1
|
Yang W, Li Q, Wang F, Zhang X, Zhang X, Wang M, Xue D, Zhao Y, Tang L. Exosomal miR-155-5p promote the occurrence of carotid atherosclerosis. J Cell Mol Med 2024; 28:e70187. [PMID: 39495676 PMCID: PMC11534067 DOI: 10.1111/jcmm.70187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Periodontitis is a significant independent risk factor for atherosclerosis. Yet, the exact mechanism of action is still not fully understood. In this study, we investigated the effect of exosomes-miR-155-5p derived from periodontal endothelial cells on atherosclerosis in vitro and in vivo. Higher expression of miR-155-5p was detected in the plasma exosomes of patients with chronic periodontitis (CP) and carotid atherosclerosis (CAS) compared to patients with CP. Also, the expression level of miR-155-5p was associated with the severity of CP. miR-155-5p-enriched exosomes from HUVECs increased the angiogenesis and permeability of HAECs and promoted the expression of angiogenesis, permeability, and inflammation genes. Along with the overexpression or inhibition of miR-155-5p, the biological effect of HUVECs-derived exosomes on HAECs changed correspondingly. In ApoE-/- mouse models, miR-155-5p-enriched exosomes promoted the occurrence of carotid atherosclerosis by increasing permeable and angiogenic activity. Collectively, these findings highlight a molecular mechanism of periodontitis in CAS, uncovering exosomal miR-155-5p derived periodontitis affecting carotid endothelial cells in an 'exosomecrine' manner. Exosomal miR-155-5p may be used as a biomarker and target for clinical intervention to control this intractable disease in future, and the graphic abstract was shown in Figure S1.
Collapse
Affiliation(s)
- Wen‐Wen Yang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Qing‐Xiang Li
- Department of Oral and Maxillofacial SurgeryPeking University School and Hospital of StomatologyBeijingChina
| | - Fei Wang
- Department of Vascular Surgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xin‐Ran Zhang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xian‐Li Zhang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Meng Wang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Dong Xue
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Ying Zhao
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Lu Tang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
2
|
Walther K, Gröger S, Vogler JAH, Wöstmann B, Meyle J. Inflammation indices in association with periodontitis and cancer. Periodontol 2000 2024; 96:281-315. [PMID: 39317462 PMCID: PMC11579835 DOI: 10.1111/prd.12612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
Inflammation is a complex physiological process that plays a pivotal role in many if not all pathological conditions, including infectious as well as inflammatory diseases, like periodontitis and autoimmune disorders. Inflammatory response to periodontal biofilms and tissue destruction in periodontitis is associated with the release of inflammatory mediators. Chronic inflammation can promote the development of cancer. Persistence of inflammatory mediators plays a crucial role in this process. Quantification and monitoring of the severity of inflammation in relation to cancer is essential. Periodontitis is mainly quantified based on the severity and extent of attachment loss and/or pocket probing depth, in addition with bleeding on probing. In recent years, studies started to investigate inflammation indices in association with periodontal diseases. To date, only few reviews have been published focusing on the relationship between blood cell count, inflammation indices, and periodontitis. This review presents a comprehensive overview of different systemic inflammation indices, their methods of measurement, and the clinical applications in relation to periodontitis and cancer. This review outlines the physiological basis of inflammation and the underlying cellular and molecular mechanisms of the parameters described. Key inflammation indices are commonly utilized in periodontology such as the neutrophil to lymphocyte ratio. Inflammation indices like the platelet to lymphocyte ratio, platelet distribution width, plateletcrit, red blood cell distribution width, lymphocyte to monocyte ratio, delta neutrophil index, and the systemic immune inflammation index are also used in hospital settings and will be discussed. The clinical roles and limitations, relationship to systemic diseases as well as their association to periodontitis and treatment response are described.
Collapse
Affiliation(s)
- Kay‐Arne Walther
- Department of Periodontology, Dental ClinicJustus Liebig University of GiessenGiessenGermany
- Department of Prosthodontics, Dental ClinicJustus Liebig University of GiessenGiessenGermany
| | - Sabine Gröger
- Department of Periodontology, Dental ClinicJustus Liebig University of GiessenGiessenGermany
- Department of Orthodontics, Dental ClinicJustus Liebig University of GiessenGiessenGermany
| | | | - Bernd Wöstmann
- Department of Periodontology, Dental ClinicJustus Liebig University of GiessenGiessenGermany
- Department of Prosthodontics, Dental ClinicJustus Liebig University of GiessenGiessenGermany
| | - Jörg Meyle
- Department of Periodontology, Dental ClinicJustus Liebig University of GiessenGiessenGermany
- Department of Periodontology, Dental ClinicUniversity of BernBernSwitzerland
| |
Collapse
|
3
|
Boșca AB, Dinte E, Mihu CM, Pârvu AE, Melincovici CS, Șovrea AS, Mărginean M, Constantin AM, Băbțan AM, Muntean A, Ilea A. Local Drug Delivery Systems as Novel Approach for Controlling NETosis in Periodontitis. Pharmaceutics 2024; 16:1175. [PMID: 39339210 PMCID: PMC11435281 DOI: 10.3390/pharmaceutics16091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Periodontitis is a chronic inflammation caused by periodontopathogenic bacteria in the dental biofilm, and also involves the inflammatory-immune response of the host. Polymorphonuclear neutrophils (PMNs) play essential roles in bacterial clearance by multiple mechanisms, including the formation of neutrophil extracellular traps (NETs) that retain and destroy pathogens. During PD progression, the interaction between PMNs, NETs, and bacteria leads to an exaggerated immune response and a prolonged inflammatory state. As a lesion matures, PMNs accumulate in the periodontal tissues and die via NETosis, ultimately resulting in tissue injury. A better understanding of the role of NETs, the associated molecules, and the pathogenic pathways of NET formation in periodontitis, could provide markers of NETosis as reliable diagnostic and prognostic tools. Moreover, an assessment of NET biomarker levels in biofluids, particularly in saliva or gingival crevicular fluid, could be useful for monitoring periodontitis progression and treatment efficacy. Preventing excessive NET accumulation in periodontal tissues, by both controlling NETs' formation and their appropriate removal, could be a key for further development of more efficient therapeutic approaches. In periodontal therapy, local drug delivery (LDD) systems are more targeted, enhancing the bioavailability of active pharmacological agents in the periodontal pocket and surrounding tissues for prolonged time to ensure an optimal therapeutic outcome.
Collapse
Affiliation(s)
- Adina Bianca Boșca
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Elena Dinte
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Alina Elena Pârvu
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Stanca Melincovici
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Alina Simona Șovrea
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Mariana Mărginean
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Anne-Marie Constantin
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Anida-Maria Băbțan
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (A.I.)
| | - Alexandrina Muntean
- Department of Paediatric Dentistry, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (A.I.)
| |
Collapse
|
4
|
Zhang Z, Wen S, Liu J, Ouyang Y, Su Z, Chen D, Liang Z, Wang Y, Luo T, Jiang Q, Guo L. Advances in the relationship between periodontopathogens and respiratory diseases (Review). Mol Med Rep 2024; 29:42. [PMID: 38240101 PMCID: PMC10828996 DOI: 10.3892/mmr.2024.13166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/04/2023] [Indexed: 01/23/2024] Open
Abstract
Periodontitis is a common chronic inflammatory and destructive disease in the mouth and is considered to be associated with systemic diseases. Accumulating evidence has suggested that periodontitis is a risk factor for pulmonary diseases such as pneumonia, chronic obstructive pulmonary disease (COPD), asthma, coronavirus disease 2019 (COVID‑19) and lung cancer. The presence of common periodontal pathogens has been detected in samples from a variety of pulmonary diseases. Periodontal pathogens can be involved in lung diseases by promoting the adhesion and invasion of respiratory pathogens, regulating the apoptosis of respiratory epithelium and inducing overexpression of mucin and disrupting the balance of immune systemin respiratory epithelium cells. Additionally, measures to control plaque and maintain the health of periodontal tissue can decrease the incidence of respiratory adverse events. This evidence suggests a close association between periodontitis and pulmonary diseases. The present study aimed to review the clinical association between periodontitis and pneumonia, COPD, asthma, COVID‑19 and lung cancer, and propose a possible mechanism and potential role of periodontal pathogens in linking periodontal disease and lung disease. This could provide a direction for further research on the association between periodontitis and lung disease and provide novel ideas for the clinical diagnosis and treatment management of these two diseases.
Collapse
Affiliation(s)
- Zhiyi Zhang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Siyi Wen
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Jiaohong Liu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Yuanting Ouyang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Zhikang Su
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Ding Chen
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Zitian Liang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Yan Wang
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong 510182, P.R. China
| | - Tao Luo
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Lvhua Guo
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| |
Collapse
|
5
|
Wu Q, Zhang W, Lu Y, Li H, Yang Y, Geng F, Liu J, Lin L, Pan Y, Li C. Association between periodontitis and inflammatory comorbidities: The common role of innate immune cells, underlying mechanisms and therapeutic targets. Int Immunopharmacol 2024; 128:111558. [PMID: 38266446 DOI: 10.1016/j.intimp.2024.111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Periodontitis, which is related to various systemic diseases, is a chronic inflammatory disease caused by periodontal dysbiosis of the microbiota. Multiple factors can influence the interaction of periodontitis and associated inflammatory disorders, among which host immunity is an important contributor to this interaction. Innate immunity can be activated aberrantly because of the systemic inflammation induced by periodontitis. This aberrant activation not only exacerbates periodontal tissue damage but also impairs systemic health, triggering or aggravating inflammatory comorbidities. Therefore, innate immunity is a potential therapeutic target for periodontitis and associated inflammatory comorbidities. This review delineates analogous aberrations of innate immune cells in periodontitis and comorbid conditions such as atherosclerosis, diabetes, obesity, and rheumatoid arthritis. The mechanisms behind these changes in innate immune cells are discussed, including trained immunity and clonal hematopoiesis of indeterminate potential (CHIP), which can mediate the abnormal activation and myeloid-biased differentiation of hematopoietic stem and progenitor cells. Besides, the expansion of myeloid-derived suppressor cells (MDSCs), which have immunosuppressive and osteolytic effects on peripheral tissues, also contributes to the interaction between periodontitis and its inflammatory comorbidities. The potential treatment targets for relieving the risk of both periodontitis and systemic conditions are also elucidated, such as the modulation of innate immunity cells and mediators, the regulation of trained immunity and CHIP, as well as the inhibition of MDSCs' expansion.
Collapse
Affiliation(s)
- Qibing Wu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Weijia Zhang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaqiong Lu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Hongxia Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yaru Yang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Fengxue Geng
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jinwen Liu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Li Lin
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chen Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
| |
Collapse
|
6
|
Huang Y, Yang J, Zhang Y, Kuang S, Shen Z, Qin W. Blocking CXCR1/2 attenuates experimental periodontitis by suppressing neutrophils recruitment. Int Immunopharmacol 2024; 128:111465. [PMID: 38181674 DOI: 10.1016/j.intimp.2023.111465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Periodontitis (PD) is a common chronic oral inflammatory disease that cause alveolar bone loss. Current strategies for bone regeneration achieve limited results in PD. The aberrant host osteoimmunity to pathogenic bacteria is responsible for the destruction of alveolar bone in PD. We aimed to investigate the distinctive activity of immune cells in PD to create more effective and precise therapeutic approaches for treating PD. In this study, we revealed that neutrophils in the inflamed alveolar bone of PD patients expressed higher levels of CXCR1/2 and had a stronger pro-inflammatory capacity and chemotactic ability than that in healthy individuals. Suppressing the recruitment of neutrophils to inflamed sites with the CXCR1/2 inhibitor reparixin reduced alveolar bone loss in PD mice. In this study, we not only revealed that neutrophils exhibit a heterogeneously stronger pro-inflammatory capacity in the inflamed alveolar bone of PD patients but also provided a precise therapeutic treatment for PD involving the suppression of neutrophil recruitment.
Collapse
Affiliation(s)
- Yunjia Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jichen Yang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yong Zhang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuhong Kuang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zongshan Shen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Wei Qin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Ye L, Lv Y, Wu Q, Chen Y, Zhang X, Su Y. Chronic periodontitis induces the proliferation of pancreatic β-cells to cause hyperinsulinemia in a rat model. J Periodontal Res 2023; 58:1290-1299. [PMID: 37723987 DOI: 10.1111/jre.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND AND OBJECTIVE The purpose of this study was to determine if chronic periodontitis (CP) may induce hyperinsulinemia and may have the effect of on pancreatic β-cell proliferation in a rat model. MATERIALS AND METHODS Twelve male Sprague-Dawley rats were divided into two groups: the CP group and the control group (Con group). The following contents were evaluated: pathological changes in periodontal soft and hard tissues; serum lipopolysaccharide (LPS) level, serum fasting insulin (FINS) level, fasting blood glucose (FBG) level, and homeostasis model assessment (HOMA) β (HOMA-β) index; histopathological examination of islets; immunohistochemistry of insulin and p-Smad2 expression in islets; immunofluorescence of changes in the relative number of β-cells and the number of Ki67-positive β-cells. Western blotting was used to analyze p-Smad2/Smad2 levels. Results were analyzed by two independent samples t tests. RESULTS Increased serum LPS level, FINS level, and HOMA-β index were observed in the rats of the CP group; FBG level did not change significantly; histological assessments showed an enlarged islet area, increased insulin content, relatively increased β-cells, increased Ki67-positive β-cells, and decreased p-Smad2 expression in islets in the rats of the CP group. CONCLUSION Our study results link CP-induced hyperinsulinemia with changes in islets, such as islet hyperplasia and compensatory β-cell proliferation, by using a CP rat model.
Collapse
Affiliation(s)
- Leilei Ye
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yingtao Lv
- Department of Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Qianqi Wu
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Yiyan Chen
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xueyang Zhang
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Yuan Su
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| |
Collapse
|
8
|
Mishra S, Johnson L, Gazala MP, Dahiya S, Rahman W, Sreeraj VS. Systemic immune-inflammation index in patients with generalized stage III grade C periodontitis. Oral Dis 2023; 29:3599-3609. [PMID: 35913425 DOI: 10.1111/odi.14328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Systemic immune-inflammation index (SII) is a novel, inflammatory biomarker whose role in predicting several chronic systemic diseases has been recently identified. However, its association with generalized stage III grade C periodontitis in young adults remains unknown. MATERIAL AND METHODS The study is a multicentered, double-blind, hospital-based case-control clinical study. Periodontal examination comprised of recording plaque index, sites with bleeding on probing, pocket depth and clinical attachment loss for patients with generalized stage III grade C periodontitis and periodontally healthy group. Complete blood counts were obtained and used for calculating SII, neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte ratio. Collected data were then subjected to statistical analyses. RESULTS SII was significantly higher in patients with generalized stage III grade C periodontitis compared to periodontally healthy individuals (723.87 vs. 537.74 × 109 /L, p < 0.0001). SII is associated with severe periodontitis in young adults (odds ratio [OR]:11.86, 95% CI 9.61-20.76, p < 0.0001) after adjusting for factors found significant in univariate analysis. Receiver operative curve analysis demonstrated a fair predictive validity of SII in detecting generalized stage III grade C periodontitis in young adults (AUC: 0.766, 95%CI 0.731-0.799, p < 0.0001, sensitivity 81.27%, specificity 76.50% and diagnostic accuracy 78.89%). SII did not exhibit superior predictive validity when compared with NLR in the context of generalized stage III grade C periodontitis (AUC for SII: 0.766, 95%CI 0.731-0.799, AUC for NLR: 0.788, 95% CI 0.754-0.819; p = 0.28). CONCLUSION SII is associated with generalized stage III grade C periodontitis in young adults.
Collapse
Affiliation(s)
- Supriya Mishra
- Department of Periodontics, Government Dental College and Hospital, Raipur, India
| | - Lynn Johnson
- Department of Periodontics, Rama Dental College, Kanpur, India
- Maitri College of Dentistry and Research Centre, Durg, India
| | - M P Gazala
- Department of Periodontics, Government Dental College and Hospital, Raipur, India
| | - Sheetal Dahiya
- Department of Periodontics, Government Dental College and Hospital, Raipur, India
| | - Waheda Rahman
- Department of Periodontics, Government Dental College and Hospital, Raipur, India
| | - V S Sreeraj
- Department of Periodontics, Government Dental College and Hospital, Raipur, India
| |
Collapse
|
9
|
Li Y, Chen Y, Cai G, Ni Q, Geng Y, Wang T, Bao C, Ruan X, Wang H, Sun W. Roles of trained immunity in the pathogenesis of periodontitis. J Periodontal Res 2023; 58:864-873. [PMID: 37424315 DOI: 10.1111/jre.13158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
Periodontitis is a chronic, inflammatory, and destructive disease caused by the imbalance of host immune response and dental biofilm, and has strong epidemiological and pathogenesis correlations with systemic diseases. The immune response in periodontitis involves both innate and adaptive immunity, with numerous immune cells and inflammatory pathways participating in a complex network of interactions. In the past decade, the concept of "trained immunity" has emerged, which highlights the memory characteristics of innate immunity, thus opening up a new avenue of research. There is growing interest in exploring the role of trained immunity in chronic inflammatory and metabolic diseases such as atherosclerosis and diabetes mellitus. Evidence suggests that trained immunity may also regulate the onset and progression of periodontitis, serving as a bridge between periodontitis-related comorbidities. In this review, we summarize concepts related to trained immunity and its development. Furthermore, we present current evidence that endorses the notion of trained immunity in periodontitis and analyze possible roles it may assume regarding periodontitis-associated inflammatory reactions from a cellular perspective. Finally, we discuss various clinical therapeutic strategies for periodontitis and its associated comorbidities that target trained immunity. We hope that more researchers will pay attention to this emerging concept, thereby providing deeper insights into this novel field.
Collapse
Affiliation(s)
- Yingyi Li
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yue Chen
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Guanhui Cai
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Qiaoqi Ni
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Ying Geng
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Ting Wang
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Chen Bao
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xiaolei Ruan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Hua Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Wen Sun
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
10
|
Li X, Xiao S, Filipczak N, Yalamarty SSK, Shang H, Zhang J, Zheng Q. Role and Therapeutic Targeting Strategies of Neutrophil Extracellular Traps in Inflammation. Int J Nanomedicine 2023; 18:5265-5287. [PMID: 37746050 PMCID: PMC10516212 DOI: 10.2147/ijn.s418259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are large DNA reticular structures secreted by neutrophils and decorated with histones and antimicrobial proteins. As a key mechanism for neutrophils to resist microbial invasion, NETs play an important role in the killing of microorganisms (bacteria, fungi, and viruses). Although NETs are mostly known for mediating microbial killing, increasing evidence suggests that excessive NETs induced by stimulation of physical and chemical components, microorganisms, and pathological factors can exacerbate inflammation and organ damage. This review summarizes the induction and role of NETs in inflammation and focuses on the strategies of inhibiting NETosis and the mechanisms involved in pathogen evasion of NETs. Furthermore, herbal medicine inhibitors and nanodelivery strategies improve the efficiency of inhibition of excessive levels of NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | | | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
11
|
Tsai KZ, Huang WC, Chang YC, Kwon Y, Sui X, Lavie CJ, Lin GM. Localized periodontitis severity associated with carotid intima-media thickness in young adults: CHIEF atherosclerosis study. Sci Rep 2023; 13:10523. [PMID: 37386122 PMCID: PMC10310726 DOI: 10.1038/s41598-023-37840-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023] Open
Abstract
This study aimed to investigate the association of periodontitis with subclinical atherosclerosis in young adults. In total, 486 non-diabetic military personnel were included in Taiwan. Carotid intima-media thickness (cIMT) was assessed utilizing sonography for subclinical atherosclerosis. Periodontitis severity was defined based on the 2017 US/European consensus. Mean cIMT was compared by analysis of covariance (ANCOVA), and multiple logistic regression model was used to determine the association of periodontitis severity and the highest quintile of cIMT (≥ 0.8 mm) with adjustments for age, sex, metabolic risk factors and leukocyte counts. The mean cIMT increased in those with greater stages (periodontal health (N = 349): 0.65 mm, Stage I (N = 41): 0.72 mm, Stage II (N = 57): 0.74 mm and Stage III: 0.76 mm, respectively, p < 0.01). In multiple logistic regression, a dose-response association from Stage I to Stage III periodontitis for cIMT ≥ 0.8 mm was also found [ORs and 95% CIs 1.41 (0.60-3.29), 1.62 (0.79-3.31) and 3.20 (1.42-7.18)]. Leucocyte counts ≥ 7.6 × 103/µL (the highest quintile) was associated with cIMT ≥ 0.8 mm [OR 1.86 (1.11-3.12)], while no association existed for other metabolic risk factors. In conclusion, severe periodontitis and leukocyte counts are independent risk factors of increased cIMT, emphasizing the critical role of inflammation in subclinical atherosclerosis.
Collapse
Affiliation(s)
- Kun-Zhe Tsai
- Department of Internal Medicine, Hualien Armed Forces General Hospital, No. 100, Jinfeng St., Hualien City, 970, Taiwan
- Department of Stomatology of Periodontology, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yun-Chen Chang
- School of Nursing and Graduate Institute of Nursing, China Medical University, Taichung, 406, Taiwan
| | - Younghoon Kwon
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xuemei Sui
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA, USA
| | - Gen-Min Lin
- Department of Internal Medicine, Hualien Armed Forces General Hospital, No. 100, Jinfeng St., Hualien City, 970, Taiwan.
- Department of Internal Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
12
|
Rasquel-Oliveira FS, Silva MDVD, Martelossi-Cebinelli G, Fattori V, Casagrande R, Verri WA. Specialized Pro-Resolving Lipid Mediators: Endogenous Roles and Pharmacological Activities in Infections. Molecules 2023; 28:5032. [PMID: 37446699 DOI: 10.3390/molecules28135032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
During an infection, inflammation mobilizes immune cells to eliminate the pathogen and protect the host. However, inflammation can be detrimental when exacerbated and/or chronic. The resolution phase of the inflammatory process is actively orchestrated by the specialized pro-resolving lipid mediators (SPMs), generated from omega-3 and -6 polyunsaturated fatty acids (PUFAs) that bind to different G-protein coupled receptors to exert their activity. As immunoresolvents, SPMs regulate the influx of leukocytes to the inflammatory site, reduce cytokine and chemokine levels, promote bacterial clearance, inhibit the export of viral transcripts, enhance efferocytosis, stimulate tissue healing, and lower antibiotic requirements. Metabolomic studies have evaluated SPM levels in patients and animals during infection, and temporal regulation of SPMs seems to be essential to properly coordinate a response against the microorganism. In this review, we summarize the current knowledge on SPM biosynthesis and classifications, endogenous production profiles and their effects in animal models of bacterial, viral and parasitic infections.
Collapse
Affiliation(s)
- Fernanda S Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Matheus Deroco Veloso da Silva
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, Paraná, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| |
Collapse
|
13
|
Lee MJ, Ryu HH, Hwang JW, Kim JR, Cho ES, Choi JK, Moon YJ. Sirt6 Activation Ameliorates Inflammatory Bone Loss in Ligature-Induced Periodontitis in Mice. Int J Mol Sci 2023; 24:10714. [PMID: 37445896 PMCID: PMC10341680 DOI: 10.3390/ijms241310714] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Periodontitis is an inflammatory disease caused by microorganisms that induce the destruction of periodontal tissue. Inflamed and damaged tissue produces various inflammatory cytokines, which activate osteoclasts and induce alveolar bone loss and, eventually, tooth loss. Sirt6 expression suppresses inflammation and bone resorption; however, its role in periodontitis remains unclear. We hypothesized that Sirt6 has a protective role in periodontitis. To understand the role of Sirt6 in periodontitis, we compared periodontitis with ligature placement around the maxillary left second molar in 8-week-old control (C57BL/6J) male mice to Sirt6-overexpressing Tg (Sirt6Tg) mice, and we observed the resulting phenotypes using micro-CT. MDL801, a Sirt6 activator, was used as a therapy for periodontitis through oral gavage. Pro-inflammatory cytokines and increased osteoclast numbers were observed in alveolar bone tissue under periodontitis surgery. In the same condition, interestingly, protein levels from Sirt6 were the most downregulated among sirtuins in alveolar bone tissue. Based on micro-CT and CEJ-ABC distance, Sirt6Tg was observed to resist bone loss against ligature-induced periodontitis. Furthermore, the number of osteoclasts was significantly reduced in Sirt6Tg-ligated mice compared with control-ligated mice, although systemic inflammatory cytokines did not change. Consistent with this observation, we confirmed that bone loss was significantly reduced when MDL801, a Sirt6 activator, was included in the ligation mouse model. Our findings demonstrate that Sirt6 activation prevents bone loss against ligature-induced periodontitis. Thus, a Sirt6 activator may provide a new therapeutic approach for periodontitis.
Collapse
Affiliation(s)
- Myung Jin Lee
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Hyang Hwa Ryu
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (H.H.R.); (J.W.H.)
| | - Jae Won Hwang
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (H.H.R.); (J.W.H.)
| | - Jung Ryul Kim
- Department of Orthopaedic Surgery, Jeonbuk National University Medical School and Hospital, Jeonju 54896, Republic of Korea;
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju 54896, Republic of Korea;
| | - Jin Kyeong Choi
- Department of Immunology, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Young Jae Moon
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (H.H.R.); (J.W.H.)
- Department of Orthopaedic Surgery, Jeonbuk National University Medical School and Hospital, Jeonju 54896, Republic of Korea;
| |
Collapse
|
14
|
Vitkov L, Herrmann M, Knopf J. Editorial: Oral neutrophils - the good, the bad, and the ugly. Front Immunol 2023; 14:1225210. [PMID: 37292199 PMCID: PMC10244779 DOI: 10.3389/fimmu.2023.1225210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023] Open
Affiliation(s)
- Ljubomir Vitkov
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
- Department of Environment & Biodiversity, University of Salzburg, Salzburg, Austria
- Department of Dental Pathology, University of East Sarajevo, East Sarajevo, Bosnia and Herzegovina
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Pediatric Surgery, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
15
|
Singh J, Boettcher M, Dölling M, Heuer A, Hohberger B, Leppkes M, Naschberger E, Schapher M, Schauer C, Schoen J, Stürzl M, Vitkov L, Wang H, Zlatar L, Schett GA, Pisetsky DS, Liu ML, Herrmann M, Knopf J. Moonlighting chromatin: when DNA escapes nuclear control. Cell Death Differ 2023; 30:861-875. [PMID: 36755071 PMCID: PMC9907214 DOI: 10.1038/s41418-023-01124-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 02/10/2023] Open
Abstract
Extracellular chromatin, for example in the form of neutrophil extracellular traps (NETs), is an important element that propels the pathological progression of a plethora of diseases. DNA drives the interferon system, serves as autoantigen, and forms the extracellular scaffold for proteins of the innate immune system. An insufficient clearance of extruded chromatin after the release of DNA from the nucleus into the extracellular milieu can perform a secret task of moonlighting in immune-inflammatory and occlusive disorders. Here, we discuss (I) the cellular events involved in the extracellular release of chromatin and NET formation, (II) the devastating consequence of a dysregulated NET formation, and (III) the imbalance between NET formation and clearance. We include the role of NET formation in the occlusion of vessels and ducts, in lung disease, in autoimmune diseases, in chronic oral disorders, in cancer, in the formation of adhesions, and in traumatic spinal cord injury. To develop effective therapies, it is of utmost importance to target pathways that cause decondensation of chromatin during exaggerated NET formation and aggregation. Alternatively, therapies that support the clearance of extracellular chromatin are conceivable.
Collapse
Affiliation(s)
- Jeeshan Singh
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maximilian Dölling
- Department of Surgery, University Hospital Magdeburg, Magdeburg, Germany
| | - Annika Heuer
- Division of Spine Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Mildred-Scheel Cancer Career Center Hamburg HaTriCS4, University Cancer Center Hamburg, Hamburg, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Moritz Leppkes
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine 1, Gastroenterology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mirco Schapher
- Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus University, Nürnberg, Germany
| | - Christine Schauer
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ljubomir Vitkov
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
- Department of Environment & Biodiversity, University of Salzburg, Salzburg, 5020, Austria
- Department of Dental Pathology, University of East Sarajevo, East Sarajevo, Republic of Srpska, Bosnia and Herzegovina
| | - Han Wang
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Leticija Zlatar
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg A Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - David S Pisetsky
- Department of Medicine and Immunology and Medical Research Service, Duke University Medical Center and Veterans Administration Medical Center, Durham, NC, USA
| | - Ming-Lin Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Jasmin Knopf
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
16
|
Vitkov L, Singh J, Schauer C, Minnich B, Krunić J, Oberthaler H, Gamsjaeger S, Herrmann M, Knopf J, Hannig M. Breaking the Gingival Barrier in Periodontitis. Int J Mol Sci 2023; 24:4544. [PMID: 36901974 PMCID: PMC10003416 DOI: 10.3390/ijms24054544] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The break of the epithelial barrier of gingiva has been a subject of minor interest, albeit playing a key role in periodontal pathology, transitory bacteraemia, and subsequent systemic low-grade inflammation (LGI). The significance of mechanically induced bacterial translocation in gingiva (e.g., via mastication and teeth brushing) has been disregarded despite the accumulated knowledge of mechanical force effects on tight junctions (TJs) and subsequent pathology in other epithelial tissues. Transitory bacteraemia is observed as a rule in gingival inflammation, but is rarely observed in clinically healthy gingiva. This implies that TJs of inflamed gingiva deteriorate, e.g., via a surplus of lipopolysaccharide (LPS), bacterial proteases, toxins, Oncostatin M (OSM), and neutrophil proteases. The inflammation-deteriorated gingival TJs rupture when exposed to physiological mechanical forces. This rupture is characterised by bacteraemia during and briefly after mastication and teeth brushing, i.e., it appears to be a dynamic process of short duration, endowed with quick repair mechanisms. In this review, we consider the bacterial, immune, and mechanical factors responsible for the increased permeability and break of the epithelial barrier of inflamed gingiva and the subsequent translocation of both viable bacteria and bacterial LPS during physiological mechanical forces, such as mastication and teeth brushing.
Collapse
Affiliation(s)
- Ljubomir Vitkov
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66421 Homburg, Germany
- Department of Environment & Biodiversity, University of Salzburg, 5020 Salzburg, Austria
- Department of Dental Pathology, University of East Sarajevo, 71123 East Sarajevo, Bosnia and Herzegovina
| | - Jeeshan Singh
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christine Schauer
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Bernd Minnich
- Department of Environment & Biodiversity, University of Salzburg, 5020 Salzburg, Austria
| | - Jelena Krunić
- Department of Dental Pathology, University of East Sarajevo, 71123 East Sarajevo, Bosnia and Herzegovina
| | - Hannah Oberthaler
- Department of Environment & Biodiversity, University of Salzburg, 5020 Salzburg, Austria
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med Department Hanusch Hospital, 1140 Vienna, Austria
| | - Martin Herrmann
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
17
|
Silibinin Attenuates Experimental Periodontitis by Downregulation of Inflammation and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:5617800. [PMID: 36846719 PMCID: PMC9946757 DOI: 10.1155/2023/5617800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 02/17/2023]
Abstract
Periodontitis is an oral microbiota-induced inflammatory disease, in which inflammation and oxidative stress play a critical role. Silibinin (SB), a Silybum marianum-derived compound, exhibits strong anti-inflammatory and antioxidative properties. We adopted a rat ligature-induced periodontitis model and a lipopolysaccharide- (LPS-) stimulated human periodontal ligament cells (hPDLCs) model to evaluate the protective effects of SB. In the in vivo model, SB reduced alveolar bone loss and apoptosis of PDLCs in the periodontal tissue. SB also maintained the expression of nuclear factor-E2-related factor 2 (Nrf2), a key regulator of cellular resistance to oxidative stress, and attenuated lipid, protein, and DNA oxidative damages in the periodontal lesion area. Meanwhile, in the in vitro model, SB administration reduced the production of intracellular reactive oxidative species (ROS). Furthermore, SB exerted a strong anti-inflammatory property in both in vivo and in vitro models by inhibiting the expression of inflammatory mediators including nuclear factor-κB (NF-κB) as well as nucleotide binding oligomerization domain- (NOD-) like receptor family pyrin domain-containing 3 (NLRP3) and downregulating the levels of proinflammatory cytokines. This study, for the first time, demonstrates that SB exhibits the anti-inflammatory and antioxidative properties against periodontitis by downregulating the expression of NF-κB and NLRP3 and upregulating Nrf2 expression, suggesting a promising potential clinical application of SB in periodontitis.
Collapse
|
18
|
Mirnic J, Djuric M, Veljovic T, Gusic I, Katanic J, Vukoje K, Ramic B, Tadic A, Brkic S. Evaluation of Lipid Peroxidation in the Saliva of Diabetes Mellitus Type 2 Patients with Periodontal Disease. Biomedicines 2022; 10:biomedicines10123147. [PMID: 36551903 PMCID: PMC9775685 DOI: 10.3390/biomedicines10123147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
As oxidative stress has been implicated in the pathogenesis of diabetes mellitus and periodontitis, it may serve as a link between these conditions. Therefore, as a part of the present study, salivary lipid peroxidation (LP) in periodontitis patients with and without diabetes mellitus type 2 (DM2) was evaluated, along with the periodontal therapy effectiveness. The study sample comprised of 71 DM2 patients with periodontitis and 31 systemically healthy controls suffering from periodontitis of comparable severity. In all participants, periodontal indices—plaque index (PI), gingival index (GI), papilla bleeding index (PBI), probing pocket depth (PPD), and clinical attachment level (CAL)—were recorded, and salivary LP was measured using a spectrophotometric method prior to treatment initiation and three months post-treatment. At baseline, mean salivary LP in DM2 patients was higher than that measured for the control group, but the difference did not reach statistical significance (p > 0.05), whereas a positive significant correlation was found between PPD and LP in both groups. Three months after nonsurgical periodontal therapy, clinical periodontal parameters and salivary LP levels were significantly reduced in both groups (p < 0.05). These findings indicate that the improvement in clinical periodontal status following nonsurgical periodontal therapy is accompanied by a significant decrease in salivary LP in DM2 patients, suggesting that periodontitis, rather than diabetes, is the primary driver of the elevated salivary LP in this group.
Collapse
Affiliation(s)
- Jelena Mirnic
- Department of Dental Medicine, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
- Correspondence: ; Tel.: +381-063-519-256
| | - Milanko Djuric
- Dentistry Clinic of Vojvodina, Department of Dental Medicine, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Tanja Veljovic
- Department of Dental Medicine, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ivana Gusic
- Dentistry Clinic of Vojvodina, Department of Dental Medicine, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Jasmina Katanic
- Children and Youth Health Care Institute of Vojvodina, Department of Biochemistry, Medical Faculty, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Karolina Vukoje
- Department of Dental Medicine, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Bojana Ramic
- Department of Dental Medicine, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ana Tadic
- Dentistry Clinic of Vojvodina, Department of Dental Medicine, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Snezana Brkic
- Clinic for Infectious Diseases, Clinical Centre of Vojvodina, Department of Infectious Diseases, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| |
Collapse
|
19
|
Effects of Nonsurgical Periodontal Therapy on Salivary 8-Hydroxy-Deoxyguanosine Levels and Glycemic Control in Diabetes Mellitus Type 2 Patients. Biomedicines 2022; 10:biomedicines10092269. [PMID: 36140370 PMCID: PMC9496046 DOI: 10.3390/biomedicines10092269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes and periodontitis are complex chronic diseases that are potentially interrelated, as well as associated with oxidative stress. Thus, the aim of the present study was to evaluate the influence of nonsurgical periodontal treatment on salivary 8-hydroxy-deoxyguanosine (8-OHdG) levels and glycemic control in patients suffering from both diabetes mellitus type 2 (DM2) and periodontitis. The study sample included 53 DM2 patients, while 31 systemically healthy patients served as controls. Participants in both groups suffered from periodontitis of comparable severity. Periodontal clinical parameters, namely plaque index (PI), gingival index (GI), papilla bleeding index (PBI), probing pocket depth (PPD), and clinical attachment level (CAL) were recorded, along with salivary 8-OHdG levels and glycated hemoglobin (HbA1c). Levels of 8-OHdG were analyzed by ELISA. All aforementioned parameters were evaluated prior to commencing the study and at 90-day follow-up upon nonsurgical periodontal therapy completion. At baseline, salivary levels of 8-OHdG in DM2 patients were significantly higher (1.17 ng/mL) than those measured for the control group (0.75 ng/mL) and showed significant positive correlation with GI and PPD (p < 0.05). Three months after nonsurgical periodontal therapy, the salivary 8-OHdG levels were significantly reduced in DM2 patients (p < 0.05). Analysis results also revealed statistically significant changes in all measured clinical parameters between baseline and three-month follow-up in both groups (p < 0.05). Upon treatment completion, a decline in the HbA1c level was noted in DM group, but it did not reach statistical significance (p > 0.05). It can be concluded that DM2 patients benefit from non-surgical periodontal therapy, as indicated by a marked reduction in their salivary 8-OHdG level and a modest improvement in glycemic control. Short-term clinical benefits noted in the DM group were similar to those observed in the non-diabetic periodontal patients.
Collapse
|
20
|
Davidovich NV, Galieva AS, Opravin AS, Gagarina TY, Malygina OG, Leikhter SN, Bashilova EN, Bazhukova TA. Correlation of marker periodontopathogenic bacteria with the immune component sCD 14 secretion level in inflammatory periodontal diseases. Klin Lab Diagn 2022; 67:471-475. [PMID: 36095084 DOI: 10.51620/0869-2084-2022-67-8-471-475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lipopolysaccharide of the cell wall of gram-negative bacteria is a highly active biological substance: its interaction with toll-like receptors-4 (TLR-4) of myeloid cells leads to the activation of a cascade of inflammatory reactions, which is accompanied by the release of the soluble CD14 receptor (sCD14), which can be considered not only as a marker of cell activation by endotoxin, but also as a marker of microbial translocation. The aim of the work was to assess the prognostic significance of the sCD14 level in the samples of the periodontal pocket in inflammatory periodontal diseases and the relationship of its secretion with marker periodontopathogens. For the study, washes were obtained from the periodontal pocket (88 samples in total) from patients with chronic periodontitis and intact periodontium. The sCD14 content was determined by ELISA; during real-time PCR, the marker periodontopathogens Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Treponema denticola, Porphyromonas gingivalis, Prevotella intermedia, and Candida albicans were isolated. The study revealed differences in the level of sCD14 secretion by groups: in chronic periodontitis, its content was 8,5 times higher than in the control group and amounted to 17,2±4,06 ng/ml (p=0,006). The frequency of detecting genes of periodontal pathogenic bacteria was 89,3% in patients with periodontitis and 31,25% in the group with intact periodontium. An interesting dependence of the detection of periodontal pathogenic bacteria in the group of patients with chronic periodontitis was established depending on the content of sCD14. Thus, at high concentrations of soluble coreceptor, a greater number of periodontopathogenic bacteria of the I and II orders were released. Thus, in inflammatory periodontal diseases, the processes of sCD14 synthesis change, which is probably due to the colonization of periodontal pathogenic bacteria and the action of their toxins and aggression factors. The relationship of marker periodontopathogens with the level of secretion of the immune component sCD14 and its effect on the structure of the periodontal index reflect shifts in the processes of reparative regeneration of the oral mucosa and the regulation of local immunity in response to microbial invasion.
Collapse
Affiliation(s)
| | - A S Galieva
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - A S Opravin
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - T Yu Gagarina
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - O G Malygina
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - S N Leikhter
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - E N Bashilova
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - T A Bazhukova
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| |
Collapse
|
21
|
Liang C, Lian N, Li M. The emerging role of neutrophil extracellular traps in fungal infection. Front Cell Infect Microbiol 2022; 12:900895. [PMID: 36034717 PMCID: PMC9411525 DOI: 10.3389/fcimb.2022.900895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Fungal infections are global public health problems and can lead to substantial human morbidity and mortality. Current antifungal therapy is not satisfactory, especially for invasive, life-threatening fungal infections. Modulating the antifungal capacity of the host immune system is a feasible way to combat fungal infections. Neutrophils are key components of the innate immune system that resist fungal pathogens by releasing reticular extracellular structures called neutrophil extracellular traps (NETs). When compared with phagocytosis and oxidative burst, NETs show better capability in terms of trapping large pathogens, such as fungi. This review will summarize interactions between fungal pathogens and NETs. Molecular mechanisms of fungi-induced NETs formation and defensive strategies used by fungi are also discussed.
Collapse
Affiliation(s)
- Chuting Liang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections (STIs), Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Dermatology, Nanjing, China
| | - Ni Lian
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections (STIs), Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Dermatology, Nanjing, China
| | - Min Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections (STIs), Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Dermatology, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- *Correspondence: Min Li,
| |
Collapse
|
22
|
Zenobia C, Darveau RP. Does Oral Endotoxin Contribute to Systemic Inflammation? FRONTIERS IN ORAL HEALTH 2022; 3:911420. [PMID: 35677024 PMCID: PMC9169450 DOI: 10.3389/froh.2022.911420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/29/2022] [Indexed: 12/27/2022] Open
Abstract
The oral microbiome, with a unique emphasis on Porphyromonas gingivalis has been associated with a constellation of inflammatory diseases such as cardiovascular disease, rheumatoid arthritis, Alzheimer's disease, type II diabetes, and non-alcoholic associated fatty liver disease. Periodontal disease has also been shown to induce "leaky gut" leading to metabolic endotoxemia. Several recent studies investigating the habitants of the blood microbiome have found the majority of species appear to be derived from oral and skin bacterial communities in otherwise healthy individuals. Many of the same pathologies associated with perturbations of oral health, such as cardiovascular disease, show alterations to the composition of the blood microbiome as well as circulating neutrophil phenotypes. Gingival inflammation is associated with activated blood neutrophil phenotypes that can exacerbate a distal inflammatory insult which may explain the connection between oral and systemic inflammatory conditions. While in the oral cavity, neutrophils encounter oral microbes that are adept in manipulating neutrophil activity which can re-enter the vasculature thereafter. Endotoxin from oral microbes can differ significantly depending on bacterial community and state of oral health to alter cellular LPS tolerance mechanisms which may contribute to the primed neutrophil phenotype seen in periodontitis and provide a mechanism by which the oral-microbes can affect systemic health outcomes. This review synthesizes the studies between inflammatory diseases and oral health with emphasis on microbiome and corresponding lipopolysaccharides in immune tolerance and activation.
Collapse
Affiliation(s)
| | - Richard P. Darveau
- Departments of Periodontology and Microbiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
23
|
Vitkov L, Knopf J, Krunić J, Schauer C, Schoen J, Minnich B, Hannig M, Herrmann M. Periodontitis-Derived Dark-NETs in Severe Covid-19. Front Immunol 2022; 13:872695. [PMID: 35493525 PMCID: PMC9039207 DOI: 10.3389/fimmu.2022.872695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 11/15/2022] Open
Abstract
The frequent severe COVID-19 course in patients with periodontitis suggests a link of the aetiopathogenesis of both diseases. The formation of intravascular neutrophil extracellular traps (NETs) is crucial to the pathogenesis of severe COVID-19. Periodontitis is characterised by an increased level of circulating NETs, a propensity for increased NET formation, delayed NET clearance and low-grade endotoxemia (LGE). The latter has an enormous impact on innate immunity and susceptibility to infection with SARS-CoV-2. LPS binds the SARS-CoV-2 spike protein and this complex, which is more active than unbound LPS, precipitates massive NET formation. Thus, circulating NET formation is the common denominator in both COVID-19 and periodontitis and other diseases with low-grade endotoxemia like diabetes, obesity and cardiovascular diseases (CVD) also increase the risk to develop severe COVID-19. Here we discuss the role of propensity for increased NET formation, DNase I deficiency and low-grade endotoxaemia in periodontitis as aggravating factors for the severe course of COVID-19 and possible strategies for the diminution of increased levels of circulating periodontitis-derived NETs in COVID-19 with periodontitis comorbidity.
Collapse
Affiliation(s)
- Ljubomir Vitkov
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany.,Department of Environment & Biodiversity, University of Salzburg, Salzburg, Austria.,Department of Dental Pathology, University of East Sarajevo, East Sarajevo, Bosnia and Herzegovina
| | - Jasmin Knopf
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jelena Krunić
- Department of Dental Pathology, University of East Sarajevo, East Sarajevo, Bosnia and Herzegovina
| | - Christine Schauer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Bernd Minnich
- Department of Environment & Biodiversity, University of Salzburg, Salzburg, Austria
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
24
|
Gao Y, Zhang JG, Liu ZZ, Ma K, Lin XQ, Zhang JB, Chen W, Yang YJ. Extracellular trap can be trained as a memory response. Virulence 2022; 13:471-482. [PMID: 35254202 PMCID: PMC8903778 DOI: 10.1080/21505594.2022.2046950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Extracellular trap (ET) appears as a double-edged sword for the host since it participates in host immune defense by entrapping pathogens, while excessive ET release also contributes to various diseases progression including atherosclerosis, cancer, and autoimmune disorders. A better understanding of ET formation and regulation will be beneficial for developing strategies for infection control and ET-associated disease treatment. There is some evidence indicating that prior infection can enhance extracellular killing. Neutrophils from cancer or sepsis are predisposed to generate ET. It is reasonable to suspect that ET may be trained to form as a memory response, just like cytokine memory response termed “trained immunity.” The mice were intraperitoneally injected with heat-killed Candida albicans (HK-C. albicans), 3 days later bone marrow-derived macrophages (BMDM) were isolated and challenged with Clostridium perfringens as a second stimulation. We found that HK-C. albicans priming enhanced ET formation upon Clostridium perfringens infection, accompanied by increased extracellular killing capacity. Mannan priming also enhanced ET formation. Since ETs memory was induced in chicken PBMC, ETs memory may be evolutionarily conserved. Moreover, mTOR was required for ETs memory response. Collectively, this study showed that ETs can be trained as a memory response and indicated that memory property of ETs should be considered during the understanding of recurrent infection and ET-associated disorders.
Collapse
Affiliation(s)
- Yu Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jian-Gang Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhen-Zhen Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ke Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiao-Qi Lin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jia-Bao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wei Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yong-Jun Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
25
|
Zhu X, Huang H, Zhao L. PAMPs and DAMPs as the Bridge Between Periodontitis and Atherosclerosis: The Potential Therapeutic Targets. Front Cell Dev Biol 2022; 10:856118. [PMID: 35281098 PMCID: PMC8915442 DOI: 10.3389/fcell.2022.856118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/11/2022] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a chronic artery disease characterized by plaque formation and vascular inflammation, eventually leading to myocardial infarction and stroke. Innate immunity plays an irreplaceable role in the vascular inflammatory response triggered by chronic infection. Periodontitis is a common chronic disorder that involves oral microbe-related inflammatory bone loss and local destruction of the periodontal ligament and is a risk factor for atherosclerosis. Periodontal pathogens contain numerous pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide, CpG DNA, and Peptidoglycan, that initiate the inflammatory response of the innate immunity depending on the recognition of pattern-recognition receptors (PRRs) of host cells. The immune-inflammatory response and destruction of the periodontal tissue will produce a large number of damage-associated molecular patterns (DAMPs) such as neutrophil extracellular traps (NETs), high mobility group box 1 (HMGB1), alarmins (S100 protein), and which can further affect the progression of atherosclerosis. Molecular patterns have recently become the therapeutic targets for inflammatory disease, including blocking the interaction between molecular patterns and PRRs and controlling the related signal transduction pathway. This review summarized the research progress of some representative PAMPs and DAMPs as the molecular pathological mechanism bridging periodontitis and atherosclerosis. We also discussed possible ways to prevent serious cardiovascular events in patients with periodontitis and atherosclerosis by targeting molecular patterns.
Collapse
Affiliation(s)
- Xuanzhi Zhu
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hanyao Huang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Hanyao Huang, ; Lei Zhao,
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Hanyao Huang, ; Lei Zhao,
| |
Collapse
|
26
|
Vitkov L, Muñoz LE, Schoen J, Knopf J, Schauer C, Minnich B, Herrmann M, Hannig M. Neutrophils Orchestrate the Periodontal Pocket. Front Immunol 2021; 12:788766. [PMID: 34899756 PMCID: PMC8654349 DOI: 10.3389/fimmu.2021.788766] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/08/2021] [Indexed: 12/27/2022] Open
Abstract
The subgingival biofilm attached to tooth surfaces triggers and maintains periodontitis. Previously, late-onset periodontitis has been considered a consequence of dysbiosis and a resultant polymicrobial disruption of host homeostasis. However, a multitude of studies did not show "healthy" oral microbiota pattern, but a high diversity depending on culture, diets, regional differences, age, social state etc. These findings relativise the aetiological role of the dysbiosis in periodontitis. Furthermore, many late-onset periodontitis traits cannot be explained by dysbiosis; e.g. age-relatedness, attenuation by anti-ageing therapy, neutrophil hyper-responsiveness, and microbiota shifting by dysregulated immunity, yet point to the crucial role of dysregulated immunity and neutrophils in particular. Furthermore, patients with neutropenia and neutrophil defects inevitably develop early-onset periodontitis. Intra-gingivally injecting lipopolysaccharide (LPS) alone causes an exaggerated neutrophil response sufficient to precipitate experimental periodontitis. Vice versa to the surplus of LPS, the increased neutrophil responsiveness characteristic for late-onset periodontitis can effectuate gingiva damage likewise. The exaggerated neutrophil extracellular trap (NET) response in late-onset periodontitis is blameable for damage of gingival barrier, its penetration by bacteria and pathogen-associated molecular patterns (PAMPs) as well as stimulation of Th17 cells, resulting in further neutrophil activation. This identifies the dysregulated immunity as the main contributor to periodontal disease.
Collapse
Affiliation(s)
- Ljubomir Vitkov
- Vascular & Exercise Biology Unit, Department of Biosciences, University of Salzburg, Salzburg, Austria
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Luis E. Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christine Schauer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Bernd Minnich
- Vascular & Exercise Biology Unit, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| |
Collapse
|
27
|
Portes J, Bullón B, Quiles JL, Battino M, Bullón P. Diabetes Mellitus and Periodontitis Share Intracellular Disorders as the Main Meeting Point. Cells 2021; 10:cells10092411. [PMID: 34572060 PMCID: PMC8467361 DOI: 10.3390/cells10092411] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes and periodontitis are two of the most prevalent diseases worldwide that negatively impact the quality of life of the individual suffering from them. They are part of the chronic inflammatory disease group or, as recently mentioned, non-communicable diseases, with inflammation being the meeting point among them. Inflammation hitherto includes vascular and tissue changes, but new technologies provide data at the intracellular level that could explain how the cells respond to the aggression more clearly. This review aims to emphasize the molecular pathophysiological mechanisms in patients with type 2 diabetes mellitus and periodontitis, which are marked by different impaired central regulators including mitochondrial dysfunction, impaired immune system and autophagy pathways, oxidative stress, and the crosstalk between adenosine monophosphate-activated protein kinase (AMPK) and the renin-angiotensin system (RAS). All of them are the shared background behind both diseases that could explain its relationship. These should be taken in consideration if we would like to improve the treatment outcomes. Currently, the main treatment strategies in diabetes try to reduce glycemia index as the most important aspect, and in periodontitis try to reduce the presence of oral bacteria. We propose to add to the therapeutic guidelines the handling of all the intracellular disorders to try to obtain better treatment success.
Collapse
Affiliation(s)
- Juliana Portes
- Department of Periodontology, Dental School, University of Seville, C/Avicena, s/n, 41009 Seville, Spain; (J.P.); (B.B.)
| | - Beatriz Bullón
- Department of Periodontology, Dental School, University of Seville, C/Avicena, s/n, 41009 Seville, Spain; (J.P.); (B.B.)
| | - José Luis Quiles
- Biomedical Research Center (CIBM), Department of Physiology, University Campus of Cartuja, Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, C/Isabel Torres, 21, 39011 Santander, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche. Via Tronto 10A, 60126 Torrette di Ancona, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | - Pedro Bullón
- Department of Periodontology, Dental School, University of Seville, C/Avicena, s/n, 41009 Seville, Spain; (J.P.); (B.B.)
- Correspondence:
| |
Collapse
|