1
|
Wan Z, Hirche C, Fricke F, Dragu A, Will PA. Chick Chorioallantoic Membrane as an in vivo Model for the Study of Angiogenesis and Lymphangiogenesis. J Vasc Res 2024; 62:109-120. [PMID: 39709947 PMCID: PMC11965846 DOI: 10.1159/000542875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/30/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND The high incidence of vascular and lymphatic metastasis is closely associated with poor prognosis and mortality in cancer. Finding effective inhibitors to prevent pathological angiogenesis and lymphangiogenesis relies on appropriate in vivo models. The chick embryo chorioallantoic membrane (CAM) is formed by the fusion of the chorion and allantois during embryonic development. SUMMARY In this context, we primarily summarize the changes in vascular and lymphatic vessel formation in tumors under the action of drugs using this model, providing a preclinical model basis for effective tumor inhibitors. KEY MESSAGES Due to natural immunological defects, chick embryos accept various tissue and species transplants without immune response. The CAM model has been widely used in studying angiogenesis, antiangiogenesis, tumor growth, tumor metastasis, and drug efficacy. This review describes the use of CAM assays as a valuable method for testing the in vivo effects of drugs on vascular and lymphatic vessel formation before further investigating the effects of drugs on tumor vessels and lymphatic vessels in animal models. BACKGROUND The high incidence of vascular and lymphatic metastasis is closely associated with poor prognosis and mortality in cancer. Finding effective inhibitors to prevent pathological angiogenesis and lymphangiogenesis relies on appropriate in vivo models. The chick embryo chorioallantoic membrane (CAM) is formed by the fusion of the chorion and allantois during embryonic development. SUMMARY In this context, we primarily summarize the changes in vascular and lymphatic vessel formation in tumors under the action of drugs using this model, providing a preclinical model basis for effective tumor inhibitors. KEY MESSAGES Due to natural immunological defects, chick embryos accept various tissue and species transplants without immune response. The CAM model has been widely used in studying angiogenesis, antiangiogenesis, tumor growth, tumor metastasis, and drug efficacy. This review describes the use of CAM assays as a valuable method for testing the in vivo effects of drugs on vascular and lymphatic vessel formation before further investigating the effects of drugs on tumor vessels and lymphatic vessels in animal models.
Collapse
Affiliation(s)
- Zhenzhen Wan
- Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre BG Klinik Ludwigshafen, Ludwigshafen, Germany,
- Plastic Surgery and Hand Surgery, University Heidelberg, Heidelberg, Germany,
- Department of Hand, Foot and Reconstructive Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,
| | - Christoph Hirche
- Department of Plastic, Hand, and Reconstructive Microsurgery, BG Unfallklinik Frankfurt am Main, Affiliated Hospital of Goethe-University, Frankfurt am Main, Germany
| | - Fabia Fricke
- Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany
| | - Adrian Dragu
- Department of Plastic and Hand Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Patrick A Will
- Department of Plastic and Hand Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
2
|
Mo D, Lv M, Mao X. Using different zebrafish models to explore liver regeneration. Front Cell Dev Biol 2024; 12:1485773. [PMID: 39544362 PMCID: PMC11560876 DOI: 10.3389/fcell.2024.1485773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
The liver possesses an impressive capability to regenerate following various injuries. Given its profound implications for the treatment of liver diseases, which afflict millions globally, liver regeneration stands as a pivotal area of digestive organ research. Zebrafish (Danio rerio) has emerged as an ideal model organism in regenerative medicine, attributed to their remarkable ability to regenerate tissues and organs, including the liver. Many fantastic studies have been performed to explore the process of liver regeneration using zebrafish, especially the extreme hepatocyte injury model. Biliary-mediated liver regeneration was first discovered in the zebrafish model and then validated in mammalian models and human patients. Considering the notable expansion of biliary epithelial cells in many end-stage liver diseases, the promotion of biliary-mediated liver regeneration might be another way to treat these refractory liver diseases. To date, a comprehensive review discussing the current advancements in zebrafish liver regeneration models is lacking. Therefore, this review aims to investigate the utility of different zebrafish models in exploring liver regeneration, highlighting the genetic and cellular insights gained and discussing the potential translational impact on human health.
Collapse
Affiliation(s)
- Dashuang Mo
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Mengzhu Lv
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaoyu Mao
- College of Language Intelligence, Sichuan International Studies University, Chongqing, China
| |
Collapse
|
3
|
Liang XY, Wang Y, Zhu YW, Zhang YX, Yuan H, Liu YF, Jin YQ, Gao W, Ren ZG, Ji XY, Wu DD. Role of hydrogen sulfide in dermatological diseases. Nitric Oxide 2024; 150:18-26. [PMID: 38971520 DOI: 10.1016/j.niox.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Hydrogen sulfide (H2S), together with carbon monoxide (CO) and nitric oxide (NO), is recognized as a vital gasotransmitter. H2S is biosynthesized by enzymatic pathways in the skin and exerts significant physiological effects on a variety of biological processes, such as apoptosis, modulation of inflammation, cellular proliferation, and regulation of vasodilation. As a major health problem, dermatological diseases affect a large proportion of the population every day. It is urgent to design and develop effective drugs to deal with dermatological diseases. Dermatological diseases can arise from a multitude of etiologies, including neoplastic growth, infectious agents, and inflammatory processes. The abnormal metabolism of H2S is associated with many dermatological diseases, such as melanoma, fibrotic diseases, and psoriasis, suggesting its therapeutic potential in the treatment of these diseases. In addition, therapies based on H2S donors are being developed to treat some of these conditions. In the review, we discuss recent advances in the function of H2S in normal skin, the role of altering H2S metabolism in dermatological diseases, and the therapeutic potential of diverse H2S donors for the treatment of dermatological diseases.
Collapse
Affiliation(s)
- Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Guang Ren
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Infectious Diseases and Biosafety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Infectious Diseases and Biosafety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Infectious Diseases and Biosafety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
4
|
Mariano CG, de Oliveira VC, Ambrósio CE. Gene editing in small and large animals for translational medicine: a review. Anim Reprod 2024; 21:e20230089. [PMID: 38628493 PMCID: PMC11019828 DOI: 10.1590/1984-3143-ar2023-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/16/2024] [Indexed: 04/19/2024] Open
Abstract
The CRISPR/Cas9 system is a simpler and more versatile method compared to other engineered nucleases such as Zinc Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs), and since its discovery, the efficiency of CRISPR-based genome editing has increased to the point that multiple and different types of edits can be made simultaneously. These advances in gene editing have revolutionized biotechnology by enabling precise genome editing with greater simplicity and efficacy than ever before. This tool has been successfully applied to a wide range of animal species, including cattle, pigs, dogs, and other small animals. Engineered nucleases cut the genome at specific target positions, triggering the cell's mechanisms to repair the damage and introduce a mutation to a specific genomic site. This review discusses novel genome-based CRISPR/Cas9 editing tools, methods developed to improve efficiency and specificity, the use of gene-editing on animal models and translational medicine, and the main challenges and limitations of CRISPR-based gene-editing approaches.
Collapse
Affiliation(s)
- Clésio Gomes Mariano
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Vanessa Cristina de Oliveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Carlos Eduardo Ambrósio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| |
Collapse
|
5
|
Hibbert T, Krpetic Z, Latimer J, Leighton H, McHugh R, Pottenger S, Wragg C, James CE. Antimicrobials: An update on new strategies to diversify treatment for bacterial infections. Adv Microb Physiol 2024; 84:135-241. [PMID: 38821632 DOI: 10.1016/bs.ampbs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Ninety-five years after Fleming's discovery of penicillin, a bounty of antibiotic compounds have been discovered, modified, or synthesised. Diversification of target sites, improved stability and altered activity spectra have enabled continued antibiotic efficacy, but overwhelming reliance and misuse has fuelled the global spread of antimicrobial resistance (AMR). An estimated 1.27 million deaths were attributable to antibiotic resistant bacteria in 2019, representing a major threat to modern medicine. Although antibiotics remain at the heart of strategies for treatment and control of bacterial diseases, the threat of AMR has reached catastrophic proportions urgently calling for fresh innovation. The last decade has been peppered with ground-breaking developments in genome sequencing, high throughput screening technologies and machine learning. These advances have opened new doors for bioprospecting for novel antimicrobials. They have also enabled more thorough exploration of complex and polymicrobial infections and interactions with the healthy microbiome. Using models of infection that more closely resemble the infection state in vivo, we are now beginning to measure the impacts of antimicrobial therapy on host/microbiota/pathogen interactions. However new approaches are needed for developing and standardising appropriate methods to measure efficacy of novel antimicrobial combinations in these contexts. A battery of promising new antimicrobials is now in various stages of development including co-administered inhibitors, phages, nanoparticles, immunotherapy, anti-biofilm and anti-virulence agents. These novel therapeutics need multidisciplinary collaboration and new ways of thinking to bring them into large scale clinical use.
Collapse
Affiliation(s)
- Tegan Hibbert
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Zeljka Krpetic
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Joe Latimer
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Hollie Leighton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Rebecca McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Charlotte Wragg
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Chloë E James
- School of Science, Engineering, and Environment, University of Salford, Salford, UK.
| |
Collapse
|
6
|
Wang XX, Zou HY, Cao YN, Zhang XM, Sun M, Tu PF, Liu KC, Zhang Y. Radix Panacis quinquefolii Extract Ameliorates Inflammatory Bowel Disease through Inhibiting Inflammation. Chin J Integr Med 2023; 29:825-831. [PMID: 36527537 DOI: 10.1007/s11655-022-3543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To investigate the anti-inflammatory activity of Radix Panacis quinguefolii root extract (RPQE) and its therapeutic effects on inflammatory bowel disease (IBD). METHODS The 72-hour post-fertilization zebrafish was used to generate the local and systematic inflammation models through tail-amputation and lipopolysaccharide (LPS)-induction (100 µ g/mL), respectively. The Tg(zlyz:EGFP) zebrafish was induced with 75 µ g/mL 2,4,6-trinitrobenzene sulfonic acid (TNBS) for establishing the IBD model. The tail-amputated, LPS-, and TNBS-induced models were subjected to RPQE (ethanol fraction, 10-20 µ g/mL) administration for 12 and 24 h, respectively. Anti-inflammatory activity of RPQE was evaluated by detecting migration and aggregation of leukocytes and expression of inflammation-related genes. Meanwhile, TNBS-induced fish were immersed in 0.2% (W/V) calcein for 1.5 h and RPQE for 12 h before photographing to analyze the intestinal efflux efficiency (IEE). Moreover, the expression of inflammation-related genes in these fish was detected by quantitative polymerase chain reaction. RESULTS Subject to RPQE administration, the migration and aggregation of leukocytes were significantly alleviated in 3 zebrafish models (P<0.01). Herein, RPQE ameliorated TNBS-induced IBD with respect to a significantly reduced number of leukocytes, improved IEE, and inhibited gene expression of pro-inflammatory factors (P<0.05 or P<0.01). CONCLUSION RPQE exhibited therapeutic effects on IBD by inhibiting inflammation.
Collapse
Affiliation(s)
- Xi-Xin Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Hong-Yuan Zou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
- Kyiv National University of Technologies and Design, Kyiv, 01011, Ukraine
| | - Yong-Na Cao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Xuan-Ming Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Meng Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural Medicines and Biomimetic Medicines, School of Pharmacy, Peking University, Beijing, 100191, China
| | - Ke-Chun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| |
Collapse
|
7
|
Behrens JW, Ryberg MP, Chondromatidou V, Iburg TM. Comparative histopathology of livers from Baltic cod infected with the parasitic nematode Contracaecum osculatum. JOURNAL OF FISH DISEASES 2023; 46:653-662. [PMID: 36917496 DOI: 10.1111/jfd.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 05/07/2023]
Abstract
Infection levels with the parasitic nematode Contracaecum osculatum in Eastern Baltic cod have increased in the last decades. Eastern Baltic cod is transport host for this parasite that has a high affinity for the liver of the fish. The liver is a highly vital organ and damage to the liver tissue can result in reduced functionality of the organ. Previous studies have revealed that cod with high infections loads reveal impaired physiological performance, reduced nutritional condition and show signs of having a liver disease. Yet, little is known about the pathological changes and inflammatory reactions of the cod liver related to the infections. In this study, we performed histological examinations on 30 Baltic cod livers caught in the eastern part of the Baltic Sea (length; 38 ± 0.9 cm, weight; 454 ± 34.8 gram) and three Sound cod livers (length; 63 ± 2.9 cm, weight; 3396 ± 300.2 gram) to categorize the degree of inflammation and its relation to pathological changes in infected cod livers. We further investigated how C. osculatum infection levels varied with intensity of inflammation and co-infections. We found that high infection loads with C. osculatum caused severe inflammation in the liver tissue of cod and reduced fat content of the hepatocytes. Conspicuous amounts of glycogen were found in the muscle and intestinal epithelial cells of the nematodes and parasitic co-infections occurred more frequently in the most heavily infected livers.
Collapse
Affiliation(s)
- Jane W Behrens
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Kgs. Lyngby, Denmark
| | - Marie Plambech Ryberg
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Kgs. Lyngby, Denmark
| | - Virginia Chondromatidou
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Kgs. Lyngby, Denmark
| | - Tine Moesgaard Iburg
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Li S, Cai M, Wang Q, Yuan Z, Li R, Wang C, Sun Y. Effect of long-term exposure to dyeing wastewater treatment plant effluent on growth and gut microbiota of adult zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53674-53684. [PMID: 36864334 DOI: 10.1007/s11356-023-26167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Strict standards have been put forward for the treatment and discharge of dyeing wastewater worldwide. However, there are still traces amount of pollutants, especially emerging pollutants in dyeing wastewater treatment plant (DWTP) effluent. Few studies have focused on the chronic biological toxicity effect and mechanism of DWTP effluent. In this study, 3-month chronic compound toxic effects were investigated by the exposure of DWTP effluent using adult zebrafish. Significantly higher mortality and fatness and significantly lower body weight and body length were found in the treatment group. In addition, long-term exposure to DWTP effluent also obviously reduced liver-body weight ratio of zebrafish, causing abnormal liver development of zebrafish. Moreover, DWTP effluent led to obvious changes in the gut microbiota and microbial diversity of zebrafish. At phylum level, significantly higher of Verrucomicrobia but lower Tenericutes, Actinobacteria, and Chloroflexi were found in the control group. At genus level, the treatment group had significantly higher abundance of Lactobacillus, but significantly lower abundance of Akkermansia, Prevotella, Bacteroides, and Sutterella. These results suggested that long-term exposure to DWTP effluent led to imbalance of gut microbiota in zebrafish. In general, this research indicated that DWTP effluent pollutants could result in negative health outcomes to aquatic organisms.
Collapse
Affiliation(s)
- Shuangshuang Li
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, Dalian, 116023, China
| | - Mingcan Cai
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Qing Wang
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Zixi Yuan
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Ruixuan Li
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Chun Wang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, Dalian, 116023, China.
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yingxue Sun
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
9
|
Vitale G, Carra S, Alessi Y, Campolo F, Pandozzi C, Zanata I, Colao A, Faggiano A. Carcinoid Syndrome: Preclinical Models and Future Therapeutic Strategies. Int J Mol Sci 2023; 24:ijms24043610. [PMID: 36835022 PMCID: PMC9961914 DOI: 10.3390/ijms24043610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Carcinoid syndrome represents a debilitating paraneoplastic disease, caused by the secretion of several substances, occurring in about 10-40% of patients with well-differentiated neuroendocrine tumors (NETs). The main signs and symptoms associated with carcinoid syndrome are flushing, diarrhea, hypotension, tachycardia, bronchoconstriction, venous telangiectasia, dyspnea and fibrotic complications (mesenteric and retroperitoneal fibrosis, and carcinoid heart disease). Although there are several drugs available for the treatment of carcinoid syndrome, the lack of therapeutic response, poor tolerance or resistance to drugs are often reported. Preclinical models are indispensable tools for investigating the pathogenesis, mechanisms for tumor progression and new therapeutic approaches for cancer. This paper provides a state-of-the-art overview of in vitro and in vivo models in NETs with carcinoid syndrome, highlighting the future developments and therapeutic approaches in this field.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, 20100 Milan, Italy
- Correspondence: ; Tel.: +39-02-6191-12023; Fax: +39-02-6191-13033
| | - Silvia Carra
- Laboratory of Endocrine and Metabolic Research, IRCCS, Istituto Auxologico Italiano, 20100 Milan, Italy
| | - Ylenia Alessi
- Endocrine Unit, University Hospital “Gaetano Martino” of Messina, 98125 Messina, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Carla Pandozzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Isabella Zanata
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189 Rome, Italy
| | | |
Collapse
|
10
|
Lim S, Kang H, Kwon B, Lee JP, Lee J, Choi K. Zebrafish (Danio rerio) as a model organism for screening nephrotoxic chemicals and related mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113842. [PMID: 35810668 DOI: 10.1016/j.ecoenv.2022.113842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/16/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Because of essential role in homeostasis of the body fluid and excretion of wastes, kidney damage can lead to severe impacts on health and survival of humans. For most chemicals, nephrotoxic potentials and associated mechanisms are unclear. Hence, fast and sensitive screening measures for nephrotoxic chemicals are required. In this study, the utility of zebrafish (Danio rerio) was evaluated for the investigation of chemical-induced kidney toxicity and associated modes of toxicity, based on the literature review. Zebrafish has a well-understood biology, and many overlapping physiological characteristics with mammals. One such characteristic is its kidneys, of which histology and functions are similar to those of mammals, although unique differences of zebrafish kidneys, such as kidney marrow, should be noted. Moreover, the zebrafish kidney is simpler in structure and easy to observe. For these advantages, zebrafish has been increasingly used as an experimental model for screening nephrotoxicity of chemicals and for understanding related mechanisms. Multiple endpoints of zebrafish model, from functional level, i.e., glomerular filtration, to transcriptional changes of key genes, have been assessed to identify chemical-induced kidney toxicities, and to elucidate underlying mechanisms. The most frequently studied mechanisms of chemical-induced nephrotoxicity in zebrafish include oxidative stress, inflammation, DNA damage, apoptosis, fibrosis, and cell death. To date, several pharmaceuticals, oxidizing agents, natural products, biocides, alcohols, and consumer chemicals have been demonstrated to exert different types of kidney toxicities in zebrafish. The present review shows that zebrafish model can be efficiently employed for quick and reliable assessment of kidney damage potentials of chemicals, and related toxic mechanisms. The toxicological information obtained from this model can be utilized for identification of nephrotoxic chemicals and hence for protection of public health.
Collapse
Affiliation(s)
- Soyoung Lim
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, South Korea
| | - Habyeong Kang
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Department of Epidemiology, School of Public Health, University of Michigan, USA
| | - Bareum Kwon
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, South Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, South Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea.
| |
Collapse
|
11
|
Morrison JK, DeRossi C, Alter IL, Nayar S, Giri M, Zhang C, Cho JH, Chu J. Single-cell transcriptomics reveals conserved cell identities and fibrogenic phenotypes in zebrafish and human liver. Hepatol Commun 2022; 6:1711-1724. [PMID: 35315595 PMCID: PMC9234649 DOI: 10.1002/hep4.1930] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 12/16/2022] Open
Abstract
The mechanisms underlying liver fibrosis are multifaceted and remain elusive with no approved antifibrotic treatments available. The adult zebrafish has been an underutilized tool to study liver fibrosis. We aimed to characterize the single-cell transcriptome of the adult zebrafish liver to determine its utility as a model for studying liver fibrosis. We used single-cell RNA sequencing (scRNA-seq) of adult zebrafish liver to study the molecular and cellular dynamics at a single-cell level. We performed a comparative analysis to scRNA-seq of human liver with a focus on hepatic stellate cells (HSCs), the driver cells in liver fibrosis. scRNA-seq reveals transcriptionally unique populations of hepatic cell types that comprise the zebrafish liver. Joint clustering with human liver scRNA-seq data demonstrates high conservation of transcriptional profiles and human marker genes in zebrafish. Human and zebrafish HSCs show conservation of transcriptional profiles, and we uncover collectin subfamily member 11 (colec11) as a novel, conserved marker for zebrafish HSCs. To demonstrate the power of scRNA-seq to study liver fibrosis using zebrafish, we performed scRNA-seq on our zebrafish model of a pediatric liver disease with mutation in mannose phosphate isomerase (MPI) and characteristic early liver fibrosis. We found fibrosis signaling pathways and upstream regulators conserved across MPI-depleted zebrafish and human HSCs. CellPhoneDB analysis of zebrafish transcriptome identified neuropilin 1 as a potential driver of liver fibrosis. Conclusion: This study establishes the first scRNA-seq atlas of the adult zebrafish liver, highlights the high degree of similarity to human liver, and strengthens its value as a model to study liver fibrosis.
Collapse
Affiliation(s)
- Joshua K. Morrison
- Department of PediatricsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Charles DeRossi
- Department of PediatricsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Isaac L. Alter
- Department of PediatricsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Shikha Nayar
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Mamta Giri
- The Charles Bronfman Institute of Personalized MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Chi Zhang
- Department of Cell BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | - Judy H. Cho
- The Charles Bronfman Institute of Personalized MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jaime Chu
- Department of PediatricsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|