1
|
Gao JW, Guo Q, Weng Y, Huang ZG, Zhang HF, Wu YB, Wang JF, Zhang SL, Liu PM. Predicting the risk of coronary artery calcium progression in the general population: insights from the MESA and CARDIA studies. Clin Radiol 2024; 80:106724. [PMID: 39546957 DOI: 10.1016/j.crad.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
AIM Coronary artery calcium (CAC) progression is a strong predictor of cardiovascular disease. This study aims to develop and validate a practical tool for predicting individual CAC progression in the general population. MATERIALS AND METHODS Data were utilized from the Multi-Ethnic Study of Atherosclerosis (MESA) cohort, comprising 5486 participants (47.3% male, mean ± SD age: 61.9 ± 10.2 years), who were randomly assigned to either a training set or an internal validation set at a 7:3 ratio. Additionally, a separate cohort of 2447 participants (44.6% male, mean ± SD age: 40.4 ± 3.5 years) from the Coronary Artery Risk Development in Young Adults (CARDIA) study served as the external validation set. A nomogram was developed based on a Cox regression model incorporating 10 variables selected by the least absolute shrinkage and selection operator (LASSO) method to predict CAC progression. RESULTS From the 61 features considered, 10 key variables were identified: age, male sex, smoking status, waist circumference, systolic blood pressure, fasting glucose, lipid abnormalities, and the use of antihypertensive, glucose-lowering, and lipid-lowering medications. The nomogram demonstrated good discrimination with a C-statistic of 0.682 (95% confidence interval [CI], 0.665-0.699) in the training set and 0.750 (95% CI, 0.729-0.771) in the external validation set. Decision curve analysis further confirmed the nomogram's clinical utility in predicting the risk of CAC progression. CONCLUSION Our nomogram offers a practical tool for individualized prediction of CAC progression potentially aiding in the primary prevention of cardiovascular disease in clinical practice. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT00005130 (CARDIA), NCT00005487 (MESA).
Collapse
Affiliation(s)
- J-W Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Q Guo
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Y Weng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Z-G Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - H-F Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Y-B Wu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - J-F Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - S-L Zhang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - P-M Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
2
|
Neutel CHG, Wesley CD, van Loo C, Civati C, Mertens F, Zurek M, Verhulst A, Pintelon I, De Vos WH, Spronck B, Roth L, De Meyer GRY, Martinet W, Guns PJ. Calciprotein particles induce arterial stiffening ex vivo and impair vascular cell function. Commun Biol 2024; 7:1241. [PMID: 39358413 PMCID: PMC11447031 DOI: 10.1038/s42003-024-06895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
Calciprotein particles (CPPs) are an endogenous buffering system, clearing excessive amounts of Ca2+ and PO43- from the circulation and thereby preventing ectopic mineralization. CPPs circulate as primary CPPs (CPP1), which are small spherical colloidal particles, and can aggregate to form large, crystalline, secondary CPPs (CPP2). Even though it has been reported that CPPs are toxic to vascular smooth muscle cells (VSMC) in vitro, their effect(s) on the vasculature remain unclear. Here we have shown that CPP1, but not CPP2, increased arterial stiffness ex vivo. Interestingly, the effects were more pronounced in the abdominal infrarenal aorta compared to the thoracic descending aorta. Further, we demonstrated that CPP1 affected both endothelial and VSMC function, impairing vasorelaxation and contraction respectively. Concomitantly, arterial glycosaminoglycan accumulation was observed as well, which is indicative of an increased extracellular matrix stiffness. However, these effects were not observed in vivo. Hence, we concluded that CPP1 can induce vascular dysfunction.
Collapse
Affiliation(s)
- Cédric H G Neutel
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Callan D Wesley
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Cindy van Loo
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Céline Civati
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Freke Mertens
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Michelle Zurek
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- µNEURO Research Excellence Consortium On Multimodal Neuromics, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- µNEURO Research Excellence Consortium On Multimodal Neuromics, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Ligthart J, de Bakker M, Witberg K, Ten Cate F, den Ruijter H, Daemen J, Van Mieghem NM, Boersma E. Age-specific sex differences in intravascular ultrasound based coronary atherosclerotic plaque characteristics. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 46:100451. [PMID: 39296913 PMCID: PMC11408001 DOI: 10.1016/j.ahjo.2024.100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024]
Abstract
Insights in age- and sex-specific coronary atherosclerotic plaque characteristics may contribute to a better understanding of coronary artery disease and, ultimately, to its prevention and treatment. In 307 women and 406 men aged 20 to 90 years undergoing intravascular ultrasound imaging, sex-based differences in coronary atherosclerotic plaque characteristics were mainly present in younger patients, while these differences were less pronounced at advanced age.
Collapse
Affiliation(s)
- Jurgen Ligthart
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marie de Bakker
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Karen Witberg
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Folkert Ten Cate
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Hester den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joost Daemen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Nicolas M Van Mieghem
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Eric Boersma
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Wang Y, Liu X, Zhang J, Zhou B, Yue W, Hu K. Long sleep duration is associated with abdominal aortic calcification among male adults with chronic kidney disease: NHANES 2013-2014. Sci Rep 2024; 14:22076. [PMID: 39333665 PMCID: PMC11436971 DOI: 10.1038/s41598-024-72879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
There are no studies exploring the correlation between sleep duration and abdominal aortic calcification (AAC). This study aims to investigate this relationship and its significance. Additionally, given the higher prevalence of sleep disorders and AAC in patients with chronic kidney disease (CKD), we conducted further studies in this population. We analyzed data from the National Health and Nutrition Examination Survey (NHANES) 2013-2014. Sleep duration was assessed by a sleep questionnaire and categorized into 2-5, 6-8, and ≥ 9 h. The AAC-24 score is determined using the Kauppila scoring system and used for AAC assessment. Multivariable linear and logistic regression analysis were used to explore the relationship between sleep duration and AAC. Among the 2,996 participants, 14.29% reported nightly short sleep (2-5 h), 77.64% reported intermediate sleep (6-8 h), and 8.08% reported long sleep (≥ 9 h). After adjusting for potential confounding factors, among male participants with CKD, long sleep (≥ 9 h) significantly increased AAC-24 scores compared with intermediate sleep (6-8 h) (β: 2.12; 95% CI: 0.75, 3.50), and the risk of severe AAC (SAAC) was increased by 1.55 times (OR: 2.55; 95% CI: 1.02, 6.36). And among female CKD and non-CKD participants, sleep duration was not associated with AAC. Long sleep duration increases the risk of AAC among male adults with CKD. Prospective studies are needed to confirm this finding.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xu Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingyi Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Beini Zhou
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wuriliga Yue
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
5
|
Rosen EM, Stevens DR, McNell EE, Wood ME, Engel SM, Keil AP, Calafat AM, Botelho JC, Sinkovskaya E, Przybylska A, Saade G, Abuhamad A, Ferguson KK. Longitudinal associations between urinary biomarkers of phthalates and replacements with novel in vivo measures of placental health. Hum Reprod 2024; 39:2104-2114. [PMID: 38970902 PMCID: PMC11373341 DOI: 10.1093/humrep/deae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/10/2024] [Indexed: 07/08/2024] Open
Abstract
STUDY QUESTION What is the longitudinal association between gestational phthalate exposure and in vivo placental outcomes? SUMMARY ANSWER Phthalates were adversely associated with placental microvasculature, stiffness, and presence of calcification, with different metabolites associated with different outcomes. WHAT IS KNOWN ALREADY Phthalate exposure is ubiquitous and implicated as a contributor to adverse pregnancy outcomes, possibly through impacts on the placenta. STUDY DESIGN, SIZE, DURATION A total of 303 women were recruited in early pregnancy and prospectively followed for up to eight visits across gestation in the Human Placenta and Phthalates study. PARTICIPANTS/MATERIALS, SETTING, METHODS At each visit, women provided urine samples and underwent placental ultrasounds. Urine was analyzed for 18 metabolites of phthalates and replacements. We took the geometric mean of repeated measurements to reflect pregnancy-averaged phthalate or replacement exposure for each participant (n = 303). Placental microvasculature, stiffness, and microcalcification presence were quantified from ultrasounds at each visit. Higher scores reflected worse placental function for all measures. Generalized linear mixed models were created to estimate the association between pregnancy-averaged exposure biomarker concentrations and repeated outcome measurements for microvasculature and stiffness. Gestational age at the time of calcification detection was modeled using Cox proportional hazards models. MAIN RESULTS AND THE ROLE OF CHANCE Monocarboxyisononyl phthalate and summed di(2-ethylhexyl) phthalate metabolites were associated with impaired microvasculature development, such that an interquartile range increase in concentration was associated with 0.11 standard deviation increase in the microvasculature ratio, indicating poorer vascularization (95% CI: 0.00, 0.22); 0.11 [95% CI: -0.01, 0.22], respectively. Monoethyl phthalate was associated with increased placental stiffness (0.09 [95% CI: -0.01, 0.19]) while summed di-iso-butyl phthalate metabolites and monobenzyl phthalate were associated with increased hazard of calcification detection (hazard ratios: 1.18 [95% CI: 0.98, 1.42]; 1.13 [95% CI: 0.96, 1.34]). LIMITATIONS, REASONS FOR CAUTION Outcomes used in this study are novel and further investigation is needed to provide clinical context and relevance. WIDER IMPLICATIONS OF THE FINDINGS We found evidence of associations between select phthalate biomarkers and various aspects of in vivo placental health, although we did not observe consistency across placental outcomes. These findings could illustrate heterogeneous effects of phthalate exposure on placental function. STUDY FUNDING/COMPETING INTEREST(S) This research was supported in part by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (ZIA ES103344), and NIEHS T32ES007018. The authors declare that they have no competing interests to disclose. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention. Use of trade names is for identification only and does not imply endorsement by the CDC, the Public Health Service, or the US Department of Health and Human Services. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Emma M Rosen
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Danielle R Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Erin E McNell
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Mollie E Wood
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie M Engel
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Alexander P Keil
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elena Sinkovskaya
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ann Przybylska
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - George Saade
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alfred Abuhamad
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| |
Collapse
|
6
|
Le Nezet E, Marqueze-Pouey C, Guisle I, Clavel MA. Molecular Features of Calcific Aortic Stenosis in Female and Male Patients. CJC Open 2024; 6:1125-1137. [PMID: 39525825 PMCID: PMC11544188 DOI: 10.1016/j.cjco.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 11/16/2024] Open
Abstract
Over the past 15 years, sex-related differences in aortic valve (AV) stenosis (AS) have been highlighted, affecting various aspects of AS, such as the pathophysiology, AV lesions, left ventricle remodelling, and outcomes. Female patients were found to present a more profibrotic pattern of leaflet remodelling and/or thickening, whereas male patients have a preponderance of calcification within stenosed leaflets. The understanding of these sex differences is still limited, owing to the underrepresentation of female patients in many basic and clinical research studies and trials. A better understanding of sex differences in the pathophysiology of AS may highlight new therapeutic targets that potentially could be sex-specific. This review aims to summarize sex-related differences in AS, as discovered from basic research experiments, covering aspects of the disease ranging from leaflet composition to signalling pathways, sex hormones, genetics and/or transcriptomics, and potential sex-adapted medical treatments.
Collapse
Affiliation(s)
- Emma Le Nezet
- Institut universitaire de cardiologie et pneumologie de Québec [Quebec Heart & Lung Institute], Université Laval, Québec City, Québec, Canada
| | - Chloé Marqueze-Pouey
- Institut universitaire de cardiologie et pneumologie de Québec [Quebec Heart & Lung Institute], Université Laval, Québec City, Québec, Canada
| | - Isabelle Guisle
- Institut universitaire de cardiologie et pneumologie de Québec [Quebec Heart & Lung Institute], Université Laval, Québec City, Québec, Canada
| | - Marie-Annick Clavel
- Institut universitaire de cardiologie et pneumologie de Québec [Quebec Heart & Lung Institute], Université Laval, Québec City, Québec, Canada
| |
Collapse
|
7
|
Xega V, Liu JL. Beyond reproduction: unraveling the impact of sex hormones on cardiometabolic health. MEDICAL REVIEW (2021) 2024; 4:284-300. [PMID: 39135604 PMCID: PMC11317208 DOI: 10.1515/mr-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/07/2024] [Indexed: 08/15/2024]
Abstract
This review thoroughly explores the multifaceted roles of sexual hormones, emphasizing their impact beyond reproductive functions and underscoring their significant influence on cardiometabolic regulation. It analyzes the broader physiological implications of estrogen, testosterone, and progesterone, highlighting their effects on metabolic syndrome, lipid metabolism, glucose homeostasis, and cardiovascular health. Drawing from diverse molecular, clinical, and therapeutic studies, the paper delves into the intricate interplay between these hormones and cardiometabolic processes. By presenting a comprehensive analysis that goes beyond traditional perspectives, and recognizing sexual hormones as more than reproductive agents, the review sheds light on their broader significance in health and disease management, advocating for holistic and personalized medical approaches.
Collapse
Affiliation(s)
- Viktoria Xega
- MeDiC Program, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Jun-Li Liu
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
8
|
Wang C, Song M, Chen H, Liang P, Luo G, Ren W, Yang S. Global Epidemiologic Trends and Projections to 2030 in Non-Rheumatic Degenerative Mitral Valve Disease from 1990 to 2019: An Analysis of the Global Burden of Disease Study 2019. Rev Cardiovasc Med 2024; 25:269. [PMID: 39139442 PMCID: PMC11317355 DOI: 10.31083/j.rcm2507269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 08/15/2024] Open
Abstract
Background No studies have updated the epidemiologic changes in non-rheumatic degenerative mitral valve disease (DMVD) since 2019, thus this study utilized data from the Global Study of Diseases, Injuries, and Risk Factors 2019 (GBD2019) to assess the burden of DMVD in 204 countries and territories over the period 1990-2019, as well as changes in the prevalence, incidence, deaths and changes in disability-adjusted life years (DALYs). Methods Using the results from the GBD2019, analyzing the incidence, prevalence, deaths, and DALYs rates, as well as their age-standardized rates (ASR). Based on the human development index (HDI), the socio-demographic index (SDI), age, and sex. Results In 2019, there were 24.229 million (95% uncertainty interval (UI) 23.081-25.419 million) existing cases of DMVD worldwide, with 1.064 million (95% UI 1.010-1.122 million) new cases and 0.034 million (95% UI 0.028-0.043 million) deaths, and 0.883 million (95% UI 0.754-1.092 million) disability-adjusted life years. The incidence, prevalence, deaths, and DALYs of DMVD and their ASR showed significant differences across sex, age groups, regions, and countries from 1990 to 2019. It is projected that by 2030, the incidence of DMVD in females will be 0.72 million with an ASR of 15.59 per 100,000 population, 0.51 million in males with an ASR of 11.75 per 100,000 population, and a total incidence of 1.23 million with an ASR of 14.03 per 100,000 population. Conclusions DMVD remains a significant public health problem that cannot be ignored, despite a decreasing trend in the ASR of global incidence, prevalence, deaths and DALYs from 1990 to 2019. However, we note an adverse development trend in countries with low socio-demographic indexes and seriously aging societies, and sex inequality is particularly prominent. This indicates the need to reposition current prevention and treatment strategies, with some national health administrations developing corresponding strategies for preventing an increase in DMVD based on local health, education, economic conditions, sex differences, and age differences.
Collapse
Affiliation(s)
- Chengmei Wang
- College of Integrative Medicine, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Menglin Song
- College of Integrative Medicine, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Hao Chen
- College of Integrative Medicine, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Pan Liang
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Gang Luo
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Wei Ren
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Sijin Yang
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, Sichuan, China
| |
Collapse
|
9
|
Mo M, Yin L, Wang T, Lv Z, Guo Y, Shen J, Zhang H, Liu N, Wang Q, Huang S, Huang H. Associations of essential metals with the risk of aortic arch calcification: a cross-sectional study in a mid-aged and older population of Shenzhen, China. MedComm (Beijing) 2024; 5:e533. [PMID: 38745853 PMCID: PMC11091022 DOI: 10.1002/mco2.533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Vascular calcification is a strong predictor of cardiovascular events. Essential metals play critical roles in maintaining human health. However, the association of essential metal levels with risk of aortic arch calcification (AoAC) remains unclear. We measured the plasma concentrations of nine essential metals in a cross-sectional population and evaluated their individual and combined effects on AoAC risk using multiple statistical methods. We also explored the mediating role of fasting glucose. In the logistic regression model, higher quartiles of magnesium and copper were associated with the decreased AoAC risk, while higher quartile of manganese was associated with higher AoAC risk. The least absolute shrinkage and selection operator penalized regression analysis identified magnesium, manganese, calcium, cobalt, and copper as key metals associated with AoAC risk. The weighted quantile sum regression suggested a combined effect of metal mixture. A linear and positive dose-response relationship was found between manganese and AoAC in males. Moreover, blood glucose might mediate a proportion of 9.38% of the association between manganese exposure and AoAC risk. In summary, five essential metal levels were associated with AoAC and showed combined effect. Fasting glucose might play a significant role in mediating manganese exposure-associated AoAC risk.
Collapse
Affiliation(s)
- Mingxing Mo
- Department of CardiologyJoint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseasesthe Eighth Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Li Yin
- Department of CardiologyJoint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseasesthe Eighth Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Tian Wang
- School of Public HealthShenzhen University Medical SchoolShenzhen UniversityShenzhenGuangdongChina
- Department of Central LaboratoryShenzhen Center for Disease control and PreventionShenzhenChina
| | - Ziquan Lv
- Department of Central LaboratoryShenzhen Center for Disease control and PreventionShenzhenChina
| | - Yadi Guo
- Department of CardiologyJoint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseasesthe Eighth Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Jiangang Shen
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
| | - Huanji Zhang
- Department of CardiologyJoint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseasesthe Eighth Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Ning Liu
- Department of Central LaboratoryShenzhen Center for Disease control and PreventionShenzhenChina
| | - Qiuling Wang
- Department of Central LaboratoryShenzhen Center for Disease control and PreventionShenzhenChina
| | - Suli Huang
- School of Public HealthShenzhen University Medical SchoolShenzhen UniversityShenzhenGuangdongChina
- Department of Central LaboratoryShenzhen Center for Disease control and PreventionShenzhenChina
| | - Hui Huang
- Department of CardiologyJoint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseasesthe Eighth Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| |
Collapse
|
10
|
Geng G, Li Z, Wang S, Yuan T, Quan G. Association between bone mineral density and coronary plaque burden in patients with coronary artery disease: a cross-sectional study using quantitative computed tomography. Coron Artery Dis 2024; 35:105-113. [PMID: 38164995 DOI: 10.1097/mca.0000000000001316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE To evaluate the association between osteoporosis and coronary calcification and coronary plaque burden in patients with atherosclerosis and coronary artery disease (CAD). METHODS This study included 290 men and 177 postmenopausal women with angiography-confirmed atherosclerosis or CAD who underwent chest multidetector row computed tomography covering L1-L2 between September 2020 and October 2021. Quantitative computed tomography was used to measure the lumbar vertebra's bone mineral density (BMD). The coronary artery calcium score (CACS) and total coronary plaque burden were quantified using the Agatston and modified Gensini scores, respectively. Associations between BMD and CACS and modified Gensini scores were assessed using multivariate regression analysis. Lasso regression was used in model selection. RESULTS In men, BMD was inversely associated with CACS [ β = -0.24; 95% confidence interval (CI), -0.35 to -0.13; P < 0.001) and coronary artery calcification (CAC) presence [odds ratio (OR) = 0.71; 95% CI, 0.52-0.96; P = 0.03) in the unadjusted model. After adjusting for age, modified Gensini score, prior percutaneous coronary intervention and hypertension, BMD was inversely associated with CACS ( β = -0.11; 95% CI, -0.22 to -0.01; P = 0.04). In postmenopausal women, BMD was inversely associated with CACS ( β = -0.24; 95% CI, -0.39 to 0.10; P < 0.001) and CAC presence (OR = 0.66; 95% CI, 0.47-0.92; P = 0.01) in the unadjusted model but no other models ( P > 0.05). In both sexes, BMD did not correlate with the modified Gensini score or CAD prevalence (all P > 0.05). CONCLUSION In patients with coronary atherosclerosis and CAD, BMD of the lumbar vertebra correlated inversely with CACS in men but not postmenopausal women. Additionally, BMD did not correlate with the modified Gensini score in both sexes.
Collapse
Affiliation(s)
- Guang Geng
- Department of Medical Imaging, the Second Hospital of Hebei Medical University
| | - Zhen Li
- Department of Cardiology, Shijiazhuang Second Hospital
| | - Shuai Wang
- Department of Orthopaedics Surgery, Hebei Chest Hospital, Shijiazhuang, China
| | - Tao Yuan
- Department of Medical Imaging, the Second Hospital of Hebei Medical University
| | - Guanmin Quan
- Department of Medical Imaging, the Second Hospital of Hebei Medical University
| |
Collapse
|
11
|
Maheshwari U, Mateos JM, Weber‐Stadlbauer U, Ni R, Tamatey V, Sridhar S, Restrepo A, de Jong PA, Huang S, Schaffenrath J, Stifter SA, Szeri F, Greter M, Koek HL, Keller A. Inorganic phosphate exporter heterozygosity in mice leads to brain vascular calcification, microangiopathy, and microgliosis. Brain Pathol 2023; 33:e13189. [PMID: 37505935 PMCID: PMC10580014 DOI: 10.1111/bpa.13189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Calcification of the cerebral microvessels in the basal ganglia in the absence of systemic calcium and phosphate imbalance is a hallmark of primary familial brain calcification (PFBC), a rare neurodegenerative disorder. Mutation in genes encoding for sodium-dependent phosphate transporter 2 (SLC20A2), xenotropic and polytropic retrovirus receptor 1 (XPR1), platelet-derived growth factor B (PDGFB), platelet-derived growth factor receptor beta (PDGFRB), myogenesis regulating glycosidase (MYORG), and junctional adhesion molecule 2 (JAM2) are known to cause PFBC. Loss-of-function mutations in XPR1, the only known inorganic phosphate exporter in metazoans, causing dominantly inherited PFBC was first reported in 2015 but until now no studies in the brain have addressed whether loss of one functional allele leads to pathological alterations in mice, a commonly used organism to model human diseases. Here we show that mice heterozygous for Xpr1 (Xpr1WT/lacZ ) present with reduced inorganic phosphate levels in the cerebrospinal fluid and age- and sex-dependent growth of vascular calcifications in the thalamus. Vascular calcifications are surrounded by vascular basement membrane and are located at arterioles in the smooth muscle layer. Similar to previously characterized PFBC mouse models, vascular calcifications in Xpr1WT/lacZ mice contain bone matrix proteins and are surrounded by reactive astrocytes and microglia. However, microglial activation is not confined to calcified vessels but shows a widespread presence. In addition to vascular calcifications, we observed vessel tortuosity and transmission electron microscopy analysis revealed microangiopathy-endothelial swelling, phenotypic alterations in vascular smooth muscle cells, and thickening of the basement membrane.
Collapse
Affiliation(s)
- Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - José M. Mateos
- Center for Microscopy and Image analysisUniversity of ZurichZurichSwitzerland
| | - Ulrike Weber‐Stadlbauer
- Institute of Veterinary Pharmacology and ToxicologyUniversity of Zurich‐Vetsuisse, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Ruiqing Ni
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
- Institute for Biomedical EngineeringUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Virgil Tamatey
- Research Centre for Natural SciencesInstitute of EnzymologyBudapestHungary
- Doctoral School of BiologyELTE Eotvos Lorand UniversityBudapestHungary
| | - Sucheta Sridhar
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Alejandro Restrepo
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Pim A. de Jong
- Department of RadiologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Sheng‐Fu Huang
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | | | - Flora Szeri
- Research Centre for Natural SciencesInstitute of EnzymologyBudapestHungary
| | - Melanie Greter
- Institute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Huiberdina L. Koek
- Department of Geriatric MedicineUniversity Medical Centre Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| |
Collapse
|
12
|
Chen J, Yu H, Tan X, Mok SWF, Xie Y, Wang Y, Jiang X, Macrae VE, Lan L, Fu X, Zhu D. PFKFB3-driven vascular smooth muscle cell glycolysis promotes vascular calcification via the altered FoxO3 and lactate production. FASEB J 2023; 37:e23182. [PMID: 37682013 DOI: 10.1096/fj.202300900r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
A link between increased glycolysis and vascular calcification has recently been reported, but it remains unclear how increased glycolysis contributes to vascular calcification. We therefore investigated the role of PFKFB3, a critical enzyme of glycolysis, in vascular calcification. We found that PFKFB3 expression was upregulated in calcified mouse VSMCs and arteries. We showed that expression of miR-26a-5p and miR-26b-5p in calcified mouse arteries was significantly decreased, and a negative correlation between Pfkfb3 mRNA expression and miR-26a-5p or miR-26b-5p was seen in these samples. Overexpression of miR-26a/b-5p significantly inhibited PFKFB3 expression in VSMCs. Intriguingly, pharmacological inhibition of PFKFB3 using PFK15 or knockdown of PFKFB3 ameliorated vascular calcification in vD3 -overloaded mice in vivo or attenuated high phosphate (Pi)-induced VSMC calcification in vitro. Consistently, knockdown of PFKFB3 significantly reduced glycolysis and osteogenic transdifferentiation of VSMCs, whereas overexpression of PFKFB3 in VSMCs induced the opposite effects. RNA-seq analysis and subsequent experiments revealed that silencing of PFKFB3 inhibited FoxO3 expression in VSMCs. Silencing of FoxO3 phenocopied the effects of PFKFB3 depletion on Ocn and Opg expression but not Alpl in VSMCs. Pyruvate or lactate supplementation, the product of glycolysis, reversed the PFKFB3 depletion-mediated effects on ALP activity and OPG protein expression in VSMCs. Our results reveal that blockade of PFKFB3-mediated glycolysis inhibits vascular calcification in vitro and in vivo. Mechanistically, we show that FoxO3 and lactate production are involved in PFKFB3-driven osteogenic transdifferentiation of VSMCs. PFKFB3 may be a promising therapeutic target for the treatment of vascular calcification.
Collapse
Affiliation(s)
- Jiaxin Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hongjiao Yu
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| | - Xiao Tan
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Simon Wing Fai Mok
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Yuchen Xie
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yueheng Wang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xueyan Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Vicky E Macrae
- Functional Genetics and Development, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Lan Lan
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaodong Fu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Guo R, Wang X, Liu Y, Huang M, Ma M, He Y, Yang R, Gao S, Luo M, Zhao G, Li L, Yu C. The Association Between Hemoglobin Glycation Index and Carotid Artery Plaque in Patients With Coronary Heart Disease. Angiology 2023:33197231198688. [PMID: 37641559 DOI: 10.1177/00033197231198688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
This study aimed to examine the association between the hemoglobin glycation index (HGI) and carotid artery plaque (CAP) in patients with coronary heart disease (CHD). We conducted a cross-sectional analysis of 10,778 patients with CHD. The participants were divided into three groups by HGI tertiles (T1 HGI<-0.44, T2 -0.44 ≤ HGI ≤ 0.15, T3 HGI>0.15). The presence of CAP was used to diagnose by carotid ultrasonography. Logistic regression analysis was used to analyze the association between the HGI and CAP. The association between HGI and CAP was also assessed according to sex, age, smoking status, and drinking status. We further assessed the association between HGI and the ultrasound characteristics of CAP. The baseline analysis showed substantial differences in relevant parameters between the three groups of patients with CHD according to the tertiles of the HGI. Multivariate logistic regression analysis showed that HGI was significantly associated with CAP (odds ratio [OR] 1.32; 95% confidence interval [CI] 1.26-1.39). The association between HGI and CAP exists among different sex, age, smoking, and drinking status. Furthermore, there was a significant and positive association between HGI and all four different echogenicities of the CAP.
Collapse
Affiliation(s)
- Ruiying Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yijia Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengnan Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mei Ma
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanyuan He
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rongrong Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shan Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingchi Luo
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guoyuan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunquan Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
14
|
Wada S, Iwanaga Y, Nakai M, Nakao YM, Miyamoto Y, Noguchi T. Significance of coronary artery calcification for predicting major adverse cardiovascular events: results from the NADESICO study in Japan. J Cardiol 2023:S0914-5087(23)00079-5. [PMID: 37085027 DOI: 10.1016/j.jjcc.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND We aimed to determine the usefulness and sex differences of assessment of coronary artery calcification (CAC) with cardiovascular risk factors and major adverse cardiovascular events (MACE) in Japanese patients. METHODS In a nationwide, multicenter, prospective cohort study, 1187 patients with suspected coronary artery disease who underwent coronary computed tomography were enrolled. MACE included cardiovascular death, myocardial infarction, stroke, revascularization, and hospitalization for unstable angina, heart failure, or aortic disease. The concordance (C)-statistics were used to assess the relationships among the Suita risk score, CAC score, and incident MACE, with emphasis on sex differences. RESULTS The final analysis included 982 patients (mean age, 64.7 ± 6.6 years; 53.9 % male patients). MACE developed in 65 male and 21 female patients during a median follow-up of 1480 days. The C-statistics calculated using Suita score for MACE were 0.650, 0.633, and 0.569 in overall, male, and female patients, respectively. In overall patients, the C-statistic significantly increased in combined models of Agatston CAC scores of ≥100, 200, 300, or 400 and the Suita score. In each sex, the C-statistics significantly increased in the model that added an Agatston CAC score of ≥100 and ≥ 200 (+0.049 and + 0.057) in male patients, and ≥ 400 (+0.119) in females, respectively. CONCLUSIONS Adding assessment of Agatston CAC scores to Suita score was useful to improve the predictive ability for future MACE in Japanese patients. Agatston CAC scores of ≥100 or 200 in male and ≥ 400 in female patients in addition to Suita score improved the MACE risk prediction.
Collapse
Affiliation(s)
- Shinichi Wada
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoshitaka Iwanaga
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Cardiology, Sakurabashi Watanabe Hospital, Osaka, Japan.
| | - Michikazu Nakai
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoko M Nakao
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoshihiro Miyamoto
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Teruo Noguchi
- Department of Cardiology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
15
|
Phadwal K, Tang QY, Luijten I, Zhao JF, Corcoran B, Semple RK, Ganley IG, MacRae VE. p53 Regulates Mitochondrial Dynamics in Vascular Smooth Muscle Cell Calcification. Int J Mol Sci 2023; 24:1643. [PMID: 36675156 PMCID: PMC9864220 DOI: 10.3390/ijms24021643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Arterial calcification is an important characteristic of cardiovascular disease. It has key parallels with skeletal mineralization; however, the underlying cellular mechanisms responsible are not fully understood. Mitochondrial dynamics regulate both bone and vascular function. In this study, we therefore examined mitochondrial function in vascular smooth muscle cell (VSMC) calcification. Phosphate (Pi)-induced VSMC calcification was associated with elongated mitochondria (1.6-fold increase, p < 0.001), increased mitochondrial reactive oxygen species (ROS) production (1.83-fold increase, p < 0.001) and reduced mitophagy (9.6-fold decrease, p < 0.01). An increase in protein expression of optic atrophy protein 1 (OPA1; 2.1-fold increase, p < 0.05) and a converse decrease in expression of dynamin-related protein 1 (DRP1; 1.5-fold decrease, p < 0.05), two crucial proteins required for the mitochondrial fusion and fission process, respectively, were noted. Furthermore, the phosphorylation of DRP1 Ser637 was increased in the cytoplasm of calcified VSMCs (5.50-fold increase), suppressing mitochondrial translocation of DRP1. Additionally, calcified VSMCs showed enhanced expression of p53 (2.5-fold increase, p < 0.05) and β-galactosidase activity (1.8-fold increase, p < 0.001), the cellular senescence markers. siRNA-mediated p53 knockdown reduced calcium deposition (8.1-fold decrease, p < 0.01), mitochondrial length (3.0-fold decrease, p < 0.001) and β-galactosidase activity (2.6-fold decrease, p < 0.001), with concomitant mitophagy induction (3.1-fold increase, p < 0.05). Reduced OPA1 (4.1-fold decrease, p < 0.05) and increased DRP1 protein expression (2.6-fold increase, p < 0.05) with decreased phosphorylation of DRP1 Ser637 (3.20-fold decrease, p < 0.001) was also observed upon p53 knockdown in calcifying VSMCs. In summary, we demonstrate that VSMC calcification promotes notable mitochondrial elongation and cellular senescence via DRP1 phosphorylation. Furthermore, our work indicates that p53-induced mitochondrial fusion underpins cellular senescence by reducing mitochondrial function.
Collapse
Affiliation(s)
- Kanchan Phadwal
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Qi-Yu Tang
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Ineke Luijten
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Jin-Feng Zhao
- MRC Protein Phosphorylation & Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Brendan Corcoran
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Robert K. Semple
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ian G. Ganley
- MRC Protein Phosphorylation & Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Vicky E. MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| |
Collapse
|
16
|
Schroeder ME, Batan D, Gonzalez Rodriguez A, Speckl KF, Peters DK, Kirkpatrick BE, Hach GK, Walker CJ, Grim JC, Aguado BA, Weiss RM, Anseth KS. Osteopontin activity modulates sex-specific calcification in engineered valve tissue mimics. Bioeng Transl Med 2023; 8:e10358. [PMID: 36684107 PMCID: PMC9842038 DOI: 10.1002/btm2.10358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with aortic valve stenosis (AVS) have sexually dimorphic phenotypes in their valve tissue, where male valvular tissue adopts a calcified phenotype and female tissue becomes more fibrotic. The molecular mechanisms that regulate sex-specific calcification in valvular tissue remain poorly understood. Here, we explored the role of osteopontin (OPN), a pro-fibrotic but anti-calcific bone sialoprotein, in regulating the calcification of female aortic valve tissue. Recognizing that OPN mediates calcification processes, we hypothesized that aortic valvular interstitial cells (VICs) in female tissue have reduced expression of osteogenic markers in the presence of elevated OPN relative to male VICs. Human female valve leaflets displayed reduced and smaller microcalcifications, but increased OPN expression relative to male leaflets. To understand how OPN expression contributes to observed sex dimorphisms in valve tissue, we employed enzymatically degradable hydrogels as a 3D cell culture platform to recapitulate male or female VIC interactions with the extracellular matrix. Using this system, we recapitulated sex differences observed in human tissue, specifically demonstrating that female VICs exposed to calcifying medium have smaller mineral deposits within the hydrogel relative to male VICs. We identified a change in OPN dynamics in female VICs in the presence of calcification stimuli, where OPN deposition localized from the extracellular matrix to perinuclear regions. Additionally, exogenously delivered endothelin-1 to encapsulated VICs increased OPN gene expression in male cells, which resulted in reduced calcification. Collectively, our results suggest that increased OPN in female valve tissue may play a sex-specific role in mitigating mineralization during AVS progression.
Collapse
Affiliation(s)
- Megan E. Schroeder
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Dilara Batan
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Department of BiochemistryUniversity of Colorado BoulderBoulderColoradoUSA
| | - Andrea Gonzalez Rodriguez
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Kelly F. Speckl
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Douglas K. Peters
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Department of Molecular, Cellular, and Developmental BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Bruce E. Kirkpatrick
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Medical Scientist Training ProgramUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Grace K. Hach
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Cierra J. Walker
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Materials Science and Engineering ProgramUniversity of Colorado BoulderBoulderColoradoUSA
| | - Joseph C. Grim
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Brian A. Aguado
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Sanford Consortium for Regenerative MedicineLa JollaCaliforniaUSA
| | - Robert M. Weiss
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
| | - Kristi S. Anseth
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Materials Science and Engineering ProgramUniversity of Colorado BoulderBoulderColoradoUSA
| |
Collapse
|
17
|
Cheng SQ, Liu NF, Fang LJ, Li M. Factors predicting the occurrence of aortic valve calcification in patients with coronary artery calcification in China. Acta Cardiol 2022; 77:910-917. [PMID: 35575298 DOI: 10.1080/00015385.2022.2072053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVES In patients with coronary artery calcification (CAC), a predictor of adverse cardiovascular events, coronary computed tomography angiography (CCTA) also shows valvular calcification. In this study, we evaluated common clinical indicators in CAC patients with aortic (AoVC) and mitral valve (MVC) calcification. METHODS CAC and valvular calcification were quantified using the Agatston score in 636 hospitalised patients with CAC who underwent CCTA. RESULTS Valvular calcification was found in 30.5% of patients, with 25.2% (160 patients) showing AoVC. Age was an independent predictor of AoVC in both men (odds ratio (OR), 1.086; 95% confidence interval (CI), [1.054-1.119]; p < 0.001) and women (OR, 1.109; CI, [1.066-1.154]; p < 0.001). In men, we also found that a history of cerebral infarction was an independent predictor of AoVC (OR, 2.402; CI, [1.177-4.902]; p < 0.05). The independent predictors of AoVC in the 60- to 69-years age group were BMI (OR, 1.181; CI, [1.061-1.316]; p < 0.01) and history of cerebral infarction (OR, 3.187; CI, [1.283-7.919]; p < 0.05). CONCLUSIONS Age is a key independent predictor of AoVC in CAC patients. History of cerebrovascular disease was also an independent predictor of AoVC, but only in men and patients aged 60-69 years. Our results indicate that a history of cerebral infarction may be used as a risk factor when identifying AoVC in patients with CAC.
Collapse
Affiliation(s)
- Shou-Quan Cheng
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Nai-Feng Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Li-Juan Fang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Min Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China
| |
Collapse
|
18
|
Winnicki A, Gadd J, Ohanyan V, Hernandez G, Wang Y, Enrick M, McKillen H, Kiedrowski M, Kundu D, Kegecik K, Penn M, Chilian WM, Yin L, Dong F. Role of endothelial CXCR4 in the development of aortic valve stenosis. Front Cardiovasc Med 2022; 9:971321. [PMID: 36148060 PMCID: PMC9488705 DOI: 10.3389/fcvm.2022.971321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background CXCL12/CXCR4 signaling is essential in cardiac development and repair, however, its contribution to aortic valve stenosis (AVS) remains unclear. In this study, we tested the role of endothelial CXCR4 on the development of AVS. Materials and methods We generated CXCR4 endothelial cell-specific knockout mice (EC CXCR4 KO) by crossing CXCR4fl/fl mice with Tie2-Cre mice to study the role of endothelial cell CXCR4 in AVS. CXCR4fl/fl mice were used as controls. Echocardiography was used to assess the aortic valve and cardiac function. Heart samples containing the aortic valve were stained using Alizarin Red for detection of calcification. Masson’s trichrome staining was used for the detection of fibrosis. The apex of the heart samples was stained with wheat germ agglutinin (WGA) to visualize ventricular hypertrophy. Results Compared with the control group, the deletion of CXCR4 in endothelial cells led to significantly increased aortic valve peak velocity and aortic valve peak pressure gradient, with decreased aortic valve area and ejection fraction. EC CXCR4 KO mice also developed cardiac hypertrophy as evidenced by increased diastolic and systolic left ventricle posterior wall thickness (LVPW), cardiac myocyte size, and heart weight (HW) to body weight (BW) ratio. Our data also confirmed increased microcalcifications, interstitial fibrosis, and thickened valvular leaflets of the EC CXCR4 KO mice. Conclusion The data collected throughout this study suggest the deletion of CXCR4 in endothelial cells is linked to the development of aortic valve stenosis and left ventricular hypertrophy. The statistically significant parameters measured indicate that endothelial cell CXCR4 plays an important role in aortic valve development and function. We have compiled compelling evidence that EC CXCR4 KO mice can be used as a novel model for AVS.
Collapse
Affiliation(s)
- Anna Winnicki
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - James Gadd
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Gilbert Hernandez
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Yang Wang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Molly Enrick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Hannah McKillen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Matthew Kiedrowski
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Dipan Kundu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Karlina Kegecik
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Marc Penn
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
- Summa Cardiovascular Institute, Summa Health, Akron, OH, United States
| | - William M. Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
- Liya Yin,
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
- *Correspondence: Feng Dong,
| |
Collapse
|
19
|
Chiang HY, Chu PH, Chen SC, Lee TH. MFG-E8 promotes osteogenic transdifferentiation of smooth muscle cells and vascular calcification by regulating TGF-β1 signaling. Commun Biol 2022; 5:364. [PMID: 35440618 PMCID: PMC9018696 DOI: 10.1038/s42003-022-03313-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Vascular calcification occurs in arterial aging, atherosclerosis, diabetes mellitus, and chronic kidney disease. Transforming growth factor-β1 (TGF-β1) is a key modulator driving the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs), leading to vascular calcification. We hypothesize that milk fat globule–epidermal growth factor 8 (MFG-E8), a glycoprotein expressed in VSMCs, promotes the osteogenic transdifferentiation of VSMCs through the activation of TGF-β1-mediated signaling. We observe that the genetic deletion of MFG-E8 prevents calcium chloride-induced vascular calcification in common carotid arteries (CCAs). The exogenous application of MFG-E8 to aged CCAs promotes arterial wall calcification. MFG-E8-deficient cultured VSMCs exhibit decreased biomineralization and phenotypic transformation to osteoblast-like cells in response to osteogenic medium. MFG-E8 promotes β1 integrin–dependent MMP2 expression, causing TGF-β1 activation and subsequent VSMC osteogenic transdifferentiation and biomineralization. Thus, the established molecular link between MFG-E8 and vascular calcification suggests that MFG-E8 can be therapeutically targeted to mitigate vascular calcification. A molecular link between the milk fat globule–epidermal growth factor 8 (MFG-E8), activation of vascular calcification driver TGF-β1 and osteogenic differentiation of vascular smooth muscle cells suggests that MFG-E8 could be a therapeutic target for vascular calcification.
Collapse
Affiliation(s)
- Hou-Yu Chiang
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Shao-Chi Chen
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Hein Lee
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
20
|
Fan S, Hu Y. Integrative analyses of biomarkers and pathways for heart failure. BMC Med Genomics 2022; 15:72. [PMID: 35346191 PMCID: PMC8962515 DOI: 10.1186/s12920-022-01221-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
Abstract
Background
Heart failure (HF) is the most common potential cause of death, causing a huge health and economic burden all over the world. So far, some impressive progress has been made in the study of pathogenesis. However, the underlying molecular mechanisms leading to this disease remain to be fully elucidated.
Methods
The microarray data sets of GSE76701, GSE21610 and GSE8331 were retrieved from the gene expression comprehensive database (GEO). After merging all microarray data and adjusting batch effects, differentially expressed genes (DEG) were determined. Functional enrichment analysis was performed based on Gene Ontology (GO) resources, Kyoto Encyclopedia of Genes and Genomes (KEGG) resources, gene set enrichment analysis (GSEA), response pathway database and Disease Ontology (DO). Protein protein interaction (PPI) network was constructed using string database. Combined with the above important bioinformatics information, the potential key genes were selected. The comparative toxicological genomics database (CTD) is used to explore the interaction between potential key genes and HF.
Results
We identified 38 patients with heart failure and 16 normal controls. There were 315 DEGs among HF samples, including 278 up-regulated genes and 37 down-regulated genes. Pathway enrichment analysis showed that most DEGs were significantly enriched in BMP signal pathway, transmembrane receptor protein serine/threonine kinase signal pathway, extracellular matrix, basement membrane, glycosaminoglycan binding, sulfur compound binding and so on. Similarly, GSEA enrichment analysis showed that DEGs were mainly enriched in extracellular matrix and extracellular matrix related proteins. BBS9, CHRD, BMP4, MYH6, NPPA and CCL5 are central genes in PPI networks and modules.
Conclusions
The enrichment pathway of DEGs and GO may reveal the molecular mechanism of HF. Among them, target genes EIF1AY, RPS4Y1, USP9Y, KDM5D, DDX3Y, NPPA, HBB, TSIX, LOC28556 and XIST are expected to become new targets for heart failure. Our findings provide potential biomarkers or therapeutic targets for the further study of heart failure and contribute to the development of advanced prediction, diagnosis and treatment strategies.
Collapse
|
21
|
Ferrari S, Pesce M. The Complex Interplay of Inflammation, Metabolism, Epigenetics, and Sex in Calcific Disease of the Aortic Valve. Front Cardiovasc Med 2022; 8:791646. [PMID: 35071359 PMCID: PMC8770423 DOI: 10.3389/fcvm.2021.791646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Calcification of the aortic valve is one of the most rapidly increasing pathologies in the aging population worldwide. Traditionally associated to cardiovascular risk conditions, this pathology is still relatively unaddressed on a molecular/cellular standpoint and there are no available treatments to retard its progression unless valve substitution. In this review, we will describe some of the most involved inflammatory players, the metabolic changes that may be responsible of epigenetic modifications and the gender-related differences in the onset of the disease. A better understanding of these aspects and their integration into a unique pathophysiology context is relevant to improve current therapies and patients management.
Collapse
Affiliation(s)
- Silvia Ferrari
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| |
Collapse
|
22
|
Bolourian A, Shen J, Gharagozloo M, Mojtahedi Z. 1Menstruation: a possible independent health promoter, aging and COVID-19. CASPIAN JOURNAL OF INTERNAL MEDICINE 2022; 13:155-160. [PMID: 35872674 PMCID: PMC9272961 DOI: 10.22088/cjim.13.0.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/12/2021] [Accepted: 08/22/2021] [Indexed: 11/08/2022]
Abstract
Women live longer than men. Cardiovascular disorders, cancers, and serious infectious conditions are less common among women than men. Recent data also indicate that women, particularly before menopause, are less susceptible to severe COVID-19, a viral infection hitting less-healthy individuals. The superiority of women regarding health has not been completely understood and partly been explained by estradiol beneficial effects on the microenvironment of the body, notably cytokine network. Estradiol cycles are aligned with menstruation cycles, a challenge for distinguishing their individual effects on human health. Large-scale, long-term studies indicate that hysterectomy, particularly at younger ages, is associated with an increased risk of mortality, cancer, or heart disorders. The underlying mechanisms for the increased risk in hysterectomized women are hard to be investigated in animal models since only a few primates menstruate. However, blood exchange models could resemble menstruation and provide some insight into possible beneficial effects of menstruation. Sera from animal models (neutral blood exchange) and also humans that have undergone therapeutic plasma exchange enhance the proliferation of progenitor cells in the culture and contain lower levels of proinflammatory factors. If menstruation resembles a blood exchange model, it can contribute to a healthier cytokine network in women. Consequently, menstruation, independently from estradiol health beneficial effects, can contribute to greater longevity and protection against certain disorders, e.g., COVID-19, in women. Investigation of COVID-19 rate/severity in hysterectomized women will provide insight into the possible beneficial effects of menstruation in COVID-19.
Collapse
Affiliation(s)
- Alireza Bolourian
- College of Pharmacy, Oregon State University, Corvallis, OR, USA,Oregon Health and Science University, Portland, Oregon, USA
| | - Jay Shen
- Department of Health Care Administration and Policy, School of Public Health, University of Nevada, Las Vegas, NV 89154, USA
| | - Marjan Gharagozloo
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zahra Mojtahedi
- Department of Health Care Administration and Policy, School of Public Health, University of Nevada, Las Vegas, NV 89154, USA,Autophgy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence: Zahra Mojtahedi, Department of Health Care Administration and Policy, School of Public Health, University of Nevada, Las Vegas, NV 89154, USA. E-mail: , Tel: 0017028955090, Fax: 0017028955090
| |
Collapse
|
23
|
Wu PY, Lee SY, Chang KV, Chao CT, Huang JW. Gender-Related Differences in Chronic Kidney Disease-Associated Vascular Calcification Risk and Potential Risk Mediators: A Scoping Review. Healthcare (Basel) 2021; 9:healthcare9080979. [PMID: 34442116 PMCID: PMC8394860 DOI: 10.3390/healthcare9080979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Vascular calcification (VC) involves the deposition of calcium apatite in vascular intima or media. Individuals of advanced age, having diabetes mellitus or chronic kidney disease (CKD) are particularly at risk. The pathogenesis of CKD-associated VC evolves considerably. The core driver is the phenotypic change involving vascular wall constituent cells toward manifestations similar to that undergone by osteoblasts. Gender-related differences are observed regarding the expressions of osteogenesis-regulating effectors, and presumably the prevalence/risk of CKD-associated VC exhibits gender-related differences as well. Despite the wealth of data focusing on gender-related differences in the risk of atherosclerosis, few report whether gender modifies the risk of VC, especially CKD-associated cases. We systematically identified studies of CKD-associated VC or its regulators/modifiers reporting data about gender distributions, and extracted results from 167 articles. A significantly higher risk of CKD-associated VC was observed in males among the majority of original investigations. However, substantial heterogeneity exists, since multiple large-scale studies yielded neutral findings. Differences in gender-related VC risk may result from variations in VC assessment methods, the anatomical segments of interest, study sample size, and even the ethnic origins of participants. From a biological perspective, plausible mediators of gender-related VC differences include body composition discrepancies, alterations involving lipid profiles, inflammatory severity, diversities in matrix Gla protein (MGP), soluble Klotho, vitamin D, sclerostin, parathyroid hormone (PTH), fibroblast growth factor-23 (FGF-23), and osteoprotegerin levels. Based on our findings, it may be inappropriate to monotonously assume that male patients with CKD are at risk of VC compared to females, and we should consider more background in context before result interpretation.
Collapse
Affiliation(s)
- Patrick Yihong Wu
- School of Medicine, National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| | - Szu-Ying Lee
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin County 640, Taiwan; (S.-Y.L.); (J.-W.H.)
| | - Ke-Vin Chang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital BeiHu Branch, Taipei 10845, Taiwan;
| | - Chia-Ter Chao
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
- Nephrology Division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100233, Taiwan
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei 10845, Taiwan
- Correspondence: ; Tel.: +886-2-23717101 (ext. 6531); Fax: +886-2-23717101
| | - Jenq-Wen Huang
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin County 640, Taiwan; (S.-Y.L.); (J.-W.H.)
- Nephrology Division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| |
Collapse
|