1
|
Liang Y, Kaushal D, Wilson RB. Cellular Senescence and Extracellular Vesicles in the Pathogenesis and Treatment of Obesity-A Narrative Review. Int J Mol Sci 2024; 25:7943. [PMID: 39063184 PMCID: PMC11276987 DOI: 10.3390/ijms25147943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
This narrative review explores the pathophysiology of obesity, cellular senescence, and exosome release. When exposed to excessive nutrients, adipocytes develop mitochondrial dysfunction and generate reactive oxygen species with DNA damage. This triggers adipocyte hypertrophy and hypoxia, inhibition of adiponectin secretion and adipogenesis, increased endoplasmic reticulum stress and maladaptive unfolded protein response, metaflammation, and polarization of macrophages. Such feed-forward cycles are not resolved by antioxidant systems, heat shock response pathways, or DNA repair mechanisms, resulting in transmissible cellular senescence via autocrine, paracrine, and endocrine signaling. Senescence can thus affect preadipocytes, mature adipocytes, tissue macrophages and lymphocytes, hepatocytes, vascular endothelium, pancreatic β cells, myocytes, hypothalamic nuclei, and renal podocytes. The senescence-associated secretory phenotype is closely related to visceral adipose tissue expansion and metaflammation; inhibition of SIRT-1, adiponectin, and autophagy; and increased release of exosomes, exosomal micro-RNAs, pro-inflammatory adipokines, and saturated free fatty acids. The resulting hypernefemia, insulin resistance, and diminished fatty acid β-oxidation lead to lipotoxicity and progressive obesity, metabolic syndrome, and physical and cognitive functional decline. Weight cycling is related to continuing immunosenescence and exposure to palmitate. Cellular senescence, exosome release, and the transmissible senescence-associated secretory phenotype contribute to obesity and metabolic syndrome. Targeted therapies have interrelated and synergistic effects on cellular senescence, obesity, and premature aging.
Collapse
Affiliation(s)
- Yicong Liang
- Bankstown Hospital, University of New South Wales, Sydney, NSW 2560, Australia;
| | - Devesh Kaushal
- Campbelltown Hospital, Western Sydney University, Sydney, NSW 2560, Australia;
| | - Robert Beaumont Wilson
- School of Clinical Medicine, University of New South Wales, High St., Kensington, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Payet T, Gabinaud E, Landrier JF, Mounien L. Role of micro-RNAs associated with adipose-derived extracellular vesicles in metabolic disorders. Obes Rev 2024; 25:e13755. [PMID: 38622087 DOI: 10.1111/obr.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 02/04/2024] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Micro-RNAs have emerged as important actors in the onset of metabolic disorders including obesity or type 2 diabetes. Particularly, several micro-RNAs are known to be key modulators of lipid metabolism, glucose homeostasis, or feeding behavior. Interestingly, the role of extracellular vesicles containing micro-RNAs, especially adipose-derived extracellular vesicles, are well-documented endocrine signals and disease biomarkers. However, the role of adipose-derived extracellular vesicles on the different tissues is different and highly related to the micro-RNA content. This review provides recent data about the potential involvement of adipose-derived extracellular vesicle-containing micro-RNAs in metabolic diseases.
Collapse
Affiliation(s)
- Thomas Payet
- Aix Marseille Université, C2VN, INRAE, INSERM, Marseille, France
| | - Elisa Gabinaud
- Aix Marseille Université, C2VN, INRAE, INSERM, Marseille, France
| | - Jean-François Landrier
- Aix Marseille Université, C2VN, INRAE, INSERM, Marseille, France
- PhenoMARS Aix-Marseille Technology Platform, CriBiom, Marseille, France
| | - Lourdes Mounien
- Aix Marseille Université, C2VN, INRAE, INSERM, Marseille, France
- PhenoMARS Aix-Marseille Technology Platform, CriBiom, Marseille, France
| |
Collapse
|
3
|
Delgadillo-Velázquez J, Alday E, Aguirre-García MM, Canett-Romero R, Astiazaran-Garcia H. The association between the size of adipocyte-derived extracellular vesicles and fasting serum triglyceride-glucose index as proxy measures of adipose tissue insulin resistance in a rat model of early-stage obesity. Front Nutr 2024; 11:1387521. [PMID: 39010858 PMCID: PMC11247012 DOI: 10.3389/fnut.2024.1387521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Obesity is a complex disease that predisposes individuals to cardiometabolic alterations. It leads to adipose tissue (AT) dysfunction, which triggers insulin resistance (IR). This suggests that people with obesity develop local IR first and systemic IR later. AT secretes extracellular vesicles, which may be physiopathologically associated with the development of IR. Our aim was to evaluate the effect of a high-fat diet on different parameters of adiposity in a rat model of early-stage obesity and to determine if these parameters are associated with markers of systemic IR. In addition, we sought to explore the relationship between fasting blood measures of IR (Triglycerides/High Density Lipoprotein-cholesterol [TAG/HDL-c] and Triglycerides-Glucose Index [TyG Index]) with the size of adipocyte-derived extracellular vesicles (adEV). Methods We used a model of diet-induced obesity for ten weeks in Wistar rats exposed to a high-fat diet. Final weight gain was analyzed by Dual X-ray absorptiometry. Visceral obesity was measured as epididymal AT weight. IR was evaluated with fasting TyG Index & TAG/HDL-c, and adEV were isolated from mature adipocytes on ceiling culture. Results In the high-fat diet group, glucose and triglyceride blood concentrations were higher in comparison to the control group (Log2FC, 0.5 and 1.5 times higher, respectively). The values for TyG Index and adEV size were different between the control animals and the high-fat diet group. Multiple linear regression analyses showed that adEV size can be significantly associated with the TyG Index value, when controlling for epididymal AT weight. Conclusion Our results show that lipid and glucose metabolism, as well as the size and zeta potential of adEV are already altered in early-stage obesity and that adEV size can be significantly associated with liver and systemic IR, estimated by TyG Index.
Collapse
Affiliation(s)
| | - Efrain Alday
- Departmento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo, Mexico
| | - María Magdalena Aguirre-García
- Laboratorio de Inmunología Molecular y Cardiopatías, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Unidad de Investigación UNAM-INC, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rafael Canett-Romero
- Departamento de Investigación y Posgrado en Alimentos, Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo, Mexico
| | - Humberto Astiazaran-Garcia
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
- Departmento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo, Mexico
| |
Collapse
|
4
|
Sandoval-Bórquez A, Carrión P, Hernández MP, Pérez JA, Tapia-Castillo A, Vecchiola A, Fardella CE, Carvajal CA. Adipose Tissue Dysfunction and the Role of Adipocyte-Derived Extracellular Vesicles in Obesity and Metabolic Syndrome. J Endocr Soc 2024; 8:bvae126. [PMID: 38988671 PMCID: PMC11234198 DOI: 10.1210/jendso/bvae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Indexed: 07/12/2024] Open
Abstract
Obesity is a major public health issue that is associated with metabolic diseases including diabetes mellitus type 2 and metabolic syndrome. This pathology leads to detrimental cardiovascular health and secondary effects, such as lipotoxicity, inflammation, and oxidative stress. Recently, extracellular vesicles (EVs) have been highlighted as novel players participating in human physiology and pathophysiology. In obesity, adipose tissue is related to the active shedding of adipocyte-derived extracellular vesicles (AdEVs). The current review explores and highlights the role of AdEVs and their cargo in obesity and metabolic syndrome. AdEVs are proposed to play an important role in obesity and its comorbidities. AdEVs are biological nanoparticles mainly shed by visceral and subcutaneous adipose tissue, acting in physiological and pathophysiological conditions, and also carrying different cargo biomolecules, such as RNA, microRNA (miRNA), proteins, and lipids, among others. RNA and miRNA have local and systemic effects affecting gene expression in target cell types via paracrine and endocrine actions. State of the art analyses identified some miRNAs, such as miR-222, miR-23b, miR-4429, miR-148b, and miR-4269, that could potentially affect cell pathways involved in obesity-related comorbidities, such as chronic inflammation and fibrosis. Similarly, AdEVs-proteins (RBP4, perilipin-A, FABP, mimecan, TGFBI) and AdEVs-lipids (sphingolipids) have been linked to the obesity pathophysiology. The current knowledge about AdEVs along with further research would support and reveal novel pathways, potential biomarkers, and therapeutic options in obesity.
Collapse
Affiliation(s)
- Alejandra Sandoval-Bórquez
- School of Medical Technology, Faculty of Science, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Pablo Carrión
- Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago 8330074, Chile
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - María Paz Hernández
- Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago 8330074, Chile
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Jorge A Pérez
- Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago 8330074, Chile
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Alejandra Tapia-Castillo
- Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago 8330074, Chile
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Andrea Vecchiola
- Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago 8330074, Chile
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Carlos E Fardella
- Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago 8330074, Chile
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Cristian A Carvajal
- Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago 8330074, Chile
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| |
Collapse
|
5
|
Thangavel H, Dhanyalayam D, Kim M, Lizardo K, Sidrat T, Lopez JG, Wang X, Bansal S, Nagajyothi JF. Adipocyte-released adipomes in Chagas cardiomyopathy: Impact on cardiac metabolic and immune regulation. iScience 2024; 27:109672. [PMID: 38660407 PMCID: PMC11039351 DOI: 10.1016/j.isci.2024.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Chronic Trypanosoma cruzi infection leads to Chagas cardiomyopathy (CCM), with varying manifestations such as inflammatory hypertrophic cardiomyopathy, arrhythmias, and dilated cardiomyopathy. The factors responsible for the increasing risk of progression to CCM are not fully understood. Previous studies link adipocyte loss to CCM progression, but the mechanism triggering CCM pathogenesis remains unexplored. Our study uncovers that T. cruzi infection triggers adipocyte apoptosis, leading to the release of extracellular vesicles named "adipomes". We developed an innovative method to isolate intact adipomes from infected mice's adipose tissue and plasma, showing they carry unique lipid cargoes. Large and Small adipomes, particularly plasma-derived infection-associated L-adipomes (P-ILA), regulate immunometabolic signaling and induce cardiomyopathy. P-ILA treatment induces hypertrophic cardiomyopathy in wild-type mice and worsens cardiomyopathy severity in post-acute-infected mice by regulating adipogenic/lipogenic and mitochondrial functions. These findings highlight adipomes' pivotal role in promoting inflammation and impairing myocardial function during cardiac remodeling in CD.
Collapse
Affiliation(s)
- Hariprasad Thangavel
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Dhanya Dhanyalayam
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Michelle Kim
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kezia Lizardo
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Tabinda Sidrat
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | | | - Xiang Wang
- Rutgers University Molecular Imaging Core (RUMIC), Rutgers Translational Sciences, Piscataway, NJ 08854, USA
| | - Shivani Bansal
- Departnment of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jyothi F. Nagajyothi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
6
|
Xu Y, Huang L, Zhuang Y, Huang H. Modulation of adipose tissue metabolism by exosomes in obesity. Am J Physiol Endocrinol Metab 2024; 326:E709-E722. [PMID: 38416071 DOI: 10.1152/ajpendo.00155.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
Obesity and its related metabolic complications represent a significant global health challenge. Central to this is the dysregulation of glucolipid metabolism, with a predominant focus on glucose metabolic dysfunction in the current research, whereas adipose metabolism impairment garners less attention. Exosomes (EXs), small extracellular vesicles (EVs) secreted by various cells, have emerged as important mediators of intercellular communication and have the potential to be biomarkers, targets, and therapeutic tools for diverse diseases. In particular, EXs have been found to play a role in adipose metabolism by transporting cargoes such as noncoding RNAs (ncRNA), proteins, and other factors. This review article summarizes the current understanding of the role of EXs in mediating adipose metabolism disorders in obesity. It highlights their roles in adipogenesis (encompassing adipogenic differentiation and lipid synthesis), lipid catabolism, lipid transport, and white adipose browning. The insights provided by this review offer new avenues for developing exosome-based therapies to treat obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Yajing Xu
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Linghong Huang
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Yong Zhuang
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Huibin Huang
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| |
Collapse
|
7
|
Lobato S, Castillo-Granada AL, Bucio-Pacheco M, Salomón-Soto VM, Álvarez-Valenzuela R, Meza-Inostroza PM, Villegas-Vizcaíno R. PM 2.5, component cause of severe metabolically abnormal obesity: An in silico, observational and analytical study. Heliyon 2024; 10:e28936. [PMID: 38601536 PMCID: PMC11004224 DOI: 10.1016/j.heliyon.2024.e28936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Obesity is currently one of the most alarming pathological conditions due to the progressive increase in its prevalence. In the last decade, it has been associated with fine particulate matter suspended in the air (PM2.5). The purpose of this study was to explore the mechanistic interaction of PM2.5 with a high-fat diet (HFD) through the differential regulation of transcriptional signatures, aiming to identify the association of these particles with metabolically abnormal obesity. The research design was observational, using bioinformatic methods and an explanatory approach based on Rothman's causal model. We propose three new transcriptional signatures in murine adipose tissue. The sum of transcriptional differences between the group exposed to an HFD and PM2.5, compared to the control group, were 0.851, 0.265, and -0.047 (p > 0.05). The HFD group increased body mass by 20% with two positive biomarkers of metabolic impact. The group exposed to PM2.5 maintained a similar weight to the control group but exhibited three positive biomarkers. Enriched biological pathways (p < 0.05) included PPAR signaling, small molecule transport, adipogenesis genes, cytokine-cytokine receptor interaction, and HIF-1 signaling. Transcriptional regulation predictions revealed CpG islands and common transcription factors. We propose three new transcriptional signatures: FAT-PM2.5-CEJUS, FAT-PM2.5-UP, and FAT-PM2.5-DN, whose transcriptional regulation profile in adipocytes was statistically similar by dietary intake and HFD and exposure to PM2.5 in mice; suggesting a mechanistic interaction between both factors. However, HFD-exposed murines developed moderate metabolically abnormal obesity, and PM2.5-exposed murines developed severe abnormal metabolism without obesity. Therefore, in Rothman's terms, it is concluded that HFD is a sufficient cause of the development of obesity, and PM2.5 is a component cause of severe abnormal metabolism of obesity. These signatures would be integrated into a systemic biological process that would induce transcriptional regulation in trans, activating obesogenic biological pathways, restricting lipid mobilization pathways, decreasing adaptive thermogenesis and angiogenesis, and altering vascular tone thus inducing a severe metabolically abnormal obesity.
Collapse
Affiliation(s)
- Sagrario Lobato
- Departamento de Investigación en Salud, Servicios de Salud del Estado de Puebla, 15 South Street 302, Puebla, Mexico
- Promoción y Educación para la Salud, Universidad Abierta y a Distancia de México. Universidad Avenue 1200, 1st Floor, quadrant 1-2, Xoco, Benito Juarez, 03330, Mexico City, Mexico
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato, Mexico
| | - A. Lourdes Castillo-Granada
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato, Mexico
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Guelatao Avenue 66, Ejército de Oriente Indeco II ISSSTE, Iztapalapa, 09230, Mexico City, Mexico
| | - Marcos Bucio-Pacheco
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato, Mexico
- Facultad de Biología, Universidad Autónoma de Sinaloa, Americas Avenue, Universitarios Blvd., University City, 80040, Culiacán Rosales, Mexico
| | | | | | | | | |
Collapse
|
8
|
Engin AB, Engin A. Next-Cell Hypothesis: Mechanism of Obesity-Associated Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:727-766. [PMID: 39287871 DOI: 10.1007/978-3-031-63657-8_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Higher body fat content is related to a higher risk of mortality, and obesity-related cancer represents approximately 40% of all cancer patients diagnosed each year. Furthermore, epigenetic mechanisms are involved in cellular metabolic memory and can determine one's predisposition to being overweight. Low-grade chronic inflammation, a well-established characteristic of obesity, is a central component of tumor development and progression. Cancer-associated adipocytes (CAA), which enhance inflammation- and metastasis-related gene sets within the cancer microenvironment, have pro-tumoral effects. Adipose tissue is a major source of the exosomal micro ribonucleic acids (miRNAs), which modulate pathways involved in the development of obesity and obesity-related comorbidities. Owing to their composition of cargo, exosomes can activate receptors at the target cell or transfer molecules to the target cells and thereby change the phenotype of these cells. Exosomes that are released into the extracellular environment are internalized with their cargo by neighboring cells. The tumor-secreted exosomes promote organ-specific metastasis of tumor cells that normally lack the capacity to metastasize to a specific organ. Therefore, the communication between neighboring cells via exosomes is defined as the "next-cell hypothesis." The reciprocal interaction between the adipocyte and tumor cell is realized through the adipocyte-derived exosomal miRNAs and tumor cell-derived oncogenic miRNAs. The cargo molecules of adipocyte-derived exosomes are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. RNA-induced silencing regulates gene expression through various mechanisms. Destabilization of DICER enzyme, which catalyzes the conversion of primary miRNA (pri-miRNA) to precursor miRNA (pre-miRNA), is an important checkpoint in cancer development and progression. Interestingly, adipose tissue in obesity and tumors share similar pathogenic features, and the local hypoxia progress in both. While hypoxia in obesity leads to the adipocyte dysfunction and metabolic abnormalities, in obesity-related cancer cases, it is associated with worsened prognosis, increased metastatic potential, and resistance to chemotherapy. Notch-interleukin-1 (IL-1)-Leptin crosstalk outcome is referred to as "NILCO effect." In this chapter, obesity-related cancer development is discussed in the context of "next-cell hypothesis," miRNA biogenesis, and "NILCO effect."
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
9
|
Engin AB, Engin A. MicroRNAs as Epigenetic Regulators of Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:595-627. [PMID: 39287866 DOI: 10.1007/978-3-031-63657-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis. Since the specific miRNAs display different expressions during adipogenesis, in mature adipocytes and permanent obesity, their use as biomarkers or therapeutic targets is feasible. Upregulated miRNAs in persistent obesity are downregulated during adipogenesis. Moreover, some of the downregulated miRNAs in obese individuals are upregulated in mature adipocytes. Induction of adipocyte stress and hypertrophy leads to the release of adipocyte-derived exosomes (AdEXs) that contain the cargo molecules, miRNAs. miRNAs are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. While each miRNA targets multiple messenger RNAs (mRNAs), which may coordinate or antagonize each other's functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. Deletion of the miRNA-processing enzyme DICER in pro-opiomelanocortin-expressing cells results in obesity, which is characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism, and alterations in the pituitary-adrenal axis. In recent years, RNA-based therapeutical approaches have entered clinical trials as novel therapies against overweight and its complications. Development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity, and insulin resistance are effectively controlled by miRNAs. Thereby, miRNAs as epigenetic regulators are used to determine the new gene transcripts and therapeutic targets.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
10
|
Payet T, Valmori M, Astier J, Svilar L, Sicard F, Tardivel C, Ghossoub R, Martin JC, Landrier JF, Mounien L. Vitamin D Modulates Lipid Composition of Adipocyte-Derived Extracellular Vesicles Under Inflammatory Conditions. Mol Nutr Food Res 2023; 67:e2300374. [PMID: 37712099 DOI: 10.1002/mnfr.202300374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Indexed: 09/16/2023]
Abstract
SCOPE Adipocyte-derived extracellular vesicles (AdEVs) convey lipids that can play a role in the energy homeostasis. Vitamin D (VD) has been shown to limit the metabolic inflammation as it decreases inflammatory markers expression in adipose tissue (AT). However, VD effect on adipocytes-derived EVs has never been investigated. METHODS AND RESULTS Thus, the aim of this study is to evaluate the AdEVs lipid composition by LC-MS/MS approach in 3T3-L1 cells treated with VD or/and pro-inflammatory factor (tumor necrosis factor α [TNFα]). Among all lipid species, four are highlighted (glycerolipids, phospholipids, lysophospholipids, and sphingolipids) with a differential content between small (sEVs) and large EVs (lEVs). This study also observes that VD alone modulates EV lipid species involved in membrane fluidity and in the budding of membrane. EVs treated with VD under inflammatory conditions have different lipid profiles than the control group, which is more pronounced in lEVs. Indeed, 25 lipid species are significantly modulated in lEVs, compared with only seven lipid species in sEVs. CONCLUSIONS This study concludes that VD, alone or under inflammatory conditions, is associated with specific lipidomic signature of sEVs and lEVs. These observations reinforce current knowledge on the anti-inflammatory effect of VD.
Collapse
Affiliation(s)
- Thomas Payet
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| | - Marie Valmori
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- BIOMET, Marseille, France
| | - Julien Astier
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| | - Ljubica Svilar
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- BIOMET, Marseille, France
| | - Flavie Sicard
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- BIOMET, Marseille, France
- PhenoMARS Aix-Marseille Technology Platform, Marseille, France
| | | | - Rania Ghossoub
- Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue 2018, CNRS, Inserm, Institut Paoli Calmettes, Aix-Marseille Université, Marseille, France
| | - Jean-Charles Martin
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- BIOMET, Marseille, France
| | - Jean-François Landrier
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- PhenoMARS Aix-Marseille Technology Platform, Marseille, France
| | - Lourdes Mounien
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- PhenoMARS Aix-Marseille Technology Platform, Marseille, France
| |
Collapse
|
11
|
Crewe C, Brestoff JR. Burning Fat to Fuel EVs. Diabetes 2023; 72:1521-1523. [PMID: 37862579 PMCID: PMC10588268 DOI: 10.2337/dbi23-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 10/22/2023]
Affiliation(s)
- Clair Crewe
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, and Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Jonathan R. Brestoff
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
12
|
Yang X, Hao J, Luo J, Lu X, Kong X. Adipose tissue‑derived extracellular vesicles: Systemic messengers in health and disease (Review). Mol Med Rep 2023; 28:189. [PMID: 37615193 PMCID: PMC10502927 DOI: 10.3892/mmr.2023.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023] Open
Abstract
Adipose tissue (AT) is a complicated metabolic organ consisting of a heterogeneous population of cells that exert wide‑ranging effects on the regulation of systemic metabolism and in maintaining metabolic homeostasis. Various obesity‑related complications are associated with the development of dysfunctional AT. As an essential transmitter of intercellular information, extracellular vesicles (EVs) have recently been recognized as crucial in regulating multiple physiological functions. AT‑derived extracellular vesicles (ADEVs) have been shown to facilitate cellular communication both inside and between ATs and other peripheral organs. Here, the role of EVs released from ATs in the homeostasis of metabolic and cardiovascular diseases, cancer, and neurological disorders by delivering lipids, proteins, and nucleic acids between different cells is summarized. Furthermore, the differences in the sources of ADEVs, such as adipocytes, AT macrophages, AT‑derived stem cells, and AT‑derived mesenchymal stem cells, are also discussed. This review may provide valuable information for the potential application of ADEVs in metabolic syndrome, cardiovascular diseases, cancer, and neurological disorders.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, Zheijiang 310002, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zheijiang 310002, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zheijiang 310002, P.R. China
| | - Jiayue Hao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zheijiang 310058, P.R. China
| | - Jie Luo
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zheijiang 310006, P.R. China
| | - Xinliang Lu
- Bone Marrow Transplantation Center and Institute of Immunology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Xianghui Kong
- Bone Marrow Transplantation Center and Institute of Immunology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
13
|
Baidildinova G, Pallares Robles A, Ten Cate V, Kremers BMM, Heitmeier S, Ten Cate H, Mees BME, Spronk HMH, Wild PS, Ten Cate-Hoek AJ, Jurk K. Plasma protein signatures for high on-treatment platelet reactivity to aspirin and clopidogrel in peripheral artery disease. Thromb Res 2023; 230:105-118. [PMID: 37708596 DOI: 10.1016/j.thromres.2023.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/31/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND A significant proportion of patients with peripheral artery disease (PAD) displays a poor response to aspirin and/or the platelet P2Y12 receptor antagonist clopidogrel. This phenomenon is reflected by high on-treatment platelet reactivity (HTPR) in platelet function assays in vitro and is associated with an increased risk of adverse cardiovascular events. OBJECTIVE This study aimed to elucidate specific plasma protein signatures associated with HTPR to aspirin and clopidogrel in PAD patients. METHODS AND RESULTS Based on targeted plasma proteomics, 184 proteins from two cardiovascular Olink panels were measured in 105 PAD patients. VerifyNow ASPI- and P2Y12-test values were transformed to a continuous variable representing HTPR as a spectrum instead of cut-off level-defined HTPR. Using the Boruta random forest algorithm, the importance of 3 plasma proteins for HTPR in the aspirin, six in clopidogrel and 10 in the pooled group (clopidogrel or aspirin) was confirmed. Network analysis demonstrated clusters with CD84, SLAMF7, IL1RN and THBD for clopidogrel and with F2R, SELPLG, HAVCR1, THBD, PECAM1, TNFRSF10B, MERTK and ADM for the pooled group. F2R, TNFRSF10B and ADM were higher expressed in Fontaine III patients compared to Fontaine II, suggesting their relation with PAD severity. CONCLUSIONS A plasma protein signature, including eight targets involved in proatherogenic dysfunction of blood cell-vasculature interaction, coagulation and cell death, is associated with HTPR (aspirin and/or clopidogrel) in PAD. This may serve as important systems-based determinants of poor platelet responsiveness to aspirin and/or clopidogrel in PAD and other cardiovascular diseases and may contribute to identify novel treatment strategies.
Collapse
Affiliation(s)
- G Baidildinova
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - A Pallares Robles
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - V Ten Cate
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - B M M Kremers
- Laboratory for Clinical Thrombosis and Hemostasis, Department of Biochemistry, Cardiovascular Research, Maastricht University, Netherlands
| | - S Heitmeier
- Division Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - H Ten Cate
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, Netherlands
| | - B M E Mees
- Department of Vascular Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - H M H Spronk
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands; Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, Netherlands
| | - P S Wild
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Institute of Molecular Biology (IMB), Mainz, Germany
| | - A J Ten Cate-Hoek
- Laboratory for Clinical Thrombosis and Hemostasis, Department of Biochemistry, Cardiovascular Research, Maastricht University, Netherlands; Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, Netherlands
| | - K Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
14
|
Batabyal RA, Bansal A, Cechinel LR, Authelet K, Goldberg M, Nadler E, Keene CD, Jayadev S, Domoto-Reilly K, Li G, Peskind E, Hashimoto-Torii K, Buchwald D, Freishtat RJ. Adipocyte-Derived Small Extracellular Vesicles from Patients with Alzheimer Disease Carry miRNAs Predicted to Target the CREB Signaling Pathway in Neurons. Int J Mol Sci 2023; 24:14024. [PMID: 37762325 PMCID: PMC10530811 DOI: 10.3390/ijms241814024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer disease (AD) is characterized by amyloid-β (Aβ) plaques, neurofibrillary tangles, synaptic dysfunction, and progressive dementia. Midlife obesity increases the risk of developing AD. Adipocyte-derived small extracellular vesicles (ad-sEVs) have been implicated as a mechanism in several obesity-related diseases. We hypothesized that ad-sEVs from patients with AD would contain miRNAs predicted to downregulate pathways involved in synaptic plasticity and memory formation. We isolated ad-sEVs from the serum and cerebrospinal fluid (CSF) of patients with AD and controls and compared miRNA expression profiles. We performed weighted gene co-expression network analysis (WGCNA) on differentially expressed miRNAs to identify highly interconnected clusters correlating with clinical traits. The WGCNA identified a module of differentially expressed miRNAs, in both the serum and CSF, that was inversely correlated with the Mini-Mental State Examination scores. Within this module, miRNAs that downregulate CREB signaling in neurons were highly represented. These results demonstrate that miRNAs carried by ad-sEVs in patients with AD may downregulate CREB signaling and provide a potential mechanistic link between midlife obesity and increased risk of AD.
Collapse
Affiliation(s)
- Rachael A. Batabyal
- Center for Genetic Medicine, Children’s National Hospital, Washington, DC 20012, USA (M.G.); (R.J.F.)
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (E.N.)
| | - Ankush Bansal
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC 20010, USA
| | - Laura Reck Cechinel
- Center for Genetic Medicine, Children’s National Hospital, Washington, DC 20012, USA (M.G.); (R.J.F.)
| | - Kayla Authelet
- Center for Genetic Medicine, Children’s National Hospital, Washington, DC 20012, USA (M.G.); (R.J.F.)
| | - Madeleine Goldberg
- Center for Genetic Medicine, Children’s National Hospital, Washington, DC 20012, USA (M.G.); (R.J.F.)
| | - Evan Nadler
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (E.N.)
- Division of Pediatric Surgery, Children’s National Hospital, Washington, DC 20010, USA
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA 98104, USA;
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA 98104, USA; (S.J.)
| | - Kimiko Domoto-Reilly
- Department of Neurology, University of Washington, Seattle, WA 98104, USA; (S.J.)
| | - Gail Li
- Department of Psychology and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA 98104, USA
- Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Elaine Peskind
- Department of Psychology and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA 98104, USA
- Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Kazue Hashimoto-Torii
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (E.N.)
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC 20010, USA
| | - Dedra Buchwald
- Institute for Research Education to Advance Community Health, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Robert J. Freishtat
- Center for Genetic Medicine, Children’s National Hospital, Washington, DC 20012, USA (M.G.); (R.J.F.)
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (E.N.)
| |
Collapse
|
15
|
Dixson AC, Dawson TR, Di Vizio D, Weaver AM. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat Rev Mol Cell Biol 2023; 24:454-476. [PMID: 36765164 PMCID: PMC10330318 DOI: 10.1038/s41580-023-00576-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 161.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 02/12/2023]
Abstract
To coordinate, adapt and respond to biological signals, cells convey specific messages to other cells. An important aspect of cell-cell communication involves secretion of molecules into the extracellular space. How these molecules are selected for secretion has been a fundamental question in the membrane trafficking field for decades. Recently, extracellular vesicles (EVs) have been recognized as key players in intercellular communication, carrying not only membrane proteins and lipids but also RNAs, cytosolic proteins and other signalling molecules to recipient cells. To communicate the right message, it is essential to sort cargoes into EVs in a regulated and context-specific manner. In recent years, a wealth of lipidomic, proteomic and RNA sequencing studies have revealed that EV cargo composition differs depending upon the donor cell type, metabolic cues and disease states. Analyses of distinct cargo 'fingerprints' have uncovered mechanistic linkages between the activation of specific molecular pathways and cargo sorting. In addition, cell biology studies are beginning to reveal novel biogenesis mechanisms regulated by cellular context. Here, we review context-specific mechanisms of EV biogenesis and cargo sorting, focusing on how cell signalling and cell state influence which cellular components are ultimately targeted to EVs.
Collapse
Affiliation(s)
- Andrew C Dixson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - T Renee Dawson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
16
|
Hayden MR. Brain Endothelial Cells Play a Central Role in the Development of Enlarged Perivascular Spaces in the Metabolic Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1124. [PMID: 37374328 DOI: 10.3390/medicina59061124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Brain capillary endothelial cell(s) (BECs) have numerous functions, including their semipermeable interface-barrier (transfer and diffusion of solutes), trophic (metabolic homeostasis), tonic (vascular hemodynamics), and trafficking (vascular permeability, coagulation, and leukocyte extravasation) functions to provide brain homeostasis. BECs also serve as the brain's sentinel cell of the innate immune system and are capable of antigen presentation. In metabolic syndrome (MetS), there are two regions resulting in the proinflammatory signaling of BECs, namely visceral adipose tissue depots supplying excessive peripheral cytokines/chemokines (pCCs) and gut microbiota dysbiotic regions supplying excessive soluble lipopolysaccharide (sLPS), small LPS-enriched extracellular vesicle exosomes (lpsEVexos), and pCCs. This dual signaling of BECs at their receptor sites results in BEC activation and dysfunction (BECact/dys) and neuroinflammation. sLPS and lpsEVexos signal BECs' toll-like receptor 4, which then signals translocated nuclear factor kappa B (NFkB). Translocated NFkB promotes the synthesis and secretion of BEC proinflammatory cytokines and chemokines. Specifically, the chemokine CCL5 (RANTES) is capable of attracting microglia cells to BECs. BEC neuroinflammation activates perivascular space(s) (PVS) resident macrophages. Excessive phagocytosis by reactive resident PVS macrophages results in a stagnation-like obstruction, which along with increased capillary permeability due to BECact/dys could expand the fluid volume within the PVS to result in enlarged PVS (EPVS). Importantly, this remodeling may result in pre- and post-capillary EPVS that would contribute to their identification on T2-weighted MRI, which are considered to be biomarkers for cerebral small vessel disease.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|
17
|
Zhou C, Huang YQ, Da MX, Jin WL, Zhou FH. Adipocyte-derived extracellular vesicles: bridging the communications between obesity and tumor microenvironment. Discov Oncol 2023; 14:92. [PMID: 37289328 PMCID: PMC10250291 DOI: 10.1007/s12672-023-00704-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023] Open
Abstract
By the year 2035 more than 4 billion people might be affected by obesity and being overweight. Adipocyte-derived Extracellular Vesicles (ADEVs/ADEV-singular) are essential for communication between the tumor microenvironment (TME) and obesity, emerging as a prominent mechanism of tumor progression. Adipose tissue (AT) becomes hypertrophic and hyperplastic in an obese state resulting in insulin resistance in the body. This modifies the energy supply to tumor cells and simultaneously stimulates the production of pro-inflammatory adipokines. In addition, obese AT has a dysregulated cargo content of discharged ADEVs, leading to elevated amounts of pro-inflammatory proteins, fatty acids, and carcinogenic microRNAs. ADEVs are strongly associated with hallmarks of cancer (proliferation and resistance to cell death, angiogenesis, invasion, metastasis, immunological response) and may be useful as biomarkers and antitumor therapy strategy. Given the present developments in obesity and cancer-related research, we conclude by outlining significant challenges and significant advances that must be addressed expeditiously to promote ADEVs research and clinical applications.
Collapse
Affiliation(s)
- Chuan Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 People’s Republic of China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, 730000 People’s Republic of China
| | - Yu-Qian Huang
- Department of Center of Medical Cosmetology, Chengdu Second People’s Hospital, Chengdu, 610017 People’s Republic of China
| | - Ming-Xu Da
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 People’s Republic of China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000 People’s Republic of China
| | - Wei-Lin Jin
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 People’s Republic of China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Feng-Hai Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 People’s Republic of China
- Department of Urology, Gansu Provincial Hospital, Lanzhou, 730000 People’s Republic of China
| |
Collapse
|
18
|
El Husseini K, Poté N, Jaillet M, Mordant P, Mal H, Frija-Masson J, Borie R, Cazes A, Crestani B, Mailleux A. [Adipocytes, adipokines and metabolic alterations in pulmonary fibrosis]. Rev Mal Respir 2023; 40:225-229. [PMID: 36740493 DOI: 10.1016/j.rmr.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/07/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal respiratory disease characterized by severe remodeling of the lung parenchyma, with an accumulation of activated myofibroblasts and extracellular matrix, along with aberrant cellular differentiation. Within the subpleural fibrous zones, ectopic adipocyte deposits often appear. In addition, alterations in lipid homeostasis have been associated with IPF pathophysiology. In this mini-review, we will discuss the potential involvement of the adipocyte secretome and its paracrine or endocrine-based contribution to the pathophysiology of IPF, via protein or lipid mediators in particular.
Collapse
Affiliation(s)
- K El Husseini
- Service de pneumologie A, Hôpital Bichat, AP-HP ; Inserm Unit 1152, Université de Paris, Paris, France; Inserm Unité 1152 - PHERE, Université de Paris, Paris, France.
| | - N Poté
- Service d'anatomopathologie, Hôpital Bichat, AP-HP ; Inserm Unité 1152 - PHERE, Université de Paris, Paris, France
| | - M Jaillet
- Inserm Unité 1152 - PHERE, Université de Paris, Paris, France
| | - P Mordant
- Service de chirurgie vasculaire et thoracique, Hôpital Bichat, AP-HP, Paris, France
| | - H Mal
- Service de pneumologie B, Hôpital Bichat, AP-HP ; Inserm Unité 1152 - PHERE, Université de Paris, Paris, France
| | - J Frija-Masson
- Service de physiologie-explorations fonctionnelles respiratoires, Hôpital Bichat, AP-HP, Paris, France
| | - R Borie
- Service de pneumologie A, Hôpital Bichat, AP-HP ; Inserm Unit 1152, Université de Paris, Paris, France
| | - A Cazes
- Service d'anatomopathologie, Hôpital Bichat, AP-HP ; Inserm Unité 1152 - PHERE, Université de Paris, Paris, France
| | - B Crestani
- Service de pneumologie A, Hôpital Bichat, AP-HP ; Inserm Unit 1152, Université de Paris, Paris, France; Inserm Unité 1152 - PHERE, Université de Paris, Paris, France
| | - A Mailleux
- Inserm Unité 1152 - PHERE, Université de Paris, Paris, France
| |
Collapse
|
19
|
Blandin A, Dugail I, Hilairet G, Ponnaiah M, Ghesquière V, Froger J, Ducheix S, Fizanne L, Boursier J, Cariou B, Lhomme M, Le Lay S. Lipidomic analysis of adipose-derived extracellular vesicles reveals specific EV lipid sorting informative of the obesity metabolic state. Cell Rep 2023; 42:112169. [PMID: 36862553 DOI: 10.1016/j.celrep.2023.112169] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/19/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Adipose extracellular vesicles (AdEVs) transport lipids that could participate in the development of obesity-related metabolic dysfunctions. This study aims to define mouse AdEV lipid signature by a targeted LC-MS/MS approach in either healthy or obesity context. Distinct clustering of AdEV and visceral adipose tissue (VAT) lipidomes by principal component analysis reveals specific AdEV lipid sorting when compared with secreting VAT. Comprehensive analysis identifies enrichment of ceramides, sphingomyelins, and phosphatidylglycerols species in AdEVs compared with source VAT whose lipid content closely relates to the obesity status and is influenced by the diet. Obesity moreover impacts AdEV lipidome, mirroring lipid alterations retrieved in plasma and VAT. Overall, our study identifies specific lipid fingerprints for plasma, VAT, and AdEVs that are informative of the metabolic status. Lipid species enriched in AdEVs in the obesity context may constitute biomarker candidates or mediators of the obesity-associated metabolic dysfunctions.
Collapse
Affiliation(s)
- Alexia Blandin
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Université d'Angers, SFR ICAT, F-49 000 Angers, France
| | - Isabelle Dugail
- UMRS 1269 INSERM/Sorbonne University, Nutriomics, 75013 Paris, France
| | | | - Maharajah Ponnaiah
- IHU ICAN (ICAN Omics and ICAN I/O), Foundation for Innovation in Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Valentine Ghesquière
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Université d'Angers, SFR ICAT, F-49 000 Angers, France
| | - Josy Froger
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Université d'Angers, SFR ICAT, F-49 000 Angers, France
| | - Simon Ducheix
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Lionel Fizanne
- HIFIH Laboratory UPRES EA3859, SFR 4208, Angers University, Angers, France
| | - Jérôme Boursier
- HIFIH Laboratory UPRES EA3859, SFR 4208, Angers University, Angers, France
| | - Bertrand Cariou
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Marie Lhomme
- IHU ICAN (ICAN Omics and ICAN I/O), Foundation for Innovation in Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Soazig Le Lay
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Université d'Angers, SFR ICAT, F-49 000 Angers, France.
| |
Collapse
|
20
|
Extracellular Vesicles as Carriers of Adipokines and Their Role in Obesity. Biomedicines 2023; 11:biomedicines11020422. [PMID: 36830957 PMCID: PMC9953604 DOI: 10.3390/biomedicines11020422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Extracellular vesicles (EVs) have lately arisen as new metabolic players in energy homeostasis participating in intercellular communication at the local and distant levels. These nanosized lipid bilayer spheres, carrying bioactive molecular cargo, have somehow changed the paradigm of biomedical research not only as a non-classic cell secretion mechanism, but as a rich source of biomarkers and as useful drug-delivery vehicles. Although the research about the role of EVs on metabolism and its deregulation on obesity and associated pathologies lagged slightly behind other diseases, the knowledge about their function under normal and pathological homeostasis is rapidly increasing. In this review, we are focusing on the current research regarding adipose tissue shed extracellular vesicles including their characterization, size profile, and molecular cargo content comprising miRNAs and membrane and intra-vesicular proteins. Finally, we will focus on the functional aspects attributed to vesicles secreted not only by adipocytes, but also by other cells comprising adipose tissue, describing the evidence to date on the deleterious effects of extracellular vesicles released by obese adipose tissue both locally and at the distant level by interacting with other peripheral organs and even at the central level.
Collapse
|
21
|
Yue B, Wang H, Cai X, Wang J, Chai Z, Peng W, Shu S, Fu C, Zhong J. Adipose-Secreted Exosomes and Their Pathophysiologic Effects on Skeletal Muscle. Int J Mol Sci 2022; 23:12411. [PMID: 36293266 PMCID: PMC9604254 DOI: 10.3390/ijms232012411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 04/30/2024] Open
Abstract
Due to its prominent secretory activity, adipose tissue (AT) is now considered a major player in the crosstalk between organs, especially with skeletal muscle. In which, exosomes are effective carriers for the intercellular material transfer of a wide range of molecules that can influence a series of physiological and pathological processes in recipient cells. Considering their underlying roles, the regulatory mechanisms of adipose-secreted exosomes and their cellular crosstalk with skeletal muscle have received great attention in the field. In this review, we describe what is currently known of adipose-secreted exosomes, as well as their applications in skeletal muscle pathophysiology.
Collapse
Affiliation(s)
- Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Wei Peng
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Shi Shu
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Changqi Fu
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| |
Collapse
|
22
|
Hullin-Matsuda F, Colosetti P, Rabia M, Luquain-Costaz C, Delton I. Exosomal lipids from membrane organization to biomarkers: Focus on an endolysosomal-specific lipid. Biochimie 2022; 203:77-92. [DOI: 10.1016/j.biochi.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022]
|
23
|
Müller GA, Müller TD. Biological Role of the Intercellular Transfer of Glycosylphosphatidylinositol-Anchored Proteins: Stimulation of Lipid and Glycogen Synthesis. Int J Mol Sci 2022; 23:7418. [PMID: 35806423 PMCID: PMC9267055 DOI: 10.3390/ijms23137418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs), which are anchored at the outer leaflet of plasma membranes (PM) only by a carboxy-terminal GPI glycolipid, are known to fulfill multiple enzymic and receptor functions at the cell surface. Previous studies revealed that full-length GPI-APs with the complete GPI anchor attached can be released from and inserted into PMs in vitro. Moreover, full-length GPI-APs were recovered from serum, dependent on the age and metabolic state of rats and humans. Here, the possibility of intercellular control of metabolism by the intercellular transfer of GPI-APs was studied. Mutant K562 erythroleukemia (EL) cells, mannosamine-treated human adipocytes and methyl-ß-cyclodextrin-treated rat adipocytes as acceptor cells for GPI-APs, based on their impaired PM expression of GPI-APs, were incubated with full-length GPI-APs, prepared from rat adipocytes and embedded in micelle-like complexes, or with EL cells and human adipocytes with normal expression of GPI-APs as donor cells in transwell co-cultures. Increases in the amounts of full-length GPI-APs at the PM of acceptor cells as a measure of their transfer was assayed by chip-based sensing. Both experimental setups supported both the transfer and upregulation of glycogen (EL cells) and lipid (adipocytes) synthesis. These were all diminished by serum, serum GPI-specific phospholipase D, albumin, active bacterial PI-specific phospholipase C or depletion of total GPI-APs from the culture medium. Serum inhibition of both transfer and glycogen/lipid synthesis was counteracted by synthetic phosphoinositolglycans (PIGs), which closely resemble the structure of the GPI glycan core and caused dissociation of GPI-APs from serum proteins. Finally, large, heavily lipid-loaded donor and small, slightly lipid-loaded acceptor adipocytes were most effective in stimulating transfer and lipid synthesis. In conclusion, full-length GPI-APs can be transferred between adipocytes or between blood cells as well as between these cell types. Transfer and the resulting stimulation of lipid and glycogen synthesis, respectively, are downregulated by serum proteins and upregulated by PIGs. These findings argue for the (patho)physiological relevance of the intercellular transfer of GPI-APs in general and its role in the paracrine vs. endocrine (dys)regulation of metabolism, in particular. Moreover, they raise the possibility of the use of full-length GPI-APs as therapeutics for metabolic diseases.
Collapse
Affiliation(s)
- Günter A. Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Oberschleissheim, Germany;
- German Center for Diabetes Research (DZD, Deutsches Zentrum für Diabetesforschung), International Helmholtz Research School for Diabetes, 85764 Oberschleissheim, Germany
| | - Timo D. Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Oberschleissheim, Germany;
- German Center for Diabetes Research (DZD, Deutsches Zentrum für Diabetesforschung), International Helmholtz Research School for Diabetes, 85764 Oberschleissheim, Germany
| |
Collapse
|
24
|
Rome S. Muscle and Adipose Tissue Communicate with Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms23137052. [PMID: 35806052 PMCID: PMC9266961 DOI: 10.3390/ijms23137052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
In numerous body locations, muscle and adipose tissue are in close contact. Both tissues are endocrine organs that release cytokines, playing a crutial role in the control of tissue homeostasis in health and diseases. Within this context, the identification of the signals involved in muscle–fat crosstalk has been a hot topic over the last 15 years. Recently, it has been discovered that adipose tissue and muscles can release information embedded in lipid-derived nanovesicles called ‘extracellular vesicles’ (EVs), which can modulate the phenotype and the homeostasis of neighboring recipient cells. This article reviews knowledge on EVs and their involvement in the communication between adipose tissue and muscle in several body locations. Even if the works are scarce, they have revolutionized our vision in the field of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Sophie Rome
- CarMeN Laboratory, INSERM 1060/INRAE 1397, Lyon-Sud Faculty of Medicine, LYON 1 University, 69301 Pierre Bénite, France
| |
Collapse
|
25
|
Lazar I, Clement E, Carrié L, Esteve D, Dauvillier S, Moutahir M, Dalle S, Delmas V, Andrieu-Abadie N, Larue L, Muller C, Nieto L. Adipocyte extracellular vesicles decrease p16 INK4A in melanoma: an additional link between obesity and cancer. J Invest Dermatol 2022; 142:2488-2498.e8. [PMID: 35150661 DOI: 10.1016/j.jid.2022.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 12/31/2022]
Abstract
Obesity is a recognized factor for increased risk and poor prognosis of many cancers, including melanoma. Here, using genetically engineered mouse models of melanoma (NRASQ61K transgenic expression, associated or not with Cdkn2A heterozygous deletion), we show that obesity increases melanoma initiation and progression by supporting tumor growth and metastasis thereby reducing survival. This effect is associated with a decrease in p16INK4A expression in tumors. Mechanistically, adipocytes downregulate p16INK4A in melanoma cells through β-catenin-dependent regulation, which increases cell motility. Furthermore, β-catenin is directly transferred from adipocytes to melanoma cells in extracellular vesicles, thus increasing its level and activity, which represses p16INK4A transcription. Adipocytes from obese individuals have a stronger effect than those from lean individuals, mainly due to an increase in the number of vesicles secreted, thus increasing the amount of β-catenin delivered to melanoma cells, and, consequently, amplifying their effect. In conclusion, here, we reveal that adipocyte extracellular vesicles control p16INK4A expression in melanoma, which promotes tumor progression. This work expands our understanding of the cooperation between adipocytes and tumors, particularly in obesity.
Collapse
Affiliation(s)
- Ikrame Lazar
- - Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR 5089, Université de Toulouse, CNRS, UPS, Toulouse, 31077, France
| | - Emily Clement
- - Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR 5089, Université de Toulouse, CNRS, UPS, Toulouse, 31077, France
| | - Lorry Carrié
- - Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR 5089, Université de Toulouse, CNRS, UPS, Toulouse, 31077, France; - Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse UMR 1037, Toulouse, 31037, France
| | - David Esteve
- - Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR 5089, Université de Toulouse, CNRS, UPS, Toulouse, 31077, France
| | - Stéphanie Dauvillier
- - Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR 5089, Université de Toulouse, CNRS, UPS, Toulouse, 31077, France
| | - Mohamed Moutahir
- - Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR 5089, Université de Toulouse, CNRS, UPS, Toulouse, 31077, France
| | - Stéphane Dalle
- - Department of Dermatology, Centre Hospitalier Lyon Sud, Pierre Bénite Cedex, 69495, France
| | - Véronique Delmas
- - Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, 91400, France; - Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, 91400 Orsay, France; - Equipe Labellisée Ligue Contre le Cancer
| | - Nathalie Andrieu-Abadie
- - Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse UMR 1037, Toulouse, 31037, France
| | - Lionel Larue
- - Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, 91400, France; - Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, 91400 Orsay, France; - Equipe Labellisée Ligue Contre le Cancer
| | - Catherine Muller
- - Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR 5089, Université de Toulouse, CNRS, UPS, Toulouse, 31077, France; - Equipe Labellisée Ligue Contre le Cancer
| | - Laurence Nieto
- - Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR 5089, Université de Toulouse, CNRS, UPS, Toulouse, 31077, France; - Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse UMR 1037, Toulouse, 31037, France.
| |
Collapse
|
26
|
Blandin A, Le Lay S. [Extracellular vesicles and metabolic diseases: Dangerous liaisons]. Med Sci (Paris) 2021; 37:1125-1132. [PMID: 34928216 DOI: 10.1051/medsci/2021209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) correspond to a heterogeneous set of membrane nanovesicles secreted in the extracellular medium and circulating in the various fluids of the body. These EVs convey biological material (proteins, lipids, nucleic acids) that they can transfer to target cells/tissues thus modulating their response and/or phenotype. The metabolic dysfunctions characterizing metabolic diseases associated with obesity are associated with changes in circulating EV concentrations as well as alterations in their content. The growing interest in EVs as new vectors of intercellular communication has led to question about their role in the development of metabolic complications. In this review, we will discuss the literature on circulating EVs as potential markers of metabolic diseases and then detail inter-organ dialogue based on this EV trafficking underlying the development of related obesity. Finally, we will discuss future avenues of research that will help to better understand the link between EVs and metabolic diseases.
Collapse
Affiliation(s)
- Alexia Blandin
- Université de Nantes, CNRS, Inserm, Institut du thorax, F-44000 Nantes, France - Univ Angers, SFR Interactions cellulaires et applications thérapeutiques (ICAT), F-49000 Angers, France
| | - Soazig Le Lay
- Université de Nantes, CNRS, Inserm, Institut du thorax, F-44000 Nantes, France - Univ Angers, SFR Interactions cellulaires et applications thérapeutiques (ICAT), F-49000 Angers, France
| |
Collapse
|
27
|
Zhu Q, An YA, Scherer PE. Mitochondrial regulation and white adipose tissue homeostasis. Trends Cell Biol 2021; 32:351-364. [PMID: 34810062 DOI: 10.1016/j.tcb.2021.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
The important role of mitochondria in the regulation of white adipose tissue (WAT) remodeling and energy balance is increasingly appreciated. The remarkable heterogeneity of the adipose tissue stroma provides a cellular basis to enable adipose tissue plasticity in response to various metabolic stimuli. Regulating mitochondrial function at the cellular level in adipocytes, in adipose progenitor cells (APCs), and in adipose tissue macrophages (ATMs) has a profound impact on adipose homeostasis. Moreover, mitochondria facilitate the cell-to-cell communication within WAT, as well as the crosstalk with other organs, such as the liver, the heart, and the pancreas. A better understanding of mitochondrial regulation in the diverse adipose tissue cell types allows us to develop more specific and efficient approaches to improve adipose function and achieve improvements in overall metabolic health.
Collapse
Affiliation(s)
- Qingzhang Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yu A An
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
28
|
Profiling of ob/ob mice skeletal muscle exosome-like vesicles demonstrates combined action of miRNAs, proteins and lipids to modulate lipid homeostasis in recipient cells. Sci Rep 2021; 11:21626. [PMID: 34732797 PMCID: PMC8566600 DOI: 10.1038/s41598-021-00983-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023] Open
Abstract
We have determined the lipid, protein and miRNA composition of skeletal muscle (SkM)-released extracellular vesicles (ELVs) from Ob/ob (OB) vs wild-type (WT) mice. The results showed that atrophic insulin-resistant OB-SkM released less ELVs than WT-SkM, highlighted by a RAB35 decrease and an increase in intramuscular cholesterol content. Proteomic analyses of OB-ELVs revealed a group of 37 proteins functionally connected, involved in lipid oxidation and with catalytic activities. OB-ELVs had modified contents for phosphatidylcholine (PC 34-4, PC 40-3 and PC 34-0), sphingomyelin (Sm d18:1/18:1) and ceramides (Cer d18:1/18:0) and were enriched in cholesterol, likely to alleviated intracellular accumulation. Surprisingly many ELV miRNAs had a nuclear addressing sequence, and targeted genes encoding proteins with nuclear activities. Interestingly, SkM-ELV miRNA did not target mitochondria. The most significant function targeted by the 7 miRNAs altered in OB-ELVs was lipid metabolism. In agreement, OB-ELVs induced lipid storage in recipient adipocytes and increased lipid up-take and fatty acid oxidation in recipient muscle cells. In addition, OB-ELVs altered insulin-sensitivity and induced atrophy in muscle cells, reproducing the phenotype of the releasing OB muscles. These data suggest for the first time, a cross-talk between muscle cells and adipocytes, through the SkM-ELV route, in favor of adipose tissue expansion.
Collapse
|
29
|
Chip-Based Sensing of the Intercellular Transfer of Cell Surface Proteins: Regulation by the Metabolic State. Biomedicines 2021; 9:biomedicines9101452. [PMID: 34680568 PMCID: PMC8533487 DOI: 10.3390/biomedicines9101452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are anchored at the surface of mammalian blood and tissue cells through a carboxy-terminal GPI glycolipid. Eventually, they are released into incubation medium in vitro and blood in vivo and subsequently inserted into neighboring cells, potentially leading to inappropriate surface expression or lysis. To obtain first insight into the potential (patho)physiological relevance of intercellular GPI-AP transfer and its biochemical characterization, a cell-free chip- and microfluidic channel-based sensing system was introduced. For this, rat or human adipocyte or erythrocyte plasma membranes (PM) were covalently captured by the TiO2 chip surface operating as the acceptor PM. To measure transfer between PM, donor erythrocyte or adipocyte PM were injected into the channels of a flow chamber, incubated, and washed out, and the type and amount of proteins which had been transferred to acceptor PM evaluated with specific antibodies. Antibody binding was detected as phase shift of horizontal surface acoustic waves propagating over the chip surface. Time- and temperature-dependent transfer, which did not rely on fusion of donor and acceptor PM, was detected for GPI-APs, but not typical transmembrane proteins. Transfer of GPI-APs was found to be prevented by α-toxin, which binds to the glycan core of GPI anchors, and serum proteins in concentration-dependent fashion. Blockade of transfer, which was restored by synthetic phosphoinositolglycans mimicking the glycan core of GPI anchors, led to accumulation in the chip channels of full-length GPI-APs in association with phospholipids and cholesterol in non-membrane structures. Strikingly, efficacy of transfer between adipocytes and erythrocytes was determined by the metabolic state (genotype and feeding state) of the rats, which were used as source for the PM and sera, with upregulation in obese and diabetic rats and counterbalance by serum proteins. The novel chip-based sensing system for GPI-AP transfer may be useful for the prediction and stratification of metabolic diseases as well as elucidation of the putative role of intercellular transfer of cell surface proteins, such as GPI-APs, in (patho)physiological mechanisms.
Collapse
|
30
|
Duan DY, Tang J, Tian HT, Shi YY, Jia J. Adipocyte-secreted microvesicle-derived miR-148a regulates adipogenic and osteogenic differentiation by targeting Wnt5a/Ror2 pathway. Life Sci 2021; 278:119548. [PMID: 33930365 DOI: 10.1016/j.lfs.2021.119548] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 01/08/2023]
Abstract
AIMS Adipocyte-secreted microvesicles (MVs)-derived microRNAs (miRNAs) are relevant to adipogenic and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in osteonecrosis of the femoral head (ONFH). Our aims are to investigate the mechanism of adipocyte-derived MVs-miR-148a in ONFH. MATERIALS AND METHODS Adipocyte-derived MVs were identified via transmission electron microscopy and specific markers expression. The adipogenic and osteogenic differentiation were investigated by Oil-Red O staining, alkaline phosphatase (ALP) activity, Alizarin Red S (ARS) staining and osteogenic or adipogenic factors levels. Genes and proteins expression were detected by using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. The relationship between miR-148a and Wnt5a was tested via dual-luciferase reporter analysis. The adipogenic differentiation and osteogenic differentiation in methylprednisolone (MPS)-induced ONFH rat model were assessed via hematoxylin-eosin (HE) staining, and immunohistochemical staining of collagen I (COL I). KEY FINDINGS Adipocyte-derived MVs promoted adipogenic differentiation via increasing Oil-Red O staining positive cells, adiponectin (Adipoq), acid-binding protein 2 (aP2) and peroxisome proliferator-activated receptor γ (PPAR-γ) levels, and repressed osteogenic differentiation of BMSCs via decreasing ARS staining positive cells, ALP, Runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) levels. MiR-148a was present in adipocyte-derived MVs, and miR-148a knockdown inhibited adipogenic differentiation and promoted osteogenic differentiation. Furthermore, Wnt5a expression was regulated by miR-148a. MiR-148a overexpression facilitated adipogenic differentiation and suppressed osteogenic differentiation via regulating the Wnt5a/Ror2 pathway. Adipocyte-derived MVs promoted adipogenic differentiation and inhibited osteogenic differentiation in MPS-induced ONFH rat model. SIGNIFICANCE Adipocyte-derived MVs-miR-148a promoted adipogenic differentiation and suppressed osteogenic differentiation via targeting the Wnt5a/Ror2 pathway.
Collapse
Affiliation(s)
- De-Yu Duan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | - Jing Tang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | - Hong-Tao Tian
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | - Yang-Yang Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | - Jie Jia
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China.
| |
Collapse
|
31
|
Gómez-Serrano M, Ponath V, Preußer C, Pogge von Strandmann E. Beyond the Extracellular Vesicles: Technical Hurdles, Achieved Goals and Current Challenges When Working on Adipose Cells. Int J Mol Sci 2021; 22:ijms22073362. [PMID: 33805982 PMCID: PMC8036456 DOI: 10.3390/ijms22073362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue and its crosstalk with other organs plays an essential role in the metabolic homeostasis of the entire body. Alteration of this communication (i.e., due to obesity) is related to the development of several comorbidities including type 2 diabetes, cardiovascular diseases, or cancer. Within the adipose depot, adipocytes are the main cell type and thus the main source of secreted molecules, which exert modulating effects not only at a local but also at a systemic level. Extracellular vesicles (EVs) have recently emerged as important mediators in cell–cell communication and account for part of the cellular secretome. In recent years, there has been a growing body of research on adipocyte-derived extracellular vesicles (Ad-EVs). However, there is still a lack of standardized methodological approaches, especially regarding primary adipocytes. In this review, we will provide an outline of crucial aspects when working on adipose-derived material, with a special focus on primary adipocytes. In parallel, we will point out current methodological challenges in the EV field and how they impact the transcriptomic, proteomic and functional evaluations of Ad-EVs.
Collapse
|