populations. One of the strategies to preserve the welfare of honeybees is to better understand and protect their natural microbiota. This paper provides a unique overview of the latest research on the features and functioning of A. mellifera. Honeybee microbiome analysis focuses on both the function and numerous factors affecting it. In addition, we present the characteristics of lactic acid bacteria (LAB) as an important part of the gut community and their special beneficial activities for honeybee health. The idea of probiotics for honeybees as a promising tool to improve their health is widely discussed. Knowledge of the natural gut microbiota provides an opportunity to create a broad strategy for honeybee vitality, including the development of modern probiotic preparations to use instead of conventional antibiotics, environmentally friendly biocides, and biological control agents.
Collapse
Affiliation(s)
- Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
- Correspondence:
| | - Daria Szczuka
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Anna Górczyńska
- Faculty of Law and Administration, University of Lodz, Kopcińskiego 8/12, 90-232 Łódź, Poland;
| | - Ilona Motyl
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| |
Collapse
|