1
|
Riecan M, Domanska V, Lupu C, Patel M, Vondrackova M, Rossmeisl M, Saghatelian A, Lupu F, Kuda O. Tissue-specific sex-dependent difference in the metabolism of fatty acid esters of hydroxy fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159543. [PMID: 39097081 DOI: 10.1016/j.bbalip.2024.159543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous bioactive lipids known for their anti-inflammatory and anti-diabetic properties. Despite their therapeutic potential, little is known about the sex-specific variations in FAHFA metabolism. This study investigated the role of sex and Androgen Dependent TFPI Regulating Protein (ADTRP), a FAHFA hydrolase. Additionally, tissue-specific differences in FAHFA levels, focusing on the perigonadal white adipose tissue (pgWAT), subcutaneous white adipose tissue (scWAT), brown adipose tissue (BAT), plasma, and liver, were evaluated using metabolomics and lipidomics. We found that female mice exhibited higher FAHFA levels in pgWAT, scWAT, and BAT compared to males. FAHFA levels were inversely related to testosterone and Adtrp mRNA, which showed significantly lower expression in females compared with males in pgWAT and scWAT. However, no significant differences between the sexes were observed in plasma and liver FAHFA levels. Adtrp deletion had minimal impact on both sexes' metabolome and lipidome of pgWAT. However, we discovered higher endogenous levels of triacylglycerol estolides containing FAHFAs, a FAHFA metabolic reservoir, in the pgWAT of female mice. These findings suggest that sex-dependent differences in FAHFA levels occur primarily in specific WAT depots and may modulate local insulin sensitivity in adipocytes, and the role of ADTRP is limited to adipose depots. However, further investigations are warranted to fully comprehend the underlying mechanisms and implications of sex-dependent regulation of human FAHFA metabolism.
Collapse
Affiliation(s)
- Martin Riecan
- Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Veronika Domanska
- Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Cristina Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Maulin Patel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Michaela Vondrackova
- Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Martin Rossmeisl
- Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ondrej Kuda
- Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia.
| |
Collapse
|
2
|
Christodoulides N, Urgiles VL, Guayasamin JM, Savage AE. Selection and Gene Duplication Associated With High-Elevation Diversification in Pristimantis, the Largest Terrestrial Vertebrate Genus. Genome Biol Evol 2024; 16:evae167. [PMID: 39109890 PMCID: PMC11342244 DOI: 10.1093/gbe/evae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
The genus Pristimantis diversified in the tropical Andes mountains and is the most speciose genus of terrestrial vertebrates. Pristimantis are notable among frogs in that they thrive at high elevations (>2,000 m) and are direct developers without a tadpole stage. Despite their ecological significance, little is known about the genetic and physiological traits enabling their success. We conducted transcriptomic analysis on seven Pristimantis species sampled across elevations in the Ecuadorean Andes to explore three hypotheses for their success: (i) unique genes are under selection relative to all other frogs, (ii) common selection occurs across all direct developers, or (iii) common selection occurs across all high-elevation frog clades. Comparative analysis with 34 frog species revealed unique positive selection in Pristimantis genes related to aerobic respiration, hemostasis, signaling, cellular transportation of proteins and ions, and immunity. Additionally, we detected positive selection across all direct developers for genes associated with oxygenase activity and metal ion binding. While many genes under selection in Pristimantis were not positively selected in other high-elevation frog species, we identified some shared genes and pathways linked to lipid metabolism, innate immunity, and cellular redox processes. We observed more positive selection in duplicated- versus single-copy genes, while relaxed purifying selection was prevalent in single-copy genes. Notably, copy number of an innate immunity complement gene was positively correlated with Pristimantis species elevation. Our findings contribute novel insights into the genetic basis of adaptation in Pristimantis and provide a foundation for future studies on the evolutionary mechanisms leading to direct development and coping with high elevations.
Collapse
Affiliation(s)
| | - Veronica L Urgiles
- Department of Biology, University of Central Florida, Orlando, FL, USA
- Departamento de herpetologia, Instituto Nacional de Biodiversidad del Ecuador, Quito, Ecuador
| | - Juan M Guayasamin
- Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto Biósfera, Laboratorio de Biología Evolutiva, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Ingeniería en Biodiversidad y Recursos Genéticos, Centro de Biodiversidad y Cambio Climático BioCamb, Universidad Tecnológica Indoamérica, Quito, Ecuador
| | - Anna E Savage
- Department of Biology, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
3
|
Visanji M, Venegas-Pino DE, Werstuck GH. Understanding One Half of the Sex Difference Equation: The Modulatory Effects of Testosterone on Diabetic Cardiomyopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:551-561. [PMID: 38061627 DOI: 10.1016/j.ajpath.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023]
Abstract
Diabetes is a prevalent disease, primarily characterized by high blood sugar (hyperglycemia). Significantly higher rates of myocardial dysfunction have been noted in individuals with diabetes, even in those without coronary artery disease or high blood pressure (hypertension). Numerous molecular mechanisms have been identified through which diabetes contributes to the pathology of diabetic cardiomyopathy, which presents as cardiac hypertrophy and fibrosis. At the cellular level, oxidative stress and inflammation in cardiomyocytes are triggered by hyperglycemia. Although males are generally more likely to develop cardiovascular disease than females, diabetic males are less likely to develop diabetic cardiomyopathy than are diabetic females. One reason for these differences may be the higher levels of serum testosterone in males compared with females. Although testosterone appears to protect against cardiomyocyte oxidative stress and exacerbate hypertrophy, its role in inflammation and fibrosis is much less clear. Additional preclinical and clinical studies will be required to delineate testosterone's effect on the diabetic heart.
Collapse
Affiliation(s)
- Mika'il Visanji
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Geoff H Werstuck
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
4
|
Signoretti C, Gupte SA. G6PD Orchestrates Genome-Wide DNA Methylation and Gene Expression in the Vascular Wall. Int J Mol Sci 2023; 24:16727. [PMID: 38069050 PMCID: PMC10706803 DOI: 10.3390/ijms242316727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Recent advances have revealed the importance of epigenetic modifications to gene regulation and transcriptional activity. DNA methylation, a determinant of genetic imprinting and the de novo silencing of genes genome-wide, is known to be controlled by DNA methyltransferases (DNMT) and demethylases (TET) under disease conditions. However, the mechanism(s)/factor(s) influencing the expression and activity of epigenetic writers and erasers, and thus DNA methylation, in healthy vascular tissue is incompletely understood. Based on our recent studies, we hypothesized that glucose-6-phosphate dehydrogenase (G6PD) is a modifier of DNMT and TET expression and activity and an enabler of gene expression. In the aorta of CRISPR-edited rats with the Mediterranean G6PD variant, we determined DNA methylation by whole-genome bisulfite sequencing, gene expression by RNA sequencing, and large artery stiffness by echocardiography. Here, we documented higher expression of Dnmt1, Dnmt3a, Tet2, and Tet3 in aortas from Mediterranean G6PDS188F variant (a loss-of-function single nucleotide polymorphism) rats than their wild-type littermates. Concomitantly, we identified 17,618 differentially methylated loci genome-wide (5787 hypermethylated loci, including down-regulated genes encoding inflammation- and vasoconstriction-causing proteins, and 11,827 hypomethylated loci, including up-regulated genes encoding smooth muscle cell differentiation- and fatty acid metabolism-promoting proteins) in aortas from G6PDS188F as compared to wild-type rats. Our results demonstrated that nitric oxide, which is generated in a G6PD-derived NADPH-dependent manner, increases TET and decreases DNMT activity. Further, we observed less large artery (aorta) stiffness in G6PDS188F as compared to wild-type rats. These results establish a noncanonical function of the wild-type G6PD and G6PDS188F variant in the regulation of DNA methylation and gene expression in healthy vascular tissue and reveal that the G6PDS188F variant contributes to reducing large artery stiffness.
Collapse
Affiliation(s)
| | - Sachin A. Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
5
|
Riecan M, Domanska V, Lupu C, Patel M, Vondrackova M, Rossmeisl M, Saghatelian A, Lupu F, Kuda O. Tissue-specific sex difference in the metabolism of fatty acid esters of hydroxy fatty acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567158. [PMID: 38014093 PMCID: PMC10680750 DOI: 10.1101/2023.11.15.567158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous bioactive lipids known for their anti-inflammatory and anti-diabetic properties. Despite their therapeutic potential, little is known about the sex-specific variations in FAHFA metabolism. This study investigated the role of Androgen Dependent TFPI Regulating Protein (ADTRP), a FAHFA hydrolase. Additionally, tissue-specific differences in FAHFA levels, focusing on the perigonadal white adipose tissue (pgWAT), subcutaneous white adipose tissue (scWAT), brown adipose tissue (BAT), plasma, and liver, were evaluated using metabolomics and lipidomics. We found that female mice exhibited higher FAHFA levels in pgWAT, scWAT, and BAT compared to males. FAHFA levels were inversely related to Adtrp mRNA, which showed significantly lower expression in females compared with males in pgWAT and scWAT. However, no significant differences between the sexes were observed in plasma and liver FAHFA levels. Adtrp deletion had minimal impact on both sexes' metabolome and lipidome of pgWAT. However, we discovered higher endogenous levels of triacylglycerol estolides containing FAHFAs, a FAHFA metabolic reservoir, in the pgWAT of female mice. These findings suggest that sex-dependent differences in FAHFA levels occur primarily in specific WAT depots and may modulate local insulin sensitivity in adipocytes. However, further investigations are warranted to fully comprehend the underlying mechanisms and implications of sex effects on FAHFA metabolism in humans.
Collapse
Affiliation(s)
- Martin Riecan
- Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Veronika Domanska
- Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Cristina Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Maulin Patel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Michaela Vondrackova
- Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Martin Rossmeisl
- Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ondrej Kuda
- Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| |
Collapse
|
6
|
Jing C, Fu R, Liu X, Zang G, Zhu X, Wang C, Zhang W. A comprehensive cuproptosis score and associated gene signatures reveal prognostic and immunological features of idiopathic pulmonary fibrosis. Front Immunol 2023; 14:1268141. [PMID: 38035073 PMCID: PMC10682708 DOI: 10.3389/fimmu.2023.1268141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Background Cuproptosis, the most recently identified and regulated cell death, depends on copper ions in vivo. Copper regulates the pathogenesis of Idiopathic pulmonary fibrosis (IPF), but the mechanism of action underlying cuproptosis in IPF remains unclear. Methods We identified three cuproptosis patterns based on ten cuproptosis-related genes using unsupervised consensus clustering. We quantified these patterns using a PCA algorithm to construct a cuproptosis score. ssGSEA and the Cibersort algorithm assessed the immune profile of IPF patients. GSEA and GSVA were used to analyze the functional differences in different molecular patterns. Drug susceptibility prediction based on cuproptosis scores and meaningful gene markers was eventually screened in combination with external public data sets,in vitro experiments and our cases. Results Of the three types of cuproptosis-related clusters identified in the study, patients in the clusterA, geneclusterB, and score-high groups showed improved prognoses. Moreover, each cluster exhibited differential immune characteristics, with the subtype showing a poorer prognosis associated with an immune overreaction. Cuproptosis score can be an independent risk factor for predicting the prognosis of IPF patients. GSEA showed a significant functional correlation between the score and cuproptosis. The genes AKAP9, ANK3, C6orf106, LYRM7, and MBNL1, were identified as prognostic-related signatures in IPF patients. The functional role of immune regulation in IPF was further explored by correlating essential genes with immune factors. Also, the nomogram constructed by cumulative information from gene markers and cuproptosis score showed reliable clinical application. Conclusions Cuproptosis patterns differ significantly in the prognosis and immune characteristics of IPF patients. The cuproptosis score and five gene signatures can provide a reliable reference in the prognosis and diagnosis of IPF.
Collapse
Affiliation(s)
- Chuanqing Jing
- Clinical Department of Integrated Traditional Chinese and Western Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong Fu
- Clinical Department of Integrated Traditional Chinese and Western Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Guodong Zang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Xue Zhu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Can Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Affiliation(s)
- Anna Santoro
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston
| | - Barbara B Kahn
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston
| |
Collapse
|
8
|
Signoretti C, Gupte SA. Studies in CRISPR-generated Mediterranean G6PD variant rats reveal G6PD orchestrates genome-wide DNA methylation and gene expression in vascular wall. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531429. [PMID: 36945640 PMCID: PMC10028921 DOI: 10.1101/2023.03.06.531429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Background Recent advances have revealed the importance of epigenetic modifications to gene regulation and transcriptional activity. DNA methylation, a determinant of genetic imprinting and de novo silencing of genes genome-wide, is known to be controlled by DNA methyltransferases (DNMT) and demethylases (TET) under disease conditions. However, the mechanism(s)/factor(s) influencing the expression and activity of DNMTs and TETs, and thus DNA methylation, in healthy vascular tissue is incompletely understood. Based on our recent studies, we hypothesized that glucose-6-phosphate dehydrogenase (G6PD) is a modifier of DNMT and TET expression and activity and an enabler of gene expression. Methods In aorta of CRISPR-edited rats with the Mediterranean G6PD variant we determined DNA methylation by whole-genome bisulfite sequencing, gene expression by RNA sequencing, and large artery stiffness by echocardiography. Results Here, we documented higher expression of Dnmt3a, Tet2, and Tet3 in aortas from Mediterranean G6PDS188F variant (a loss-of-function single nucleotide polymorphism) rats than their wild-type littermates. Concomitantly, we identified 17,618 differentially methylated loci genome-wide (5,787 hypermethylated loci, including down-regulated genes encoding inflammation- and vasoconstriction-causing proteins, and 11,827 hypomethylated loci, including up-regulated genes encoding smooth muscle cell differentiation- and fatty acid metabolism-promoting proteins) in aorta from G6PDS188F as compared to wild-type rats. Further, we observed less large artery (aorta) stiffness in G6PDS188F as compared to wild-type rats. Conclusions These results establish a noncanonical function of the wild-type G6PD and G6PDS188F variant in the regulation of DNA methylation and gene expression in healthy vascular tissue and reveals G6PDS188F variant contributes to reduce large artery stiffness.
Collapse
Affiliation(s)
| | - Sachin A. Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA, 10595
| |
Collapse
|
9
|
Shi L, Li H, Wang L. Genetic parameters estimation and genome molecular marker identification for gestation length in pigs. Front Genet 2023; 13:1046423. [PMID: 36685960 PMCID: PMC9849246 DOI: 10.3389/fgene.2022.1046423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Gestation length (GL) plays an important role in piglet maturation of major organs and development of body, while the genetic molecular markers of GL have not been extensively identified. In this study, according to the 5,662 effective records of 3,072 sows, the heritability and repeatability of GL were estimated through the dmuai of DMU Version 6.5.1 with a repeatability model, namely, h 2 = 0.1594 and r e 2 = 0.2437. Among these sows, 906 individuals were genotyped with the GeneSeek Genomic Profiler (GGP) Porcine 50K Chip and imputed to the genome-wide level (9,212,179 SNPs) by the online software PHARP v1 for subsequent quality control and GWAS analyses. Further, the Fst was also performed to measure whether the actual frequency of genotypes in different GL phenotypes deviated from the theoretical proportion of genetic balance. We observed the highest degree of differentiation (average Fst value = 0.0376) in the group of 114 and 118 days, and identified a total of 1,002 SNPs strongly associated with GL. Through screening the genes located within a 500 kb distance on either side of the significant SNPs, we proposed 4,588 candidate genes. By the functional annotation, these candidates were found to be mainly involved in multicellular organism metabolism, early endosome, embryo implantation and development, and body and organ signaling pathway. Because of the simultaneous confirmation by GWAS and Fst analyses, there were 20 genes replied to be the most promising candidates including HUNK, ARHGDIB, ERP27, RERG, NEDD9, TMEM170B, SCAF4, SOD1, TIAM1, ENSSSCG00000048838, ENSSSCG00000047227, EDN1, HIVEP1, ENSSSCG00000043944, LRATD1, ENSSSCG00000048577, ENSSSCG00000042932, ENSSSCG00000041405, ENSSSCG00000045589, and ADTRP. This study provided effective molecular information for the genetic improvement of GL in pigs.
Collapse
|
10
|
Tay KY, Wu KX, Chioh FWJ, Autio MI, Pek NMQ, Narmada BC, Tan SH, Low AFH, Lian MM, Chew EGY, Lau HH, Kao SL, Teo AKK, Foo JN, Foo RSY, Heng CK, Chan MYY, Cheung C. Trans-interaction of risk loci 6p24.1 and 10q11.21 is associated with endothelial damage in coronary artery disease. Atherosclerosis 2022; 362:11-22. [PMID: 36435092 DOI: 10.1016/j.atherosclerosis.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Single nucleotide polymorphism rs6903956 has been identified as one of the genetic risk factors for coronary artery disease (CAD). However, rs6903956 lies in a non-coding locus on chromosome 6p24.1. We aim to interrogate the molecular basis of 6p24.1 containing rs6903956 risk alleles in endothelial disease biology. METHODS AND RESULTS We generated induced pluripotent stem cells (iPSCs) from CAD patients (AA risk genotype at rs6903956) and non-CAD subjects (GG non-risk genotype at rs6903956). CRISPR-Cas9-based deletions (Δ63-89bp) on 6p24.1, including both rs6903956 and a short tandem repeat variant rs140361069 in linkage disequilibrium, were performed to generate isogenic iPSC-derived endothelial cells. Edited CAD endothelial cells, with removal of 'A' risk alleles, exhibited a global transcriptional downregulation of pathways relating to abnormal vascular physiology and activated endothelial processes. A CXC chemokine ligand on chromosome 10q11.21, CXCL12, was uncovered as a potential effector gene in CAD endothelial cells. Underlying this effect was the preferential inter-chromosomal interaction of 6p24.1 risk locus to a weak promoter of CXCL12, confirmed by chromatin conformation capture assays on our iPSC-derived endothelial cells. Functionally, risk genotypes AA/AG at rs6903956 were associated significantly with elevated levels of circulating damaged endothelial cells in CAD patients. Circulating endothelial cells isolated from patients with risk genotypes AA/AG were also found to have 10 folds higher CXCL12 transcript copies/cell than those with non-risk genotype GG. CONCLUSIONS Our study reveals the trans-acting impact of 6p24.1 with another CAD locus on 10q11.21 and is associated with intensified endothelial injury.
Collapse
Affiliation(s)
- Kai Yi Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Kan Xing Wu
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Florence Wen Jing Chioh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Matias Ilmari Autio
- Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Balakrishnan Chakrapani Narmada
- Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore; Experimental Drug Development Centre, A*STAR, 10 Biopolis Road, Singapore, 138670
| | - Sock-Hwee Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Adrian Fatt-Hoe Low
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Michelle Mulan Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Elaine Guo Yan Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Hwee Hui Lau
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, 138673, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Shih Ling Kao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Medicine, National University Hospital and National University Health System, Singapore
| | - Adrian Kee Keong Teo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, 138673, Singapore
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore; Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore
| | - Roger Sik Yin Foo
- Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Chew Kiat Heng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat, National University Children's Medical Institute, National University Health System, Singapore
| | - Mark Yan Yee Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, 138673, Singapore.
| |
Collapse
|
11
|
Liu C, Liu D, Wang F, Xie J, Liu Y, Wang H, Rong J, Xie J, Wang J, Zeng R, Zhou F, Peng J, Xie Y. Identification of a glycolysis- and lactate-related gene signature for predicting prognosis, immune microenvironment, and drug candidates in colon adenocarcinoma. Front Cell Dev Biol 2022; 10:971992. [PMID: 36081904 PMCID: PMC9445192 DOI: 10.3389/fcell.2022.971992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Colon adenocarcinoma (COAD), a malignant gastrointestinal tumor, has the characteristics of high mortality and poor prognosis. Even in the presence of oxygen, the Warburg effect, a major metabolic hallmark of almost all cancer cells, is characterized by increased glycolysis and lactate fermentation, which supports biosynthesis and provides energy to sustain tumor cell growth and proliferation. However, a thorough investigation into glycolysis- and lactate-related genes and their association with COAD prognosis, immune cell infiltration, and drug candidates is currently lacking. Methods: COAD patient data and glycolysis- and lactate-related genes were retrieved from The Cancer Genome Atlas (TCGA) and Gene Set Enrichment Analysis (GSEA) databases, respectively. After univariate Cox regression analysis, a nonnegative matrix factorization (NMF) algorithm was used to identify glycolysis- and lactate-related molecular subtypes. Least absolute shrinkage and selection operator (LASSO) Cox regression identified twelve glycolysis- and lactate-related genes (ADTRP, ALDOB, APOBEC1, ASCL2, CEACAM7, CLCA1, CTXN1, FLNA, NAT2, OLFM4, PTPRU, and SNCG) related to prognosis. The median risk score was employed to separate patients into high- and low-risk groups. The prognostic efficacy of the glycolysis- and lactate-related gene signature was assessed using Kaplan–Meier (KM) survival and receiver operating characteristic (ROC) curve analyses. The nomogram, calibration curves, decision curve analysis (DCA), and clinical impact curve (CIC) were employed to improve the clinical applicability of the prognostic signature. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on differentially expressed genes (DEGs) from the high- and low-risk groups. Using CIBERSORT, ESTIMATE, and single-sample GSEA (ssGSEA) algorithms, the quantities and types of tumor-infiltrating immune cells were assessed. The tumor mutational burden (TMB) and cytolytic (CYT) activity scores were calculated between the high- and low-risk groups. Potential small-molecule agents were identified using the Connectivity Map (cMap) database and validated by molecular docking. To verify key core gene expression levels, quantitative real-time polymerase chain reaction (qRT–PCR) assays were conducted. Results: We identified four distinct molecular subtypes of COAD. Cluster 2 had the best prognosis, and clusters 1 and 3 had poor prognoses. High-risk COAD patients exhibited considerably poorer overall survival (OS) than low-risk COAD patients. The nomogram precisely predicted patient OS, with acceptable discrimination and excellent calibration. GO and KEGG pathway enrichment analyses of DEGs revealed enrichment mainly in the “glycosaminoglycan binding,” “extracellular matrix,” “pancreatic secretion,” and “focal adhesion” pathways. Patients in the low-risk group exhibited a larger infiltration of memory CD4+ T cells and dendritic cells and a better prognosis than those in the high-risk group. The chemotherapeutic agent sensitivity of patients categorized by risk score varied significantly. We predicted six potential small-molecule agents binding to the core target of the glycolysis- and lactate-related gene signature. ALDOB and APOBEC1 mRNA expression was increased in COAD tissues, whereas CLCA1 and OLFM4 mRNA expression was increased in normal tissues. Conclusion: In summary, we identified molecular subtypes of COAD and developed a glycolysis- and lactate-related gene signature with significant prognostic value, which benefits COAD patients by informing more precise and effective treatment decisions.
Collapse
Affiliation(s)
- Cong Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Dingwei Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Fangfei Wang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Jun Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Yang Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Huan Wang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Jianfang Rong
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Jinliang Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Jinyun Wang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Rong Zeng
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Feng Zhou
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Jianxiang Peng
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Yong Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
- *Correspondence: Yong Xie,
| |
Collapse
|
12
|
MicroRNA-21 promotes pancreatic β cell function through modulating glucose uptake. Nat Commun 2022; 13:3545. [PMID: 35729232 PMCID: PMC9213410 DOI: 10.1038/s41467-022-31317-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic β cell dysfunction contributes to the pathogenesis of type 2 diabetes. MiR-21 has been shown to be induced in the islets of glucose intolerant patients and type 2 diabetic mice. However, the role of miR-21 in the regulation of pancreatic β cell function remains largely elusive. In the current study, we identify the pathway by which miR-21 regulates glucose-stimulated insulin secretion utilizing mice lacking miR-21 in their β cells (miR-21βKO). We find that miR-21βKO mice develop glucose intolerance due to impaired glucose-stimulated insulin secretion. Mechanistic studies reveal that miR-21 enhances glucose uptake and subsequently promotes insulin secretion by up-regulating Glut2 expression in a miR-21-Pdcd4-AP-1 dependent pathway. Over-expression of Glut2 in knockout islets results in rescue of the impaired glucose-stimulated insulin secretion. Furthermore, we demonstrate that delivery of miR-21 into the pancreas of type 2 diabetic db/db male mice is able to promote Glut2 expression and reduce blood glucose level. Taking together, our results reveal that miR-21 in islet β cell promotes insulin secretion and support a role for miR-21 in the regulation of pancreatic β cell function in type 2 diabetes.
Collapse
|
13
|
Riecan M, Paluchova V, Lopes M, Brejchova K, Kuda O. Branched and linear fatty acid esters of hydroxy fatty acids (FAHFA) relevant to human health. Pharmacol Ther 2021; 231:107972. [PMID: 34453998 DOI: 10.1016/j.pharmthera.2021.107972] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Fatty acid esters of hydroxy fatty acids (FAHFAs) represent a complex lipid class that contains both signaling mediators and structural components of lipid biofilms in humans. The majority of endogenous FAHFAs share a common chemical architecture, characterized by an estolide bond that links the hydroxy fatty acid (HFA) backbone and the fatty acid (FA). Two structurally and functionally distinct FAHFA superfamilies are recognized based on the position of the estolide bond: omega-FAHFAs and in-chain branched FAHFAs. The existing variety of possible HFAs and FAs combined with the position of the estolide bond generates a vast quantity of unique structures identified in FAHFA families. In this review, we discuss the anti-diabetic and anti-inflammatory effects of branched FAHFAs and the role of omega-FAHFA-derived lipids as surfactants in the tear film lipid layer and dry eye disease. To emphasize potential pharmacological targets, we recapitulate the biosynthesis of the HFA backbone within the superfamilies together with the degradation pathways and the FAHFA regioisomer distribution in human and mouse adipose tissue. We propose a theoretical involvement of cytochrome P450 enzymes in the generation and degradation of saturated HFA backbones and present an overview of small-molecule inhibitors used in FAHFA research. The FAHFA lipid class is huge and largely unexplored. Besides the unknown biological effects of individual FAHFAs, also the enigmatic enzymatic machinery behind their synthesis could provide new therapeutic approaches for inflammatory metabolic or eye diseases. Therefore, understanding the mechanisms of (FA)HFA synthesis at the molecular level should be the next step in FAHFA research.
Collapse
Affiliation(s)
- Martin Riecan
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Veronika Paluchova
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Magno Lopes
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Kristyna Brejchova
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic.
| |
Collapse
|
14
|
Defour M, van Weeghel M, Hermans J, Kersten S. Hepatic ADTRP overexpression does not influence lipid and glucose metabolism. Am J Physiol Cell Physiol 2021; 321:C585-C595. [PMID: 34288722 DOI: 10.1152/ajpcell.00185.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The peroxisome proliferator activated receptors (PPARs) are a group of transcription factors belonging to the nuclear receptor superfamily. Since most target genes of either PPARs are implicated in lipid and glucose metabolism, regulation by PPARs could be used as a screening tool to identify novel genes involved in lipid or glucose metabolism. Here, we identify Adtrp, a serine hydrolase enzyme that was reported to catalyze the hydrolysis of fatty acid esters of hydroxy fatty acids (FAHFAs), as a novel PPAR-regulated gene. Adtrp was significantly upregulated by PPARα activation in mouse primary hepatocytes, liver slices, and whole liver. In addition, Adtrp was upregulated by PPARγ activation in 3L3-L1 adipocytes and in white adipose tissue. ChIP-SEQ identified a strong PPAR binding site in the immediate upstream promoter of the Adtrp gene. Adenoviral-mediated hepatic overexpression of Adtrp in diet-induced obese mice caused a modest increase in plasma non-esterified fatty acids but did not influence diet-induced obesity, liver triglyceride levels, liver lipidomic profiles, liver transcriptomic profiles, and plasma cholesterol, triglycerides, glycerol, and glucose levels. Moreover, hepatic Adtrp overexpression did not lead to significant changes in FAHFA levels in plasma or liver and did not influence glucose and insulin tolerance. Finally, hepatic overexpression of Adtrp did not influence liver triglycerides and levels of plasma metabolites after a 24h fast. Taken together, our data suggest that despite being a PPAR-regulated gene, hepatic Adtrp does not seem to play a major role in lipid and glucose metabolism and does not regulate FAHFA levels.
Collapse
Affiliation(s)
- Merel Defour
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, Wageningen, Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Meibergdreef Amsterdam, Amsterdam, Netherlands
| | - Jill Hermans
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Meibergdreef Amsterdam, Amsterdam, Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, Wageningen, Netherlands
| |
Collapse
|
15
|
Molecular Research in Cardiovascular Disease. Int J Mol Sci 2021; 22:ijms22137199. [PMID: 34281252 PMCID: PMC8267781 DOI: 10.3390/ijms22137199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
|