1
|
Gajzer D, Glynn E, Wu D, Fromm JR. Flow Cytometry for Non-Hodgkin and Hodgkin Lymphomas. Methods Mol Biol 2025; 2865:31-59. [PMID: 39424719 DOI: 10.1007/978-1-0716-4188-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Multiparametric flow cytometry is a powerful diagnostic tool that permits rapid assessment of cellular antigen expression to quickly provide immunophenotypic information suitable for disease classification. This chapter describes a general approach for the identification of abnormal lymphoid populations by flow cytometry, including B, T, NK, and Hodgkin lymphoma cells suitable for the clinical and research environment. Knowledge of the common patterns of antigen expression of normal lymphoid cells is critical to permit identification of abnormal populations at disease presentation and for minimal residual disease assessment. We highlight an overview of procedures for processing and immunophenotyping non-Hodgkin B- and T-cell lymphomas and also describe our strategy for the sensitive and specific diagnosis of classic Hodgkin lymphoma, nodular lymphocyte predominant Hodgkin lymphoma, and T-cell/histiocyte-rich large B-cell lymphoma.
Collapse
Affiliation(s)
- David Gajzer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Emily Glynn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - David Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Jonathan R Fromm
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- University of Washington Medical Center, Seattle, WA, USA.
| |
Collapse
|
2
|
Shi M, Morice WG. How I diagnose large granular lymphocytic leukemia. Am J Clin Pathol 2024; 162:433-449. [PMID: 38823032 DOI: 10.1093/ajcp/aqae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024] Open
Abstract
OBJECTIVES Large granular lymphocytic leukemia (LGLL) represents a rare neoplasm of mature T cells or natural killer (NK) cells, with an indolent clinical course. Diagnosing LGLL can be challenging because of overlapping features with reactive processes and other mimickers. METHODS By presenting 2 challenging cases, we elucidate the differentiation of LGLL from its mimics and highlight potential diagnostic pitfalls. A comprehensive review of the clinicopathologic features of LGLL was conducted. RESULTS Large granular lymphocytic leukemia displays a diverse spectrum of clinical presentations, morphologies, flow cytometric immunophenotypes, and molecular profiles. These features are also encountered in reactive conditions, T-cell clones of uncertain significance, and NK cell clones of uncertain significance. CONCLUSIONS In light of the intricate diagnostic landscape, LGLL workup must encompass clinical, morphologic, immunophenotypic, clonal, and molecular findings. Meeting major and minor diagnostic criteria is imperative for the accurate diagnosis of LGLL.
Collapse
Affiliation(s)
- Min Shi
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, US
| | | |
Collapse
|
3
|
de Leval L, Gaulard P, Dogan A. A practical approach to the modern diagnosis and classification of T- and NK-cell lymphomas. Blood 2024; 144:1855-1872. [PMID: 38728419 DOI: 10.1182/blood.2023021786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT T- and natural killer (NK)-cell lymphomas are neoplasms derived from immature T cells (lymphoblastic lymphomas), or more commonly, from mature T and NK cells (peripheral T-cell lymphomas, PTCLs). PTCLs are rare but show marked biological and clinical diversity. They are usually aggressive and may present in lymph nodes, blood, bone marrow, or other organs. More than 30 T/NK-cell-derived neoplastic entities are recognized in the International Consensus Classification and the classification of the World Health Organization (fifth edition), both published in 2022, which integrate the most recent knowledge in hematology, immunology, pathology, and genetics. In both proposals, disease definition aims to integrate clinical features, etiology, implied cell of origin, morphology, phenotype, and genetic features into biologically and clinically relevant clinicopathologic entities. Cell derivation from innate immune cells or specific functional subsets of CD4+ T cells such as follicular helper T cells is a major determinant delineating entities. Accurate diagnosis of T/NK-cell lymphoma is essential for clinical management and mostly relies on tissue biopsies. Because the histological presentation may be heterogeneous and overlaps with that of many benign lymphoid proliferations and B-cell lymphomas, the diagnosis is often challenging. Disease location, morphology, and immunophenotyping remain the main features guiding the diagnosis, often complemented by genetic analysis including clonality and high-throughput sequencing mutational studies. This review provides a comprehensive overview of the classification and diagnosis of T-cell lymphoma in the context of current concepts and scientific knowledge.
Collapse
MESH Headings
- Humans
- Lymphoma, Extranodal NK-T-Cell/diagnosis
- Lymphoma, Extranodal NK-T-Cell/classification
- Lymphoma, Extranodal NK-T-Cell/pathology
- Lymphoma, Extranodal NK-T-Cell/genetics
- Killer Cells, Natural/pathology
- Killer Cells, Natural/immunology
- Lymphoma, T-Cell/classification
- Lymphoma, T-Cell/diagnosis
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell/genetics
Collapse
Affiliation(s)
- Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Philippe Gaulard
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
- Université Paris Est Créteil, Créteil, France
- INSERMU955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
4
|
Wadsworth P, Zhang J, Miller T, Menke J, Oak J, Fernandez-Pol S. Prevalence and clinicopathological features of incidentally detected TRBC1-dim populations in peripheral blood flow cytometry. Leuk Lymphoma 2024; 65:1374-1377. [PMID: 38747176 DOI: 10.1080/10428194.2024.2354527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 08/31/2024]
Affiliation(s)
- Paul Wadsworth
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jingjing Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Timothy Miller
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua Menke
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jean Oak
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
5
|
Fei F, Brar N, Herring MB, Menke JR, Oak J, Fernandez-Pol S. Quantification of the median fluorescence intensity of CD3 and CD4 in mycosis fungoides/Sezary syndrome versus non-neoplastic control cases in peripheral blood. J Hematop 2024:10.1007/s12308-024-00599-2. [PMID: 39093388 DOI: 10.1007/s12308-024-00599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Peripheral blood involvement by MF/SS has significant implications for prognosis and treatment. Flow cytometry is commonly used to assess MF/SS by analyzing the ratio of CD26- and/or CD7-CD4 + T cells and assessment of immunophenotypic abnormalities. However, distinguishing normal from abnormal cells is not always easy. In this study, we aimed to establish quantitative thresholds to better distinguish normal CD4 + T cells from neoplastic CD4 + T cells. A retrospective analysis of flow cytometry data was performed on 30 MF/SS patients with a detectable abnormal T cell population (positive), 63 patients with suspected or confirmed cutaneous involvement without a detectable abnormal T cell population (negative), and 60 healthy controls (control). CD3 and CD4 median fluorescence intensity (MFI) was normalized to internal control subsets. Among the positive cases, 50% had CD3 expression outside ± 2 SD from the mean of the negative and control group in the CD4 + CD26- subset. The corresponding specificity of this threshold was 94%. The ± 2 SD threshold showed a sensitivity of 57% and a specificity of 94% for the CD3 intensity among the CD7-negative subset. For CD4 intensity, the ± 2 SD threshold had a sensitivity of 33.3% and specificity of 95% for the CD26-negative subset and a sensitivity of 37% and specificity of 95% for the CD7-negative subset. In our study, although changes in CD3 and CD4 intensity greater than ± 2 SD were specific for MF/SS, more subtle differences in the intensity of CD3 and CD4 should not be used as the sole abnormality to make a diagnosis of circulating MF/SS.
Collapse
Affiliation(s)
- Fei Fei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Nivaz Brar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Melissa Beth Herring
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joshua R Menke
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jean Oak
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | |
Collapse
|
6
|
Gong Y, Li Y, Chen X, Yang H, Zhang Y, He G, Fan L. Refractory pure red cell aplasia associated with T-cell large granular lymphocyte leukemia treated by ruxolitinib. Ann Hematol 2024; 103:3239-3242. [PMID: 38935319 DOI: 10.1007/s00277-024-05856-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Acquired pure red cell aplasia (PRCA) is a rare syndrome characterized by normocytic normochromic anemia with severe reticulocytopenia and absence of erythroid precursors in the bone marrow. For refractory PRCA patients, the low response rate and high toxicity of alternative therapies pose a great challenge. T-cell large granular lymphocyte (T-LGL) leukemia is one of the most common conditions in secondary PRCA and also the most difficult form to manage with an inferior treatment response to other secondary PRCA forms. T-LGL leukemia exhibits sustained activation of the intracellular JAK-STAT signaling pathway. We herein report a case of PRCA associated with T-LGL leukemia that had been refractory to multiple lines of therapies and was successfully treated by ruxolitinib. The patient achieved complete remission and tolerated ruxolitinib well without occurrence of neutropenia or thrombocytopenia. This preliminary finding favors ruxolitinib as a potential salvage therapy for refractory PRCA associated with T-LGL leukemia.
Collapse
Affiliation(s)
- Yuemin Gong
- Department of Hematology, Jiangsu Province Hospital, Key Laboratory of Hematology, Collaborative Innovation Center for Cancer Personalized Medicine, The First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Yue Li
- Department of Hematology, Jiangsu Province Hospital, Key Laboratory of Hematology, Collaborative Innovation Center for Cancer Personalized Medicine, The First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Xiaoyu Chen
- Department of Hematology, Jiangsu Province Hospital, Key Laboratory of Hematology, Collaborative Innovation Center for Cancer Personalized Medicine, The First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Hui Yang
- Department of Hematology, Jiangsu Province Hospital, Key Laboratory of Hematology, Collaborative Innovation Center for Cancer Personalized Medicine, The First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Yawen Zhang
- Department of Hematology, Jiangsu Province Hospital, Key Laboratory of Hematology, Collaborative Innovation Center for Cancer Personalized Medicine, The First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Guangsheng He
- Department of Hematology, Jiangsu Province Hospital, Key Laboratory of Hematology, Collaborative Innovation Center for Cancer Personalized Medicine, The First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China.
| | - Lei Fan
- Department of Hematology, Jiangsu Province Hospital, Key Laboratory of Hematology, Collaborative Innovation Center for Cancer Personalized Medicine, The First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| |
Collapse
|
7
|
Lu C, Li M, Fu J, Fan X, Zhong L, Li Y, Xi Q. cyTRBC1 evaluation rapidly identifies sCD3-negative peripheral T-cell lymphomas and reveals a novel type of sCD3-negative T-cell clone with uncertain significance. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024. [PMID: 38818861 DOI: 10.1002/cyto.b.22182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
The flow cytometry-based evaluation of TRBC1 expression has been demonstrated as a rapid and specific method for detecting T-cell clones in sCD3-positive TCRαβ+ mature T-cell lymphoma. The aim of the study was to validate the utility of surface (s) TRBC1 and cytoplastic (cy) TRBC1 assessment in detecting clonality of sCD3-negative peripheral T-cell lymphomas (PTCLs), as well as exploring the existence and characteristics of sCD3-negative clonal T-cell populations with uncertain significance (T-CUS). Evaluation of sTRBC1 and cyTRBC1 were assessed on 61 samples from 37 patients with sCD3-negative PTCLs, including 26 angioimmunoblastic T-cell lymphoma (AITL) patients and 11 non-AITL patients. The sCD3-negative T-CUS were screened from 1602 patients without T-cell malignancy and 100 healthy individuals. Additionally, the clonality of cells was further detected through T-cell gene rearrangement analysis. We demonstrated the monotypic expression patterns of cyTRBC1 in all sCD3-negative PTCLs. Utilizing the cyTRBC1 evaluation assay, we identified a novel and rare subtype of sCD3-negative T-CUS for the first time among 13 out of 1602 (0.8%) patients without T-cell malignancy. The clonality of these cells was further confirmed through T-cell gene rearrangement analysis. This subset exhibited characteristics such as sCD3-cyCD3 + CD4 + CD45RO+, closely resembling AITL rather than non-AITL. Further analysis revealed that sCD3-negative T-CUS exhibited a smaller clone size in the lymph node and mass specimens compared to AITL patients. However, the clone size of sCD3-negative T-CUS was significantly lower than that of non-AITL patients in both specimen groups. In conclusion, we validated the diagnostic utility of cyTRBC1 in detecting sCD3-negative T-cell clonality, provided a comprehensive analysis of sCD3-negative T-CUS, and established a framework and provided valuable insights for distinguishing sCD3-negative T-CUS from sCD3-negative PTCLs based on their phenotypic properties and clone size.
Collapse
Affiliation(s)
- Cong Lu
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingyong Li
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Fu
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoming Fan
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanxin Li
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Xi
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Devitt KA, Kern W, Li W, Wang X, Wong AJ, Furtado FM, Oak JS, Illingworth A. TRBC1 in flow cytometry: Assay development, validation, and reporting considerations. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:192-202. [PMID: 38700195 DOI: 10.1002/cyto.b.22175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/01/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024]
Abstract
The assessment of T-cell clonality by flow cytometry has long been suboptimal, relying on aberrant marker expression and/or intensity. The introduction of TRBC1 shows much promise for improving the diagnosis of T-cell neoplasms in the clinical flow laboratory. Most laboratories considering this marker already have existing panels designed for T-cell workups and will be determining how best to incorporate TRBC1. We present this comprehensive summary of TRBC1 and supplemental case examples to familiarize the flow cytometry community with its potential for routine application, provide examples of how to incorporate it into T-cell panels, and signal caution in interpreting the results in certain diagnostic scenarios where appropriate.
Collapse
Affiliation(s)
- Katherine A Devitt
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, Vermont, USA
- Larner College of Medicine at the University of Vermont, Burlington, Vermont, USA
| | - Wolfgang Kern
- Department of Flow Cytometry, MLL Munich Leukemia Laboratory, Munich, Germany
| | - Weijie Li
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Xuehai Wang
- Division of Hematopathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Allyson J Wong
- Pathology and Laboratory Medicine, Lahey Hospital and Medical Center, Burlington, Massachusetts, USA
| | - Felipe M Furtado
- Hematology Department, Sabin Diagnostico e Saude, Brasília, Brazil
- Oncohematology Department, Hospital da Criança de Brasília, Brasília, Brazil
| | - Jean S Oak
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Andrea Illingworth
- Department of Flow Cytometry, Dahl-Chase Diagnostic Services/Versant Diagnostics, Bangor, Maine, USA
| |
Collapse
|
9
|
Dexter T, Taiwo T, Dearden C, Chan LY, Taussig D, El-Sharkawi D, Dunlop A, Iyengar S. Correlation of T-cell receptor constant beta-chain 1 by flow cytometry with molecular T-cell receptor clonality for the investigation of T-cell lymphoproliferation. Br J Haematol 2024; 204:1554-1556. [PMID: 38407416 DOI: 10.1111/bjh.19299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/27/2024]
Affiliation(s)
- Tania Dexter
- Department of Haemato-Oncology, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Tosin Taiwo
- The Centre for Molecular Pathology, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Claire Dearden
- Department of Haemato-Oncology, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Li Yuan Chan
- Department of Haemato-Oncology, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - David Taussig
- Department of Haemato-Oncology, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Dima El-Sharkawi
- Department of Haemato-Oncology, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Alan Dunlop
- The Centre for Molecular Pathology, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Sunil Iyengar
- Department of Haemato-Oncology, The Royal Marsden NHS Foundation Trust, Sutton, UK
| |
Collapse
|
10
|
Nguyen PC, Nguyen T, Wilson C, Tiong IS, Baldwin K, Nguyen V, Came N, Blombery P, Westerman DA. Evaluation of T-cell clonality by anti-TRBC1 antibody-based flow cytometry and correlation with T-cell receptor sequencing. Br J Haematol 2024; 204:910-920. [PMID: 38098188 DOI: 10.1111/bjh.19252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/28/2023] [Indexed: 03/14/2024]
Abstract
Flow cytometry (FC) incorporating the T-cell receptor β constant chain-1 (TRBC1) has been recently proposed as a new standard in T-cell clonality assessment. While early studies demonstrated high sensitivity in samples with conspicuous tumour burden, performance in real-world samples, including those with low tumour burden and correlation with molecular methods has been limited. We evaluated TRBC1-FC performance and correlated the results with high-throughput TRB sequencing and a targeted next-generation sequencing gene panel. Our cohort consisted of 90 evaluable samples from 57 patients. TRBC1-FC confirmed T-cell clonality in 37 out of 38 samples (97%) that were involved in a mature T-cell neoplasm (MTCN). T-cell clonality was also identified in nine samples from patients lacking a current or prior diagnosis of MTCN, consistent with the emerging entity T-cell clonality of uncertain significance. TRBC-FC was polyclonal in all samples and negative for disease involvement by standard pathology assessment. However, correlation with TRB sequencing in 17 of these samples identified two cases that harboured the known clonal sequence from index testing, indicating the presence of measurable residual disease not otherwise detected. Our study provides real-world correlative validation of TRBC1-FC, highlighting the strengths and limitations pertinent to its increasing implementation by general diagnostic laboratories.
Collapse
Affiliation(s)
- Phillip C Nguyen
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Tamia Nguyen
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Clarissa Wilson
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ing Soo Tiong
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kylie Baldwin
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Vuong Nguyen
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Neil Came
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - David A Westerman
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Horna P, Weybright MJ, Ferrari M, Jungherz D, Peng Y, Akbar Z, Tudor Ilca F, Otteson GE, Seheult JN, Ortmann J, Shi M, Maciocia PM, Herling M, Pule MA, Olteanu H. Dual T-cell constant β chain (TRBC)1 and TRBC2 staining for the identification of T-cell neoplasms by flow cytometry. Blood Cancer J 2024; 14:34. [PMID: 38424120 PMCID: PMC10904869 DOI: 10.1038/s41408-024-01002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
The diagnosis of leukemic T-cell malignancies is often challenging, due to overlapping features with reactive T-cells and limitations of currently available T-cell clonality assays. Recently developed therapeutic antibodies specific for the mutually exclusive T-cell receptor constant β chain (TRBC)1 and TRBC2 isoforms provide a unique opportunity to assess for TRBC-restriction as a surrogate of clonality in the flow cytometric analysis of T-cell neoplasms. To demonstrate the diagnostic utility of this approach, we studied 164 clinical specimens with (60) or without (104) T-cell neoplasia, in addition to 39 blood samples from healthy donors. Dual TRBC1 and TRBC2 expression was studied within a comprehensive T-cell panel, in a fashion similar to the routine evaluation of kappa and lambda immunoglobulin light chains for the detection of clonal B-cells. Polytypic TRBC expression was demonstrated on total, CD4+ and CD8+ T-cells from all healthy donors; and by intracellular staining on benign T-cell precursors. All neoplastic T-cells were TRBC-restricted, except for 8 cases (13%) lacking TRBC expression. T-cell clones of uncertain significance were identified in 17 samples without T-cell malignancy (13%) and accounted for smaller subsets than neoplastic clones (median: 4.7 vs. 69% of lymphocytes, p < 0.0001). Single staining for TRBC1 produced spurious TRBC1-dim subsets in 24 clinical specimens (15%), all of which resolved with dual TRBC1/2 staining. Assessment of TRBC restriction by flow cytometry provides a rapid diagnostic method to detect clonal T-cells, and to accurately determine the targetable TRBC isoform expressed by T-cell malignancies.
Collapse
Affiliation(s)
- Pedro Horna
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA.
| | | | | | - Dennis Jungherz
- Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - YaYi Peng
- Department of Internal Medicine, University of Cologne, Cologne, Germany
| | | | | | | | | | - Janosch Ortmann
- Centre de Recherches Mathematiques, Universite du Quebec a Montreal, Montreal, Canada
| | - Min Shi
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | | | - Marco Herling
- Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - Martin A Pule
- Autolus Ltd, London, UK
- Cancer Institute, University College London, London, UK
| | - Horatiu Olteanu
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
12
|
Castillo F, Morales C, Spralja B, Díaz-Schmidt J, Iruretagoyena M, Ernst D. Integration of T-cell clonality screening using TRBC-1 in lymphoma suspect samples by flow cytometry. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:64-73. [PMID: 38010106 DOI: 10.1002/cyto.b.22147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/23/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND The diagnosis of T-cell non-Hodgkin lymphomas (NHL) is challenging. The development of a monoclonal antibody specific for T-cell receptor β constant region 1 (TRBC1) provides an alternative to discriminate clonal T cells. The aim of this study was to evaluate the diagnostic potential of an anti-TRBC1 mAb for the identification of T-NHL. METHODS We performed a cross-sectional diagnostic analytic study of samples tested for lymphoma. All samples sent for lymphoma screening were first evaluated using the standard Euroflow LST, to which a second additional custom-designed T-cell clonality assessment tube was added CD45/TRBC1/CD2/CD7/CD4/TCRγδ/CD3. Flow cytometry reports were compared with morphological and molecular tests. RESULTS Fifty-nine patient samples were evaluated. Within the T-cell population, cut-off percentages in the CD4+ cells were from 29.4 to 54.6% and from 23.9 to 52.1% in CD8+ cells. Cut-off ratios in CD4+ T cells were from 0.33 to 1.1, and in CD8+ cells between 0.22 and 1.0. Using predefined normal cut-off values, 18 of 59 (30.5%) samples showed a restricted expression of TRBC1. A final diagnosis of a T-NHL was confirmed clinically and/or by histopathological studies in 15 of the 18 cases (83.3%). There were no cases of T-NHL by morphology/IHC with normal TRBC1 expression. Non-neoplastic patient samples behaved between predefined TRBC1 cut-off values. CONCLUSIONS Expression of TRBC1 provides a robust method for T-cell clonality assessment, with very high sensitivity and good correlation with complementary methods. TRBC1 can be integrated into routine lymphoma screening strategies via flow cytometry.
Collapse
Affiliation(s)
- Felipe Castillo
- Laboratorio Clínico, Clínica Alemana de Santiago, Vitacura, Chile
| | | | - Biserka Spralja
- Laboratorio Anatomía Patológica, Clínica Alemana de Santiago, Vitacura, Chile
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Joaquín Díaz-Schmidt
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Departamento de Oncología, Clínica Alemana de Santiago, Vitacura, Chile
| | - Mirentxu Iruretagoyena
- Laboratorio Clínico, Clínica Alemana de Santiago, Vitacura, Chile
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Daniel Ernst
- Laboratorio Clínico, Clínica Alemana de Santiago, Vitacura, Chile
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Departamento de Oncología, Clínica Alemana de Santiago, Vitacura, Chile
- Instituto de Ciencia e Innovación en Medicina (ICIM), Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
13
|
Jiang X, Dong L, Wang S, Wen Z, Chen M, Xu L, Xiao G, Li Q. Reconstructing Spatial Transcriptomics at the Single-cell Resolution with BayesDeep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570715. [PMID: 38106214 PMCID: PMC10723442 DOI: 10.1101/2023.12.07.570715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Spatially resolved transcriptomics (SRT) techniques have revolutionized the characterization of molecular profiles while preserving spatial and morphological context. However, most next-generation sequencing-based SRT techniques are limited to measuring gene expression in a confined array of spots, capturing only a fraction of the spatial domain. Typically, these spots encompass gene expression from a few to hundreds of cells, underscoring a critical need for more detailed, single-cell resolution SRT data to enhance our understanding of biological functions within the tissue context. Addressing this challenge, we introduce BayesDeep, a novel Bayesian hierarchical model that leverages cellular morphological data from histology images, commonly paired with SRT data, to reconstruct SRT data at the single-cell resolution. BayesDeep effectively model count data from SRT studies via a negative binomial regression model. This model incorporates explanatory variables such as cell types and nuclei-shape information for each cell extracted from the paired histology image. A feature selection scheme is integrated to examine the association between the morphological and molecular profiles, thereby improving the model robustness. We applied BayesDeep to two real SRT datasets, successfully demonstrating its capability to reconstruct SRT data at the single-cell resolution. This advancement not only yields new biological insights but also significantly enhances various downstream analyses, such as pseudotime and cell-cell communication.
Collapse
Affiliation(s)
- Xi Jiang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
- Department of Statistics and Data Science, Southern Methodist University, Dallas, Texas, U.S.A
| | - Lei Dong
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Shidan Wang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Zhuoyu Wen
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Mingyi Chen
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Qiwei Li
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, Texas, U.S.A
| |
Collapse
|
14
|
Karsten H, Matrisch L, Cichutek S, Fiedler W, Alsdorf W, Block A. Broadening the horizon: potential applications of CAR-T cells beyond current indications. Front Immunol 2023; 14:1285406. [PMID: 38090582 PMCID: PMC10711079 DOI: 10.3389/fimmu.2023.1285406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Engineering immune cells to treat hematological malignancies has been a major focus of research since the first resounding successes of CAR-T-cell therapies in B-ALL. Several diseases can now be treated in highly therapy-refractory or relapsed conditions. Currently, a number of CD19- or BCMA-specific CAR-T-cell therapies are approved for acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), multiple myeloma (MM), and follicular lymphoma (FL). The implementation of these therapies has significantly improved patient outcome and survival even in cases with previously very poor prognosis. In this comprehensive review, we present the current state of research, recent innovations, and the applications of CAR-T-cell therapy in a selected group of hematologic malignancies. We focus on B- and T-cell malignancies, including the entities of cutaneous and peripheral T-cell lymphoma (T-ALL, PTCL, CTCL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), classical Hodgkin-Lymphoma (HL), Burkitt-Lymphoma (BL), hairy cell leukemia (HCL), and Waldenström's macroglobulinemia (WM). While these diseases are highly heterogenous, we highlight several similarly used approaches (combination with established therapeutics, target depletion on healthy cells), targets used in multiple diseases (CD30, CD38, TRBC1/2), and unique features that require individualized approaches. Furthermore, we focus on current limitations of CAR-T-cell therapy in individual diseases and entities such as immunocompromising tumor microenvironment (TME), risk of on-target-off-tumor effects, and differences in the occurrence of adverse events. Finally, we present an outlook into novel innovations in CAR-T-cell engineering like the use of artificial intelligence and the future role of CAR-T cells in therapy regimens in everyday clinical practice.
Collapse
Affiliation(s)
- Hendrik Karsten
- Faculty of Medicine, University of Hamburg, Hamburg, Germany
| | - Ludwig Matrisch
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein, Lübeck, Germany
- Faculty of Medicine, University of Lübeck, Lübeck, Germany
| | - Sophia Cichutek
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Winfried Alsdorf
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Andreas Block
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Liu J, Li M, Fu J, Dong M, Fan X, Zhong L, Xu G, Li Y, Xi Q. sTRBC1 and cyTRBC1 Expression Distinguishes Indolent T-Lymphoblastic Proliferations From T-Lymphoblastic Leukemia/Lymphoma. Am J Surg Pathol 2023; 47:1325-1331. [PMID: 37515427 DOI: 10.1097/pas.0000000000002103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Indolent T-lymphoblastic proliferation (iT-LBP) consists of a proliferation of non-neoplastic TdT + T cells in extrathymic tissues, requiring no treatment. However, due to overlapping clinical and histologic features, distinguishing iT-LBP from T-cell acute lymphoblastic leukemia/lymphoblastic lymphoma (T-ALL/LBL) can be challenging. Recently, flow cytometry-based evaluation of TRBC1 has been used to detect of T-cell clonality in TCRαβ + mature T-cell lymphomas and aid in the differential diagnosis between T-ALL and normal thymocytes. We present a case of iT-LBP with high-grade serous ovarian carcinoma (HGSOC). To investigate the potential utility of TRBC1 expression in distinguishing iT-LBP from T-ALL/LBL, we assessed both surface (s) and cytoplasmic (cy) TRBC1 expression patterns on blast cells from the patient with iT-LBP and HGSOC as well as 11 patients diagnosed with T-ALL/LBL. The results revealed that sTRBC1 and cyTRBC1 exhibited polytypic expression patterns in patient with iT-LBP and HGSOC, while cyTRBC1 showed monotypic expression in those with T-ALL/LBL. This suggests that evaluation of sTRBC1 and cyTRBC1 expression can serve as a simple, rapid, and effective approach to differentiate between iT-LBP and T-ALL/LBL.
Collapse
Affiliation(s)
| | | | | | | | | | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | | | | | | |
Collapse
|
16
|
Chan A, Gao Q, Roshal M. 19-color, 21-Antigen Single Tube for Efficient Evaluation of B- and T-cell Neoplasms. Curr Protoc 2023; 3:e884. [PMID: 37725693 PMCID: PMC10516508 DOI: 10.1002/cpz1.884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Non-Hodgkin lymphoma (NHL) is a heterogeneous disease, encompassing a wide variety of individually distinct neoplastic entities of mature B-, T-, and NK-cells. While they constitute a broad category, they are the most common hematologic malignancies in the world. The distinction between different neoplastic entities requires a multi-modal approach, such as flow cytometric immunophenotyping, which can exclude a neoplastic proliferation and help narrow the differential diagnosis. This article describes a flow cytometric test developed at Memorial Sloan Kettering Cancer Center to assess B-, T-, and NK-cells in a single tube, 21-antibody, 19-color assay. The assay can identify most B- and T-cell NHLs with high specificity and sensitivity and significantly narrow the differential when a specific diagnosis cannot be made. The basic protocol provides a detailed operational procedure for sample processing, staining, and cytometric acquisition. The support protocol provides typical steps and caveats for data analysis in lymphoproliferative disorders and in discriminating a variety of specific disease entities from each other and normal lymphoid populations. © 2023 Wiley Periodicals LLC. Basic Protocol: Processing, staining, and cytometric analysis of samples for B- and T-cell assessment Support Protocol: Analysis and interpretation of the B- and T-cell lymphocyte assay.
Collapse
Affiliation(s)
- Alexander Chan
- Hematopathology service, Memorial Sloan Kettering Cancer Center, Department of Pathology and Laboratory Medicine, New York, New York
| | - Qi Gao
- Hematopathology service, Memorial Sloan Kettering Cancer Center, Department of Pathology and Laboratory Medicine, New York, New York
| | - Mikhail Roshal
- Hematopathology service, Memorial Sloan Kettering Cancer Center, Department of Pathology and Laboratory Medicine, New York, New York
| |
Collapse
|
17
|
Song P, Wusiman D, Li W, Guo L, Ying J, Gao S, He J. Validating a Macrophage Marker Gene Signature (MMGS) in Lung Adenocarcinoma Prognosis and Response to Immunotherapy. J Immunother 2023; 46:205-215. [PMID: 37220007 DOI: 10.1097/cji.0000000000000477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
Lung adenocarcinoma (LUAD) is the leading cause of cancer-related death worldwide. Tumor-associated macrophages play pivotal roles in the tumor microenvironment (TME) and prognosis of LUAD. We first used single-cell RNA sequencing data to identify macrophage marker genes in LUAD. Univariate, least absolute shrinkage and selection operator and stepwise multivariate Cox regression analyses were conducted to evaluate macrophage marker genes as prognostic factors and to construct the macrophage marker genes signature (MMGS). A novel 8-gene signature was constructed to predict prognosis based on 465 macrophage marker genes identified by an analysis of single-cell RNA sequencing data of LUAD, and was also verified in 4 independent GEO cohorts. The MMGS significantly classified patients into high-risk and low-risk groups in terms of OS. A prognostic nomogram based on independent risk factors was established to predict the 2-, 3- and 5-year survival, which indicated superior accuracy in predicting prognosis. The high-risk group was correlated to higher tumor mutational burden, number of neoantigens, T-cell receptor richness, and lower TIDE, which suggested that high-risk patients were more likely to benefit from immunotherapy. The prediction of the possibility of immunotherapy efficacy was also discussed. Analysis of an immunotherapy cohort further verified that patients with high-risk scores had better immunotherapy responses than low-risk patients. The MMGS is a promising signature for predicting prognosis and effectiveness of immunotherapy in patients with LUAD, and may be helpful for clinical decision-making.
Collapse
Affiliation(s)
- Peng Song
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dilinaer Wusiman
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Lee H. Mycosis fungoides and Sézary syndrome. Blood Res 2023; 58:66-82. [PMID: 37105561 PMCID: PMC10133849 DOI: 10.5045/br.2023.2023023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Mycosis fungoides (MF) and Sézary syndrome (SS) are a distinct disease entity of cutaneous T-cell lymphoma with heterogenous clinical features and prognosis. MF mainly involves skin and usually shows an indolent and favorable clinical course. In patients with advanced-stage disease, extracutaneous involvement including lymph nodes, viscera, and blood, or large cell transformation may be observed. SS is a leukemic form of advanced-stage MF, characterized by generalized erythroderma. Early-stage MF can be treated with skin-directed therapy. However, patients with refractory or advanced-stage disease are associated with severe symptoms or poor prognosis, requiring systemic therapy. Recent progress in understanding the pathogenesis of MF/SS has contributed to advances in the management of these rare diseases. This review aims to describe the clinical manifestations, diagnosis, risk stratification, and treatment strategy of MF/SS, focusing on the recent updates in the management of these diseases.
Collapse
Affiliation(s)
- Hyewon Lee
- Division of Hemato-Oncology, Department of Internal Medicine, and Center for Hematologic Malignancy, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| |
Collapse
|
19
|
Zhou C, Peng K, Liu Y, Zhang R, Zheng X, Yue B, Du C, Wu Y. Comparative Analyses Reveal the Genetic Mechanism of Ambergris Production in the Sperm Whale Based on the Chromosome-Level Genome. Animals (Basel) 2023; 13:ani13030361. [PMID: 36766250 PMCID: PMC9913093 DOI: 10.3390/ani13030361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/05/2023] [Accepted: 01/14/2023] [Indexed: 01/24/2023] Open
Abstract
Sperm whales are a marine mammal famous for the aromatic substance, the ambergris, produced from its colon. Little is known about the biological processes of ambergris production, and this study aims to investigate the genetic mechanism of ambergris production in the sperm whale based on its chromosome-level genome. Comparative genomics analyses found 1207 expanded gene families and 321 positive selected genes (PSGs) in the sperm whale, and functional enrichment analyses suggested revelatory pathways and terms related to the metabolism of steroids, terpenoids, and aldosterone, as well as microbiota interaction and immune network in the intestine. Furthermore, two sperm-whale-specific missense mutations (Tyr393His and Leu567Val) were detected in the PSG LIPE, which has been reported to play vital roles in lipid and cholesterol metabolism. In total, 46 CYP genes and 22 HSD genes were annotated, and then mapped to sperm whale chromosomes. Furthermore, phylogenetic analysis of CYP genes in six mammals found that CYP2E1, CYP51A and CYP8 subfamilies exhibited relative expansion in the sperm whale. Our results could help understand the genetic mechanism of ambergris production, and further reveal the convergent evolution pattern among animals that produce similar odorants.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Kexin Peng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yi Liu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Rusong Zhang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xiaofeng Zheng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Chao Du
- Baotou Teachers College, Baotou 014060, China
- Correspondence: (C.D.); (Y.W.)
| | - Yongjie Wu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
- Correspondence: (C.D.); (Y.W.)
| |
Collapse
|
20
|
Hristov AC, Tejasvi T, Wilcox RA. Cutaneous T-cell lymphomas: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol 2023; 98:193-209. [PMID: 36226409 PMCID: PMC9772153 DOI: 10.1002/ajh.26760] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 02/04/2023]
Abstract
DISEASE OVERVIEW Cutaneous T-cell lymphomas are a heterogenous group of T-cell neoplasms involving the skin, the majority of which may be classified as Mycosis Fungoides (MF) or Sézary Syndrome (SS). DIAGNOSIS The diagnosis of MF or SS requires the integration of clinical and histopathologic data. RISK-ADAPTED THERAPY TNMB (tumor, node, metastasis, blood) staging remains the most important prognostic factor in MF/SS and forms the basis for a "risk-adapted," multidisciplinary approach to treatment. For patients with disease limited to the skin, expectant management or skin-directed therapies is preferred, as both disease-specific and overall survival for these patients is favorable. In contrast, patients with advanced-stage disease with significant nodal, visceral or the blood involvement are generally approached with systemic therapies, including biologic-response modifiers, histone deacetylase inhibitors, or antibody-based strategies, in an escalating fashion. In highly-selected patients, allogeneic stem-cell transplantation may be considered, as this may be curative in some patients.
Collapse
Affiliation(s)
- Alexandra C. Hristov
- Departments of Pathology and Dermatology, 2800 Plymouth Road, Building 35, Ann Arbor, MI 48109-2800
| | - Trilokraj Tejasvi
- Department of Dermatology, 1910 Taubman Center, 1500 E Medical Center Dr, Ann Arbor, MI 48109
| | - Ryan A. Wilcox
- Correspondence to: Ryan Wilcox, MD, PhD, Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Rogel Cancer Center, 1500 E. Medical Center Drive, Room 4310 CC, Ann Arbor, MI 48109-5948, Phone: (734) 615-9799, Fax: (734) 936-7376,
| |
Collapse
|
21
|
Capone M, Peruzzi B, Palterer B, Bencini S, Sanna A, Puccini B, Nassi L, Salvadori B, Statello M, Carraresi A, Stefanelli S, Orazzini C, Minuti B, Caporale R, Annunziato F. Rapid evaluation of T cell clonality in the diagnostic work-up of mature T cell neoplasms: TRBC1-based flow cytometric assay experience. Transl Oncol 2022; 26:101552. [PMID: 36183675 PMCID: PMC9530610 DOI: 10.1016/j.tranon.2022.101552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
The identification of mature T cell neoplasms by flow cytometry is often challenging, due to overlapping features with reactive T cells and limitations of currently available T cell clonality assays. The description of an antibody specific for one of two mutually exclusive T cell receptor (TCR) β-chain constant regions (TRBC1) provides an opportunity to facilitate the detection of clonal TCRαβ+ T cells based on TRBC-restriction. Here we prospectively analyzed 14 healthy controls and 63 patients with the flow cytometry protocol currently used for suspected T cell neoplasm implemented with immunostaining targeting TRBC1. Specimens were firstly classified in 3 groups based on clinical records data, laboratory findings and immunophenotypic features. T cell clonality was assessed by TCR Vβ repertoire analysis and the new rapid TRBC1 assay. Results showed that TRBC1 unimodal expression was unequivocally associated with samples presenting with immunophenotypic aberrancies. Moreover, we demonstrated that the use of TRBC1 is useful in solving uncertain cases and confirmed the high sensitivity of the method in identifying small T cell clones of uncertain significance (T-CUS). Finally, we found a high degree of concordance (97%) comparing the currently available clonality assessment methods with the proposed new method. In conclusion, our results provided real-life evidence of the utility of TRBC1 introduction in the flow cytometric clonality evaluation for the routine diagnostic work-up of T cell neoplasms.
Collapse
Affiliation(s)
- Manuela Capone
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy; Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Benedetta Peruzzi
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy
| | - Boaz Palterer
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy
| | - Sara Bencini
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy
| | | | | | - Luca Nassi
- Hematology, Unit AOU Careggi, Florence, Italy
| | | | - Marinella Statello
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy
| | - Alessia Carraresi
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy
| | - Stefania Stefanelli
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy
| | - Chiara Orazzini
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy
| | | | - Roberto Caporale
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy
| | - Francesco Annunziato
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), AOU Careggi, Florence, Italy; Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
22
|
Maccio U, Rets AV. Lymphoid aggregates in bone marrow: a diagnostic pitfall. J Clin Pathol 2022; 75:807-814. [PMID: 36150886 DOI: 10.1136/jclinpath-2022-208174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/09/2022] [Indexed: 11/03/2022]
Abstract
Lymphoid aggregates in bone marrow specimens are a relatively frequent finding that may pose a diagnostic challenge for a pathologist. The distinction between reactive and neoplastic aggregates has significant clinical relevance. Although many testing modalities such as immunohistochemistry, flow cytometry and molecular studies are currently available in clinical laboratories, the appropriate utilisation of these modalities and the awareness of their potential pitfalls are important. When a neoplastic process is ruled out, the significance of benign lymphoid aggregates in bone marrow is often unclear, as they may be associated with a broad spectrum of conditions including infections, autoimmune disorders, medications, or may even be idiopathic.This review focuses on evidence-based criteria that can aid in making the distinction between benign and malignant lymphoid aggregates and discusses the advantages, disadvantages and limits of ancillary tests used for this purpose. Finally, the most common aetiologies of benign lymphoid aggregates and their associations with specific diseases are discussed.
Collapse
Affiliation(s)
- Umberto Maccio
- Pathology, University Hospital Zurich, Zürich, Switzerland
| | - Anton V Rets
- Hematopathology, ARUP Laboratories, Salt Lake City, Utah, USA .,Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
23
|
Martin-Moro F, Martin-Rubio I, Garcia-Vela JA. TRBC1 expression assessed by flow cytometry as a novel marker of clonality in cutaneous αβ T-cell lymphomas with peripheral blood involvement. Br J Dermatol 2022; 187:623-625. [PMID: 35606929 DOI: 10.1111/bjd.21678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Fernando Martin-Moro
- Hematology Department, Ramon y Cajal University Hospital, Madrid, Spain.,University of Alcala, Alcala de Henares, Madrid, Spain
| | - Isaac Martin-Rubio
- Hematology Department, Getafe University Hospital, Getafe, Madrid, Spain
| | - Jose A Garcia-Vela
- Hematology Department, Getafe University Hospital, Getafe, Madrid, Spain
| |
Collapse
|
24
|
El-Sharkawi D, Attygalle A, Dearden C. Mature T-Cell leukemias: Challenges in Diagnosis. Front Oncol 2022; 12:777066. [PMID: 35359424 PMCID: PMC8961294 DOI: 10.3389/fonc.2022.777066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
T-cell clones can frequently be identified in peripheral blood. It can be difficult to appreciate whether these are benign and transient or whether they signify a clonal disorder. We review factors that aid in understanding the relevance of T-cell clones. Conversely, obvious pathological T-cell clones can be detected in blood, but there is uncertainty in how to categorize this clonal T cell population, thus, we adopt a multidisciplinary review of the clinical features, diagnostic material and radiology before making the diagnosis. In this review we shall discuss some of these challenges faced when diagnosing mature T-cell leukemias.
Collapse
Affiliation(s)
- Dima El-Sharkawi
- Department of Haematology, The Royal Marsden NHS Foundation Trust, London, United Kingdom.,Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Ayoma Attygalle
- Department of Histopathology, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Claire Dearden
- Department of Haematology, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
25
|
Muñoz-García N, Morán-Plata FJ, Villamor N, Lima M, Barrena S, Mateos S, Caldas C, van Dongen JJM, Orfao A, Almeida J. High-Sensitive TRBC1-Based Flow Cytometric Assessment of T-Cell Clonality in Tαβ-Large Granular Lymphocytic Leukemia. Cancers (Basel) 2022; 14:cancers14020408. [PMID: 35053571 PMCID: PMC8773687 DOI: 10.3390/cancers14020408] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary TRBC1 expression analysis by flow cytometry (FCM) has been recently proved to be a useful, simple and fast approach to assessing Tαβ-cell clonality. The aim of this study was to validate the utility of this assay specifically for the diagnosis of T-cell clonality of T-large granular lymphocytic leukemias (T-LGLL), as more mature polyclonal Tαβ large granular lymphocytes (Tαβ-LGL) show broader TRBC1+/TRBC1− ratios vs. total Tαβ cells. Our results showed that a TRBC1-FCM assay is also a fast and easy method for detecting T-cell clonality in T-LGLL based on altered (increased or decreased) percentages of TRBC1+ Tαβ cells of LGL expansions (i.e., with lymphocytosis) suspected of T-LGLL, whereas in the absence of lymphocytosis (or in TαβCD4-LGLL), the detection of increased absolute cell-counts of more precisely defined subpopulations of T-LGL expressing individual TCRVβ families is required. Abstract Flow cytometric (FCM) analysis of the constant region 1 of the T-cell receptor β chain (TRBC1) expression for assessing Tαβ-cell clonality has been recently validated. However, its utility for the diagnosis of clonality of T-large granular lymphocytic leukemia (T-LGLL) needs to be confirmed, since more mature Tαβ cells (i.e., T-LGL normal-counterpart) show broader TRBC1+/TRBC1− ratios vs. total Tαβ cells. We compared the distribution and absolute counts of TRBC1+ and TRBC1− Tαβ-LGL in blood containing polyclonal (n = 25) vs. clonal (n = 29) LGL. Overall, polyclonal TRBC1+ or TRBC1− Tαβ-LGL ranged between 0.36 and 571 cells/μL (3.2–91% TRBC1+ cells), whereas the clonal LGL cases showed between 51 and 11,678 cells/μL (<0.9% or >96% TRBC1+ cells). Among the distinct TCRVβ families, the CD28− effector-memory and terminal-effector polyclonal Tαβ cells ranged between 0 and 25 TRBC1+ or TRBC1− cells/μL and between 0 and 100% TRBC1+ cells, while clonal LGL ranged between 32 and 5515 TRBC1+ or TRBC1− cells/μL, representing <1.6% or >98% TRBC1+ cells. Our data support the utility of the TRBC1-FCM assay for detecting T-cell clonality in expansions of Tαβ-LGL suspected of T-LGLL based on altered percentages of TRBC1+ Tαβ cells. However, in the absence of lymphocytosis or in the case of TαβCD4-LGL expansion, the detection of increased absolute cell counts by the TRBC1-FCM assay for more accurately defined subpopulations of Tαβ-LGL-expressing individual TCRVβ families, allows the detection of T-cell clonality, even in the absence of phenotypic aberrations.
Collapse
Affiliation(s)
- Noemí Muñoz-García
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (J.J.M.v.D.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - F. Javier Morán-Plata
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (J.J.M.v.D.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Neus Villamor
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Pathology, Hematopathology Unit, Hospital Clínic, IDIBAPS, 08036 Barcelona, Spain
| | - Margarida Lima
- Department of Hematology, Laboratory of Cytometry, Hospital de Santo António, Centro Hospitalar do Porto, 4099-001 Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Susana Barrena
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (J.J.M.v.D.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Sheila Mateos
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (J.J.M.v.D.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Carolina Caldas
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (J.J.M.v.D.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Jacques J. M. van Dongen
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (J.J.M.v.D.); (A.O.)
- Department of Immunology, Leiden University Medical Center (LUMC), 2333 Leiden, The Netherlands
| | - Alberto Orfao
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (J.J.M.v.D.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Julia Almeida
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (J.J.M.v.D.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Correspondence: ; Tel.: +34-923-29-48-11 (ext. 5816)
| |
Collapse
|
26
|
Pu Q, Qiao J, Liu Y, Cao X, Tan R, Yan D, Wang X, Li J, Yue B. Differential diagnosis and identification of prognostic markers for peripheral T-cell lymphoma subtypes based on flow cytometry immunophenotype profiles. Front Immunol 2022; 13:1008695. [PMID: 36466894 PMCID: PMC9715969 DOI: 10.3389/fimmu.2022.1008695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
We compared the differential expression of 15 markers in PTCL (Peripheral T-cell lymphoma) subtypes and T-CUS (T-cell clones of uncertain significance), and summarized the specific immunophenotype profiles of each subtype and its impact on prognosis. PD-1 and CD10 are diagnostic markers for AITL (angioimmunoblastic T-cell lymphoma). To avoid confusion with T-CUS of benign clones, it is recommended to define AITL as bounded by PD-1+%>38.01 and/or CD10+%>7.46. T cell-derived ENKTL-N (extranodal NKT cell lymphoma) specifically expresses CD56. ALCL (anaplastic large cell lymphoma) characteristically expresses CD30 and HLA-DR. PTCL-NOS (peripheral T-cell lymphoma unspecified) still lacks a relatively specific phenotype and is prone to loss of basic lineage markers CD3, CD5, and CD7. The determination of T-CUS can be verified by the overall assessment of the bone marrow and a certain period of follow-up. The clustering results showed that the expression of 8 specific markers was significantly different among the 5 groups, suggesting that a combination of related markers can be analyzed in the identification of PTCLs subtypes. The study explores the advantages of TRBC1 combined with CD45RA/CD45RO in detecting T cell clonality, which can efficiently and sensitively analyze multiple target T cell populations at the same time. The sensitivity of PB to replace BM to monitor the tumor burden or MRD (minimal residual disease) of PTCLs is as high as 85.71%, which can relieve the huge pressure of clinical sampling and improve patient compliance. CD7, CD38, and Ki-67 are prognostic indicators for AITL. CD3 and CD8 on PTCL-NOS, and CD56 and HLA-DR on ENKTL-N have prognostic role. This study supports and validates the current classification of PTCL subtypes and establishes an immunophenotypic profile that can be used for precise diagnosis. The important clinical value of PTCLs immunophenotype in routine classification diagnosis, clonality confirmation, prognosis prediction, and treatment target selection was emphasized.
Collapse
Affiliation(s)
- Qiyao Pu
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Clinical Laboratory of Henan Province, Zhengzhou, Henan, China
| | - Jie Qiao
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Clinical Laboratory of Henan Province, Zhengzhou, Henan, China
| | - Yuke Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Clinical Laboratory of Henan Province, Zhengzhou, Henan, China
| | - Xueyan Cao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ran Tan
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Clinical Laboratory of Henan Province, Zhengzhou, Henan, China
| | - Dongyao Yan
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Clinical Laboratory of Henan Province, Zhengzhou, Henan, China
| | - Xiaoqian Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Clinical Laboratory of Henan Province, Zhengzhou, Henan, China
| | - Jiwei Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Baohong Yue
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Clinical Laboratory of Henan Province, Zhengzhou, Henan, China.,Faculty of Laboratory Medicine, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
27
|
Shrestha R, Jha SK, Bartaula J. Drug Reaction With Eosinophilia and Systemic Symptom (DRESS) Following Rifampicin Treatment: A Case Report. Cureus 2021; 13:e19223. [PMID: 34873548 PMCID: PMC8640699 DOI: 10.7759/cureus.19223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 12/19/2022] Open
Abstract
Drug reaction with eosinophilia and systemic symptoms (DRESS) is an idiosyncratic severe cutaneous adverse reaction (SCAR) characterized by a skin rash with systemic involvement (e.g., hematological, solid organ abnormalities). Various medications, most commonly anticonvulsants (carbamazepine, phenytoin), antibiotics (vancomycin, amoxicillin), and sulfa drugs (dapsone, sulfasalazine), have been implicated. We report a case of a 75-year-old man with pulmonary tuberculosis under anti-tubercular treatment (ATT Category 1 as per the national guidelines of Nepal) presenting with rash, fever, liver dysfunction, and eosinophilia, a combination of features suggestive of DRESS. According to the national tuberculosis (TB) survey of 2018-2019, over 117,000 people in Nepal were living with TB, including 69,000 newly diagnosed people. In third-world countries, such as Nepal, with a high TB prevalence, and the Southeast Asian region (with a huge percentage of the global burden of TB incidence), the risk of life-threatening adverse drug reactions during ATT is high. However, a good response is seen if it is recognized early and on stopping ATT and receiving a course of steroids and emollients.
Collapse
Affiliation(s)
- Ramesh Shrestha
- Infectious Disease, Sukraraj Tropical and Infectious Disease Hospital, Kathmandu, NPL
| | - Shivendra K Jha
- Dermatology, Venerology and Leprology, Sukraraj Tropical and Infectious Disease Hospital, Kathmandu, NPL
| | - Jasmine Bartaula
- Infectious Disease, Chitwan Medical College, Tribhuvan University, Chitwan, NPL
| |
Collapse
|
28
|
Franzon CMR, Sousa I, Scarpato BL, Wagner AOM, Lopes ACW. INCLUSÃO DO ANTICORPO TCRB1 NO PAINEL LINFOPROLIFERATIVO T - EXPERIENCIA COM RELATO DE DOIS CASOS. Hematol Transfus Cell Ther 2021. [DOI: 10.1016/j.htct.2021.10.759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
29
|
Muñoz-García N, Lima M, Villamor N, Morán-Plata FJ, Barrena S, Mateos S, Caldas C, Balanzategui A, Alcoceba M, Domínguez A, Gómez F, Langerak AW, van Dongen JJM, Orfao A, Almeida J. Anti-TRBC1 Antibody-Based Flow Cytometric Detection of T-Cell Clonality: Standardization of Sample Preparation and Diagnostic Implementation. Cancers (Basel) 2021; 13:cancers13174379. [PMID: 34503189 PMCID: PMC8430560 DOI: 10.3390/cancers13174379] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
A single antibody (anti-TRBC1; JOVI-1 antibody clone) against one of the two mutually exclusive T-cell receptor β-chain constant domains was identified as a potentially useful flow-cytometry (FCM) marker to assess Tαβ-cell clonality. We optimized the TRBC1-FCM approach for detecting clonal Tαβ-cells and validated the method in 211 normal, reactive and pathological samples. TRBC1 labeling significantly improved in the presence of CD3. Purified TRBC1+ and TRBC1- monoclonal and polyclonal Tαβ-cells rearranged TRBJ1 in 44/47 (94%) and TRBJ1+TRBJ2 in 48 of 48 (100%) populations, respectively, which confirmed the high specificity of this assay. Additionally, TRBC1+/TRBC1- ratios within different Tαβ-cell subsets are provided as reference for polyclonal cells, among which a bimodal pattern of TRBC1-expression profile was found for all TCRVβ families, whereas highly-variable TRBC1+/TRBC1- ratios were observed in more mature vs. naïve Tαβ-cell subsets (vs. total T-cells). In 112/117 (96%) samples containing clonal Tαβ-cells in which the approach was validated, monotypic expression of TRBC1 was confirmed. Dilutional experiments showed a level of detection for detecting clonal Tαβ-cells of ≤10-4 in seven out of eight pathological samples. These results support implementation of the optimized TRBC1-FCM approach as a fast, specific and accurate method for assessing T-cell clonality in diagnostic-FCM panels, and for minimal (residual) disease detection in mature Tαβ+ leukemia/lymphoma patients.
Collapse
Affiliation(s)
- Noemí Muñoz-García
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.V.); (A.B.); (M.A.)
| | - Margarida Lima
- Department of Hematology, Laboratory of Cytometry, Hospital de Santo António, Centro Hospitalar do Porto, 4099-001 Porto, Portugal;
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Neus Villamor
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.V.); (A.B.); (M.A.)
- Department of Pathology, Hematopathology Unit, Hospital Clínic, IDIBAPS, 08036 Barcelona, Spain
| | - F. Javier Morán-Plata
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.V.); (A.B.); (M.A.)
| | - Susana Barrena
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.V.); (A.B.); (M.A.)
| | - Sheila Mateos
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.V.); (A.B.); (M.A.)
| | - Carolina Caldas
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.V.); (A.B.); (M.A.)
| | - Ana Balanzategui
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.V.); (A.B.); (M.A.)
- Hematology Service, University Hospital of Salamanca, Translational and Clinical Research Program, Centro de Investigación del Cáncer/IBMCC and IBSAL, 37007 Salamanca, Spain
| | - Miguel Alcoceba
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.V.); (A.B.); (M.A.)
- Hematology Service, University Hospital of Salamanca, Translational and Clinical Research Program, Centro de Investigación del Cáncer/IBMCC and IBSAL, 37007 Salamanca, Spain
| | - Alejandro Domínguez
- Centro de Salud Miguel Armijo, Sanidad de Castilla y León (SACYL), 37007 Salamanca, Spain; (A.D.); (F.G.)
| | - Fabio Gómez
- Centro de Salud Miguel Armijo, Sanidad de Castilla y León (SACYL), 37007 Salamanca, Spain; (A.D.); (F.G.)
| | - Anton W. Langerak
- Department of Immunology, Laboratory Medical immunology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Jacques J. M. van Dongen
- Department of Immunology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands;
| | - Alberto Orfao
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.V.); (A.B.); (M.A.)
| | - Julia Almeida
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (F.J.M.-P.); (S.B.); (S.M.); (C.C.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.V.); (A.B.); (M.A.)
- Correspondence:
| |
Collapse
|