1
|
Tangsudjai S, Fujita A, Tamura T, Okuno T, Oda M, Kato K. ST3 beta-galactoside alpha-2,3-sialyltransferase 4 (St3gal4) deficiency reveals correlations among alkaline phosphatase activity, metabolic parameters, and fear-related behavior in mice. Metab Brain Dis 2025; 40:125. [PMID: 39951166 PMCID: PMC11828824 DOI: 10.1007/s11011-025-01551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
ST3 beta-galactoside alpha-2,3-sialyltransferase 4 (ST3GAL4) is a sialyltransferase involved in the biosynthesis of alpha2,3-sialic acid on glycoproteins and glycolipids. In mice, St3gal4 gene expression plays a crucial role in modulating epilepsy and anxiety/depression through its expression in thalamic neurons. Genome-wide association studies (GWAS) have identified several peripheral metabolic traits strongly associated with ST3GAL4 in humans. However, whether the symptoms observed in mice are associated with metabolic changes remains unclear. This study investigated the effects of St3gal4 deficiency on the same metabolic parameters in mice as those in humans. The parameters examined included body weight, plasma biochemistry, specifically alkaline phosphatase (ALP), protein, and cholesterol levels, and free amino acids profiles, resulting in elevated ALP and reduced tryptophan and total cholesterol (T-Cho) levels in St3gal4-knockout (KO) mice. Additionally, clearance of blood glucose was delayed in KO male mice. These findings suggest mouse St3gal4 deficiency correlated with modulated ALP, tryptophan, and T-Cho levels in the plasma. Next, brain ALP activity was compared between St3gal4-KO mice and wild-type (WT) mice, focusing on the thalamus. Fear conditioning tests assessed the relationship between behavior and ALP activity in plasma and brain. In KO mice, the enhanced tone freezing positively correlated with plasma ALP levels. Conversely, thalamic ALP activity was greatly reduced in KO mice, negatively correlating with plasma ALP. These findings suggest that mouse St3gal4 deficiency influences ALP activity in both thalamus and plasma, associating with emotional behaviors and metabolic changes.
Collapse
Affiliation(s)
- Siriporn Tangsudjai
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
- Veterinary Science, Mahidol University, Salaya Phutthamonton, Nakhonpathom, 73170, Thailand
| | - Akiko Fujita
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| | - Toshiya Tamura
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| | - Takaya Okuno
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| | - Mika Oda
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| | - Keiko Kato
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan.
| |
Collapse
|
2
|
Wei H, Jin B, Zhao K, Liu D, Ran J, Yan F. Identification, Clinical Values, and Prospective Pathway Signaling of Lipid Metabolism Genes in Epilepsy and AED Treatment. Mol Neurobiol 2025:10.1007/s12035-025-04688-w. [PMID: 39812994 DOI: 10.1007/s12035-025-04688-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/24/2024] [Indexed: 01/16/2025]
Abstract
The dysregulation of lipid metabolism has been associated with the etiology and progression of the neurological pathology. However, the roles of lipid metabolism and the molecular mechanism in epilepsy and the use of antiepileptic drugs (AEDs) are relatively understudied. Gene expression profiles of GSE143272 from blood samples were included for differential analysis, and the lipid metabolism-related differentially expressed genes (DEGs) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. The STRING database and Cytoscape software were used to establish and visualize protein-protein interaction (PPI) networks. RT-PCR and western blotting were used to verify the expression levels of lipid metabolism-related DEGs in serum and cerebrospinal fluid (CSF). Eleven lipid metabolism-related DEGs were identified including CXCL8, PTGS2, FOSB, G0S2, HLA-C, CLEC12A, ARG1, ELANE, RSAD2, CTSG, and DEFA1. And among them, five lipid metabolism-related Hub DEGs including CXCL8, PTGS2, ELANE, CTSG, and ARG1 were finally verified in serum samples of epilepsy patients. Moreover, CXCL8 was selected and validated in the epilepsy without AEDs and epilepsy with AEDs. G0S2 was significantly decreased in serum and CSF in epilepsy with AEDs compared to epilepsy without AEDs. Collectively, these findings suggest that lipid metabolism is closely related to epilepsy. This revelation opens up opportunities to further investigate the associated molecular mechanisms and possible therapeutic targets for epilepsy.
Collapse
Affiliation(s)
- Hong Wei
- Department of Neurology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Neurology, School of Medicine, Affiliated ZhongDa Hospital, Southeast University, Dingjiaqiao 87, Nanjing, 210009, Jiangsu, China
| | - Biao Jin
- Department of Neurology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Kangren Zhao
- Department of Neurology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dandan Liu
- Department of Neurology, School of Medicine, Affiliated ZhongDa Hospital, Southeast University, Dingjiaqiao 87, Nanjing, 210009, Jiangsu, China
- Department of Neurology, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, China
| | - Jing Ran
- Department of Neurology, Xuyi Hospital of Traditional Chinese Medicine, Huanan, Jiangsu, China
| | - Fuling Yan
- Department of Neurology, School of Medicine, Affiliated ZhongDa Hospital, Southeast University, Dingjiaqiao 87, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
3
|
Vaezi MA, Nekoufar S, Robati AK, Salimi V, Tavakoli-Yaraki M. Therapeutic potential of β-hydroxybutyrate in the management of pancreatic neoplasms: exploring novel diagnostic and treatment strategies. Lipids Health Dis 2024; 23:376. [PMID: 39543582 PMCID: PMC11562866 DOI: 10.1186/s12944-024-02368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
Pancreatic neoplasm, a highly aggressive and often fatal cancer, poses challenges due to late detection and nonspecific symptoms. Therefore, both early diagnosis and appropriate therapeutic approaches are necessary to augment the condition of these patients. Cancer cells undergo metabolic deregulation, which enables their proliferation, survival, and invasion. As a result, it is crucial to focus on the metabolic pathways in prevalent cancers and explore treatment strategies that target these pathways to control tumor growth effectively. This is particularly relevant in cancers like pancreatic cancer, which undergo numerous metabolic alterations. The ketogenic regimen, characterized by low carbohydrate and protein contents and high-fat sources, does not involve caloric restriction. This allows for the induction of ketogenesis and an increase in ketone bodies, while insulin and glucose levels remain low even after meals. This unique metabolic state may influence the tumor microenvironment. Given the lack of unanimous agreement on the precise role and mechanism of the ketogenic diet, this review aims to clarify the diagnostic value and accuracy of ketone bodies in various types of pancreatic tumors and explore the potential anti-cancer effects of the ketogenic diet when used alone or in conjunction with chemotherapy, also to determine the potential of the ketogenic diet to be used as adjuvant therapy. The outcomes of this study are instrumental in enhancing our understanding of the benefits and drawbacks associated with employing this diet for the management and diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Mohammad Amin Vaezi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Samira Nekoufar
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Ali Karami Robati
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran.
- Finetech in Medicine Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Stefan VE, Weber DD, Lang R, Kofler B. Overcoming immunosuppression in cancer: how ketogenic diets boost immune checkpoint blockade. Cancer Immunol Immunother 2024; 74:23. [PMID: 39537934 PMCID: PMC11561221 DOI: 10.1007/s00262-024-03867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Immune checkpoint blockade (ICB) is now part of the standard of care in the treatment of many forms of cancer, yet it lacks efficacy in some patients, necessitating adjunct therapies to support the anti-tumor immune response. Ketogenic diets (KDs), i.e., high-fat low-carbohydrate diets, have been shown to have antiproliferative and immunomodulatory effects in various preclinical cancer studies. Here, we review current knowledge of the complex interplay of KDs and the anti-tumor immune response in the context of ICB therapy, to update our understanding of diet-induced immunometabolic reprogramming in cancer. Preclinical cancer studies have revealed increased activation of and infiltration by tumor-fighting immune cells, especially CD8+ T cells, but also M1 macrophages and natural killer cells, in response to a KD regimen. In contrast, immune-suppressive cells such as regulatory CD4+ T lymphocytes, M2 macrophages, and myeloid-derived suppressor cells were reported to be decreased or largely unaffected in tumors of KD-fed mice. KDs also showed synergism with ICB therapy in several preclinical tumor studies. The observed effects are ascribed to the ability of KDs to improve immune cell infiltration and induce downregulation of immune-inhibitory processes, thus creating a more immunogenic tumor microenvironment. The studies reviewed herein show that altering the metabolic composition of the tumor microenvironment by a KD can boost the anti-tumor immune response and diminish even immunotherapy-resistant as well as immunologically "cold" tumors. However, the exact underlying mechanisms remain to be elucidated, requiring further studies before KDs can be successfully implemented as an adjunct tumor therapy to improve survival rates for cancer patients.
Collapse
Affiliation(s)
- Victoria E Stefan
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Roland Lang
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
5
|
Zovi A, Cifani C, Confalonieri C, Lasala R, Sabbatucci M, Vitiello A, Vittori S. Dietary management and access to treatment for patients with glucose deficiency syndrome type 1: an overview review with focus on the European regulatory framework. Eur J Clin Nutr 2024:10.1038/s41430-024-01490-0. [PMID: 39127841 DOI: 10.1038/s41430-024-01490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Glut-1 deficiency Syndrome (GLUT-1 DS) is a rare disease caused by a mutation in the SLC2A1 gene that codes for the glucose transporter protein GLUT-1 DS. Currently, there is no indicated drug therapy for this condition and ketogenic diet (KD) is the most effective remedy to treat it. OBJECTIVE The objective of this study was to review the published literature that evaluated the effectiveness of KD in the dietary management of GLUT-1 DS syndrome, describing the state-of-the-art the treatment pathway for patients with GLUT-1 DS syndrome in light of the current European regulatory framework within the National Health Services. METHODS The literature search was carried out on September 10, 2023, and all studies conducted in humans diagnosed with GLUT-1 deficiency syndrome and treated with KD were included. RESULTS A total of 156 scientific papers have been extracted. Applying the exclusion criteria, 38 articles have been considered eligible. In 29 out of 38 studies, the main outcome for determining the efficacy of KD was the measurement of the number of epileptic seizures, demonstrating that patients treated with KD experienced improvements with a clear reduction in the number of epileptic attacks. Currently, in the European Union, only one country provides full reimbursement by the national health system for KD. DISCUSSION Although they are crucial for the treatment of GLUT-1 DS, according with current food regulations, KD are not evaluated on the basis of an unambiguous efficacy result, but only on the basis of safety. As a result, it is desirable to carry out clinical studies in the coming years based on the determination of efficacy in target populations, also in view of the marketing of these products on the European market.
Collapse
Affiliation(s)
- Andrea Zovi
- Department of Human Health, Animal Health and Ecosystem (One Health) and International Relations, Ministry of Health, Rome, Italy.
- School of Pharmacy, University of Camerino, Camerino, Italy.
| | - Carlo Cifani
- School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Ruggero Lasala
- Hospital Pharmacy of Corato, Local Health Authority of Bari, Corato, Italy
| | - Michela Sabbatucci
- Department Infectious Diseases, Italian National Institute of Health, Rome, Italy
| | - Antonio Vitiello
- Department of Prevention, Research and Health Emergencies, Ministry of Health, Rome, Italy
| | - Sauro Vittori
- School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
6
|
Wang YY, Zhou YQ, Luo LJ, Wang CJ, Shen N, Li H, Wang JW. Ketogenic diet therapy in children with epilepsy caused by SLC2A1 mutations: a single-center single-arm retrospective study. World J Pediatr 2024; 20:517-524. [PMID: 36303089 DOI: 10.1007/s12519-022-00620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 09/05/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND This retrospective study assessed the efficacy and safety of ketogenic diet therapies in children with epilepsy caused by SLC2A1 genetic mutations and glucose transporter type 1 deficiency syndrome. METHODS Pediatric patients with epilepsy symptoms admitted to our medical center between January 2017 and October 2021 were included if they presented with an SLC2A1 genetic mutation on whole-exome sequencing. We analyzed the patients' convulsions and treatment with antiepileptic drugs. The patients were followed up at different time periods after ketogenic diet therapies. RESULTS Six patients with SLC2A1 mutations were included in this study. The patients had seizures of different types and frequencies, and they took antiepileptic drugs to relieve their symptoms. They were then treated with a ketogenic diet for at least four months. We analyzed epilepsy control rates at 1, 2, 3, 6, and 12 months after ketogenic diet treatment. All patients were seizure-free within a month of receiving the diet therapy. All patients were followed up for six months, three were followed up for 12 months after the treatment, and there was no recurrence of epilepsy during this period. After antiepileptic drug withdrawal, none of the patients experienced seizure relapse when receiving ketogenic diet treatment alone. No severe adverse events occurred during the therapy. CONCLUSIONS Ketogenic diet therapy is very effective and safe for the treatment of epilepsy caused by SLC2A1 mutations. Therefore, patients with glucose transporter type 1 deficiency syndrome caused by SLC2A1 mutations should begin ketogenic diet treatment as soon as possible.
Collapse
Affiliation(s)
- Ying-Yan Wang
- Department of Neurology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Qing Zhou
- Department of Neurology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Juan Luo
- Department of Infectious Diseases, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cui-Jin Wang
- Department of Neurology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Shen
- Department of Infectious Diseases, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Li
- Department of Neurology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Clinical Research Ward, Clinical Research Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ji-Wen Wang
- Department of Neurology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Park SB, Yang SJ. Ketogenic diet preserves muscle mass and strength in a mouse model of type 2 diabetes. PLoS One 2024; 19:e0296651. [PMID: 38198459 PMCID: PMC10781088 DOI: 10.1371/journal.pone.0296651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Diabetes is often associated with reduced muscle mass and function. The ketogenic diet (KD) may improve muscle mass and function via the induction of nutritional ketosis. To test whether the KD is able to preserve muscle mass and strength in a mouse model of type 2 diabetes (T2DM), C57BL/6J mice were assigned to lean control, diabetes control, and KD groups. The mice were fed a standard diet (10% kcal from fat) or a high-fat diet (HFD) (60% kcal from fat). The diabetic condition was induced by a single injection of streptozotocin (STZ; 100 mg/kg) and nicotinamide (NAM; 120 mg/kg) into HFD-fed mice. After 8-week HFD feeding, the KD (90% kcal from fat) was fed to the KD group for the following 6 weeks. After the 14-week experimental period, an oral glucose tolerance test and grip strength test were conducted. Type 2 diabetic condition induced by HFD feeding and STZ/NAM injection resulted in reduced muscle mass and grip strength, and smaller muscle fiber areas. The KD nutritional intervention improved these effects. Additionally, the KD altered the gene expression of nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome- and endoplasmic reticulum (ER) stress-related markers in the muscles of diabetic mice. Collectively, KD improved muscle mass and function with alterations in NLRP3 inflammasome and ER stress.
Collapse
Affiliation(s)
- Sol Been Park
- Department of Food and Nutrition, Seoul Women’s University, Seoul, Republic of Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Seoul Women’s University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Chen S, Su X, Feng Y, Li R, Liao M, Fan L, Liu J, Chen S, Zhang S, Cai J, Zhu S, Niu J, Ye Y, Lo K, Zeng F. Ketogenic Diet and Multiple Health Outcomes: An Umbrella Review of Meta-Analysis. Nutrients 2023; 15:4161. [PMID: 37836444 PMCID: PMC10574428 DOI: 10.3390/nu15194161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Numerous studies have examined the effects of ketogenic diets (KD) on health-related outcomes through meta-analyses. However, the presence of biases may compromise the reliability of conclusions. Therefore, we conducted an umbrella review to collate and appraise the strength of evidence on the efficacy of KD interventions. We conducted a comprehensive search on PubMed, EMBASE, and the Cochrane Database until April 2023 to identify meta-analyses that investigated the treatment effects of KD for multiple health conditions, which yielded 23 meta-analyses for quantitative analyses. The evidence suggests that KD could increase the levels of low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C), the respiratory exchange rate (RER), and could decrease total testosterone and testosterone levels (all p-random effects: <0.05). The combination of KD and physical activity can significantly reduce body weight and increase the levels of LDL-C and cortisol. In addition, KD was associated with seizure reduction in children, which can be explained by the ketosis state as induced by the diet. Furthermore, KD demonstrated a better alleviation effect in refractory childhood epilepsy, in terms of median effective rates for seizure reduction of ≥50%, ≥90%, and seizure freedom. However, the strength of evidence supporting the aforementioned associations was generally weak, thereby challenging their credibility. Consequently, future studies should prioritize stringent research protocols to ascertain whether KD interventions with longer intervention periods hold promise as a viable treatment option for various diseases.
Collapse
Affiliation(s)
- Shiyun Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou 510632, China; (S.C.); (X.S.); (Y.F.); (R.L.); (J.L.); (S.C.); (S.Z.); (J.C.); (S.Z.)
| | - Xin Su
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou 510632, China; (S.C.); (X.S.); (Y.F.); (R.L.); (J.L.); (S.C.); (S.Z.); (J.C.); (S.Z.)
| | - Yonghui Feng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou 510632, China; (S.C.); (X.S.); (Y.F.); (R.L.); (J.L.); (S.C.); (S.Z.); (J.C.); (S.Z.)
| | - Ruojie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou 510632, China; (S.C.); (X.S.); (Y.F.); (R.L.); (J.L.); (S.C.); (S.Z.); (J.C.); (S.Z.)
| | - Minqi Liao
- Institute of Epidemiology, Helmholtz Zentrum Munich-German Research Center for Environmental Health, Ingolstadt Landstr. 1, 85764 Neuherberg, Germany;
| | - Laina Fan
- Department of Clinical Medicine, International School, Jinan University, No. 601 Huangpu Road West, Guangzhou 510632, China;
| | - Jiazi Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou 510632, China; (S.C.); (X.S.); (Y.F.); (R.L.); (J.L.); (S.C.); (S.Z.); (J.C.); (S.Z.)
| | - Shasha Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou 510632, China; (S.C.); (X.S.); (Y.F.); (R.L.); (J.L.); (S.C.); (S.Z.); (J.C.); (S.Z.)
| | - Shiwen Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou 510632, China; (S.C.); (X.S.); (Y.F.); (R.L.); (J.L.); (S.C.); (S.Z.); (J.C.); (S.Z.)
| | - Jun Cai
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou 510632, China; (S.C.); (X.S.); (Y.F.); (R.L.); (J.L.); (S.C.); (S.Z.); (J.C.); (S.Z.)
| | - Sui Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou 510632, China; (S.C.); (X.S.); (Y.F.); (R.L.); (J.L.); (S.C.); (S.Z.); (J.C.); (S.Z.)
| | - Jianxiang Niu
- General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Road, Hohhot 010000, China;
| | - Yanbin Ye
- Department of Clinical Nutrition, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China;
| | - Kenneth Lo
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong 100872, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Kowloon, Hong Kong 100872, China
| | - Fangfang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou 510632, China; (S.C.); (X.S.); (Y.F.); (R.L.); (J.L.); (S.C.); (S.Z.); (J.C.); (S.Z.)
| |
Collapse
|
9
|
Kaufman M, Nguyen C, Shetty M, Oppezzo M, Barrack M, Fredericson M. Popular Dietary Trends' Impact on Athletic Performance: A Critical Analysis Review. Nutrients 2023; 15:3511. [PMID: 37630702 PMCID: PMC10460072 DOI: 10.3390/nu15163511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Nutrition fuels optimal performance for athletes. With increased research developments, numerous diets available, and publicity from professional athletes, a review of dietary patterns impact on athletic performance is warranted. RESULTS The Mediterranean diet is a low inflammatory diet linked to improved power and muscle endurance and body composition. Ketogenic diets are restrictive of carbohydrates and proteins. Though both show no decrements in weight loss, ketogenic diets, which is a more restrictive form of low-carbohydrate diets, can be more difficult to follow. High-protein and protein-paced versions of low-carbohydrate diets have also shown to benefit athletic performance. Plant-based diets have many variations. Vegans are at risk of micronutrient deficiencies and decreased leucine content, and therefore, decreased muscle protein synthesis. However, the literature has not shown decreases in performance compared to omnivores. Intermittent fasting has many different versions, which may not suit those with comorbidities or specific needs as well as lead to decreases in sprint speed and worsening time to exhaustion. CONCLUSIONS This paper critically evaluates the research on diets in relation to athletic performance and details some of the potential risks that should be monitored. No one diet is universally recommend for athletes; however, this article provides the information for athletes to analyze, in conjunction with medical professional counsel, their own diet and consider sustainable changes that can help achieve performance and body habitus goals.
Collapse
Affiliation(s)
- Matthew Kaufman
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA 94063, USA
| | - Chantal Nguyen
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA 94063, USA
| | - Maya Shetty
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA 94063, USA
| | - Marily Oppezzo
- Prevention Research Center, Stanford University, Redwood City, CA 94063, USA
| | - Michelle Barrack
- Department of Family and Consumer Sciences, California State University, Long Beach, CA 90840, USA
| | - Michael Fredericson
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA 94063, USA
| |
Collapse
|
10
|
Cecchi N, Romanelli R, Ricevuti F, Amitrano M, Carbone MG, Dinardo M, Burgio E. Current knowledges in pharmaconutrition: " Ketogenics" in pediatric gliomas. Front Nutr 2023; 10:1222908. [PMID: 37614745 PMCID: PMC10442509 DOI: 10.3389/fnut.2023.1222908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
Brain tumors account for 20-25% of pediatric cancers. The most frequent type of brain tumor is Glioma from grade I to grade IV according to the rate of malignancy. Current treatments for gliomas use chemotherapy, radiotherapy, tyrosine kinase inhibitors, monoclonal antibodies and surgery, but each of the treatment strategies has several serious side effects. Therefore, to improve treatment efficacy, it is necessary to tailor therapies to patient and tumor characteristics, using appropriate molecular targets. An increasingly popular strategy is pharmaconutrition, which combines a tailored pharmacological treatment with a diet designed to synergize the effects of drugs. In this review we deal in the molecular mechanisms, the epigenetic effects and modulation of the oxidative stress pathway of ketogenic diets, that underlie its possible role, in the treatment of infantile gliomas, as a complementary approach to conventional cancer therapy.
Collapse
Affiliation(s)
- Nicola Cecchi
- Clinical Nutrition Unit – A.O.R.N. Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Roberta Romanelli
- Clinical Nutrition Unit – A.O.R.N. Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Flavia Ricevuti
- Clinical Nutrition Unit – A.O.R.N. Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Marianna Amitrano
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Maria Grazia Carbone
- Clinical Nutrition Unit – A.O.R.N. Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Michele Dinardo
- Clinical Nutrition Unit – A.O.R.N. Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Ernesto Burgio
- ECERI-European Cancer and Environment Research Institute, Brussels, Belgium
| |
Collapse
|
11
|
Corsello A, Trovato CM, Di Profio E, Cardile S, Campoy C, Zuccotti G, Verduci E, Diamanti A. Ketogenic Diet in Children and Adolescents: the Effects on Growth and Nutritional Status. Pharmacol Res 2023; 191:106780. [PMID: 37088260 DOI: 10.1016/j.phrs.2023.106780] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/25/2023]
Abstract
The ketogenic diet is known to be a possible adjuvant treatment in several medical conditions, such as in patients with severe or drug-resistant forms of epilepsy. Its use has recently been increasing among adolescents and young adults due to its supposed weight-loss effect, mediated by lipolysis and lowered insulin levels. However, there are still no precise indications on the possible use of ketogenic diets in pediatric age for weight loss. This approach has also recently been proposed for other types of disorder such as inherited metabolic disorders, Prader-Willi syndrome, and some specific types of cancers. Due to its unbalanced ratio of lipids, carbohydrates and proteins, a clinical evaluation of possible side effects with a strict evaluation of growth and nutritional status is essential in all patients following a long-term restrictive diet such as the ketogenic one. The prophylactic use of micronutrients supplementation should be considered before starting any ketogenic diet. Lastly, while there is sufficient literature on possible short-term side effects of ketogenic diets, their possible long-term impact on growth and nutritional status is not yet fully understood, especially when started in pediatric age.
Collapse
Affiliation(s)
- Antonio Corsello
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.
| | - Chiara Maria Trovato
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital, Rome, Italy.
| | - Elisabetta Di Profio
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy.
| | - Sabrina Cardile
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital, Rome, Italy.
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain; EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain; Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada's node, Institute of Health Carlos III, Madrid, Spain.
| | - Gianvincenzo Zuccotti
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy; Pediatric Clinical Research Center, Fondazione Romeo ed Enrica Invernizzi, University of Milan, Milan, Italy.
| | - Elvira Verduci
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy.
| | - Antonella Diamanti
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital, Rome, Italy.
| |
Collapse
|
12
|
Xu Y, Zheng F, Zhong Q, Zhu Y. Ketogenic Diet as a Promising Non-Drug Intervention for Alzheimer’s Disease: Mechanisms and Clinical Implications. J Alzheimers Dis 2023; 92:1173-1198. [PMID: 37038820 DOI: 10.3233/jad-230002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is mainly characterized by cognitive deficits. Although many studies have been devoted to developing disease-modifying therapies, there has been no effective therapy until now. However, dietary interventions may be a potential strategy to treat AD. The ketogenic diet (KD) is a high-fat and low-carbohydrate diet with adequate protein. KD increases the levels of ketone bodies, providing an alternative energy source when there is not sufficient energy supply because of impaired glucose metabolism. Accumulating preclinical and clinical studies have shown that a KD is beneficial to AD. The potential underlying mechanisms include improved mitochondrial function, optimization of gut microbiota composition, and reduced neuroinflammation and oxidative stress. The review provides an update on clinical and preclinical research on the effects of KD or medium-chain triglyceride supplementation on symptoms and pathophysiology in AD. We also detail the potential mechanisms of KD, involving amyloid and tau proteins, neuroinflammation, gut microbiota, oxidative stress, and brain metabolism. We aimed to determine the function of the KD in AD and outline important aspects of the mechanism, providing a reference for the implementation of the KD as a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Yunlong Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Neonatology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Fuxiang Zheng
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Qi Zhong
- Department of Neurology, Shenzhen Luohu People’s Hospital; The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Ketogenic Diet Applied in Weight Reduction of Overweight and Obese Individuals with Progress Prediction by Use of the Modified Wishnofsky Equation. Nutrients 2023; 15:nu15040927. [PMID: 36839285 PMCID: PMC9968058 DOI: 10.3390/nu15040927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Ketogenic diet is often used as diet therapy for certain diseases, among other things, its positive effect related to weight loss is highlighted. Precisely because of the suggestion that KD can help with weight loss, visceral obesity, and appetite control, 100 respondents joined the weight loss program (of which 31% were men and 69% were women). The aforementioned respondents were interviewed in order to determine their eating habits, the amount of food consumed, and the time when they consume meals. Basic anthropometric data (body height, body mass, chest, waist, hips, biceps, and thigh circumferences) were also collected, in order to be able to monitor their progress during the different phases of the ketogenic diet. Important information is the expected body mass during the time frame of a certain keto diet phase. This information is important for the nutritionist, medical doctor, as well as for the participant in the reduced diet program; therefore, the model was developed that modified the original equation according to Wishnofsky. The results show that women lost an average of 22.7 kg (average number of days in the program 79.5), and for men the average weight loss was slightly higher, 29.7 kg (with an average of 76.8 days in the program). The prediction of expected body mass by the modified Wishnofsky's equation was extremely well aligned with the experimental values, as shown by the Bland-Altman graph (bias for women 0.021 kg and -0.697 kg for men) and the coefficient of determination of 0.9903. The modification of the Wishnofsky equation further shed light on the importance of controlled energy reduction during the dietetic options of the ketogenic diet.
Collapse
|
14
|
Dyńka D, Kowalcze K, Paziewska A. The Role of Ketogenic Diet in the Treatment of Neurological Diseases. Nutrients 2022; 14:5003. [PMID: 36501033 PMCID: PMC9739023 DOI: 10.3390/nu14235003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Over a hundred years of study on the favourable effect of ketogenic diets in the treatment of epilepsy have contributed to a long-lasting discussion on its potential influence on other neurological diseases. A significant increase in the number of scientific studies in that field has been currently observed. The aim of this paper is a widespread, thorough analysis of the available scientific evidence in respect of the role of the ketogenic diet in the therapy of neurological diseases such as: epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and migraine. A wide range of the mechanisms of action of the ketogenic diet has been demonstrated in neurological diseases, including, among other effects, its influence on the reduction in inflammatory conditions and the amount of reactive oxygen species (ROS), the restoration of the myelin sheath of the neurons, the formation and regeneration of mitochondria, neuronal metabolism, the provision of an alternative source of energy for neurons (ketone bodies), the reduction in glucose and insulin concentrations, the reduction in amyloid plaques, the induction of autophagy, the alleviation of microglia activation, the reduction in excessive neuronal activation, the modulation of intestinal microbiota, the expression of genes, dopamine production and the increase in glutamine conversion into GABA. The studies discussed (including randomised controlled studies), conducted in neurological patients, have stressed the effectiveness of the ketogenic diet in the treatment of epilepsy and have demonstrated its promising therapeutic potential in Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and migraine. A frequent advantage of the diet was demonstrated over non-ketogenic diets (in the control groups) in the therapy of neurological diseases, with simultaneous safety and feasibility when conducting the nutritional model.
Collapse
Affiliation(s)
- Damian Dyńka
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| | - Katarzyna Kowalcze
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| | - Agnieszka Paziewska
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| |
Collapse
|
15
|
Hwang CY, Choe W, Yoon KS, Ha J, Kim SS, Yeo EJ, Kang I. Molecular Mechanisms for Ketone Body Metabolism, Signaling Functions, and Therapeutic Potential in Cancer. Nutrients 2022; 14:nu14224932. [PMID: 36432618 PMCID: PMC9694619 DOI: 10.3390/nu14224932] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The ketone bodies (KBs) β-hydroxybutyrate and acetoacetate are important alternative energy sources for glucose during nutrient deprivation. KBs synthesized by hepatic ketogenesis are catabolized to acetyl-CoA through ketolysis in extrahepatic tissues, followed by the tricarboxylic acid cycle and electron transport chain for ATP production. Ketogenesis and ketolysis are regulated by the key rate-limiting enzymes, 3-hydroxy-3-methylglutaryl-CoA synthase 2 and succinyl-CoA:3-oxoacid-CoA transferase, respectively. KBs participate in various cellular processes as signaling molecules. KBs bind to G protein-coupled receptors. The most abundant KB, β-hydroxybutyrate, regulates gene expression and other cellular functions by inducing post-translational modifications. KBs protect tissues by regulating inflammation and oxidative stress. Recently, interest in KBs has been increasing due to their potential for treatment of various diseases such as neurological and cardiovascular diseases and cancer. Cancer cells reprogram their metabolism to maintain rapid cell growth and proliferation. Dysregulation of KB metabolism also plays a role in tumorigenesis in various types of cancer. Targeting metabolic changes through dietary interventions, including fasting and ketogenic diets, has shown beneficial effects in cancer therapy. Here, we review current knowledge of the molecular mechanisms involved in the regulation of KB metabolism and cellular signaling functions, and the therapeutic potential of KBs and ketogenic diets in cancer.
Collapse
Affiliation(s)
- Chi Yeon Hwang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Correspondence: (E.-J.Y.); (I.K.); Tel.: +82-32-899-6050 (E.-J.Y.); +82-2-961-0922 (I.K.)
| | - Insug Kang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (E.-J.Y.); (I.K.); Tel.: +82-32-899-6050 (E.-J.Y.); +82-2-961-0922 (I.K.)
| |
Collapse
|
16
|
Mohammadifard N, Haghighatdoost F, Rahimlou M, Rodrigues APS, Gaskarei MK, Okhovat P, de Oliveira C, Silveira EA, Sarrafzadegan N. The Effect of Ketogenic Diet on Shared Risk Factors of Cardiovascular Disease and Cancer. Nutrients 2022; 14:nu14173499. [PMID: 36079756 PMCID: PMC9459811 DOI: 10.3390/nu14173499] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular disease (CVD) and cancer are the first and second leading causes of death worldwide, respectively. Epidemiological evidence has demonstrated that the incidence of cancer is elevated in patients with CVD and vice versa. However, these conditions are usually regarded as separate events despite the presence of shared risk factors between both conditions, such as metabolic abnormalities and lifestyle. Cohort studies suggested that controlling for CVD risk factors may have an impact on cancer incidence. Therefore, it could be concluded that interventions that improve CVD and cancer shared risk factors may potentially be effective in preventing and treating both diseases. The ketogenic diet (KD), a low-carbohydrate and high-fat diet, has been widely prescribed in weight loss programs for metabolic abnormalities. Furthermore, recent research has investigated the effects of KD on the treatment of numerous diseases, including CVD and cancer, due to its role in promoting ketolysis, ketogenesis, and modifying many other metabolic pathways with potential favorable health effects. However, there is still great debate regarding prescribing KD in patients either with CVD or cancer. Considering the number of studies on this topic, there is a clear need to summarize potential mechanisms through which KD can improve cardiovascular health and control cell proliferation. In this review, we explained the history of KD, its types, and physiological effects and discussed how it could play a role in CVD and cancer treatment and prevention.
Collapse
Affiliation(s)
- Noushin Mohammadifard
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Fahimeh Haghighatdoost
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
- Correspondence: ; Tel.: +98-31-36115318
| | - Mehran Rahimlou
- Department of Nutrition, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 4515863994, Iran
| | | | - Mohammadamin Khajavi Gaskarei
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Paria Okhovat
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Cesar de Oliveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College, London WC1E 6BT, UK
| | - Erika Aparecida Silveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College, London WC1E 6BT, UK
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
- Faculty of Medicine, School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
17
|
Very Low-Calorie Ketogenic Diet: A Potential Application in the Treatment of Hypercortisolism Comorbidities. Nutrients 2022; 14:nu14122388. [PMID: 35745118 PMCID: PMC9228456 DOI: 10.3390/nu14122388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 12/24/2022] Open
Abstract
A very low-calorie ketogenic diet (VLCKD) is characterized by low daily caloric intake (less than 800 kcal/day), low carbohydrate intake (<50 g/day) and normoproteic (1−1.5 g of protein/kg of ideal body weight) contents. It induces a significant weight loss and an improvement in lipid parameters, blood pressure, glycaemic indices and insulin sensitivity in patients with obesity and type 2 diabetes mellitus. Cushing’s syndrome (CS) is characterized by an endogenous or exogenous excess of glucocorticoids and shows many comorbidities including cardiovascular disease, obesity, type 2 diabetes mellitus and lipid disorders. The aim of this speculative review is to provide an overview on nutrition in hypercortisolism and analyse the potential use of a VLCKD for the treatment of CS comorbidities, analysing the molecular mechanisms of ketogenesis.
Collapse
|
18
|
Ariga K. Biomimetic and Biological Nanoarchitectonics. Int J Mol Sci 2022; 23:3577. [PMID: 35408937 PMCID: PMC8998553 DOI: 10.3390/ijms23073577] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
A post-nanotechnology concept has been assigned to an emerging concept, nanoarchitectonics. Nanoarchitectonics aims to establish a discipline in which functional materials are fabricated from nano-scale components such as atoms, molecules, and nanomaterials using various techniques. Nanoarchitectonics opens ways to form a more unified paradigm by integrating nanotechnology with organic chemistry, supramolecular chemistry, material chemistry, microfabrication technology, and biotechnology. On the other hand, biological systems consist of rational organization of constituent molecules. Their structures have highly asymmetric and hierarchical features that allow for chained functional coordination, signal amplification, and vector-like energy and signal flow. The process of nanoarchitectonics is based on the premise of combining several different processes, which makes it easier to obtain a hierarchical structure. Therefore, nanoarchitectonics is a more suitable methodology for creating highly functional systems based on structural asymmetry and hierarchy like biosystems. The creation of functional materials by nanoarchitectonics is somewhat similar to the creation of functional systems in biological systems. It can be said that the goal of nanoarchitectonics is to create highly functional systems similar to those found in biological systems. This review article summarizes the synthesis of biomimetic and biological molecules and their functional structure formation from various viewpoints, from the molecular level to the cellular level. Several recent examples are arranged and categorized to illustrate such a trend with sections of (i) synthetic nanoarchitectonics for bio-related units, (ii) self-assembly nanoarchitectonics with bio-related units, (iii) nanoarchitectonics with nucleic acids, (iv) nanoarchitectonics with peptides, (v) nanoarchitectonics with proteins, and (vi) bio-related nanoarchitectonics in conjugation with materials.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan
| |
Collapse
|
19
|
Altayyar M, Nasser JA, Thomopoulos D, Bruneau M. The Implication of Physiological Ketosis on The Cognitive Brain: A Narrative Review. Nutrients 2022; 14:nu14030513. [PMID: 35276871 PMCID: PMC8840718 DOI: 10.3390/nu14030513] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 01/27/2023] Open
Abstract
Optimal cognitive functions are necessary for activities of daily living and self-independence. Cognitive abilities are acquired during early childhood as part of progressive neurodevelopmental milestones; unfortunately, regressive changes can occur as part of physiological aging, or more ominously, pathological diseases, such as Alzheimer’s disease (AD). Cases of AD and its milder subset, mild cognitive impairment (MCI), are rising and would impose a burdensome impact beyond the individual level. Various dietary and nutritional approaches have potential for promising results in managing cognitive deterioration. Glucose is the core source of bioenergy in the body; however, glucose brain metabolism could be affected in aging cells or due to disease development. Ketone bodies are an efficient alternate fuel source that could compensate for the deficient glycolytic metabolism upon their supra-physiologic availability in the blood (ketosis), which, in turn, could promote cognitive benefits and tackle disease progression. In this review, we describe the potential of ketogenic approaches to produce cognitive benefits in healthy individuals, as well as those with MCI and AD. Neurophysiological changes of the cognitive brain in response to ketosis through neuroimaging modalities are also described in this review to provide insight into the ketogenic effect on the brain outside the framework of purely molecular explanations.
Collapse
Affiliation(s)
- Mansour Altayyar
- Department of Nutrition Sciences, Drexel University, 1601 Cherry Street, Philadelphia, PA 19102, USA; (J.A.N.); (D.T.)
- Correspondence:
| | - Jennifer A. Nasser
- Department of Nutrition Sciences, Drexel University, 1601 Cherry Street, Philadelphia, PA 19102, USA; (J.A.N.); (D.T.)
| | - Dimitra Thomopoulos
- Department of Nutrition Sciences, Drexel University, 1601 Cherry Street, Philadelphia, PA 19102, USA; (J.A.N.); (D.T.)
| | - Michael Bruneau
- Department of Health Science, Drexel University, 1601 Cherry Street, Philadelphia, PA 19102, USA;
| |
Collapse
|