1
|
Simko F, Baka T. Pharmacological stimulation of the parasympathetic system - a promising means of cardioprotection in heart failure. Hypertens Res 2024; 47:2217-2220. [PMID: 38773336 PMCID: PMC11298403 DOI: 10.1038/s41440-024-01726-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 05/23/2024]
Affiliation(s)
- Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108, Bratislava, Slovak Republic.
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 83305, Bratislava, Slovak Republic.
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505, Bratislava, Slovak Republic.
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108, Bratislava, Slovak Republic
| |
Collapse
|
2
|
Simko F, Stanko P, Repova K, Baka T, Krajcirovicova K, Aziriova S, Domenig O, Zorad S, Adamcova M, Paulis L. Effect of sacubitril/valsartan on the hypertensive heart in continuous light-induced and lactacystin-induced pre-hypertension: Interactions with the renin-angiotensin-aldosterone system. Biomed Pharmacother 2024; 173:116391. [PMID: 38461685 DOI: 10.1016/j.biopha.2024.116391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
This study investigated whether sacubitril/valsartan or valsartan are able to prevent left ventricular (LV) fibrotic remodelling and dysfunction in two experimental models of pre-hypertension induced by continuous light (24 hours/day) exposure or by chronic lactacystin treatment, and how this potential protection interferes with the renin-angiotensin-aldosterone system (RAAS). Nine groups of three-month-old male Wistar rats were treated for six weeks as follows: untreated controls (C), sacubitril/valsartan (ARNI), valsartan (Val), continuous light (24), continuous light plus sacubitril/valsartan (24+ARNI) or valsartan (24+Val), lactacystin (Lact), lactacystin plus sacubitil/valsartan (Lact+ARNI) or plus valsartan (Lact+Val). Both the 24 and Lact groups developed a mild but significant systolic blood pressure (SBP) increase, LV hypertrophy and fibrosis, as well as LV systolic and diastolic dysfunction. Yet, no changes in serum renin-angiotensin were observed either in the 24 or Lact groups, though aldosterone was increased in the Lact group compared to the controls. In both models, sacubitril/valsartan and valsartan reduced elevated SBP, LV hypertrophy and fibrosis and attenuated LV systolic and diastolic dysfunction. Sacubitril/valsartan and valsartan increased the serum levels of angiotensin (Ang) II, Ang III, Ang IV, Ang 1-5, Ang 1-7 in the 24 and Lact groups and reduced aldosterone in the Lact group. We conclude that both continuous light exposure and lactacystin treatment induced normal-to-low serum renin-angiotensin models of pre-hypertension, whereas aldosterone was increased in lactacystin-induced pre-hypertension. The protection by ARNI or valsartan in the hypertensive heart in either model was related to the Ang II blockade and the protective Ang 1-7, while in lactacystin-induced pre-hypertension this protection seems to be additionally related to the reduced aldosterone level.
Collapse
Affiliation(s)
- Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81108, Slovak Republic; 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava 83305, Slovak Republic; Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava 84505, Slovak Republic.
| | - Peter Stanko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81108, Slovak Republic; Department of Pneumology, Phthisiology and Functional Diagnostics, Slovak Medical University and Bratislava University Hospital, Bratislava, Slovak Republic
| | - Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81108, Slovak Republic
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81108, Slovak Republic
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81108, Slovak Republic
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81108, Slovak Republic
| | | | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava 84505, Slovak Republic
| | - Michaela Adamcova
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81108, Slovak Republic; Centre of Experimental Medicine SAS, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava 813 71, Slovak Republic
| |
Collapse
|
3
|
Cacanyiova S, Cebova M, Simko F, Baka T, Bernatova I, Kluknavsky M, Zorad S, Krskova K, Shaman E, Zemancikova A, Barta A, Aydemir BG, Berenyiova A. The effect of zofenopril on the cardiovascular system of spontaneously hypertensive rats treated with the ACE2 inhibitor MLN-4760. Biol Res 2023; 56:55. [PMID: 37875978 PMCID: PMC10598995 DOI: 10.1186/s40659-023-00466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Angiotensin converting enzyme 2 (ACE2) plays a crucial role in the infection cycle of SARS-CoV-2 responsible for formation of COVID-19 pandemic. In the cardiovascular system, the virus enters the cells by binding to the transmembrane form of ACE2 causing detrimental effects especially in individuals with developed hypertension or heart disease. Zofenopril, a H2S-releasing angiotensin-converting enzyme inhibitor (ACEI), has been shown to be effective in the treatment of patients with essential hypertension; however, in conditions of ACE2 inhibition its potential beneficial effect has not been investigated yet. Therefore, the aim of the study was to determine the effect of zofenopril on the cardiovascular system of spontaneously hypertensive rats, an animal model of human essential hypertension and heart failure, under conditions of ACE2 inhibition induced by the administration of the specific inhibitor MLN-4760 (MLN). RESULTS Zofenopril reduced MLN-increased visceral fat to body weight ratio although no changes in systolic blood pressure were recorded. Zofenopril administration resulted in a favorable increase in left ventricle ejection fraction and improvement of diastolic function regardless of ACE2 inhibition, which was associated with increased H2S levels in plasma and heart tissue. Similarly, the acute hypotensive responses induced by acetylcholine, L-NAME (NOsynthase inhibitor) and captopril (ACEI) were comparable after zofenopril administration independently from ACE2 inhibition. Although simultaneous treatment with zofenopril and MLN led to increased thoracic aorta vasorelaxation, zofenopril increased the NO component equally regardless of MLN treatment, which was associated with increased NO-synthase activity in aorta and left ventricle. Moreover, unlike in control rats, the endogenous H2S participated in maintaining of aortic endothelial function in MLN-treated rats and the treatment with zofenopril had no impact on this effect. CONCLUSIONS Zofenopril treatment reduced MLN-induced adiposity and improved cardiac function regardless of ACE2 inhibition. Although the concomitant MLN and zofenopril treatment increased thoracic aorta vasorelaxation capacity, zofenopril increased the participation of H2S and NO in the maintenance of endothelial function independently from ACE2 inhibition. Our results confirmed that the beneficial effects of zofenopril were not affected by ACE2 inhibition, moreover, we assume that ACE2 inhibition itself can lead to the activation of cardiovascular compensatory mechanisms associated with Mas receptor, nitrous and sulfide signaling.
Collapse
Affiliation(s)
- Sona Cacanyiova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Martina Cebova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Fedor Simko
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Iveta Bernatova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Kluknavsky
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Krskova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ezgi Shaman
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Anna Zemancikova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrej Barta
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Basak G Aydemir
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrea Berenyiova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
4
|
Cojocaru E, Cojocaru C, Vlad CE, Eva L. Role of the Renin-Angiotensin System in Long COVID's Cardiovascular Injuries. Biomedicines 2023; 11:2004. [PMID: 37509643 PMCID: PMC10377338 DOI: 10.3390/biomedicines11072004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The renin-angiotensin system (RAS) is one of the biggest challenges of cardiovascular medicine. The significance of the RAS in the chronic progression of SARS-CoV-2 infection and its consequences is one of the topics that are currently being mostly discussed. SARS-CoV-2 undermines the balance between beneficial and harmful RAS pathways. The level of soluble ACE2 and membrane-bound ACE2 are both upregulated by the endocytosis of the SARS-CoV-2/ACE2 complex and the tumor necrosis factor (TNF)-α-converting enzyme (ADAM17)-induced cleavage. Through the link between RAS and the processes of proliferation, the processes of fibrous remodelling of the myocardium are initiated from the acute phase of the disease, continuing into the long COVID stage. In the long term, RAS dysfunction may cause an impairment of its beneficial effects leading to thromboembolic processes and a reduction in perfusion of target organs. The main aspects of ACE2-a key pathogenic role in COVID-19 as well as the mechanisms of RAS involvement in COVID cardiovascular injuries are studied. Therapeutic directions that can be currently anticipated in relation to the various pathogenic pathways of progression of cardiovascular damage in patients with longCOVID have also been outlined.
Collapse
Affiliation(s)
- Elena Cojocaru
- Morpho-Functional Sciences II Department, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Cojocaru
- Medical III Department, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristiana-Elena Vlad
- Medical II Department, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- "Dr. C. I. Parhon" Clinical Hospital, 700503 Iasi, Romania
| | - Lucian Eva
- Faculty of Dental Medicine, "Apollonia" University of Iasi, 700511 Iasi, Romania
- "Prof. Dr. Nicolae Oblu" Clinic Emergency Hospital, 700309 Iasi, Romania
| |
Collapse
|
5
|
Gholamalizadeh M, Rabbani F, Ahmadzadeh M, Hajipour A, Musavi H, Mobarakeh KA, Salimi Z, Bahar B, Mahmoodi Z, Gholami S, Mirzaei Dahka S, Doaei S, Akbari ME. The association between vitamin D intake with inflammatory and biochemical indices and mortality in critically ill patients with COVID-19: A case-control study. Immun Inflamm Dis 2023; 11:e844. [PMID: 37102656 PMCID: PMC10132183 DOI: 10.1002/iid3.844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND The coronavirus disease-2019 (COVID-19) has become a worldwide health issue with widespread hospitalization and dependence on the intensive care unit (ICU). Vitamin D has a key role in modulating immune cells and modulating the inflammatory responses. This study aimed to investigate the association of vitamin D supplementation with inflammatory, biochemical, and mortality indices in critically ill patients with COVID-19. METHODS This case-control study was conducted on critically ill COVID-19 patients hospitalized in the ICU including the survived >30 day patients as the case group and dead patients as the control group. The status of vitamin D supplementation and inflammatory and biochemical indices of the patients were retrieved from the medical records. Logistic regression method was used to assess the association between 30 days survival and vitamin D supplement intake. RESULTS Compared to the group of COVID-19 patients who died in <30 day, the survived patients had a lower eosinophile level (2.2 ± 0.5 vs. 6 ± 0.0, p < .001) and higher vitamin D supplementation duration (9 ± 4.4 vs. 3.3 ± 1.9 day, p = .001). Vitamin D supplementation had a positive association with survival in COVID-19 patients (OR: 1.98, 95% CI: 1.15-3.40, p < .05). The association remained significant after adjustments fot age, sex, underlying diseases, and smoking. CONCLUSION Vitamin D supplementation in critically ill patients with COVID-19 has the potential to increase survivability within the first 30 days of hospitalization.
Collapse
Affiliation(s)
| | - Faezeh Rabbani
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research CenterShahid Sadoughi University of Medical SciencesYazdIran
| | - Mina Ahmadzadeh
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Azadeh Hajipour
- School of HealthQazvin University of Medical SciencesQazvinIran
| | | | - Khadijeh Abbasi Mobarakeh
- Department of Community Nutrition, Nutrition and Food Security Research Center, School of Nutrition and Food ScienceIsfahan University of Medical SciencesIsfahanIran
| | - Zahra Salimi
- Nutrition and Metabolic Diseases Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health SciencesUniversity of Central LancashirePrestonUK
| | - Zahra Mahmoodi
- Department of Nutrition, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Somayeh Gholami
- Razi Hospital, Guilan University of Medical SciencesRashtIran
| | | | - Saeid Doaei
- Department of Community Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | | |
Collapse
|
6
|
Repova K, Baka T, Krajcirovicova K, Stanko P, Aziriova S, Reiter RJ, Simko F. Melatonin as a Potential Approach to Anxiety Treatment. Int J Mol Sci 2022; 23:ijms232416187. [PMID: 36555831 PMCID: PMC9788115 DOI: 10.3390/ijms232416187] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Anxiety disorders are the most common mental diseases. Anxiety and the associated physical symptoms may disturb social and occupational life and increase the risk of somatic diseases. The pathophysiology of anxiety development is complex and involves alterations in stress hormone production, neurosignaling pathways or free radical production. The various manifestations of anxiety, its complex pathophysiological background and the side effects of available treatments underlie the quest for constantly seeking therapies for these conditions. Melatonin, an indolamine produced in the pineal gland and released into the blood on a nightly basis, has been demonstrated to exert anxiolytic action in animal experiments and different clinical conditions. This hormone influences a number of physiological actions either via specific melatonin receptors or by receptor-independent pleiotropic effects. The underlying pathomechanism of melatonin's benefit in anxiety may reside in its sympatholytic action, interaction with the renin-angiotensin and glucocorticoid systems, modulation of interneuronal signaling and its extraordinary antioxidant and radical scavenging nature. Of importance, the concentration of this indolamine is significantly higher in cerebrospinal fluid than in the blood. Thus, ensuring sufficient melatonin production by reducing light pollution, which suppresses melatonin levels, may represent an endogenous neuroprotective and anxiolytic treatment. Since melatonin is freely available, economically undemanding and has limited side effects, it may be considered an additional or alternative treatment for various conditions associated with anxiety.
Collapse
Affiliation(s)
- Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Peter Stanko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX 78229, USA
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 83305 Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-(0)2-59357276
| |
Collapse
|
7
|
Esmaeilzadeh A, Elahi R, Siahmansouri A, Maleki AJ, Moradi A. Endocrine and metabolic complications of COVID-19: lessons learned and future prospects. J Mol Endocrinol 2022; 69:R125-R150. [PMID: 35900847 DOI: 10.1530/jme-22-0036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/18/2022] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is well known for its respiratory complications; however, it can also cause extrapulmonary manifestations, including cardiovascular, thrombotic, renal, gastrointestinal, neurologic, and endocrinological symptoms. Endocrinological complications of COVID-19 are rare but can considerably impact the outcome of the patients. Moreover, preexisting endocrinologic disorders can affect the severity of COVID-19. Thyroid, pancreas, adrenal, neuroendocrine, gonadal, and parathyroid glands are the main endocrinologic organs that can be targeted by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Endocrinological complications of COVID-19 are rare but can significantly deteriorate the patients' prognosis. Understanding the interaction between COVID-19 and the endocrine system can provide a potential treatment option to improve the outcome of COVID-19. In this article, we aim to review the short-term and long-term organ-based endocrinological complications of COVID-19, the pathophysiology, the influence of each complication on COVID-19 prognosis, and potential therapeutic interventions based on current published data. Moreover, current clinical trials of potential endocrinological interventions to develop therapeutic strategies for COVID-19 have been discussed.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Siahmansouri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Amirhosein Moradi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
8
|
Simko F, Baka T, Stanko P, Repova K, Krajcirovicova K, Aziriova S, Domenig O, Zorad S, Adamcova M, Paulis L. Sacubitril/Valsartan and Ivabradine Attenuate Left Ventricular Remodelling and Dysfunction in Spontaneously Hypertensive Rats: Different Interactions with the Renin-Angiotensin-Aldosterone System. Biomedicines 2022; 10:1844. [PMID: 36009391 PMCID: PMC9405404 DOI: 10.3390/biomedicines10081844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated whether sacubitril/valsartan and ivabradine are able to prevent left ventricular (LV) fibrotic remodelling and dysfunction in a rat experimental model of spontaneous hypertension (spontaneously hypertensive rats, SHRs) and whether this potential protection is associated with RAAS alterations. Five groups of three-month-old male Wistar rats and SHRs were treated for six weeks as follows: untreated Wistar controls, Wistar plus sacubitril/valsartan, SHR, SHR plus sacubitril/valsartan, and SHR plus ivabradine. The SHRs developed a systolic blood pressure (SBP) increase, LV hypertrophy and fibrosis, and LV systolic and diastolic dysfunction. However, no changes in serum RAAS were observed in SHRs compared with the controls. Elevated SBP in SHRs was decreased by sacubitril/valsartan but not by ivabradine, and only sacubitril/valsartan attenuated LV hypertrophy. Both sacubitril/valsartan and ivabradine reduced LV collagen content and attenuated LV systolic and diastolic dysfunction. Sacubitril/valsartan increased the serum levels of angiotensin (Ang) II, Ang III, Ang IV, Ang 1-5, Ang 1-7, and aldosterone, while ivabradine did not affect the RAAS. We conclude that the SHR is a normal-to-low serum RAAS model of experimental hypertension. While the protection of the hypertensive heart in SHRs by sacubitril/valsartan may be related to an Ang II blockade and the protective Ang 1-7, the benefits of ivabradine were not associated with RAAS modulation.
Collapse
Affiliation(s)
- Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 83305 Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
| | - Peter Stanko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
| | - Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
| | | | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic;
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 81371 Bratislava, Slovakia
| |
Collapse
|
9
|
Baka T, Repova K, Luptak I, Simko F. Ivabradine in the management of COVID-19-related cardiovascular complications: A perspective. Curr Pharm Des 2022; 28:1581-1588. [DOI: 10.2174/1381612828666220328114236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Besides acute respiratory distress syndrome, acute cardiac injury is a major complication in severe coronavirus disease 2019 (COVID-19) and associates with a poor clinical outcome. Acute cardiac injury with COVID-19 can be of various etiologies, including myocardial ischemia or infarction and myocarditis, and may compromise cardiac function, resulting in acute heart failure or cardiogenic shock. Systemic inflammatory response increases heart rate (HR), which disrupts the myocardial oxygen supply/demand balance and worsens cardiac energy efficiency, thus further deteriorating the cardiac performance of the injured myocardium. In fact, the combination of elevated resting HR and markers of inflammation synergistically predicts adverse cardiovascular prognosis. Thus, targeted HR reduction may potentially be of benefit in cardiovascular pathologies associated with COVID-19. Ivabradine is a drug that selectively reduces HR via If current inhibition in the sinoatrial node without a negative effect on inotropy. Besides selective HR reduction, ivabradine was found to exert various beneficial pleiotropic effects, either HR-dependent or HR-independent, including anti-inflammatory, anti-atherosclerotic, anti-oxidant and antiproliferative actions and the attenuation of endothelial dysfunction and neurohumoral activation. Cardioprotection by ivabradine has already been indicated in cardiovascular pathologies that are prevalent with COVID-19, including myocarditis, acute coronary syndrome, cardiogenic shock or cardiac dysautonomia. Here, we suggest that ivabradine may be beneficial in the management of COVID-19-related cardiovascular complications.
Collapse
Affiliation(s)
- Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Ivan Luptak
- Cardiovascular Medicine Section, Boston University School of Medicine, Boston, MA, USA
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA, USA
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
- Cardiovascular Medicine Section, Boston University School of Medicine, Boston, MA, USA
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA
| |
Collapse
|
10
|
Lin X, Lin W, Zhuang Y, Gao F. ACE2 inhibits lipopolysaccharide-caused lung fibrosis via downregulating the TGF-β1/Smad2/Smad3 pathway. J Pharmacol Exp Ther 2022; 381:236-246. [DOI: 10.1124/jpet.121.000907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/04/2022] [Indexed: 11/22/2022] Open
|
11
|
Simko F, Baka T. Commentary: Effect of Angiotensin-Converting-Enzyme Inhibitor and Angiotensin II Receptor Antagonist Treatment on ACE2 Expression and SARS-CoV-2 Replication in Primary Airway Epithelial Cells. Front Pharmacol 2022; 13:842512. [PMID: 35153802 PMCID: PMC8832014 DOI: 10.3389/fphar.2022.842512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- *Correspondence: Fedor Simko,
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
12
|
Rajtik T, Galis P, Bartosova L, Paulis L, Goncalvesova E, Klimas J. Alternative RAS in Various Hypoxic Conditions: From Myocardial Infarction to COVID-19. Int J Mol Sci 2021; 22:ijms222312800. [PMID: 34884604 PMCID: PMC8657827 DOI: 10.3390/ijms222312800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022] Open
Abstract
Alternative branches of the classical renin–angiotensin–aldosterone system (RAS) represent an important cascade in which angiotensin 2 (AngII) undergoes cleavage via the action of the angiotensin-converting enzyme 2 (ACE2) with subsequent production of Ang(1-7) and other related metabolites eliciting its effects via Mas receptor activation. Generally, this branch of the RAS system is described as its non-canonical alternative arm with counterbalancing actions to the classical RAS, conveying vasodilation, anti-inflammatory, anti-remodeling and anti-proliferative effects. The implication of this branch was proposed for many different diseases, ranging from acute cardiovascular conditions, through chronic respiratory diseases to cancer, nonetheless, hypoxia is one of the most prominent common factors discussed in conjugation with the changes in the activity of alternative RAS branches. The aim of this review is to bring complex insights into the mechanisms behind the various forms of hypoxic insults on the activity of alternative RAS branches based on the different duration of stimuli and causes (acute vs. intermittent vs. chronic), localization and tissue (heart vs. vessels vs. lungs) and clinical relevance of studied phenomenon (experimental vs. clinical condition). Moreover, we provide novel insights into the future strategies utilizing the alternative RAS as a diagnostic tool as well as a promising pharmacological target in serious hypoxia-associated cardiovascular and cardiopulmonary diseases.
Collapse
Affiliation(s)
- Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
- Correspondence: ; Tel.: +42-12-501-17-391
| | - Peter Galis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| | - Linda Bartosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Eva Goncalvesova
- Department of Heart Failure, Clinic of Cardiology, National Institute of Cardiovascular Diseases, 831 01 Bratislava, Slovakia;
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| |
Collapse
|
13
|
Borsche L, Glauner B, von Mendel J. COVID-19 Mortality Risk Correlates Inversely with Vitamin D3 Status, and a Mortality Rate Close to Zero Could Theoretically Be Achieved at 50 ng/mL 25(OH)D3: Results of a Systematic Review and Meta-Analysis. Nutrients 2021; 13:3596. [PMID: 34684596 PMCID: PMC8541492 DOI: 10.3390/nu13103596] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Much research shows that blood calcidiol (25(OH)D3) levels correlate strongly with SARS-CoV-2 infection severity. There is open discussion regarding whether low D3 is caused by the infection or if deficiency negatively affects immune defense. The aim of this study was to collect further evidence on this topic. METHODS Systematic literature search was performed to identify retrospective cohort as well as clinical studies on COVID-19 mortality rates versus D3 blood levels. Mortality rates from clinical studies were corrected for age, sex, and diabetes. Data were analyzed using correlation and linear regression. RESULTS One population study and seven clinical studies were identified, which reported D3 blood levels preinfection or on the day of hospital admission. The two independent datasets showed a negative Pearson correlation of D3 levels and mortality risk (r(17) = -0.4154, p = 0.0770/r(13) = -0.4886, p = 0.0646). For the combined data, median (IQR) D3 levels were 23.2 ng/mL (17.4-26.8), and a significant Pearson correlation was observed (r(32) = -0.3989, p = 0.0194). Regression suggested a theoretical point of zero mortality at approximately 50 ng/mL D3. CONCLUSIONS The datasets provide strong evidence that low D3 is a predictor rather than just a side effect of the infection. Despite ongoing vaccinations, we recommend raising serum 25(OH)D levels to above 50 ng/mL to prevent or mitigate new outbreaks due to escape mutations or decreasing antibody activity.
Collapse
Affiliation(s)
| | | | - Julian von Mendel
- Artificial Intelligence, IU International University of Applied Sciences, D-99084 Erfurt, Germany;
| |
Collapse
|
14
|
The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling. Int J Mol Sci 2021; 22:ijms22094762. [PMID: 33946230 PMCID: PMC8124994 DOI: 10.3390/ijms22094762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Current knowledge on the renin-angiotensin system (RAS) indicates its central role in the pathogenesis of cardiovascular remodelling via both hemodynamic alterations and direct growth and the proliferation effects of angiotensin II or aldosterone resulting in the hypertrophy of cardiomyocytes, the proliferation of fibroblasts, and inflammatory immune cell activation. The noncoding regulatory microRNAs has recently emerged as a completely novel approach to the study of the RAS. A growing number of microRNAs serve as mediators and/or regulators of RAS-induced cardiac remodelling by directly targeting RAS enzymes, receptors, signalling molecules, or inhibitors of signalling pathways. Specifically, microRNAs that directly modulate pro-hypertrophic, pro-fibrotic and pro-inflammatory signalling initiated by angiotensin II receptor type 1 (AT1R) stimulation are of particular relevance in mediating the cardiovascular effects of the RAS. The aim of this review is to summarize the current knowledge in the field that is still in the early stage of preclinical investigation with occasionally conflicting reports. Understanding the big picture of microRNAs not only aids in the improved understanding of cardiac response to injury but also leads to better therapeutic strategies utilizing microRNAs as biomarkers, therapeutic agents and pharmacological targets.
Collapse
|