1
|
Yang J, Xie S, Guo J, Zhou Y, Yang Y, Sun Z, Cai P, Zhang C, Jiang S, Cao X, Fan Y, Chen X, Li X, Zhang Y. Restoration of mitochondrial function alleviates trigeminal neuropathic pain in mice. Free Radic Biol Med 2025; 226:185-198. [PMID: 39528053 DOI: 10.1016/j.freeradbiomed.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Craniofacial pain is prevalent and a debilitating condition. Managing craniofacial pain is particularly challenging due to its multifaceted nature. Among the most severe forms of craniofacial pain is trigeminal neuralgia, often described as one of the most excruciating pain syndromes encountered in clinical practice. Utilizing a mouse model of trigeminal neuropathic pain, we found severe mitochondrial impairment in the injured trigeminal ganglion (TG), spanning transcription and translation to functionality. Our findings demonstrated that rejuvenating mitochondria by boosting NAD+ levels enhanced mitochondrial fitness and significantly ameliorated trigeminal neuropathic pain. Additionally, we showed that the analgesic effects of nicotinamide riboside (NR) supplementation mainly depend on Sirt1. Importantly, our multi-omics studies revealed that activated Sirt1 by NR suppresses a broad range of key pain genes and exerts anti-inflammatory effects in the TG. Together, we present a comprehensive view of how mitochondrial dysfunction is involved in trigeminal neuropathic pain. Therefore, targeting mitochondrial dysfunction offers a novel and promising approach to craniofacial pain management.
Collapse
Affiliation(s)
- Jiajun Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Song Xie
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Jiahao Guo
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Yujuan Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Yaning Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Zhaoxia Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Peng Cai
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Chenchen Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Shangying Jiang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Xuxia Cao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Yuanlan Fan
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, 330006, China
| | - Xing Chen
- School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China.
| | - Yi Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang Province, 325101, China.
| |
Collapse
|
2
|
Ayhan M, Gedik B, Kalelioglu EE, Kundakcioglu A, Kucukgergin C, Turgut CT, KOCAELLI H, Alatli FC, Issever H, Ademoglu E, YALTIRIK M. Comparison of the Effects of Four Laser Wavelengths on Medication-Related Osteonecrosis of the Jaw (MRONJ) in a Murine Model: An In Vivo Photobiomodulation Study. Int J Med Sci 2024; 21:2959-2973. [PMID: 39628679 PMCID: PMC11610323 DOI: 10.7150/ijms.93224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/23/2024] [Indexed: 12/06/2024] Open
Abstract
Background: This study aims to investigate the effectiveness of lasers at various wavelengths in treating medication-related osteonecrosis of the jaw (MRONJ) using biochemical, clinical scoring, micro CT analysis, and histopathological methods. The study follows the ARRIVE guidelines to ensure robust and transparent research. Methods: In our study, there were 6 groups, including one SHAM group, one CONTROL group, and four experimental groups, with 8 rats in each individual group. Each rat received antiresorptive drug intraperitoneally for 4 weeks and then had the left second molar in the mandible extracted. All animals were sacrificed at the end of the 12th week. In the experimental groups, lasers at wavelengths of 405nm, 445nm, 660nm, and 808nm were applied to the animals. Parameters such as serum vitamin D levels, bone density and bone volume at the extraction site, new bone formation, dead bone count, inflammatory cell count, and epithelial regeneration were examined. Additionally, clinical scoring was conducted after sacrifice. The laser parameters included power density, area, time, fluence, and mode (continuous wave), and the light was administered using a fiber with a Gaussian profile. Statistical analyses were performed with the NCSS (Number Cruncher Statistical System) 2007 Statistical Software (Utah, USA) package program. The results were evaluated at the p<0.05 significance level. Results: According to the results obtained from our study, new bone formation in all experimental groups was significantly higher than in the SHAM and CONTROL groups. Furthermore, the 660nm and 808nm wavelengths increased serum vitamin D levels significantly. The most successful outcomes were observed in clinical scoring, dead bone count, epithelial cell regeneration, and bone density in the 660nm and 808nm wavelength groups. Conclusions: The combined use of lasers at 660nm and 808nm wavelengths may yield successful results in treating MRONJ.
Collapse
Affiliation(s)
- Mustafa Ayhan
- Istanbul University Faculty of Dentistry Department of Oral and Maxillofacial Surgery, Prof. Dr. Cavit Orhan Tutengil Street No. 4 Vezneciler Fatih, Istanbul, Turkey
| | - Betul Gedik
- Istanbul University Faculty of Dentistry Department of Oral and Maxillofacial Surgery, Prof. Dr. Cavit Orhan Tutengil Street No. 4 Vezneciler Fatih, Istanbul, Turkey
| | - Ekrem Emir Kalelioglu
- Istanbul University Faculty of Dentistry Department of Oral and Maxillofacial Surgery, Prof. Dr. Cavit Orhan Tutengil Street No. 4 Vezneciler Fatih, Istanbul, Turkey
| | - Abdulsamet Kundakcioglu
- Istanbul University Faculty of Dentistry Department of Oral and Maxillofacial Surgery, Prof. Dr. Cavit Orhan Tutengil Street No. 4 Vezneciler Fatih, Istanbul, Turkey
| | - Canan Kucukgergin
- Istanbul University Faculty of Medicine Department of Medical Biochemistry, Istanbul Tıp Fakültesi Çapa Fatih, İstanbul, Turkey
| | - Cevat Tugrul Turgut
- Istanbul University Faculty of Dentistry Department of Oral and Maxillofacial Surgery, Prof. Dr. Cavit Orhan Tutengil Street No. 4 Vezneciler Fatih, Istanbul, Turkey
| | - Humeyra KOCAELLI
- Istanbul University Faculty of Dentistry Department of Oral and Maxillofacial Surgery, Prof. Dr. Cavit Orhan Tutengil Street No. 4 Vezneciler Fatih, Istanbul, Turkey
| | - Fatma Canan Alatli
- Istanbul Health and Technology University Department of Medical Pathology, Sütlüce İmrahor Caddesi No. 82 Beyoğlu, İstabul, Turkey
| | - Halim Issever
- Istanbul University Faculty of Medicine, Department of Internal Medicine, Department of Public Health Istanbul Tıp Fakültesi Çapa Fatih, İstanbul, Turkey
| | - Evin Ademoglu
- Istanbul University Faculty of Medicine Department of Medical Biochemistry, Istanbul Tıp Fakültesi Çapa Fatih, İstanbul, Turkey
| | - Mehmet YALTIRIK
- Istanbul University Faculty of Dentistry Department of Oral and Maxillofacial Surgery, Prof. Dr. Cavit Orhan Tutengil Street No. 4 Vezneciler Fatih, Istanbul, Turkey
| |
Collapse
|
3
|
Stigliani S, Ravera S, Maccarini E, Rizzo C, Massarotti C, Anserini P, Bozzo M, Amaroli A, Scaruffi P. The power of 810 nm near-infrared photobiomodulation therapy for human asthenozoospermia. Sci Rep 2024; 14:26819. [PMID: 39501019 PMCID: PMC11538380 DOI: 10.1038/s41598-024-77823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Sperm motility is a crucial factor in male fertility. Photobiomodulation (PBM) has been reported to increase sperm motility, but a consistent approach suitable for identifying standardizable protocols is lacking. We collected asthenozoospermic (n = 70) and normozoospermic (n = 20) semen. The asthenozoospermic samples were irradiated with an 810 nm diode laser, in continuous wave mode, at 0.25 W, 0.5 W, 1 W and 2 W for 60 s on a circular area of 1 cm2 through a novel handpiece with an innovative flat-top profile. Sperm motility was assessed immediately, after 30 and 60 min. A sample size calculator, unpaired t-test and one-way ANOVA with post-hoc Tukey HSD tests were used for statistics. One and 2 W were the most effective outputs in increasing progressive motility compared to control (p < 0.001). The maximum effect was immediately after 1 W-PBM (p < 0.001) and decreased after 60 min (p < 0.001). Time physiologically decreased vitality (p < 0.001), but less in the 1 W-PBM samples (p < 0.05). 1 W-PBM did not affect chromatin condensation. Asthenozoospermic samples displayed an impairment of 80% in oxygen consumption and ATP production and a slight inefficiency of oxidative phosphorylation compared to normozoospermic samples (p < 0.001). 1 W-PBM partially restored the functionality of aerobic metabolism (p < 0.001) by recovery of oxidative phosphorylation efficiency. PBM did not affect lactate dehydrogenase (glycolysis pathway). No irradiated samples increased accumulated malondialdehyde, a marker of lipidic peroxidation. In conclusion, PBM improves progressive motility in asthenozoospermia through increased mitochondrial energetic metabolism without harmful oxidative stress.
Collapse
Affiliation(s)
- Sara Stigliani
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Silvia Ravera
- Experimental Medicine Department, University of Genova, Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Elena Maccarini
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Camilla Rizzo
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Claudia Massarotti
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Health (DiNOGMI), University of Genova, Genova, Italy
| | - Paola Anserini
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Bozzo
- BIO-Photonics Overarching Research laboratory, Department of Earth, Environmental and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Andrea Amaroli
- BIO-Photonics Overarching Research laboratory, Department of Earth, Environmental and Life Sciences (DISTAV), University of Genova, Genova, Italy.
| | - Paola Scaruffi
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
4
|
Anita L, Choi MJ, Yin GN, Ock J, Kwon MH, Rho BY, Chung DY, Suh JK, Ryu JK. Photobiomodulation as a Potential Therapy for Erectile Function: A Preclinical Study in a Cavernous Nerve Injury Model. World J Mens Health 2024; 42:842-854. [PMID: 38772533 PMCID: PMC11439795 DOI: 10.5534/wjmh.230187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 05/23/2024] Open
Abstract
PURPOSE To identify the optimal photobiomodulation (PBM) parameters using molecular, histological, and erectile function analysis in cavernous nerve injury. MATERIALS AND METHODS A cavernous nerve injury was induced in 8-week-old C57BL/6J male mice that were subsequently divided randomly into age-matched control groups. Erectile function tests, penile histology, and Western blotting were performed 2 weeks after surgery and PBM treatment. RESULTS The PBM treatment was administered for five consecutive days with a light-emitted diode (LED) device that delivers 660 nm±3% RED light, and near infra-red 830 nm±2% promptly administered following nerve-crushing surgery and achieved a notable restoration of erectile function approximately 90% of the control values. Subsequent in-vitro and ex-vivo analyses revealed the regeneration of neurovascular connections in both the dorsal root ganglion and major pelvic ganglion, characterized by the sprouting of neurites. Furthermore, the expression levels of neurotrophic, survival, and angiogenic factors exhibited a substantial increase across all groups subjected to PBM treatment. CONCLUSIONS The utilization of PBM employing LED with 660 nm, 830 nm, and combination of both these wavelengths, exhibited significant efficacy to restore erectile function in a murine model of cavernous nerve injury. Thus, the PBM emerges as a potent therapeutic modality with notable advantages such as efficacy, noninvasiveness, and non-pharmacological interventions for erectile dysfunction caused by nerve injury.
Collapse
Affiliation(s)
- Limanjaya Anita
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea
| | - Min-Ji Choi
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea
| | - Guo Nan Yin
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea
| | - JiYeon Ock
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea
| | - Mi-Hye Kwon
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea
| | - Beom Yong Rho
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea
| | - Doo Yong Chung
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea
| | - Jun-Kyu Suh
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea.
| | - Ji-Kan Ryu
- Department of Urology and National Research Center for Sexual Medicine, Inha University College of Medicine, Incheon, Korea.
| |
Collapse
|
5
|
Zupin L, Gianoncelli A, Celsi F, Bonanni V, Kourousias G, Parisse P, Salomé M, Crovella S, Barbi E, Ricci G, Pascolo L. The effect of near-infrared Photobiomodulation therapy on the ion content of 50B11 sensory neurons measured through XRF analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113019. [PMID: 39217730 DOI: 10.1016/j.jphotobiol.2024.113019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Photobiomodulation therapy (PBMT) is a form of treatment commonly used for routine clinical applications, such as wound healing of the skin and reduction of inflammation. Additionally, PBMT has been explored for its potential in pain relief. In this work, we investigated the effect of PBMT on ion content within the 50B11 sensory neurons cell line in vitro using X-Ray fluorescence (XRF) and atomic force microscope (AFM) analysis. Two irradiation protocols were selected utilizing near-infrared laser lights at 800 and 970 nm, with cell fixation immediately following irradiation. Results showed a decrease in Calcium content after irradiation with both protocols, and with lidocaine, used as an analgesic control. Furthermore, a reduction in Potassium content was observed, particularly evident when normalized to cellular volume. These findings provide valuable insights into the molecular impact of PBMT within 50B11 sensory neurons under normal conditions. Such understanding may contribute to the wider adoption of PBMT as a therapeutic approach.
Collapse
Affiliation(s)
- Luisa Zupin
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy.
| | | | - Fulvio Celsi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy.
| | | | | | - Pietro Parisse
- Elettra Sincrotrone Trieste, Basovizza, 34149, Trieste, Italy; CNR-IOM, Basovizza, 34149 Trieste, Italy
| | - Murielle Salomé
- ESRF, European Synchrotron Radiation Facility, Cedex 9, F-38043 Grenoble, France
| | - Sergio Crovella
- Laboratory of Animal Research (LARC), Qatar University, 2713, Doha, Qatar
| | - Egidio Barbi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; Department of Medical, Surgical and Health Science, University of Trieste, 34100, Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; Department of Medical, Surgical and Health Science, University of Trieste, 34100, Trieste, Italy
| | - Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy
| |
Collapse
|
6
|
Olszewska A, Matys J, Grzech-Leśniak K, Czajka-Jakubowska A. Enhanced Recovery of Local Anesthesia in Pediatric Patients: The Impact of Photobiomodulation on Reversing Anesthesia Effects. Med Sci Monit 2024; 30:e941928. [PMID: 38787794 PMCID: PMC11131430 DOI: 10.12659/msm.941928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/20/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The split-mouth study design is used in oral health research and usually consists of 2 treatments randomly assigned to either the right or left side. This split-mouth study aimed to evaluate the efficacy of photobiomodulation on reversal of local anesthesia in 50 children aged 8-10 years. MATERIAL AND METHODS The study was conducted among 50 children: 27 girls and 23 boys, aged 8-10 years (mean age 9.38±1.15 years), who presented 2 carious maxillary permanent molars. One side was randomly assigned to the laser group (50 teeth), and the contralateral side to the control group (50 teeth). At the end of the treatment, photobiomodulation (PBM) was performed in the area of infiltration at 6 points, with 635 nm (25 children) (250 mW, 500 mW/cm², 15J) and 808 nm (25 children) (200 mW, 400 mW/cm², 12J) (SmartM PRO, Lasotronix, Poland). On the contralateral side, the laser's off-mode applicator was used. Anesthetic effect was evaluated by palpation test (soft tissues) and electrical test (dental pulp). RESULTS After 15 minutes, in the laser group the return to normal sensations in the palpation test showed 88% (808 nm) and 68% (635 nm), and only 20% in the control group (P=0.04123). After 45 minutes, all the participants from the PBM group returned to normal sensations (P=0.21458). Dental pulp's excitability threshold was lower for both wavelengths compared to the control group (P=0.000001). CONCLUSIONS The identification of factors accelerating the recovery time to normal function, such as PBM, can be used as important data to eliminate self-injury secondary to local anesthesia (LA) in children.
Collapse
Affiliation(s)
- Aneta Olszewska
- Department of Orthodontics and Temporomandibular Disorders, Poznań University of Medical Sciences, Poznań, Poland
| | - Jacek Matys
- Laser Laboratory, Department of Dental Surgery, Wrocław Medical University, Wrocław, Poland
| | - Kinga Grzech-Leśniak
- Laser Laboratory, Department of Dental Surgery, Wrocław Medical University, Wrocław, Poland
| | - Agata Czajka-Jakubowska
- Department of Orthodontics and Temporomandibular Disorders, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
7
|
Amaroli A, Clemente Vargas MR, Pasquale C, Raffetto M, Ravera S. Photobiomodulation on isolated mitochondria at 810 nm: first results on the efficiency of the energy conversion process. Sci Rep 2024; 14:11060. [PMID: 38744931 PMCID: PMC11094005 DOI: 10.1038/s41598-024-61740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
In this paper the photobiomodulation on isolated mitochondria of bovine liver is studied as a thermodynamic process of conversion of energy. This analysis is conducted by considering a particular set-up for the photobiomodulation experiments of interest. It allows, in particular, the computation of the electromagnetic field and the related energetic quantities in the stimulated organelles. The measurements of the excess of biochemical power density produced by the illuminated mitochondria are performed at regular time intervals after the experiments. The calculations and the measurements finally allow us to obtain the first results on the efficiency of the process of conversion of electromagnetic energy into excess of biochemical energy released by the isolated organelles.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| | - Mario Rene Clemente Vargas
- Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture, University of Genoa, Via Opera Pia 11a, 16145, Genoa, Italy
| | - Claudio Pasquale
- Department of Mechanical, Energy, Management and Transport Engineering, University of Genova, Via Opera Pia 15, 16145, Genoa, Italy
| | - Mirco Raffetto
- Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture, University of Genoa, Via Opera Pia 11a, 16145, Genoa, Italy.
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Via L. B. Alberti 2, 16132, Genoa, Italy
| |
Collapse
|
8
|
Alam M, Karami S, Mohammadikhah M, Badkoobeh A, Golkar M, Abbasi K, Soufdoost RS, Hakim LK, Talebi S, Namanloo RA, Hussain A, Heboyan A, Tebyaniyan H. The effect of photobiomodulation therapy in common maxillofacial injuries: Current status. Cell Biochem Funct 2024; 42:e3951. [PMID: 38349051 DOI: 10.1002/cbf.3951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/28/2024] [Indexed: 02/15/2024]
Abstract
The use of photobiomodulation therapy (PBMT) may be used for treating trauma to the maxillofacial region. The effects of PBMT on maxillofacial injuries were discussed in this review article. The electronic databases Pubmed, Scopus, and Web of Science were thoroughly searched. This review included in vitro, in vivo, and clinical studies describing how PBMT can be used in maxillofacial tissue engineering and regenerative medicine. Some studies suggest that PBMT may offer a promising therapy for traumatic maxillofacial injuries because it can stimulate the differentiation and proliferation of various cells, including dental pulp cells and mesenchymal stem cells, enhancing bone regeneration and osseointegration. PBMT reduces pain and swelling after oral surgery and tooth extraction in human and animal models of maxillofacial injuries. Patients with temporomandibular disorders also benefit from PBMT in terms of reduced inflammation and symptoms. PBMT still has some limitations, such as the need for standardizing parameters. PBMT must also be evaluated further in randomized controlled trials in various maxillofacial injuries. As a result, PBMT offers a safe and noninvasive treatment option for patients suffering from traumatic maxillofacial injuries. PBMT still requires further research to establish its efficacy in clinical practice and determine the optimal parameters.
Collapse
Affiliation(s)
- Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Meysam Mohammadikhah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Sahar Talebi
- Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, Edmonton, Canada
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
9
|
Ramakrishnan P, Joshi A, Fazil M, Yadav P. A comprehensive review on therapeutic potentials of photobiomodulation for neurodegenerative disorders. Life Sci 2024; 336:122334. [PMID: 38061535 DOI: 10.1016/j.lfs.2023.122334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
A series of experimental trials over the past two centuries has put forth Photobiomodulation (PBM) as a treatment modality that utilizes colored lights for various conditions. While in its cradle, PBM was used for treating simple conditions such as burns and wounds, advancements in recent years have extended the use of PBM for treating complex neurodegenerative diseases (NDDs). PBM has exhibited the potential to curb several symptoms and signs associated with NDDs. While several of the currently used therapeutics cause adverse side effects alongside being highly invasive, PBM on the contrary, seems to be broad-acting, less toxic, and non-invasive. Despite being projected as an ideal therapeutic for NDDs, PBM still isn't considered a mainstream treatment modality due to some of the challenges and knowledge gaps associated with it. Here, we review the advantages of PBM summarized above with an emphasis on the common mechanisms that underlie major NDDs and how PBM helps tackle them. We also discuss important questions such as whether PBM should be considered a mainstay treatment modality for these conditions and if PBM's properties can be harnessed to develop prophylactic therapies for high-risk individuals and also highlight important animal studies that underscore the importance of PBM and the challenges associated with it. Overall, this review is intended to bring the major advances made in the field to the spotlight alongside addressing the practicalities and caveats to develop PBM as a major therapeutic for NDDs.
Collapse
Affiliation(s)
- Pooja Ramakrishnan
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| | - Aradhana Joshi
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| | - Mohamed Fazil
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India; School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India
| | - Pankaj Yadav
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
10
|
Santos FP, Carvalhos CA, Figueiredo-Dias M. New Insights into Photobiomodulation of the Vaginal Microbiome-A Critical Review. Int J Mol Sci 2023; 24:13507. [PMID: 37686314 PMCID: PMC10487748 DOI: 10.3390/ijms241713507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The development of new technologies such as sequencing has greatly enhanced our understanding of the human microbiome. The interactions between the human microbiome and the development of several diseases have been the subject of recent research. In-depth knowledge about the vaginal microbiome (VMB) has shown that dysbiosis is closely related to the development of gynecologic and obstetric disorders. To date, the progress in treating or modulating the VMB has lagged far behind research efforts. Photobiomodulation (PBM) uses low levels of light, usually red or near-infrared, to treat a diversity of conditions. Several studies have demonstrated that PBM can control the microbiome and improve the activity of the immune system. In recent years, increasing attention has been paid to the microbiome, mostly to the gut microbiome and its connections with many diseases, such as metabolic disorders, obesity, cardiovascular disorders, autoimmunity, and neurological disorders. The applicability of PBM therapeutics to treat gut dysbiosis has been studied, with promising results. The possible cellular and molecular effects of PBM on the vaginal microbiome constitute a theoretical and promising field that is starting to take its first steps. In this review, we will discuss the potential mechanisms and effects of photobiomodulation in the VMB.
Collapse
Affiliation(s)
- Fernanda P. Santos
- Faculty of Medicine, Gynecology University Clinic, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.C.); (M.F.-D.)
- Clinical and Academic Centre of Coimbra, 3004-531 Coimbra, Portugal
- Gynecology Department, Coimbra Hospital and University Center, 3004-561 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3001-301 Coimbra, Portugal
| | - Carlota A. Carvalhos
- Faculty of Medicine, Gynecology University Clinic, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.C.); (M.F.-D.)
- Clinical and Academic Centre of Coimbra, 3004-531 Coimbra, Portugal
- Gynecology Department, Coimbra Hospital and University Center, 3004-561 Coimbra, Portugal
| | - Margarida Figueiredo-Dias
- Faculty of Medicine, Gynecology University Clinic, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.C.); (M.F.-D.)
- Clinical and Academic Centre of Coimbra, 3004-531 Coimbra, Portugal
- Gynecology Department, Coimbra Hospital and University Center, 3004-561 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3001-301 Coimbra, Portugal
| |
Collapse
|
11
|
Scribante A, Pellegrini M, Pulicari F, Porrini M, Bosotti M, Spadari F. Nerve Injury and Photobiomodulation, a Promising Opportunity: A Scoping Review on Laser Assisted Protocols for Lesions in the Oral Region. APPLIED SCIENCES 2023; 13:9258. [DOI: 10.3390/app13169258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The currently available therapeutic options for restoring function and sensitivity in long-term nervous injuries pose challenges. Microsurgery interventions for direct nerve repair often lead to serious complications and limited success. Non-surgical methods, although somewhat effective, have limited benefits. These methods involve drug administration, such as with analgesics or corticosteroids. Photobiomodulation therapy (PBMT) has emerged as a promising approach based on clinical and laboratory studies. PBMT stimulates the migration and proliferation of neuronal fiber cellular aggregates, as reported in the literature. Experimental studies on animal models with peripheral nerve compression injuries have shown that PBMT can enhance the functionality of damaged nerves, preserving their activity and preventing scar tissue formation. The mechanism of action depends on the wavelength, which can positively or negatively affect photo acceptor resonances, influencing their conformation and activities. These findings suggest that photobiomodulation may accelerate and improve nerve regeneration. This review explores various methodologies used in photobiomodulation for regenerating nerve sensitivity after surgical trauma involving nerve structures, in the oral and peri-oral region. Research was conducted to evaluate which laser-assisted therapeutic protocols are used to improve the recovery of nervous sensitivity, using the JBI methodology for scoping reviews and following the PRISMA methodology.
Collapse
Affiliation(s)
- Andrea Scribante
- Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Matteo Pellegrini
- Maxillofacial Surgery and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Federica Pulicari
- Maxillofacial Surgery and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Massimo Porrini
- Maxillofacial Surgery and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Moreno Bosotti
- Maxillofacial Surgery and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Francesco Spadari
- Maxillofacial Surgery and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| |
Collapse
|
12
|
Uta D, Ishibashi N, Kawase Y, Tao S, Sawahata M, Kume T. Relationship between Laser Intensity at the Peripheral Nerve and Inhibitory Effect of Percutaneous Photobiomodulation on Neuronal Firing in a Rat Spinal Dorsal Horn. J Clin Med 2023; 12:5126. [PMID: 37568529 PMCID: PMC10419909 DOI: 10.3390/jcm12155126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Photobiomodulation is an effective treatment for pain. We previously reported that the direct laser irradiation of the exposed sciatic nerve inhibited firing in the rat spinal dorsal horn evoked by mechanical stimulation, corresponding to the noxious stimulus. However, percutaneous laser irradiation is used in clinical practice, and it is unclear whether it can inhibit the firing of the dorsal horn. In this study, we investigated whether the percutaneous laser irradiation of the sciatic nerve inhibits firing. Electrodes were inserted into the lamina II of the dorsal horn, and mechanical stimulation was applied using von Frey filaments (vFFs) with both pre and post laser irradiation. Our findings show that percutaneous laser irradiation inhibited 26.0 g vFF-evoked firing, which corresponded to the noxious stimulus, but did not inhibit 0.6 g and 8.0 g vFF-evoked firing. The post- (15 min after) and pre-irradiation firing ratios were almost the same as those for direct and percutaneous irradiation. A photodiode sensor implanted in the sciatic nerve showed that the power density reaching the sciatic nerve percutaneously was attenuated to approximately 10% of that on the skin. The relationship between the laser intensity reaching the nerve and its effect could be potentially useful for a more appropriate setting of laser conditions in clinical practice.
Collapse
Affiliation(s)
- Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (M.S.); (T.K.)
| | - Naoya Ishibashi
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan;
- Biomedical Engineering Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Ltd., Tokyo 191-8512, Japan; (Y.K.); (S.T.)
| | - Yuki Kawase
- Biomedical Engineering Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Ltd., Tokyo 191-8512, Japan; (Y.K.); (S.T.)
| | - Shinichi Tao
- Biomedical Engineering Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Ltd., Tokyo 191-8512, Japan; (Y.K.); (S.T.)
| | - Masahito Sawahata
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (M.S.); (T.K.)
| | - Toshiaki Kume
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (M.S.); (T.K.)
| |
Collapse
|
13
|
Öztürk K, Kuzu TE, Gürgan CA, Önder GÖ, Yay A. The effect of different treatment protocols with diode laser on regeneration in axonetmesis ınjuries of the ınferior alveolar nerve: an animal study. Lasers Med Sci 2023; 38:169. [PMID: 37515606 DOI: 10.1007/s10103-023-03834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
The inferior alveolar nerve can be damaged during dental procedures, leading to symptoms, such as tingling, numbness, and reduced quality of life. Recovery depends on factors such as medications, surgery, and photobiomodulation therapy. Photobiomodulation therapy has shown the potential to improve nerve function and reduce regeneration time; however, there is no standard treatment protocol yet. This study aimed to examine the effect of diode lasers on nerve regeneration in patients with axonetmesis injuries. In this experiment on animals, Wistar rats' damaged sensory systems were treated with lasers to restore them. Animals were randomly divided into six groups: a sham group, a control group, and four laser treatment groups(1st group: performed every day, 10 sessions; 2nd group: performed every 2 days, 10 sessions; 3rd group: performed every day, 20 sessions; and 4th group: performed every 2 days, 20 sessions). Sensory function was determined using the Semmes-Weinstein monofilament test, which was repeated after the surgical procedure. The results showed that the 20-session group had the best improvement, most closely resembling the group without sensory test damage. The histomorphometric results showed that the number of axons was significantly lower in the group that received 10 daily sessions and in the control group than in the undamaged nerve. Axon diameter was lower in all groups than in the sham group. In conclusion, the remarkable aspect of this study is that consecutive-day 20-session laser treatment showed better improvement than the over-the-day 20-session treatment protocol.
Collapse
Affiliation(s)
- Kübra Öztürk
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey.
| | - Turan Emre Kuzu
- Department of Periodontology, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Cem A Gürgan
- Department of Periodontology, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Gözde Özge Önder
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
14
|
Thammasart S, Namchaiw P, Pasuwat K, Tonsomboon K, Khantachawana A. Attenuation Aβ1-42-induced neurotoxicity in neuronal cell by 660nm and 810nm LED light irradiation. PLoS One 2023; 18:e0283976. [PMID: 37478089 PMCID: PMC10361470 DOI: 10.1371/journal.pone.0283976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/21/2023] [Indexed: 07/23/2023] Open
Abstract
Oligomeric amyloid-β 1-42 (Aβ1-42) has a close correlation with neurodegenerative disorder especially Alzheimer's disease (AD). It induces oxidative stress and mitochondrial damage in neurons. Therefore, it is used to generate AD-like in vitro model for studying neurotoxicity and neuroprotection against amyloid-β. A low-level light therapy (LLLT) is a non-invasive method that has been used to treat several neurodegenerative disorders. In this study, the red wavelength (660nm) and near infrared wavelength (810nm) at energy densities of 1, 3, and 5 J/cm2 were used to modulate biochemical processes in the neural cells. The exposure of Aβ1-42 resulted in cell death, increased intracellular reactive oxygen species (ROS), and retracted neurite outgrowth. We showed that both of LLLT wavelengths could protect neurons form Aβ1-42-induced neurotoxicity in a biphasic manner. The treatment of LLLT at 3 J/cm2 potentially alleviated cell death and recovered neurite outgrowth. In addition, the treatment of LLLT following Aβ1-42 exposure could attenuate the intracellular ROS generation and Ca2+ influx. Interestingly, both wavelengths could induce minimal level of ROS generation. However, they did not affect cell viability. In addition, LLLT also stimulated Ca2+ influx, but not altered mitochondrial membrane potential. This finding indicated LLLT may protect neurons through the stimulation of secondary signaling messengers such as ROS and Ca2+. The increase of these secondary messengers was in a functional level and did not harmful to the cells. These results suggested the use of LLLT as a tool to modulate the neuronal toxicity following Aβ1-42 accumulation in AD's brain.
Collapse
Affiliation(s)
- Siriluk Thammasart
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
| | - Poommaree Namchaiw
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
| | - Kwanchanok Pasuwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
| | - Khaow Tonsomboon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Anak Khantachawana
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
- Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
| |
Collapse
|
15
|
Cervetto C, Amaroli A, Amato S, Gatta E, Diaspro A, Maura G, Signore A, Benedicenti S, Marcoli M. Photons Induce Vesicular Exocytotic Release of Glutamate in a Power-Dependent Way. Int J Mol Sci 2023; 24:10977. [PMID: 37446155 DOI: 10.3390/ijms241310977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Increasing evidence indicates that photobiomodulation, based on tissue irradiation with photons in the red to near-infrared spectrum, may be an effective therapeutic approach to central nervous system disorders. Although nervous system functionality has been shown to be affected by photons in animal models, as well as in preliminary evidence in healthy subjects or in patients with neuropsychiatric disorders, the mechanisms involved in the photobiomodulation effects have not yet been clarified. We previously observed that photobiomodulation could stimulate glutamate release. Here, we investigate mechanisms potentially involved in the glutamate-releasing effect of photons from adult mouse cerebrocortical nerve terminals. We report evidence of photon ability to induce an exocytotic vesicular release of glutamate from the terminals of glutamatergic neurons in a power-dependent way. It can be hypothesized that photobiomodulation, depending on the potency, can release glutamate in a potentially neurotoxic or physiological range.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Andrea Amaroli
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
| | - Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Elena Gatta
- DIFILAB, Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Alberto Diaspro
- DIFILAB, Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia-IIT, Via Morego 30, 16133 Genova, Italy
- Biophysics Institute, National Research Council-CNR, Via de Marini, 6, 16149 Genova, Italy
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Antonio Signore
- Therapeutic Dentistry Department, Institute of Dentistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, b. 2, 119992 Moskow, Russia
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genova, Viale Benedetto XV 6, 16132 Genova, Italy
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
- Center of Excellence for Biomedical Research, University of Genova, 16132 Genova, Italy
| |
Collapse
|
16
|
Amaroli A, Tassara E, Ferrando S, Aicardi S, Pasquale C, Giovine M, Bertolino M, Zekiy A, Pozzolini M. Near-Infrared 810 nm Light Affects Porifera Chondrosia reniformis (Nardo, 1847) Regeneration: Molecular Implications and Evolutionary Considerations of Photobiomodulation-Animal Cell Interaction. Int J Mol Sci 2022; 24:ijms24010226. [PMID: 36613670 PMCID: PMC9820676 DOI: 10.3390/ijms24010226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Chemotrophic choice as a metabolic source of energy has characterised animal cell evolution. However, light interactions with animal cell photoacceptors that are able to increase energetic metabolism (photo-biomodulation (PBM)) have been previously described. In the present study, we cut three specimens of Chondrosia reniformis into four equal parts (12 fragments), and we irradiated the regenerating edge of six fragments with the previously characterised 810 nm near-infrared light, delivered at 1 W, 60 J/cm2, 1 W/cm2, and 60 J in a continuous-wave mode for 60 s through a flat-top hand-piece with a rounded spot-size area of 1 cm2. Six fragments were irradiated with 0 W for 60 s as the controls. We performed irradiation at the time 0 h and every 24 h for a total of five administrations. We monitored the regeneration process for five days (120 h) in aquaria by examining the macroscopic and histological changes. We analysed the gene expression profile of the inflammatory processes, apoptosis, heat stress, growth factors, and collagen production and determined oxidative stress enzyme activity and the total prokaryotic symbiont content. PBM sped up C. reniformis regeneration when compared to the controls. Particularly, transforming growth factor TGF3 and TGF6 upregulation during the early phase of regeneration and TGF5 upregulation 120 h postinjury in the irradiated samples supports the positive effect of PBM in sponge tissue recovery. Conversely, the expression of TGF4, a sponge fibroblast growth factor homologue, was not affected by irradiation, indicating that multiple, independent pathways regulate the TGF genes. The results are consistent with our previous data on a wide range of organisms and humans, suggesting that PBM interaction with primary and secondary cell targets has been conserved through the evolution of life forms.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Orthopedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Correspondence: (A.A.); (M.P.)
| | - Eleonora Tassara
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Sara Ferrando
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Stefano Aicardi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Claudio Pasquale
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Marco Bertolino
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Angelina Zekiy
- Department of Orthopedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
- Correspondence: (A.A.); (M.P.)
| |
Collapse
|
17
|
Rentz LE, Bryner RW, Ramadan J, Rezai A, Galster SM. Full-Body Photobiomodulation Therapy Is Associated with Reduced Sleep Durations and Augmented Cardiorespiratory Indicators of Recovery. Sports (Basel) 2022; 10:sports10080119. [PMID: 36006085 PMCID: PMC9414854 DOI: 10.3390/sports10080119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Research is emerging on the use of Photobiomodulation therapy (PBMT) and its potential for augmenting human performance, however, relatively little research exists utilizing full-body administration methods. As such, further research supporting the efficacy of whole-body applications of PBMT for behavioral and physiological modifications in applicable, real-world settings are warranted. The purpose of this analysis was to observe cardiorespiratory and sleep patterns surrounding the use of full-body PBMT in an elite cohort of female soccer players. Members of a women’s soccer team in a “Power 5 conference” of the National Collegiate Athletic Association (NCAA) were observed across one competitive season while wearing an OURA Ring nightly and a global positioning system (GPS) sensor during training. Within-subject comparisons of cardiorespiratory physiology, sleep duration, and sleep composition were evaluated the night before and after PBMT sessions completed as a standard of care for team recovery. Compared to pre-intervention, mean heart rate (HR) was significantly lower the night after a PBMT session (p = 0.0055). Sleep durations were also reduced following PBMT, with total sleep time (TST) averaging 40 min less the night after a session (p = 0.0006), as well as significant reductions in light sleep (p = 0.0307) and rapid eye movement (REM) sleep durations (p = 0.0019). Sleep durations were still lower following PBMT, even when controlling for daily and accumulated training loads. Enhanced cardiorespiratory indicators of recovery following PBMT, despite significant reductions in sleep duration, suggest that it may be an effective modality for maintaining adequate recovery from the high stress loads experienced by elite athletes.
Collapse
Affiliation(s)
- Lauren E. Rentz
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.); (A.R.); (S.M.G.)
- Correspondence:
| | - Randy W. Bryner
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| | - Jad Ramadan
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.); (A.R.); (S.M.G.)
| | - Ali Rezai
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.); (A.R.); (S.M.G.)
| | - Scott M. Galster
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.); (A.R.); (S.M.G.)
| |
Collapse
|
18
|
The 1064-nm Nd: YAG Photobiomodulation vs. 20% Benzocaine Topical Gel in Inducing Mucosal Anesthetic Effect: A Double-Blind Randomized Clinical Trial. PHOTONICS 2022. [DOI: 10.3390/photonics9080519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The periapical local anesthetic injection may be associated with fear of needles and pain administration. Dental topical anesthetic agents can help to reduce pain perception; however, adverse events can occur. To investigate the efficacy of 1064-nm photobiomodualtion (PBM) in inducing mucosal anesthesia delivered with a flat-top hand-piece compared to 20% Benzocaine topical anesthetic gel, sixty healthy patients were randomly allocated (1:1) to either 20% benzocaine topical gel + placebo laser (T group) or PBM + placebo gel (L group). The 1064-nm Nd:YAG laser was employed and is associated with a novel flat-top hand piece. The applied operational parameters were 0.5 W, 10 Hz, 100 µs pulse width, and 30 J/cm2 for one-minute single application time. The enrolled subjects were asked to assess pain intensity at the time of anesthetic injection with a Visual Analog Scale. Taking into consideration taste, undesirable numbness, and overall satisfaction, the patients were asked to rate their experiences according to a verbal rating scale. Statistical analysis showed no statistically significant difference between the T and L Groups for pain ratings (p = 0.0596). The L Group displayed significantly higher ratings than T Group for taste, undesirable numbness, and overall satisfaction (p < 0.001). The 1064-nm PBM delivered by flat-top hand piece is effective in inducing mucosal anesthesia, eliminating the adverse side-effects of the conventional topical anesthetic gel.
Collapse
|
19
|
Lipko NB. Photobiomodulation: Evolution and Adaptation. Photobiomodul Photomed Laser Surg 2022; 40:213-233. [DOI: 10.1089/photob.2021.0145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Nancy B. Lipko
- Nancy B. Lipko, MD, MBA, Home Office, Beachwood, Ohio, USA
| |
Collapse
|
20
|
A Narrative Review on Oral and Periodontal Bacteria Microbiota Photobiomodulation, through Visible and Near-Infrared Light: From the Origins to Modern Therapies. Int J Mol Sci 2022; 23:ijms23031372. [PMID: 35163296 PMCID: PMC8836253 DOI: 10.3390/ijms23031372] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Photobiomodulation (PBM) consists of a photon energy transfer to the cell, employing non-ionizing light sources belonging to the visible and infrared spectrum. PBM acts on some intrinsic properties of molecules, energizing them through specific light wavelengths. During the evolution of life, semiconducting minerals were energized by sun radiation. The molecules that followed became photoacceptors and were expressed into the first proto-cells and prokaryote membranes. Afterward, the components of the mitochondria electron transport chain influenced the eukaryotic cell physiology. Therefore, although many organisms have not utilized light as an energy source, many of the molecules involved in their physiology have retained their primordial photoacceptive properties. Thus, in this review, we discuss how PBM can affect the oral microbiota through photo-energization and the non-thermal effect of light on photoacceptors (i.e., cytochromes, flavins, and iron-proteins). Sometimes, the interaction of photons with pigments of an endogenous nature is followed by thermal or photodynamic-like effects. However, the preliminary data do not allow determining reliable therapies but stress the need for further knowledge on light-bacteria interactions and microbiota management in the health and illness of patients through PBM.
Collapse
|
21
|
Amaroli A, Pasquale C, Zekiy A, Benedicenti S, Marchegiani A, Sabbieti MG, Agas D. Steering the multipotent mesenchymal cells towards an anti-inflammatory and osteogenic bias via photobiomodulation therapy: How to kill two birds with one stone. J Tissue Eng 2022; 13:20417314221110192. [PMID: 35832724 PMCID: PMC9272199 DOI: 10.1177/20417314221110192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/13/2022] [Indexed: 12/17/2022] Open
Abstract
The bone marrow-derived multipotent mesenchymal cells (MSCs) have captured scientific interest due to their multi-purpose features and clinical applications. The operational dimension of MSCs is not limited to the bone marrow reservoir, which exerts bone-building and niche anabolic tasks; they also meet the needs of quenching inflammation and restoring inflamed tissues. Thus, the range of MSC activities extends to conditions such as neurodegenerative diseases, immune disorders and various forms of osteopenia. Steering these cells towards becoming an effective therapeutic tool has become mandatory. Many laboratories have employed distinct strategies to improve the plasticity and secretome of MSCs. We aimed to present how photobiomodulation therapy (PBM-t) can manipulate MSCs to render them an extraordinary anti-inflammatory and osteogenic instrument. Moreover, we discuss the outcomes of different PBM-t protocols on MSCs, concluding with some perplexities and complexities of PBM-t in vivo but encouraging and feasible in vitro solutions.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy.,Department of Orthopedic Dentistry, Faculty of Dentistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Claudio Pasquale
- Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Angelina Zekiy
- Department of Orthopedic Dentistry, Faculty of Dentistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | | | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| |
Collapse
|
22
|
Ravera S, Bertola N, Pasquale C, Bruno S, Benedicenti S, Ferrando S, Zekiy A, Arany P, Amaroli A. 808-nm Photobiomodulation Affects the Viability of a Head and Neck Squamous Carcinoma Cellular Model, Acting on Energy Metabolism and Oxidative Stress Production. Biomedicines 2021; 9:biomedicines9111717. [PMID: 34829946 PMCID: PMC8615884 DOI: 10.3390/biomedicines9111717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Photobiomodulation (PBM) is a form of low-dose light therapy that acts through energy delivery from non-ionizing sources. During the recent two decades, there has been tremendous progress with PBM acceptance in medicine. However, PBM effects on potential stimulation of existing malignant or pre-malignant cells remain unknown. Thus, the primary endpoint was to assess the safety of PBM treatment parameters on head and neck squamous cell carcinoma (HNSCC) proliferation or survival. The secondary endpoint was to assess any putative anti-cancer effects of PBM treatments. Cell viability, energy metabolism, oxidative stress, and pro- and anti-apoptotic markers expression were investigated on a Human Head and Neck Squamous Cell Carcinoma cellular model (OHSU-974 FAcorr cell line). PBM therapy was administered through the 810 nm diode laser (GaAlAs) device (Garda Laser, 7024 Negrar, Verona, Italy) at the powers of 0, 0.25, 0.50, 0.75, 1.00, or 1.25 W in continuous wave (CW) mode for an exposure time of 60 s with a spot-size of 1 cm2 and with a distance of 1.86 cm from the cells. Results showed that 810-nm PBM affected oxidative phosphorylation in OHSU-971 FAcorr, causing a metabolic switch to anaerobic glycolysis. In addition, PBM reduced the catalase activity, determining an unbalance between oxidative stress production and the antioxidant defenses, which could stimulate the pro-apoptotic cellular pathways. Our data, at the parameters investigated, suggest the safeness of PBM as a supportive cancer therapy. Pre-clinical and clinical studies are necessary to confirm the in vitro evidence.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy; (S.R.); (N.B.); (S.B.)
| | - Nadia Bertola
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy; (S.R.); (N.B.); (S.B.)
| | - Claudio Pasquale
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (C.P.); (S.B.)
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy; (S.R.); (N.B.); (S.B.)
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (C.P.); (S.B.)
| | - Sara Ferrando
- Department of Earth, Environmental and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Angelina Zekiy
- Department of Orthopedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Praveen Arany
- Departments of Oral Biology, Surgery and Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA;
| | - Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (C.P.); (S.B.)
- Department of Orthopedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Correspondence: ; Tel.: +39-010-3537309
| |
Collapse
|
23
|
Guo S, Wang R, Hu J, Sun L, Zhao X, Zhao Y, Han D, Hu S. Photobiomodulation Promotes Hippocampal CA1 NSC Differentiation Toward Neurons and Facilitates Cognitive Function Recovery Involving NLRP3 Inflammasome Mitigation Following Global Cerebral Ischemia. Front Cell Neurosci 2021; 15:731855. [PMID: 34489645 PMCID: PMC8417562 DOI: 10.3389/fncel.2021.731855] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Our recent study revealed that photobiomodulation (PBM) inhibits delayed neuronal death by preserving mitochondrial dynamics and function following global cerebral ischemia (GCI). In the current study, we clarified whether PBM exerts effective roles in endogenous neurogenesis and long-lasting neurological recovery after GCI. Adult male rats were treated with 808 nm PBM at 20 mW/cm2 irradiance for 2 min on cerebral cortex surface (irradiance ∼7.0 mW/cm2, fluence ∼0.8 J/cm2 on the hippocampus) beginning 3 days after GCI for five consecutive days. Cognitive function was evaluated using the Morris water maze. Neural stem cell (NSC) proliferation, immature neurons, and mature neurons were examined using bromodeoxyuridine (BrdU)-, doublecortin (DCX)-, and NeuN-staining, respectively. Protein expression, such as NLRP3, cleaved IL1β, GFAP, and Iba1 was detected using immunofluorescence staining, and ultrastructure of astrocyte and microglia was observed by transmission electron microscopy. The results revealed that PBM exerted a markedly neuroprotective role and improved spatial learning and memory ability at 58 days of ischemia/reperfusion (I/R) but not at 7 days of reperfusion. Mechanistic studies revealed that PBM suppressed reactive astrocytes and maintained astrocyte regeneration at 7 days of reperfusion, as well as elevated neurogenesis at 58 days of reperfusion, as evidenced by a significant decrease in the fluorescence intensity of GFAP (astrocyte marker) but unchanged the number of BrdU-GFAP colabeled cells at the early timepoint, and a robust elevation in the number of DCX-NeuN colabeled cells at the later timepoint in the PBM-treated group compared to the GCI group. Notably, PBM treatment protected the ultrastructure of astrocyte and microglia cells at 58 days but not 7 days of reperfusion in the hippocampal CA1 region. Furthermore, PBM treatment significantly attenuated the GCI-induced immunofluorescence intensity of NLRP3 (an inflammasome component), cleaved IL1β (reflecting inflammasome activation) and Iba1, as well as the colocalization of NLRP3/GFAP or cleaved IL-1β/GFAP, especially in animals subjected to I/R at 58 days. Taken together, PBM treatment performed postischemia exerted a long-lasting protective effect on astrocytes and promoted endogenous neurogenesis in the hippocampal CA1 region, which might contribute to neurological recovery after GCI.
Collapse
Affiliation(s)
- Sihan Guo
- School of Life Sciences, Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Ruimin Wang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Jiewei Hu
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Liping Sun
- School of Life Sciences, Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Xinru Zhao
- School of Life Sciences, Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Yufeng Zhao
- School of Life Sciences, Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Dong Han
- School of Life Sciences, Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Shuqun Hu
- School of Life Sciences, Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
24
|
Recovery from Idiopathic Facial Paralysis (Bell’s Palsy) Using Photobiomodulation in Patients Non-Responsive to Standard Treatment: A Case Series Study. PHOTONICS 2021. [DOI: 10.3390/photonics8080341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Diminished facial movement and marked facial asymmetry can lead to a consistent psychological burden. Bell′s palsy (BP) is one of the most common causes of facial nerve illness, which comes with unilateral acute facial paresis. Nowadays, no clear guidelines for treating BP are available. We carried out a case series study to test the efficacy of photobiomodulation (PBM) therapy in patients with BP non-responsive to standard treatment. The study was experimentally performed at the Department of Surgical and Diagnostic Sciences, University of Genoa (Genoa, Italy), in accordance with case report guidelines. Patients were referred to our department by colleagues for evaluation to be included in the case series because no consistent improvement was observed at least 3 months from the diagnosis of BP. All the patients interrupted their pharmacological therapy before the initiation of PBM therapy. PBM therapy (808 nm, 1 W irradiated in continuous-wave for 60 s on spot-size 1 cm2; 1 W/cm2; 60 J/cm2; and 60 J) was administered every 2 days until complete resolution. Evaluation of the House-Brackmann scale was performed before and after treatments. Fourteen patients were screened as eligible for the study. Patients were Caucasians (36% females and 64% males) with a mean age ± standard deviation of 56.07 ± 15.21 years. Eleven patients out of 14, who experienced BP a maximum of 6 months, completely recovered through PBM. The three patients that did not show improvement were those who had experienced BP for years. PBM could be a supportive therapy for the management of BP in patients non-responsive to standard treatment. However, randomized controlled trials are necessary to sustain our encouraging results, exclude bias, and better explain the boundary between the time from diagnosis and the recovery of BP through PBM therapy.
Collapse
|
25
|
Amaroli A, Arany P, Pasquale C, Benedicenti S, Bosco A, Ravera S. Improving Consistency of Photobiomodulation Therapy: A Novel Flat-Top Beam Hand-Piece versus Standard Gaussian Probes on Mitochondrial Activity. Int J Mol Sci 2021; 22:ijms22157788. [PMID: 34360559 PMCID: PMC8346075 DOI: 10.3390/ijms22157788] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 12/14/2022] Open
Abstract
The tremendous therapeutic potential of photobiomodulation therapy in different branches of medicine has been described in the literature. One of the molecular mechanisms for this treatment implicates the mitochondrial enzyme, cytochrome C oxidase. However, the efficacy and consistency of clinical outcomes with photobiomodulation treatments has been fiercely debated. This work was motivated by this need to improve photobiomodulation devices and delivery approaches. We designed a novel hand-piece with a flat-top beam profile of irradiation. We compared the beam profile versus a standard hand-piece and a fibre probe. We utilized isolated mitochondria and performed treatments at various spots within the beam, namely, the centre, left and right edge. We examined mitochondrial activity by assessing ATP synthesis with the luciferin/luciferase chemiluminescent method as a primary endpoint, while mitochondrial damage was assessed as the secondary endpoint. We observed a uniform distribution of the power density with the flat-top prototype compared to a wide Gaussian beam profile with the standard fibre and standard hand-piece. We noted increased production of ATP in the centre of all three beams with respect to the non-treated controls (p < 0.05). Both the fibre and standard hand-piece demonstrated less increase in ATP synthesis at the edges than the centre (p < 0.05). In contrast, ATP synthesis was increased homogenously in the flat-top handpiece, both in the centre and the edges of the beam. Fibre, standard hand-piece and the flat-top hand-piece prototype have discrete beam distribution characteristics. This significantly affected the mitochondrial activity with respect to their position within the treated areas. Flat-top hand-piece enhances the uniformity of photobiomodulation treatments and can improve the rigour and reproducibility of PBM clinical outcomes.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Orthopedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (C.P.); (S.B.)
- Correspondence: ; Tel.: +39-010-3537309
| | - Praveen Arany
- Departments of Oral Biology, Surgery and Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA;
| | - Claudio Pasquale
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (C.P.); (S.B.)
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (C.P.); (S.B.)
| | | | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
26
|
Valenti D, Atlante A. Mitochondrial Bioenergetics in Different Pathophysiological Conditions. Int J Mol Sci 2021; 22:ijms22147562. [PMID: 34299182 PMCID: PMC8303587 DOI: 10.3390/ijms22147562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 01/09/2023] Open
Abstract
Mitochondria are complex intracellular organelles involved in many aspects of cellular life, with a primary role in bioenergy production via oxidative phosphorylation (OXPHOS) [...].
Collapse
|
27
|
Agas D, Hanna R, Benedicenti S, De Angelis N, Sabbieti MG, Amaroli A. Photobiomodulation by Near-Infrared 980-nm Wavelengths Regulates Pre-Osteoblast Proliferation and Viability through the PI3K/Akt/Bcl-2 Pathway. Int J Mol Sci 2021; 22:ijms22147586. [PMID: 34299204 PMCID: PMC8304212 DOI: 10.3390/ijms22147586] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND bone tissue regeneration remains a current challenge. A growing body of evidence shows that mitochondrial dysfunction impairs osteogenesis and that this organelle may be the target for new therapeutic options. Current literature illustrates that red and near-infrared light can affect the key cellular pathways of all life forms through interactions with photoacceptors within the cells' mitochondria. The current study aims to provide an understanding of the mechanisms by which photobiomodulation (PBM) by 900-nm wavelengths can induce in vitro molecular changes in pre-osteoblasts. METHODS The PubMed, Scopus, Cochrane, and Scholar databases were used. The manuscripts included in the narrative review were selected according to inclusion and exclusion criteria. The new experimental set-up was based on irradiation with a 980-nm laser and a hand-piece with a standard Gaussian and flat-top beam profile. MC3T3-E1 pre-osteoblasts were irradiated at 0.75, 0.45, and 0.20 W in continuous-wave emission mode for 60 s (spot-size 1 cm2) and allowed to generate a power density of 0.75, 0.45, and 0.20 W/cm2 and a fluence of 45, 27, and 12 J/cm2, respectively. The frequency of irradiation was once, three times (alternate days), or five times (every day) per week for two consecutive weeks. Differentiation, proliferation, and cell viability and their markers were investigated by immunoblotting, immunolabelling, fluorescein-FragELTM-DNA, Hoechst staining, and metabolic activity assays. RESULTS AND CONCLUSIONS The 980-nm wavelength can photobiomodulate the pre-osteoblasts, regulating their metabolic schedule. The cellular signal activated by 45 J/cm2, 0.75 W and 0.75 W/cm2 consist of the PI3K/Akt/Bcl-2 pathway; differentiation markers were not affected, nor do other parameters seem to stimulate the cells. Our previous and present data consistently support the window effect of 980 nm, which has also been described in extracted mitochondria, through activation of signalling PI3K/Akt/Bcl-2 and cyclin family, while the Wnt and Smads 2/3-β-catenin pathway was induced by 55 J/cm2, 0.9 W and 0.9 W/cm2.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032 Macerata, Italy; (D.A.); (M.G.S.)
| | - Reem Hanna
- Department of Oral Surgery, Dental Institute, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK;
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (S.B.); (N.D.A.)
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (S.B.); (N.D.A.)
| | - Nicola De Angelis
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (S.B.); (N.D.A.)
| | - Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032 Macerata, Italy; (D.A.); (M.G.S.)
| | - Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (S.B.); (N.D.A.)
- Department of Orthopaedic Dentistry, First Moscow State Medical University (Sechenov University), 11991 Moscow, Russia
- Correspondence:
| |
Collapse
|