1
|
Zhang D, Zong F, Mei Y, Zhao K, Qiu D, Xiong Z, Li X, Tang H, Zhang P, Zhang M, Zhang Y, Yu X, Wang Z, Liu Y, Sui B, Wang Y. Morphological similarity and white matter structural mapping of new daily persistent headache: a structural connectivity and tract-specific study. J Headache Pain 2024; 25:191. [PMID: 39497095 PMCID: PMC11533401 DOI: 10.1186/s10194-024-01899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND New daily persistent headache (NDPH) is a rare primary headache disorder characterized by daily and persistent sudden onset headaches. Specific abnormalities in gray matter and white matter structure are associated with pain, but have not been well studied in NDPH. The objective of this work is to explore the fiber tracts and structural connectivity, which can help reveal unique gray and white matter structural abnormalities in NDPH. METHODS The regional radiomics similarity networks were calculated from T1 weighted (T1w) MRI to depict the gray matter structure. The fiber connectivity matrices weighted by diffusion metrics like fractional anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD) were built, meanwhile the fiber tracts were segmented by anatomically-guided superficial fiber segmentation (Anat-SFSeg) method to explore the white matter structure from diffusion MRI. The considerable different neuroimaging features between NDPH and healthy controls (HC) were extracted from the connectivity and tract-based analyses. Finally, decision tree regression was used to predict the clinical scores (i.e. pain intensity) from the above neuroimaging features. RESULTS T1w and diffusion MRI data were available in 51 participants after quality control: 22 patients with NDPH and 29 HCs. Significantly decreased morphological similarity was found between the right superior frontal gyrus and right hippocampus. The superficial white matter (SWM) showed significantly decreased FA in fiber tracts including the right superficial-frontal, left superficial-occipital, bilateral superficial-occipital-temporal (Sup-OT) and right superficial-temporal, meanwhile significant increased RD was found in the left Sup-OT. For the fiber connectivity, NDPH showed significantly decreased FA in the bilateral basal ganglion and temporal lobe, increased MD in the right frontal lobe, and increased RD in the right frontal lobe and left temporal-occipital lobe. Clinical scores could be predicted dominantly by the above significantly different neuroimaging features through decision tree regression. CONCLUSIONS Our research indicates the structural abnormalities of SWM and the neural pathways projected between regions like right hippocampus and left caudate nucleus, along with morphological similarity changes between the right superior frontal gyrus and right hippocampus, constitute the pathological features of NDPH. The decision tree regression demonstrates correlations between these structural changes and clinical scores.
Collapse
Affiliation(s)
- Di Zhang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, No.10 Xitucheng Road, Haidian District, Beijing, 100876, China
- Queen Mary School Hainan, Beijing University of Posts and Telecommunications, Hainan Lingshui Li'an International Education Innovation Pilot Zone, Lingshui, Hainan, 572426, China
| | - Fangrong Zong
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, No.10 Xitucheng Road, Haidian District, Beijing, 100876, China.
- Queen Mary School Hainan, Beijing University of Posts and Telecommunications, Hainan Lingshui Li'an International Education Innovation Pilot Zone, Lingshui, Hainan, 572426, China.
| | - Yanliang Mei
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Kun Zhao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, No.10 Xitucheng Road, Haidian District, Beijing, 100876, China
- Queen Mary School Hainan, Beijing University of Posts and Telecommunications, Hainan Lingshui Li'an International Education Innovation Pilot Zone, Lingshui, Hainan, 572426, China
| | - Dong Qiu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Zhonghua Xiong
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xiaoshuang Li
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Hefei Tang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Peng Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Mantian Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yaqing Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xueying Yu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Zhe Wang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Xigang District, Dalian, Liaoning, 116011, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, No.10 Xitucheng Road, Haidian District, Beijing, 100876, China
- Queen Mary School Hainan, Beijing University of Posts and Telecommunications, Hainan Lingshui Li'an International Education Innovation Pilot Zone, Lingshui, Hainan, 572426, China
| | - Binbin Sui
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Yonggang Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
2
|
Mukherjee A, Gilles-Thomas EA, Kwok HY, Shorter CE, Sontate KV, McSain SL, Honeycutt SC, Loney GC. Bilateral insular cortical lesions reduce sensitivity to the adverse consequences of acute ethanol intoxication in Pavlovian conditioning procedures. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1473-1482. [PMID: 38838083 DOI: 10.1111/acer.15383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Sensitivity to the adverse post-ingestive effects of ethanol likely serves as a deterrent to initiate alcohol consumption early in drinking and later may contribute to efforts to remain abstinent. Administering ethanol to naïve rats prior to Pavlovian conditioning procedures elicits robust ethanol-conditioned taste and place avoidance (CTA; CPA) mediated by its subjective interoceptive properties. The insular cortex (IC) has been implicated as a region involved in mediating sensitivity to the interoceptive properties of ethanol. Here, we examined whether bilateral lesions of the IC affect the acquisition and expression of taste and place avoidance in ethanol-induced CTA and CPA paradigms. METHODS Adult male and female Wistar rats received bilateral excitotoxic lesions (ibotenic acid; 20 mg/mL; 0.3 μL) of the IC prior to conditioning procedures. Subsequently, rats were conditioned to associate a novel taste stimulus (0.1% saccharin) and context with the effects of ethanol (1.0 g/kg) in a combined CTA/CPP procedure. Conditioning occurred over 8 alternating CS+/CS- days, followed by tests for expression of taste and place preferences. Data from IC-lesioned rats were compared with neurologically intact rats. RESULTS Our findings revealed that neurologically intact rats showed a significantly stronger ethanol-induced CTA than IC-lesioned rats. There were no significant differences in total fluid intake when rats consumed water (CS-). As with CTA effects, intact rats showed a strong CPA, marked by a greater reduction in time spent on the drug-paired context, while IC-lesioned rats failed to display CPA to ethanol. CONCLUSION These results indicate that proper IC functioning is necessary for responding to the adverse interoceptive properties of ethanol regardless of which Pavlovian paradigm is used to assess interoceptive responsivity to ethanol. Blunted IC functioning from chronic ethanol use may reduce interoceptive signaling specifically of ethanol's adverse effects thus contributing to increased alcohol use.
Collapse
Affiliation(s)
- Ashmita Mukherjee
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Elizabeth A Gilles-Thomas
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Hay Young Kwok
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Cerissa E Shorter
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Kajol V Sontate
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Shannon L McSain
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Sarah C Honeycutt
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Gregory C Loney
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
3
|
Zhang J, Wang H, Guo L. Investigating the brain functional abnormalities underlying pain hypervigilance in chronic neck and shoulder pain: a resting-state fMRI study. Neuroradiology 2024; 66:1353-1361. [PMID: 38296904 DOI: 10.1007/s00234-024-03286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/07/2024] [Indexed: 02/02/2024]
Abstract
PURPOSE To investigate pain hypervigilance in individuals suffering from chronic neck and shoulder pain (CNSP) and its underlying brain mechanism. METHODS The evaluation of pain vigilance was conducted through the utilization of pain vigilance and awareness questionnaires. Voxel-wise regional homogeneity (ReHo) from 60 CNSP patients and 60 healthy controls (HCs) using resting-state fMRI data. Voxel-wise two-sample T-test was conducted to reveal the ReHo variations between CNSP and HC. Correlation analyses were utilized to reveal the connection between brain abnormalities and medical measurements. Furthermore, a mediation analysis was conducted to elucidate the pathway-linking changes in brain function with medical measurements. RESULTS Our present study revealed three main findings. Firstly, patients with CSNP demonstrated a heightened vigilance of pain in comparison to healthy adults, a common occurrence among individuals with chronic pain conditions. Secondly, we observed brain abnormalities in various brain regions in CSNP patients, and these alterations were associated with the extent of pain vigilance. Lastly, the pain hypervigilance impact on the severity of pain was found to be controlled by regional neural activity in the anterior cingulate cortex (ACC) in subjects with CSNP. CONCLUSION Our findings suggested that long-term repetitive nociceptive input caused by chronic pain further aggravates the pain intensity by impairing the vigilance-related pain processing within the anterior cingulate cortex in CNSP patients.
Collapse
Affiliation(s)
- Jiyang Zhang
- Radiology Department, Tianjin Hospital, Tianjin University, Jiefang Nan Road 406, Hexi District, Tianjin, 300211, People's Republic of China
| | - Hao Wang
- Radiology Department, Tianjin Hospital, Tianjin University, Jiefang Nan Road 406, Hexi District, Tianjin, 300211, People's Republic of China
| | - Lin Guo
- Radiology Department, Tianjin Hospital, Tianjin University, Jiefang Nan Road 406, Hexi District, Tianjin, 300211, People's Republic of China.
| |
Collapse
|
4
|
Zhang P, Wan X, Jiang J, Liu Y, Wang D, Ai K, Liu G, Zhang X, Zhang J. A causal effect study of cortical morphology and related covariate networks in classical trigeminal neuralgia patients. Cereb Cortex 2024; 34:bhae337. [PMID: 39123310 DOI: 10.1093/cercor/bhae337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Structural covariance networks and causal effects within can provide critical information on gray matter reorganization and disease-related hierarchical changes. Based on the T1WI data of 43 classical trigeminal neuralgia patients and 45 controls, we constructed morphological similarity networks of cortical thickness, sulcal depth, fractal dimension, and gyrification index. Moreover, causal structural covariance network analyses were conducted in regions with morphological abnormalities or altered nodal properties, respectively. We found that patients showed reduced sulcal depth, gyrification index, and fractal dimension, especially in the salience network and the default mode network. Additionally, the integration of the fractal dimension and sulcal depth networks was significantly reduced, accompanied by decreased nodal efficiency of the bilateral temporal poles, and right pericalcarine cortex within the sulcal depth network. Negative causal effects existed from the left insula to the right caudal anterior cingulate cortex in the gyrification index map, also from bilateral temporal poles to right pericalcarine cortex within the sulcal depth network. Collectively, patients exhibited impaired integrity of the covariance networks in addition to the abnormal gray matter morphology in the salience network and default mode network. Furthermore, the patients may experience progressive impairment in the salience network and from the limbic system to the sensory system in network topology, respectively.
Collapse
Affiliation(s)
- Pengfei Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, Sichuan 610041, China
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Xinyue Wan
- Department of Radiology, Huashan Hospital, Fudan University, No. 12, Urumqi Middle Road, Jingan District, Shanghai 200040, China
| | - Jingqi Jiang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Yang Liu
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Danyang Wang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Kai Ai
- Department of Clinical and Technical Supports, Philips Healthcare, No. 64 West Section, South 2nd Ring Road, Yanta District, Xi'an 710000, China
| | - Guangyao Liu
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Xinding Zhang
- Department of Neurosurgery and Laboratory of Neurosurgery, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
| | - Jing Zhang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| |
Collapse
|
5
|
Zhang B, Guo M, Dong T, Yang H, Zhang Q, Yang Q, Zhou X, Mao C, Zhang M. Disrupted Resting-State Functional Connectivity and Effective Connectivity of the Nucleus Accumbens in Chronic Low Back Pain: A Cross-Sectional Study. J Pain Res 2024; 17:2133-2146. [PMID: 38915479 PMCID: PMC11194467 DOI: 10.2147/jpr.s455239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose Chronic low back pain (cLBP) is a recurring and intractable disease that is often accompanied by emotional and cognitive disorders such as depression and anxiety. The nucleus accumbens (NAc) plays an important role in mediating emotional and cognitive processes and analgesia. This study investigated the resting-state functional connectivity (rsFC) and effective connectivity (EC) of NAc and its subregions in cLBP. Methods Thirty-four cLBP patients and 34 age- and sex-matched healthy controls (HC) underwent resting-state functional magnetic resonance imaging (rs-fMRI). Seed-based rsFC and Dynamic Causal Modelling (DCM) were used to examine the alteration of the rsFC and EC of the NAc. Results Our results showed that the cLBP group had increased rsFC of the bilateral NAc-left superior frontal cortex (SFC), orbital frontal cortex (OFC), left angular gyrus, the left NAc-bilateral middle temporal gyrus, as well as decreased rsFC of left NAc-left supramarginal gyrus, right precentral gyrus, left cerebellum, brainstem (medulla oblongata), and right insula pathways compared with the HC; the results of the subregions were largely consistent with the whole NAc. In addition, the rsFC of the left NAc-left SFC was negatively correlated with Hamilton's Depression Scale (HAMD) scores (r = -0.402, p = 0.018), and the rsFC of left NAc-OFC was positively correlated with present pain intensity scores (r = 0.406, p = 0.017) in the cLBP group. DCM showed that the cLBP group showed significantly increased EC from the left cerebellum to the right NAc (p = 0.012) as compared with HC. Conclusion Overall, our findings demonstrate aberrant rsFC and EC between NAc and regions that are associated with emotional regulation and cognitive processing in individuals with cLBP, underscoring the pivotal roles of emotion and cognition in cLBP.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
- Department of Medical Imaging, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Minmin Guo
- Department of Medical Imaging, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Ting Dong
- Department of Medical Imaging, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Huajuan Yang
- Department of Medical Imaging, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Qiujuan Zhang
- Department of Medical Imaging, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Quanxin Yang
- Department of Medical Imaging, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Xiaoqian Zhou
- Department of Medical Imaging, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Cuiping Mao
- Department of Medical Imaging, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| |
Collapse
|
6
|
Islam J, Rahman MT, Kc E, Park YS. Deciphering the functional role of insular cortex stratification in trigeminal neuropathic pain. J Headache Pain 2024; 25:76. [PMID: 38730344 PMCID: PMC11084050 DOI: 10.1186/s10194-024-01784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Trigeminal neuropathic pain (TNP) is a major concern in both dentistry and medicine. The progression from normal to chronic TNP through activation of the insular cortex (IC) is thought to involve several neuroplastic changes in multiple brain regions, resulting in distorted pain perception and associated comorbidities. While the functional changes in the insula are recognized contributors to TNP, the intricate mechanisms underlying the involvement of the insula in TNP processing remain subjects of ongoing investigation. Here, we have overviewed the most recent advancements regarding the functional role of IC in regulating TNP alongside insights into the IC's connectivity with other brain regions implicated in trigeminal pain pathways. In addition, the review examines diverse modulation strategies that target the different parts of the IC, thereby suggesting novel diagnostic and therapeutic management of chronic TNP in the future.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Md Taufiqur Rahman
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Elina Kc
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Korea.
| |
Collapse
|
7
|
McBenedict B, Petrus D, Pires MP, Pogodina A, Arrey Agbor DB, Ahmed YA, Castro Ceron JI, Balaji A, Abrahão A, Lima Pessôa B. The Role of the Insula in Chronic Pain and Associated Structural Changes: An Integrative Review. Cureus 2024; 16:e58511. [PMID: 38770492 PMCID: PMC11103916 DOI: 10.7759/cureus.58511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Chronic pain affects a substantial portion of the global population, significantly impacting quality of life and well-being. This condition involves complex mechanisms, including dysfunction of the autonomic nervous system, which plays a crucial role in pain perception. The insula, a key brain region involved in pain processing, plays a critical role in pain perception and modulation. Lesions in the insula can result in pain asymbolia, where pain perception remains intact but emotional responses are inappropriate. The insula is anatomically and functionally divided into anterior and posterior regions, with the posterior insula processing nociceptive input based on intensity and location before relaying it to the anterior insula for emotional mediation. Understanding the insula's intricate role in pain processing is crucial, as it is involved in encoding prediction errors and mediating emotional dimensions of pain perception. The focus of this review was on synthesizing existing literature on the role of the insula in chronic pain and associated structural changes. The goal was to integrate findings from various sources to provide a comprehensive overview of the topic. The search strategy included a combination of Medical Subject Headings (MeSH) and relevant keywords related to insula and chronic pain. The following databases were surveyed: PubMed, Embase, Scopus, and Web of Science. We identified a total of 2515 articles, and after following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline based on eligibility criteria, 46 articles were used to synthesize this review. Our study highlights the pivotal role of the insula in chronic pain processing and associated structural changes, integrating findings from diverse studies and neuroimaging investigations. Beyond mere pain sensation, the insula contributes to emotional awareness, attention, and salience detection within the pain network. Various chronic pain conditions reveal alterations in insular activity and connectivity, accompanied by changes in gray matter volume and neurochemical profiles. Interventions targeting the insula show promise in alleviating chronic pain symptoms. However, further research is needed to understand underlying mechanisms, which can aid in developing more effective therapeutic interventions for pain.
Collapse
Affiliation(s)
| | - Dulci Petrus
- Family Health, Directorate of Special Programs, Ministry of Health and Social Services, Windhoek, NAM
| | | | - Anna Pogodina
- Medicine and Surgery, University of Buckingham, Buckingham, GBR
| | | | - Yusuf A Ahmed
- Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Jose Ittay Castro Ceron
- Academic Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Pachuca, MEX
| | - Aishwariya Balaji
- General Practice, Government Kilpauk Medical College and Hospital, Chennai, IND
| | - Ana Abrahão
- Public Health, Fluminense Federal University, Niterói, BRA
| | | |
Collapse
|
8
|
Yao D, Chen Y, Chen G. The role of pain modulation pathway and related brain regions in pain. Rev Neurosci 2023; 34:899-914. [PMID: 37288945 DOI: 10.1515/revneuro-2023-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Pain is a multifaceted process that encompasses unpleasant sensory and emotional experiences. The essence of the pain process is aversion, or perceived negative emotion. Central sensitization plays a significant role in initiating and perpetuating of chronic pain. Melzack proposed the concept of the "pain matrix", in which brain regions associated with pain form an interconnected network, rather than being controlled by a singular brain region. This review aims to investigate distinct brain regions involved in pain and their interconnections. In addition, it also sheds light on the reciprocal connectivity between the ascending and descending pathways that participate in pain modulation. We review the involvement of various brain areas during pain and focus on understanding the connections among them, which can contribute to a better understanding of pain mechanisms and provide opportunities for further research on therapies for improved pain management.
Collapse
Affiliation(s)
- Dandan Yao
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
9
|
Rolls A. Immunoception: the insular cortex perspective. Cell Mol Immunol 2023; 20:1270-1276. [PMID: 37386172 PMCID: PMC10616063 DOI: 10.1038/s41423-023-01051-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
To define the systemic neuroimmune interactions in health and disease, we recently suggested immunoception as a term that refers to the existence of bidirectional functional loops between the brain and the immune system. This concept suggests that the brain constantly monitors changes in immune activity and, in turn, can regulate the immune system to generate a physiologically synchronized response. Therefore, the brain has to represent information regarding the state of the immune system, which can occure in multiple ways. One such representation is an immunengram, a trace that is partially stored by neurons and partially by the local tissue. This review will discuss our current understanding of immunoception and immunengrams, focusing on their manifestation in a specific brain region, the insular cortex (IC).
Collapse
Affiliation(s)
- Asya Rolls
- Department of Immunology, Department of Neuroscience, Technion, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
10
|
Mazzone GL, Coronel MF, Mladinic M, Sámano C. An update to pain management after spinal cord injury: from pharmacology to circRNAs. Rev Neurosci 2023; 34:599-611. [PMID: 36351309 DOI: 10.1515/revneuro-2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/19/2022] [Indexed: 08/04/2023]
Abstract
Neuropathic pain (NP) following a spinal cord injury (SCI) is often hard to control and therapies should be focused on the physical, psychological, behavioral, social, and environmental factors that may contribute to chronic sensory symptoms. Novel therapeutic treatments for NP management should be based on the combination of pharmacological and nonpharmacological options. Some of them are addressed in this review with a focus on mechanisms and novel treatments. Several reports demonstrated an aberrant expression of non-coding RNAs (ncRNAs) that may represent key regulatory factors with a crucial role in the pathophysiology of NP and as potential diagnostic biomarkers. This review analyses the latest evidence for cellular and molecular mechanisms associated with the role of circular RNAs (circRNAs) in the management of pain after SCI. Advantages in the use of circRNA are their stability (up to 48 h), and specificity as sponges of different miRNAs related to SCI and nerve injury. The present review discusses novel data about deregulated circRNAs (up or downregulated) that sponge miRNAs, and promote cellular and molecular interactions with mRNAs and proteins. This data support the concept that circRNAs could be considered as novel potential therapeutic targets for NP management especially after spinal cord injuries.
Collapse
Affiliation(s)
- Graciela L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - María F Coronel
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Miranda Mladinic
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Cynthia Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa. Avenida Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa. Alcaldía Cuajimalpa de Morelos, C.P. 05348, Ciudad de México, México
| |
Collapse
|
11
|
de Zoete RMJ, Berryman CF, Nijs J, Walls A, Jenkinson M. Differential Structural Brain Changes Between Responders and Nonresponders After Physical Exercise Therapy for Chronic Nonspecific Neck Pain. Clin J Pain 2023; 39:270-277. [PMID: 37220328 DOI: 10.1097/ajp.0000000000001115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/23/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVES Physical exercise therapy is effective for some people with chronic nonspecific neck pain but not for others. Differences in exercise-induced pain-modulatory responses are likely driven by brain changes. We investigated structural brain differences at baseline and changes after an exercise intervention. The primary aim was to investigate changes in structural brain characteristics after physical exercise therapy for people with chronic nonspecific neck pain. The secondary aims were to investigate (1) baseline differences in structural brain characteristics between responders and nonresponders to exercise therapy, and (2) differential brain changes after exercise therapy between responders and nonresponders. MATERIALS AND METHODS This was a prospective longitudinal cohort study. Twenty-four participants (18 females, mean age 39.7 y) with chronic nonspecific neck pain were included. Responders were selected as those with ≥20% improvement in Neck Disability Index. Structural magnetic resonance imaging was obtained before and after an 8-week physical exercise intervention delivered by a physiotherapist. Freesurfer cluster-wise analyses were performed and supplemented with an analysis of pain-specific brain regions of interest. RESULTS Various changes in grey matter volume and thickness were found after the intervention, for example, frontal cortex volume decreased (cluster-weighted P value = 0.0002, 95% CI: 0.0000-0.0004). We found numerous differences between responders and nonresponders, most notably, after the exercise intervention bilateral insular volume decreased in responders, but increased in nonresponders (cluster-weighted P value ≤ 0.0002). DISCUSSION The brain changes found in this study may underpin clinically observed differential effects between responders and nonresponders to exercise therapy for people with chronic neck pain. Identification of these changes is an important step toward personalized treatment approaches.
Collapse
Affiliation(s)
| | - Carolyn F Berryman
- Brain Stimulation, Imaging and Cognition Group, School of Medicine
- IIMPACT in Health, The University of South Australia
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel
- Chronic pain rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Angela Walls
- Clinical and Research Imaging Centre, South Australian Health and Medical Research Institute
| | - Mark Jenkinson
- Australian Institute for Machine Learning (AIML), School of Computer Science, University of Adelaide
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
12
|
Marinelli S, Coccurello R. From the Gender Gap to Neuroactive Steroids: Exploring Multiple Cases to Further Understand Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24108577. [PMID: 37239924 DOI: 10.3390/ijms24108577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Neuropathic pain (NeuP) is still an intractable form of highly debilitating chronic pain, resulting from a lesion or disease of the somatosensory nervous system [...].
Collapse
Affiliation(s)
- Sara Marinelli
- National Council of Research (CNR), Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy
| | - Roberto Coccurello
- Institute for Complex Systems (ISC), National Council of Research (CNR), 00185 Rome, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| |
Collapse
|
13
|
Charbonneau JA, Bennett JL, Chau K, Bliss-Moreau E. Reorganization in the macaque interoceptive-allostatic network following anterior cingulate cortex damage. Cereb Cortex 2023; 33:4334-4349. [PMID: 36066407 PMCID: PMC10110454 DOI: 10.1093/cercor/bhac346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
Accumulating evidence indicates that the adult brain is capable of significant structural change following damage-a capacity once thought to be largely limited to developing brains. To date, most existing research on adult plasticity has focused on how exteroceptive sensorimotor networks compensate for damage to preserve function. Interoceptive networks-those that represent and process sensory information about the body's internal state-are now recognized to be critical for a wide range of physiological and psychological functions from basic energy regulation to maintaining a sense of self, but the extent to which these networks remain plastic in adulthood has not been established. In this report, we used detailed histological analyses to pinpoint precise changes to gray matter volume in the interoceptive-allostatic network in adult rhesus monkeys (Macaca mulatta) who received neurotoxic lesions of the anterior cingulate cortex (ACC) and neurologically intact control monkeys. Relative to controls, monkeys with ACC lesions had significant and selective unilateral expansion of the ventral anterior insula and significant relative bilateral expansion of the lateral nucleus of the amygdala. This work demonstrates the capacity for neuroplasticity in the interoceptive-allostatic network which, given that changes included expansion rather than atrophy, is likely to represent an adaptive response following damage.
Collapse
Affiliation(s)
- Joey A Charbonneau
- Neuroscience Graduate Program, University of California Davis, 1544 Newton Court, Davis, CA 95618, United States
- California National Primate Research Center, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Jeffrey L Bennett
- California National Primate Research Center, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, 2230 Stockton Blvd, Sacramento, CA 95817, United States
- The MIND Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, United States
| | - Kevin Chau
- California National Primate Research Center, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Eliza Bliss-Moreau
- California National Primate Research Center, University of California Davis, One Shields Avenue, Davis, CA 95616, United States
- Department of Psychology, University of California Davis, 135 Young Hall One Shields Avenue, Davis, CA 95616, United States
| |
Collapse
|
14
|
Croosu SS, Røikjer J, Mørch CD, Ejskjaer N, Frøkjær JB, Hansen TM. Alterations in Functional Connectivity of Thalamus and Primary Somatosensory Cortex in Painful and Painless Diabetic Peripheral Neuropathy. Diabetes Care 2023; 46:173-182. [PMID: 36469731 DOI: 10.2337/dc22-0587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/13/2022] [Indexed: 12/07/2022]
Abstract
OBJECTIVE In this study we aimed to investigate the functional connectivity of brain regions involved in sensory processing in diabetes with and without painful and painless diabetic peripheral neuropathy (DPN) and the association with peripheral nerve function and pain intensity. RESEARCH DESIGN AND METHODS In this cross-sectional study we used resting-state functional MRI (fMRI) to investigate functional brain connectivity of 19 individuals with type 1 diabetes and painful DPN, 19 with type 1 diabetes and painless DPN, 18 with type 1 diabetes without DPN, and 20 healthy control subjects. Seed-based connectivity analyses were performed for thalamus, postcentral gyrus, and insula, and the connectivity z scores were correlated with peripheral nerve function measurements and pain scores. RESULTS Overall, compared with those with painful DPN and healthy control subjects, subjects with type 1 diabetes without DPN showed hyperconnectivity between thalamus and motor areas and between postcentral gyrus and motor areas (all P ≤ 0.029). Poorer peripheral nerve functions and higher pain scores were associated with lower connectivity of the thalamus and postcentral gyrus (all P ≤ 0.043). No connectivity differences were found in insula (all P ≥ 0.071). CONCLUSIONS Higher functional connectivity of thalamus and postcentral gyrus appeared only in diabetes without neuropathic complications. Thalamic/postcentral gyral connectivity measures demonstrated an association with peripheral nerve functions. Based on thalamic connectivity, it was possible to group the phenotypes of type 1 diabetes with painful/painless DPN and type 1 diabetes without DPN. The results of the current study support that fMRI can be used for phenotyping, and with validation, it may contribute to early detection and prevention of neuropathic complications.
Collapse
Affiliation(s)
- Suganthiya S Croosu
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Johan Røikjer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Carsten D Mørch
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Niels Ejskjaer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Jens B Frøkjær
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Tine M Hansen
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
15
|
From Low-Grade Inflammation in Osteoarthritis to Neuropsychiatric Sequelae: A Narrative Review. Int J Mol Sci 2022; 23:ijms232416031. [PMID: 36555670 PMCID: PMC9784931 DOI: 10.3390/ijms232416031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nowadays, osteoarthritis (OA), a common, multifactorial musculoskeletal disease, is considered to have a low-grade inflammatory pathogenetic component. Lately, neuropsychiatric sequelae of the disease have gained recognition. However, a link between the peripheral inflammatory process of OA and the development of neuropsychiatric pathology is not completely understood. In this review, we provide a narrative that explores the development of neuropsychiatric disease in the presence of chronic peripheral low-grade inflammation with a focus on its signaling to the brain. We describe the development of a pro-inflammatory environment in the OA-affected joint. We discuss inflammation-signaling pathways that link the affected joint to the central nervous system, mainly using primary sensory afferents and blood circulation via circumventricular organs and cerebral endothelium. The review describes molecular and cellular changes in the brain, recognized in the presence of chronic peripheral inflammation. In addition, changes in the volume of gray matter and alterations of connectivity important for the assessment of the efficacy of treatment in OA are discussed in the given review. Finally, the narrative considers the importance of the use of neuropsychiatric diagnostic tools for a disease with an inflammatory component in the clinical setting.
Collapse
|
16
|
Deb-Chatterji M, Flottmann F, Meyer L, Brekenfeld C, Fiehler J, Gerloff C, Thomalla G, Fiehler J, Thomalla G, Alegiani A, Boeckh-Behrens, Wunderlich S, Ernemann U, Poli S, Siebert E, Nolte CH, Zweynert S, Bohner G, Ludolph A, Henn KH, Schäfer JH, Keil F, Röther J, Eckert B, Berrouschot J, Bormann A, Dorn F, Petzold G, Kraemer C, Leischner H, Trumm C, Tiedt S, Kellert L, Petersen M, Stögbauer F, Braun M, Hamann GF, Gröschel K, Uphaus T, Reich A, Nikoubashman O, Schellinger P, Borggrefe J, Hattingen J, Liman J, Ernst M. Side matters: differences in functional outcome and quality of life after thrombectomy in left and right hemispheric stroke. Neurol Res Pract 2022; 4:58. [PMID: 36411484 PMCID: PMC9677692 DOI: 10.1186/s42466-022-00223-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Patients with a left (LHS) or right hemispheric stroke (RHS) differ in terms of clinical symptoms due to lateralization of specific cortical functions. Studies on functional outcome after stroke and endovascular thrombectomy (EVT) comparing both hemispheres showed conflicting results so far. The impact of stroke laterality on patient-reported health-related quality of life (HRQoL) after EVT has not yet been adequately addressed and still remains unclear. METHODS Consecutive stroke thrombectomy patients, derived from a multi-center, prospective registry (German Stroke Registry) between June 2015 and December 2019, were included in this study. At 90 days, outcome after EVT was assessed by the modified Rankin scale (mRS) and HRQoL using the European QoL-five dimensions questionnaire utility-index (EQ-5D-I; higher values indicate better HRQoL) in patients with LHS and RHS. Adjusted regression analysis was applied to evaluate the influence of stroke laterality on outcome after EVT. RESULTS In total, 5683 patients were analyzed. Of these, 2953 patients (52.8%) had LHS and 2637 (47.2%) RHS. LHS patients had a higher baseline NIHSS (16 vs. 13, p < 0.001) and a higher ASPECTS (9 vs. 8, p < 0.001) compared to RHS patients. Among survivors, patients with LHS less frequently had a self-reported affected mobility (p = 0.037), suffered less often from pain (p = 0.04) and anxiety/depression (p = 0.032) three months after EVT. After adjusting for confounders (age, sex, baseline NIHSS), LHS was associated with a better HRQoL (ß coefficient 0.04, CI 95% 0.017-0.063; p = 0.001), and better functional outcome assessed by lower values on the mRS (ß coefficient - 0.109, CI 95% - 0.217-0.000; p = 0.049). CONCLUSIONS Ninety days after EVT, LHS patients have a better functional outcome and HRQoL. Patients with RHS should be actively assessed and treated for pain, anxiety and depression to improve their HRQoL after EVT.
Collapse
Affiliation(s)
- Milani Deb-Chatterji
- grid.13648.380000 0001 2180 3484Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Fabian Flottmann
- grid.13648.380000 0001 2180 3484Department of Neuroradiological Diagnostics and Intervention, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Lukas Meyer
- grid.13648.380000 0001 2180 3484Department of Neuroradiological Diagnostics and Intervention, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Caspar Brekenfeld
- grid.13648.380000 0001 2180 3484Department of Neuroradiological Diagnostics and Intervention, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Jens Fiehler
- grid.13648.380000 0001 2180 3484Department of Neuroradiological Diagnostics and Intervention, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- grid.13648.380000 0001 2180 3484Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Götz Thomalla
- grid.13648.380000 0001 2180 3484Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang K, Li P, Jia Y, Liu M, Jiang J. Non-coding RNA and n6-methyladenosine modification play crucial roles in neuropathic pain. Front Mol Neurosci 2022; 15:1002018. [PMID: 36466810 PMCID: PMC9716653 DOI: 10.3389/fnmol.2022.1002018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
After peripheral nerve injury, pain signals are transmitted from primary sensory neurons in the dorsal root ganglion (DRG) to the central nervous system. Epigenetic modification affects neuropathic pain through alterations in the gene expression in pain-related areas and glial cell activation. Recent studies have shown that non-coding RNA and n6-methyladenosine (m6A) methylation modification play pivotal regulatory roles in the occurrence and maintenance of neuropathic pain. Dysregulation of the RNA m6A level via dynamic changes in methyltransferase and demethylase after central or peripheral nerve injury commonly regulates pain-associated genes, contributing to the induction and maintenance of neuropathic pain. The dynamic process has significant implications for the development and maintenance of neuropathic pain. However, the underlying mechanisms by which non-coding RNA and m6A RNA modification regulate neuropathic pain are not well-characterized. This article elucidates the multiple mechanisms of non-coding RNA and m6A methylation in the context of neuropathic pain, and summarizes its potential functions as well as recent advances.
Collapse
|
18
|
Lee JHA, Chen Q, Zhuo M. Synaptic Plasticity in the Pain-Related Cingulate and Insular Cortex. Biomedicines 2022; 10:2745. [PMID: 36359264 PMCID: PMC9687873 DOI: 10.3390/biomedicines10112745] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/22/2022] [Indexed: 09/23/2023] Open
Abstract
Cumulative animal and human studies have consistently demonstrated that two major cortical regions in the brain, namely the anterior cingulate cortex (ACC) and insular cortex (IC), play critical roles in pain perception and chronic pain. Neuronal synapses in these cortical regions of adult animals are highly plastic and can undergo long-term potentiation (LTP), a phenomenon that is also reported in brain areas for learning and memory (such as the hippocampus). Genetic and pharmacological studies show that inhibiting such cortical LTP can help to reduce behavioral sensitization caused by injury as well as injury-induced emotional changes. In this review, we will summarize recent progress related to synaptic mechanisms for different forms of cortical LTP and their possible contribution to behavioral pain and emotional changes.
Collapse
Affiliation(s)
- Jung-Hyun Alex Lee
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Qiyu Chen
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266199, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266199, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325000, China
| |
Collapse
|
19
|
A Narrative Review of Neuroimaging Studies in Acupuncture for Migraine. Pain Res Manag 2021; 2021:9460695. [PMID: 34804268 PMCID: PMC8598357 DOI: 10.1155/2021/9460695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/10/2021] [Indexed: 12/18/2022]
Abstract
Acupuncture has been widely used as an alternative and complementary therapy for migraine. With the development of neuroimaging techniques, the central mechanism of acupuncture for migraine has gained increasing attention. This review aimed to analyze the study design and main findings of neuroimaging studies of acupuncture for migraine to provide the reference for future research. The original studies were collected and screened in three English databases (PubMed, Embase, and Cochrane Library) and four Chinese databases (Chinese National Knowledge Infrastructure, Chinese Biomedical Literature database, the Chongqing VIP database, and Wanfang database). As a result, a total of 28 articles were included. Functional magnetic resonance imaging was the most used neuroimaging technique to explore the cerebral activities of acupuncture for migraine. This review manifested that acupuncture could elicit cerebral responses on patients with migraine, different from sham acupuncture. The results indicated that the pain systems, including the medial pain pathway, lateral pain pathway, and descending pain modulatory system, participated in the modulation of the cerebral activities of migraine by acupuncture.
Collapse
|