1
|
Bacharier LB, Pavord ID, Maspero JF, Jackson DJ, Fiocchi AG, Mao X, Jacob-Nara JA, Deniz Y, Laws E, Mannent LP, Amin N, Akinlade B, Staudinger HW, Lederer DJ, Hardin M. Blood eosinophils and fractional exhaled nitric oxide are prognostic and predictive biomarkers in childhood asthma. J Allergy Clin Immunol 2024; 154:101-110. [PMID: 38272375 DOI: 10.1016/j.jaci.2023.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Blood eosinophils and fractional exhaled nitric oxide (Feno) are prognostic biomarkers for exacerbations and predict lung function responses to dupilumab in adolescents and adults with asthma. OBJECTIVE We evaluated the relationship between baseline blood eosinophils and Feno and response to dupilumab in children with asthma. METHODS Children aged 6 to 11 years with uncontrolled moderate-to-severe asthma (n = 408) were randomized to receive dupilumab 100/200 mg by body weight or volume-matched placebo every 2 weeks for 52 weeks. Annualized exacerbation rate (AER) reduction and least squares mean change in prebronchodilator percent predicted forced expiratory volume in 1 second (ppFEV1) at week 12 were assessed according to cutoff baseline levels for Feno (<20 ppb vs ≥20 ppb) and blood eosinophil count (<150, ≥150 to <300, ≥300 to <500, and ≥500 cells/μL). Quadrant analyses in populations defined by biomarker thresholds and spline models across continuous end points assessed the relationship with Feno and eosinophil count. Interaction testing evaluated the independent roles of Feno and blood eosinophils as predictive markers. RESULTS Exacerbation risk and magnitude of AER reduction increased in subgroups with higher baseline biomarker levels. Quadrant analyses revealed that disease of patients with either elevated Feno or eosinophil counts demonstrated a clinical response to dupilumab. Interaction testing indicated blood eosinophil counts or Feno independently added value as predictive biomarkers. CONCLUSIONS In children with uncontrolled moderate-to-severe asthma, blood eosinophil counts and Feno are clinically relevant biomarkers to identify those at risk for asthma exacerbations, as well as those with disease with clinical response to dupilumab. TRIAL REGISTRATION Liberty Asthma VOYAGE ClinicalTrials.gov NCT02948959.
Collapse
Affiliation(s)
- Leonard B Bacharier
- Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn.
| | - Ian D Pavord
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | | | - Daniel J Jackson
- University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | | | | | | | - Yamo Deniz
- Regeneron Pharmaceuticals Inc, Tarrytown, NY
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Sinha S, Kumar S, Narwaria M, Singh A, Haque M. Severe Acute Bronchial Asthma with Sepsis: Determining the Status of Biomarkers in the Diagnosis of the Disease. Diagnostics (Basel) 2023; 13:2691. [PMID: 37627950 PMCID: PMC10453001 DOI: 10.3390/diagnostics13162691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Bronchial asthma is a widely prevalent illness that substantially impacts an individual's health standard worldwide and has a significant financial impact on society. Global guidelines for managing asthma do not recommend the routine use of antimicrobial agents because most episodes of the condition are linked to viral respiratory tract infections (RTI), and bacterial infection appears to have an insignificant impact. However, antibiotics are recommended when there is a high-grade fever, a consolidation on the chest radiograph, and purulent sputum that contains polymorphs rather than eosinophils. Managing acute bronchial asthma with sepsis, specifically the choice of whether or not to initiate antimicrobial treatment, remains difficult since there are currently no practical clinical or radiological markers that allow for a simple distinction between viral and bacterial infections. Researchers found that serum procalcitonin (PCT) values can efficiently and safely minimize antibiotic usage in individuals with severe acute asthma. Again, the clinical manifestations of acute asthma and bacterial RTI are similar, as are frequently used test values, like C-reactive protein (CRP) and white blood cell (WBC) count, making it harder for doctors to differentiate between viral and bacterial infections in asthma patients. The role and scope of each biomarker have not been precisely defined yet, although they have all been established to aid healthcare professionals in their diagnostics and treatment strategies.
Collapse
Affiliation(s)
- Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, 33 KDA Avenue, Hotel Royal Crossing, Khulna Sadar, Khulna 9100, Bangladesh
| | - Santosh Kumar
- Department of Periodontology, Karnavati School of Dentistry, Karnavati University, Gandhinagar 382422, Gujarat, India
| | - Mahendra Narwaria
- Asian Bariatrics Plus Hospital, V Wing-Mondeal Business Park, SG Highways, Ahmedabad 380054, Gujarat, India
| | - Arya Singh
- Asian Bariatrics Plus Hospital, V Wing-Mondeal Business Park, SG Highways, Ahmedabad 380054, Gujarat, India
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia
- Department of Scientific Research Center (KSRC), Karnavati School of Dentistry, Karnavati University, Gandhinagar 382422, Gujarat, India
| |
Collapse
|
3
|
Cottrill KA, Chandler JD, Kobara S, Stephenson ST, Mohammad AF, Tidwell M, Mason C, Van Dresser M, Patrignani J, Kamaleswaran R, Fitzpatrick AM, Grunwell JR. Metabolomics identifies disturbances in arginine, phenylalanine, and glycine metabolism as differentiating features of exacerbating atopic asthma in children. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100115. [PMID: 37609569 PMCID: PMC10443927 DOI: 10.1016/j.jacig.2023.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background Asthma exacerbations are highly prevalent in children, but only a few studies have examined the biologic mechanisms underlying exacerbations in this population. Objective High-resolution metabolomics analyses were performed to understand the differences in metabolites in children with exacerbating asthma who were hospitalized in a pediatric intensive care unit for status asthmaticus. We hypothesized that compared with a similar population of stable outpatients with asthma, children with exacerbating asthma would have differing metabolite abundance patterns with distinct clustering profiles. Methods A total of 98 children aged 6 through 17 years with exacerbating asthma (n = 69) and stable asthma (n = 29) underwent clinical characterization procedures and submitted plasma samples for metabolomic analyses. High-confidence metabolites were retained and utilized for pathway enrichment analyses to identify the most relevant metabolic pathways that discriminated between groups. Results In all, 118 and 131 high-confidence metabolites were identified in positive and negative ionization mode, respectively. A total of 103 unique metabolites differed significantly between children with exacerbating asthma and children with stable asthma. In all, 8 significantly enriched pathways that were largely associated with alterations in arginine, phenylalanine, and glycine metabolism were identified. However, other metabolites and pathways of interest were also identified. Conclusion Metabolomic analyses identified multiple perturbed metabolites and pathways that discriminated children with exacerbating asthma who were hospitalized for status asthmaticus. These results highlight the complex biology of inflammation in children with exacerbating asthma and argue for additional studies of the metabolic determinants of asthma exacerbations in children because many of the identified metabolites of interest may be amenable to targeted interventions.
Collapse
Affiliation(s)
| | - Joshua D. Chandler
- Department of Pediatrics, Emory University, Atlanta
- Children’s Healthcare of Atlanta
| | - Seibi Kobara
- Department of Biomedical Informatics, Emory University, Atlanta
| | | | | | | | | | | | | | - Rishikesan Kamaleswaran
- Department of Pediatrics, Emory University, Atlanta
- Department of Biomedical Informatics, Emory University, Atlanta
| | - Anne M. Fitzpatrick
- Department of Pediatrics, Emory University, Atlanta
- Children’s Healthcare of Atlanta
| | - Jocelyn R. Grunwell
- Department of Pediatrics, Emory University, Atlanta
- Children’s Healthcare of Atlanta
| |
Collapse
|
4
|
Herrera-Luis E, Forno E, Celedón JC, Pino-Yanes M. Asthma Exacerbations: The Genes Behind the Scenes. J Investig Allergol Clin Immunol 2023; 33:76-94. [PMID: 36420738 PMCID: PMC10638677 DOI: 10.18176/jiaci.0878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The clinical and socioeconomic burden of asthma exacerbations (AEs) constitutes a major public health problem. In the last 4 years, there has been an increase in ethnic diversity in candidate-gene and genome-wide association studies of AEs, which in the latter case led to the identification of novel genes and underlying pathobiological processes. Pharmacogenomics, admixture mapping analyses, and the combination of multiple "omics" layers have helped to prioritize genomic regions of interest and/or facilitated our understanding of the functional consequences of genetic variation. Nevertheless, the field still lags behind the genomics of asthma, where a vast compendium of genetic approaches has been used (eg, gene-environment nteractions, next-generation sequencing, and polygenic risk scores). Furthermore, the roles of the DNA methylome and histone modifications in AEs have received little attention, and microRNA findings remain to be validated in independent studies. Likewise, the most recent transcriptomic studies highlight the importance of the host-airway microbiome interaction in the modulation of risk of AEs. Leveraging -omics and deep-phenotyping data from subtypes or homogenous subgroups of patients will be crucial if we are to overcome the inherent heterogeneity of AEs, boost the identification of potential therapeutic targets, and implement precision medicine approaches to AEs in clinical practice.
Collapse
Affiliation(s)
- E Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - E Forno
- Division of Pediatric Pulmonary Medicine, UPMC Children´s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - J C Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children´s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - M Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain 4 Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| |
Collapse
|
5
|
Riaz K, Butt MS, Sharif MK, Faisal MN. Therapeutic efficacy of spirulina against ovalbumin and cigarette smoke-induced asthma-specific stress biomarkers in Sprague-Dawley rats. Food Sci Nutr 2023; 11:972-982. [PMID: 36789047 PMCID: PMC9922124 DOI: 10.1002/fsn3.3132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the high prevalence of allergies and asthma, awareness about allergens and therapeutic use of functional foods and nutraceuticals have gained immense attention. Spirulina powder is being used as health-boosting and antioxidant agent against several ailments owing to its unique nutritional profile. Considering its antioxidant role, the current study was focused on exploring therapeutic role of spirulina against stress biomarkers in asthmatic model. To assess the therapeutic efficacy of spirulina against allergic asthma-specific oxidative stress biomarkers, a model feed trial was conducted and rats were divided into four groups (n = 10). G0-I (negative control), G0-II (positive control), whereas GI (spirulina) and G2 (salbutamol) served as treatment groups. Salbutamol is a chemical compound which is used in several antiallergic medicines because it works as bronchodilator. G2 group was given salbutamol for comparison of results. For asthma induction, rats were given intraperitoneal injection of ovalbumin on 7th, 14th, and 21st day. Treatment groups were given spirulina powder (500 mg/kg body weight) and salbutamol (1 mg/kg), respectively, after the induction of asthma. All three asthmatic groups were also exposed to cigarette smoke daily along with respective treatment for 4 weeks. Asthma induction caused an increase in total cell count in bronchioalveolar fluid (BALF), while spirulina treatment reduced total cells in BALF by 33.50% and salbutamol by 41.7%. Level of interleukins (IL) like IL-4 decreased by 33.32% & 48.56% in G1 and G2. Similarly, IL-5 and IL-13 levels reduced by 40.9% & 49.9% and 18.62% & 38.02%, respectively, in G1 and G2. Serum levels of Immunoglobin-E (Ig-E) declined by 29.70% and 52.82%, while histamine levels were 26.23% & 45.58% less at the end of study in comparison to positive control. Moreover, histological analysis of lung tissue revealed that both spirulina and salbutamol effectively reduced ovalbumin and cigarette smoke-induced moderate to severe necrosis, architectural changes, and congestion. It was concluded that salbutamol showed better results however, spirulina also effectively reduced mild to moderate allergic symptoms in dose-dependent manner. Nutraceutical and functional foods are considered helpful in mitigating oxidative stress-mediated health problems. Spirulina has its unique nutritional profile including phycobiliproteins, phytochemicals, and antioxidant vitamins which make it useful against several ailments. Considering its antioxidant role, current study was focused on exploring therapeutic efficacy of spirulina against stress biomarkers in asthmatic model. Outcomes of present research also demonstrated beneficial effect of spirulina in modulating allergic symptoms. In this regard, ancient concept of "medicine food homology" can be implemented and spirulina can be incorporated in food for additional benefits. However, further research regarding safety aspects is needed for its use in clinical practice for humans.
Collapse
Affiliation(s)
- Khadija Riaz
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Masood Sadiq Butt
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Mian Kamran Sharif
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Muhammad Naeem Faisal
- Faculty of Veterinary Science, Institute of Physiology and PharmacologyUniversity of AgricultureFaisalabadPakistan
| |
Collapse
|
6
|
Zheng J, Yue L, Wang B, Li Y, Zhang L, Xue B, Tian X, Lei R, Luo B. Seasonal characteristics of ambient temperature variation (DTR, TCN, and TV 0-t) and air pollutants on childhood asthma attack in a dry and cold city in China. ENVIRONMENTAL RESEARCH 2023; 217:114872. [PMID: 36435499 DOI: 10.1016/j.envres.2022.114872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Very few researches have concentrated on a variety of time scales to evaluate the association between temperature variation (TV) and childhood asthma (CA), and the evidence for the interaction of air pollutants on this association is lacking. In this study, we aim to estimate the relative risks (RRs) of CA due to TV by following metrics: diurnal temperature range (DTR), temperature changes between neighboring days (TCN), and temperature variability (TV0-t); to quantify the seasonal attributable fraction (AF) and number (AN) of CA due to TV; to examine the interactive effects of the TV and air pollutants on CA in different seasons. We mainly applied distributed lagged nonlinear model (DLNM) and conditional Poisson models to evaluate the associations between TV and outpatient visits for CA during 2014-2019 in Lanzhou, China. Additionally, the bivariate response surface model was used to examine the interplay effect of air pollutants. We found that in warm season, the risks of DTR maximum at lag5 (RR = 1.073, 95% CI: 1.017-1.133); TCN showed protective effect. In cold season, the risks of DTR peaked at lag8 (RR = 1.063, 95% CI: 1.027-1.100); the risks of TCN maximum at lag0 (RR = 1.058 95% CI: 1.009-1.109); the estimation of total cases maximized at TV0-4 in cold season (RR = 1.039 at TV0-3, 95% CI: 1.001, 1.077) and was the lowest at TV0-1 in warm season (RR = 0.999, 95% CI: 0.969, 1.030). In addition, the response surface model graphically pictured ambient air pollutants enhanced the DTR/TV0-4-CA effect for girls. In conclusion, the RRs of CA are markedly increased by TV exposure, particularly during the colder months. A combined evaluation of DTR, TCN, TV0-5∼TV0-6, NO2, SO2, and PM2.5 should be used to identify the adverse effects of TV on CA.
Collapse
Affiliation(s)
- Jie Zheng
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Li Yue
- Department of Child Healthcare of Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu, 730030, PR China
| | - Bo Wang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Yanlin Li
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Ling Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Baode Xue
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiaoyu Tian
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Ruoyi Lei
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
7
|
Dosanjh A. Complex pathways leading to future paediatric asthma exacerbations. ERJ Open Res 2022; 8:00322-2022. [PMID: 36382235 PMCID: PMC9661246 DOI: 10.1183/23120541.00322-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Childhood asthma studies to identify additional risk factors, triggers and biomarkers may reveal novel pathways leading to exacerbation https://bit.ly/3BOhSWy.
Collapse
|
8
|
Santri IN, Irham LM, Djalilah GN, Perwitasari DA, Wardani Y, Phiri YVA, Adikusuma W. Identification of Hub Genes and Potential Biomarkers for Childhood Asthma by Utilizing an Established Bioinformatic Analysis Approach. Biomedicines 2022; 10:biomedicines10092311. [PMID: 36140412 PMCID: PMC9496621 DOI: 10.3390/biomedicines10092311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Childhood asthma represents a heterogeneous disease resulting from the interaction between genetic factors and environmental exposures. Currently, finding reliable biomarkers is necessary for the clinical management of childhood asthma. However, only a few biomarkers are being used in clinical practice in the pediatric population. In the long run, new biomarkers for asthma in children are required and would help direct therapy approaches. This study aims to identify potential childhood asthma biomarkers using a genetic-driven biomarkers approach. Herein, childhood asthma-associated Single Nucleotide Polymorphisms (SNPs) were utilized from the GWAS database to drive and facilitate the biomarker of childhood asthma. We uncovered 466 childhood asthma-associated loci by extending to proximal SNPs based on r2 > 0.8 in Asian populations and utilizing HaploReg version 4.1 to determine 393 childhood asthma risk genes. Next, the functional roles of these genes were subsequently investigated using Gene Ontology (GO) term enrichment analysis, a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and a protein−protein interaction (PPI) network. MCODE and CytoHubba are two Cytoscape plugins utilized to find biomarker genes from functional networks created using childhood asthma risk genes. Intriguingly, 10 hub genes (IL6, IL4, IL2, IL13, PTPRC, IL5, IL33, TBX21, IL2RA, and STAT6) were successfully identified and may have been identified to play a potential role in the pathogenesis of childhood asthma. Among 10 hub genes, we strongly suggest IL6 and IL4 as prospective childhood asthma biomarkers since both of these biomarkers achieved a high systemic score in Cytohubba’s MCC algorithm. In summary, this study offers a valuable genetic-driven biomarker approach to facilitate the potential biomarkers for asthma in children.
Collapse
Affiliation(s)
| | | | | | | | - Yuniar Wardani
- Faculty of Public Health, Universitas Ahmad Dahlan, Yogyakarta 55164, Indonesia
| | - Yohane Vincent Abero Phiri
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
- Institute for Health Research and Communication (IHRC), Lilongwe P.O. Box 1958, Malawi
| | - Wirawan Adikusuma
- Departement of Pharmacy, University of Muhammadiyah Mataram, Mataram 83127, Indonesia
- Correspondence: (W.A.)
| |
Collapse
|
9
|
Kress S, Hara A, Wigmann C, Sato T, Suzuki K, Pham KO, Zhao Q, Areal A, Tajima A, Schwender H, Nakamura H, Schikowski T. The Role of Polygenic Susceptibility on Air Pollution-Associated Asthma between German and Japanese Elderly Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9869. [PMID: 36011501 PMCID: PMC9407879 DOI: 10.3390/ijerph19169869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Polygenic susceptibility likely influences individual responses to air pollutants and the risk of asthma. We compared the role of polygenic susceptibility on air pollution-associated asthma between German and Japanese women. We investigated women that were enrolled in the German SALIA cohort (n = 771, mean age = 73 years) and the Japanese Shika cohort (n = 847, mean age = 67 years) with known asthma status. Adjusted logistic regression models were used to assess the associations between (1) particulate matter with a median aerodynamic diameter ≤ 2.5μm (PM2.5) and nitrogen dioxide (NO2), (2) polygenic risk scores (PRS), and (3) gene-environment interactions (G × E) with asthma. We found an increased risk of asthma in Japanese women after exposure to low pollutant levels (PM2.5: median = 12.7µg/m3, p-value < 0.001, NO2: median = 8.5µg/m3, p-value < 0.001) and in German women protective polygenic effects (p-value = 0.008). While we found no significant G × E effects, the direction in both groups was that the PRS increased the effect of PM2.5 and decreased the effect of NO2 on asthma. Our study confirms that exposure to low air pollution levels increases the risk of asthma in Japanese women and indicates polygenic effects in German women; however, there was no evidence of G × E effects. Future genome-wide G × E studies should further explore the role of ethnic-specific polygenic susceptibility to asthma.
Collapse
Affiliation(s)
- Sara Kress
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
- Medical Research School Düsseldorf, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Akinori Hara
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Claudia Wigmann
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Takehiro Sato
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Keita Suzuki
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Kim-Oanh Pham
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Qi Zhao
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Ashtyn Areal
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
- Medical Research School Düsseldorf, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Holger Schwender
- Mathematical Institute, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Hiroyuki Nakamura
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Tamara Schikowski
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Influence of Home Indoor Dampness Exposure on Volatile Organic Compounds in Exhaled Breath of Mothers and Their Infants: The NELA Birth Cohort. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Currently, the effect of exposure to indoor air contaminants and the presence of dampness at home on respiratory/atopic health is of particular concern to physicians. The measurement of volatile organic compounds (VOCs) in exhaled breath is a useful approach for monitoring environmental exposures. A great advantage of this strategy is that it allows the study of the impact of pollutants on the metabolism through a non-invasive method. In this paper, the levels of nine VOCs (acetone, isoprene, toluene, p/m-xylene, o-xylene, styrene, benzaldehyde, naphthalene, and 2-ethyl-1-hexanol) in the exhaled breath of subjects exposed and not exposed to home dampness were assessed. Exhaled breath samples were collected from 337 mother–child pairs of a birth cohort and analysed by gas-chromatography–mass-spectrometry. It was observed that the levels of 2-ethyl-1-hexanol in the exhaled breath of the mothers were significantly influenced by exposure to household humidity. In the case of the infants, differences in some of the VOC levels related to home dampness exposure; however, they did not reach statistical significance. In addition, it was also found that the eosinophil counts of the mothers exposed to home dampness were significantly elevated compared to those of the non-exposed mothers. To our knowledge, these findings show, for the first time, that exposure to home dampness may influence VOC patterns in exhaled breath.
Collapse
|
11
|
Andrenacci B, Ferrante G, Roberto G, Piacentini G, La Grutta S, Marseglia GL, Licari A. Challenges in uncontrolled asthma in pediatrics: important considerations for the clinician. Expert Rev Clin Immunol 2022; 18:807-821. [PMID: 35730635 DOI: 10.1080/1744666x.2022.2093187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite symptoms control being the primary focus of asthma management according to guidelines, uncontrolled asthma is still an issue worldwide, leading to huge costs and asthma deaths at all ages. In childhood, poor asthma control can be even more harmful, as it can irreversibly compromise the children's lung function and the whole family's well-being. AREAS COVERED Given the problem extent, this review aims to discuss the leading modifiable causes of uncontrolled asthma in Pediatrics, giving some practical insights regarding the critical role of families and the main tools for monitoring control and drug adherence, even at a distance. The most recent GINA documents were used as the primary reference, along with the latest evidence regarding the management of asthma control and the impact of the COVID-19 pandemic on asthma. EXPERT OPINION In managing pediatric asthma, a multidisciplinary, multi-determinant, personalized approach is needed, actively involving families, schools, and other specialists. In addition to current strategies for implementing control, electronic health strategies, new validated asthma control tools, and the identification of novel inflammatory biomarkers could lead to increasingly tailored therapies with greater effectiveness in reaching asthma control.
Collapse
Affiliation(s)
- Beatrice Andrenacci
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Giuliana Ferrante
- Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, Pediatric Division, University of Verona, Verona, Italy
| | - Giulia Roberto
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Giorgio Piacentini
- Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, Pediatric Division, University of Verona, Verona, Italy
| | - Stefania La Grutta
- Institute of Translational Pharmacology, National Research Council, Palermo, Italy
| | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Amelia Licari
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
12
|
Vizuet-de-Rueda JC, Montero-Vargas JM, Galván-Morales MÁ, Porras-Gutiérrez-de-Velasco R, Teran LM. Current Insights on the Impact of Proteomics in Respiratory Allergies. Int J Mol Sci 2022; 23:ijms23105703. [PMID: 35628512 PMCID: PMC9144092 DOI: 10.3390/ijms23105703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Respiratory allergies affect humans worldwide, causing extensive morbidity and mortality. They include allergic rhinitis (AR), asthma, pollen food allergy syndrome (PFAS), aspirin-exacerbated respiratory disease (AERD), and nasal polyps (NPs). The study of respiratory allergic diseases requires new technologies for early and accurate diagnosis and treatment. Omics technologies provide the tools required to investigate DNA, RNA, proteins, and other molecular determinants. These technologies include genomics, transcriptomics, proteomics, and metabolomics. However, proteomics is one of the main approaches to studying allergic disorders' pathophysiology. Proteins are used to indicate normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. In this field, the principal goal of proteomics has been to discover new proteins and use them in precision medicine. Multiple technologies have been applied to proteomics, but that most used for identifying, quantifying, and profiling proteins is mass spectrometry (MS). Over the last few years, proteomics has enabled the establishment of several proteins for diagnosing and treating respiratory allergic diseases.
Collapse
|
13
|
Gysens F, Mestdagh P, de Bony de Lavergne E, Maes T. Unlocking the secrets of long non-coding RNAs in asthma. Thorax 2022; 77:514-522. [PMID: 35246486 PMCID: PMC9016255 DOI: 10.1136/thoraxjnl-2021-218359] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/21/2022] [Indexed: 12/15/2022]
Abstract
Asthma is a very heterozygous disease, divided in subtypes, such as eosinophilic and neutrophilic asthma. Phenotyping and endotyping of patients, especially patients with severe asthma who are refractory to standard treatment, are crucial in asthma management and are based on a combination of clinical and biological features. Nevertheless, the quest remains to find better biomarkers that distinguish asthma subtypes in a more clear and objective manner and to find new therapeutic targets to treat people with therapy-resistant asthma. In the past, research to identify asthma subtypes mainly focused on expression profiles of protein-coding genes. However, advances in RNA-sequencing technologies and the discovery of non-coding RNAs as important post-transcriptional regulators have provided an entire new field of research opportunities in asthma. This review focusses on long non-coding RNAs (lncRNAs) in asthma; these are non-coding RNAs with a length of more than 200 nucleotides. Many lncRNAs are differentially expressed in asthma, and several have been associated with asthma severity or inflammatory phenotype. Moreover, in vivo and in vitro functional studies have identified the mechanisms of action of specific lncRNAs. Although lncRNAs remain not widely studied in asthma, the current studies show the potential of lncRNAs as biomarkers and therapeutic targets as well as the need for further research.
Collapse
Affiliation(s)
- Fien Gysens
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
14
|
Wu M, Zheng X, Huang J, Hu X. Association of IL33, IL1RL1, IL1RAP Polymorphisms and Asthma in Chinese Han Children. Front Cell Dev Biol 2022; 9:759542. [PMID: 34977013 PMCID: PMC8714920 DOI: 10.3389/fcell.2021.759542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Genome-wide association studies have identified interleukin 33 (IL33), interleukin 1 receptor-like 1 (IL1RL1), interleukin 1 receptor accessory protein (IL1RAP) as asthma susceptibility loci in Europeans. IL33, IL1RL1, and IL1RAP constitute a ligand-receptor complex. Objective: We analyzed associations of asthma susceptibility, eosinophilic airway inflammation, and response to inhaled corticosteroid (ICS) with single nucleotide polymorphisms (SNPs) of 3 genes encoding IL33, IL1RL1, and its coreceptor IL1RAP in Chinese Han nationality children. Methods: A total of 153 non-asthmatic children and 265 asthmatic children who visited the Xiangya Hospital between September 2015 and August 2019 were recruited for this study. Pulmonary function tests, peripheral blood eosinophil counts (PBEC), and fractional exhaled nitric oxide (FeNO) tests were performed before treatment, and 3 months after treatment. Each participant’s DNA was extracted from the peripheral blood, and a Mass ARRAY system was used to genotype the SNPs. Results: The T allele of rs4742170 in IL33 was associated with a risk of higher FeNO at baseline, and no improvement in FeNO and airway hyperresponsiveness was found after ICS treatment. The A allele of rs10208293 and C allele of rs13424006 in IL1RL1 both were associated with lower susceptibility to asthma and lower FeNO. The TT genotype of rs1420101 and AA genotype of rs4142132 in IL1RL1 were associated with a greater probability of improvement in PBEC after ICS treatment. Conclusion: IL33-IL1RL1-IL1RAP complex polymorphisms are associated with childhood asthma susceptibility, eosinophilic airway inflammation, and ICS response in Chinese Han children in Hunan. We speculate that IL33-IL1RL1-IL1RAP complex polymorphisms affect the development of asthma, airway inflammation, and subsequent ICS response in childhood.
Collapse
Affiliation(s)
- Maolan Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangrong Zheng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Huang
- Department of Pediatrics, The First Hospital of Changsha, Changsha, China
| | - Xiaolei Hu
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Nitric Oxide Synthase 2 Promoter Polymorphism Is a Risk Factor for Allergic Asthma in Children. Medicina (B Aires) 2021; 57:medicina57121341. [PMID: 34946286 PMCID: PMC8706973 DOI: 10.3390/medicina57121341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/17/2022] Open
Abstract
Background and Objectives: In paediatric population, atopic asthma is associated with increased eosinophil counts in patients, that correlate with the airway inflammation measured by the concentration of nitric oxide in exhaled air (FeNO). As the FeNO level is a biomarker of atopic asthma, we assumed that polymorphisms in nitric synthases genes may represent a risk factor for asthma development. The purpose of this study was to analyse the association of NOS genetic variants with childhood asthma in the Polish population. Materials and methods: In study we included 443 children—220 patients diagnosed with atopic asthma and 223 healthy control subjects. We have genotyped 4 single nucleotide polymorphisms (SNP) from 3 genes involved in the nitric oxide synthesis (NOS1, NOS2 and NOS3). All analyses were performed using polymerase chain reaction with restriction fragments length polymorphism (PCR-RFLP). Results: We observed significant differences between cases and controls in SNP rs10459953 in NOS2 gene, considering both genotypes (p = 0.001) and alleles (p = 0.0006). The other analyzed polymorphisms did not show association with disease. Conclusions: According to our results, 5′UTR variant within NOS2 isoform may have an impact of asthma susceptibility in the population of Polish children. Further functional studies are required to understand the role of iNOS polymorphism in NOS2 translation and to consider it as a novel risk factor in childhood asthma. The next step would be to apply this knowledge to improve diagnosis and develop novel personalized asthma therapies.
Collapse
|
16
|
Kachroo P, Sordillo JE, Lutz SM, Weiss ST, Kelly RS, McGeachie MJ, Wu AC, Lasky-Su JA. Pharmaco-Metabolomics of Inhaled Corticosteroid Response in Individuals with Asthma. J Pers Med 2021; 11:jpm11111148. [PMID: 34834499 PMCID: PMC8622526 DOI: 10.3390/jpm11111148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/26/2022] Open
Abstract
Metabolomic indicators of asthma treatment responses have yet to be identified. In this study, we aimed to uncover plasma metabolomic profiles associated with asthma exacerbations while on inhaled corticosteroid (ICS) treatment. We determined whether these profiles change with age from adolescence to adulthood. We utilized data from 170 individuals with asthma on ICS from the Mass General Brigham Biobank to identify plasma metabolites associated with asthma exacerbations while on ICS and examined potential effect modification of metabolite-exacerbation associations by age. We used liquid chromatography-high-resolution mass spectrometry-based metabolomic profiling. Sex-stratified analyses were also performed for the significant associations. The age range of the participating individuals was 13-43 years with a mean age of 33.5 years. Of the 783 endogenous metabolites tested, eight demonstrated significant associations with exacerbation after correction for multiple comparisons and adjusting for potential confounders (Bonferroni p value < 6.2 × 10-4). Potential effect modification by sex was detected for fatty acid metabolites, with males showing a greater reduction in their metabolite levels with ICS exacerbation. Thirty-eight metabolites showed suggestive interactions with age on exacerbation (nominal p-value < 0.05). Our findings demonstrate that plasma metabolomic profiles differ for individuals who experience asthma exacerbations while on ICS. The differentiating metabolites may serve as biomarkers of ICS response and may highlight metabolic pathways underlying ICS response variability.
Collapse
Affiliation(s)
- Priyadarshini Kachroo
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (P.K.); (S.T.W.); (R.S.K.); (M.J.M.)
| | - Joanne E. Sordillo
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA 02215, USA; (J.E.S.); (S.M.L.); (A.C.W.)
| | - Sharon M. Lutz
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA 02215, USA; (J.E.S.); (S.M.L.); (A.C.W.)
| | - Scott T. Weiss
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (P.K.); (S.T.W.); (R.S.K.); (M.J.M.)
| | - Rachel S. Kelly
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (P.K.); (S.T.W.); (R.S.K.); (M.J.M.)
| | - Michael J. McGeachie
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (P.K.); (S.T.W.); (R.S.K.); (M.J.M.)
| | - Ann Chen Wu
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA 02215, USA; (J.E.S.); (S.M.L.); (A.C.W.)
| | - Jessica A. Lasky-Su
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (P.K.); (S.T.W.); (R.S.K.); (M.J.M.)
- Correspondence: ; Tel.: +1-617-875-9992
| |
Collapse
|
17
|
Editorial of Special Issue "Molecular Mechanisms of Allergy and Asthma". Int J Mol Sci 2021; 22:ijms222111580. [PMID: 34769011 PMCID: PMC8584231 DOI: 10.3390/ijms222111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022] Open
|
18
|
Research Progress of Metabolomics in Asthma. Metabolites 2021; 11:metabo11090567. [PMID: 34564383 PMCID: PMC8466166 DOI: 10.3390/metabo11090567] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Asthma is a highly heterogeneous disease, but the pathogenesis of asthma is still unclear. It is well known that the airway inflammatory immune response is the pathological basis of asthma. Metabolomics is a systems biology method to analyze the difference of low molecular weight metabolites (<1.5 kDa) and explore the relationship between metabolic small molecules and pathophysiological changes of the organisms. The functional interdependence between immune response and metabolic regulation is one of the cores of the body's steady-state regulation, and its dysfunction will lead to a series of metabolic disorders. The signal transduction effect of specific metabolites may affect the occurrence of the airway inflammatory immune response, which may be closely related to the pathogenesis of asthma. Emerging metabolomic analysis may provide insights into the pathogenesis and diagnosis of asthma. The review aims to analyze the changes of metabolites in blood/serum/plasma, urine, lung tissue, and exhaled breath condensate (EBC) samples, and further reveals the potential pathogenesis of asthma according to the disordered metabolic pathways.
Collapse
|